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Abstract

We deduce from the first part of this paper [S1] estimates on the energy-dissipation
rates for solutions of the Ginzburg-Landau heat-flow, which allow to study various phe-
nomena occurring in this flow, among which vortex-collisions; allowing in particular to
extend the dynamical law of vortices passed collisions.

1 Introduction and statement of the main results

1.1 Presentation of the problem

We recall from [S1] that we are interested in the following parabolic Ginzburg-Landau equation
in 2 dimensions, in the asymptotic limit ε → 0:

(1.1)





∂tu

|log ε| = ∆u +
1
ε2

u(1− |u|2) in Ω× R+

u(., 0) = u0
ε in Ω,

where Ω is a two-dimensional domain, assumed to be smooth, bounded and simply connected,
and where u is a complex-valued function, assumed to satisfy either one of the boundary
conditions

(1.2) u = g on ∂Ω

with g a fixed regular map from Ω to S1, in which case we also assume that Ω is strictly
starshaped with respect to a point; or

(1.3)
∂u

∂ν
= 0 on ∂Ω

in which case no further assumption is made.
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The Ginzburg-Landau heat flow is an L2 gradient-flow (or steepest descent) for the
Ginzburg-Landau functional

(1.4) Eε(u) =
1
2

∫

Ω
|∇u|2 +

(1− |u|2)2
2ε2

.

For the motivations to study this equation, and the notion of vortices, we refer to the
first part of this paper [S1]. It was shown by Bethuel-Brezis-Hélein in [BBH] that under the
assumption

(1.5) Eε(u) ≤ C|log ε|,

minimizers (respectively critical points) of Eε have a bounded number of vortices which
converge, as ε → 0, to a finite set of points which are minimizers (respectively critical points)
of an explicit finite-dimensional function called renormalized energy, and denoted W . They
proved the crucial relation that if uε has n limiting vortices at p1, · · · , pn, of degrees Di,

(1.6) Eε(uε) ≥ πn|log ε|+ WD(p1, · · · , pn) + nγ + o(1),

where γ is a universal constant introduced in [BBH] (it is the energy of the profile of the
1-vortex solution in the plane). The main term in WD

(1.7) −π
∑

i 6=j

DiDj log |pi − pj |

contains the interaction between the vortices and indicates that vortices of opposite sign
attract each other, while vortices of same sign repel each other.

The dynamics of the vortices under the heat-flow (1.1) has also been studied, and it was
established by Lin [Li] and Jerrard-Soner [JS] (see also Spirn [Sp] for the equation with mag-
netic field), that, as could be expected, the limiting vortices pi of the solutions of (1.1) evolve
(in that time-scale) according to the gradient of the renormalized energy W , i.e. according
to the set of ODE’s

(1.8)





dpi

dt
= − 1

π
∇iWD(p1, · · · , pn)(t)

pi(0) = p0
i

This was established under the following set of restrictions:

1. The initial vortices all have degree ±1 and are well-separated.

2. The initial data is assumed to be “well-prepared” i.e.

(1.9) Eε(u0
ε) ≤ πn|log ε|+ C,

where n is the number of initial vortices.

3. There are no collisions (or we work until the first collision-time under the law (1.8)).

4. The vortices cannot exit Ω.
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A different proof via a Γ-convergence or energy-based method was later given by Sandier-
Serfaty in [SS2], under the same conditions and the slightly stronger “very well-prepared”
assumption

(1.10) Eε(u0
ε) ≤ πn|log ε|+ WD(p0

1, · · · , p0
n) + nγ + o(1).

All these results were valid only up to collision-time under the law (1.8); but, if there are
initially vortices of opposite degrees, then this law does generically generate collisions (see
the form (1.7)). Collisions create a problem in the analysis because the “well-preparedness”
breaks down during a collision. They are probably one of the most interesting phenomena in
these Ginzburg-Landau dynamics, and Ginzburg-Landau itself is one of the simplest models
in which collisions of vortices can be studied.

In this paper, we are interested in giving results relaxing the assumptions above. The main
objectives of this work are to study collisions, which were not well-understood, to determine
how and how fast the energy dissipates during such collisions, to give a dynamical law after
blow-up, and to see how the dynamical law of the vortices can be continued /extended after
collisions. We also show how the well-prepared assumption can be weakened, and relax the
separation hypothesis, for example dealing with the possible separation of two +1 vortices
which are initially very close. We use our study of Part I [S1] of “pathological situations” i.e
those for which we have a group of vortices which are far from the others, and degrees di and
(
∑

i di)2 6=
∑

i d
2
i in the group, which we called an “unbalanced cluster of vortices”.

While this work was in completion, very similar issues were addressed by Bethuel, Orlandi
and Smets in [BOS1] and later on, their study was completed in [BOS2]. Prior to all these
works, the only partial result on collisions was the paper of Bauman-Chen-Phillips-Sternberg
[BCPS], where they studied the situation in the whole plane with quite rigid conditions at
infinity.

The first paper of Bethuel-Orlandi-Smets [BOS1] gives a geometric measure theoretical
description of the limiting vortex-trajectories under very general assumptions (a simple bound
Eε(uε) ≤ C|log ε|), including possible splittings, collisions and recombinations, and results
of annihilation in the case of collisions with total degree 0; it also exhibit a phenomenon of
“phase-vortex interaction” occurring (only) in infinite samples (their setup is the whole plane),
which can create a drift of the vortices. Their later paper contains some results more similar
to the present paper, it shows that the limiting trajectories of the vortices are rectifiable, and
derives their limiting motion law outside of collision times, via the “balanced” property and
a quantization of the energy like the one we mentioned in Part I [S1], relation (1.31) here.

Some of the main differences between our work and theirs is that we handle boundary
conditions in bounded domains, and that our method, inspired by [SS2], is rather energy-
based than PDE-based: it relies on examining the energy-dissipation rates through the study
made in Part I [S1] of the perturbed Ginzburg-Landau equation

(1.11)
{

∆u + u
ε2 (1− |u|2) = fε in Ω

u = g (resp. ∂u
∂ν = 0) on ∂Ω.

under the hypotheses Eε(uε) ≤ M |log ε|, |uε| ≤ 1, and |∇uε| ≤ M
ε ; and on characterizing

precisely the value of the energy and location of the zeroes of uε during the dynamics.
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1.2 Methodology

Let us first recall the method of the paper [SS2]. It is written as an abstract scheme, which
we will not fully quote here (refer to [SS2]), but rather we describe here its implementation
for Ginzburg-Landau.

The idea is to use the fact that, given a priori the number of limiting vortices n, and their
degrees Di = ±1, Eε−πn|log ε| Γ-converges to W , combined with some additional estimates
on the C1 structure of the energy landscape. For the meaning of Γ-convergence, we need to
specify a sense of convergence: we say uε

S
⇀ (p1, · · · , pn) if

(1.12) µε := curl (iuε,∇uε) ⇀ 2π
n∑

i=1

Diδpi ,

where (., .) denotes, here as well as in the sequel, the scalar product in C identified with R2.
This is the convergence of the Jacobian determinant, or vorticity of uε (exactly as in fluid
mechanics), its role in Ginzburg-Landau has been first emphasized by Jerrard-Soner [JS2]
and Alberti [Al] (see also [SS3]) and has been commonly used since then. It allows to trace
down the vortices and find the limiting vortices pi. The best compactness for µε one obtains
is in a weak norm: in the dual of C0,γ

c (Ω), but this is not important here. Observe that the
pi’s are the limits as ε → 0 of the zeroes of uε, not the zeroes themselves, and the degrees are
the limits of the total degrees of the zeroes converging to each pi.

The equation (1.1) can be seen as the gradient flow

(1.13) ∂tuε = −∇XεEε(uε)

where ∇XεEε denotes the gradient of Eε with respect to the Hilbert structure

‖.‖2
Xε

=
1

|log ε|‖.‖
2
L2(Ω).

With these notations, if uε is a solution of the flow (1.1), the energy-dissipation rate is

− d

dt
Eε(uε(x, t)) = −〈∂tuε,∇XεEε(uε)〉Xε

= ‖∂tuε‖2
Xε

= ‖∇XεEε(uε)‖2
Xε

(1.14)

=
1
2
‖∂tuε‖2

Xε
+

1
2
‖∇XεEε(uε)‖2

Xε
.(1.15)

The main idea of [SS2] is in writing this energy-dissipation as (1.15) and in proving that
two additional relations hold.

The first relation (which we recalled in Part I) was: if curl (iuε,∇uε) ⇀ 2π
∑

i Diδpi as
ε → 0, then
(1.16)

lim
ε→0

∫

Ω
|log ε|

∣∣∣∣∆uε +
1
ε2

uε(1− |uε|2)
∣∣∣∣
2

= lim
ε→0

‖∇XεEε(uε)‖2
Xε
≥ 1

π

∑

i

|∇iWD(p1, · · · , pn)|2,

which relates the slope of the energy at a configuration to the slope of the renormalized energy
at the underlying vortices.
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The other relation is that, under the assumption Eε(uε) ≤ πn|log ε| + O(1), if for every
t ∈ [0, T ], µε(t) = curl (iuε,∇uε)(t) ⇀ 2π

∑n
i=1 Diδpi(t) then

(1.17) lim
ε→0

1
|log ε|

∫

Ω×[0,T ]
|∂tuε|2 = lim

ε→0

∫ T

0
‖∂tuε‖2

Xε
≥ π

n∑

i=1

∫ T

0
|dtpi|2 dt

This lower bound is sharp and relates the kinetic energy
∫
Ω |∂tu|2 to the velocity of the

underlying vortices. It comes as a corollary of a more general result called “product-estimate”,
valid for any configuration (not necessarily solving (1.1)), proved in [SS1], which we use again
several times in this paper, and whose time-dependent version is (M(Ω) denotes the space of
bounded Radon measures on Ω):

Theorem 1 (“Product estimate”, time-dependent version, see [SS1]). Let uε(x, t)
be defined over Ω× [0, T ] and be such that

(1.18)





∀t ∈ [0, T ], Eε(uε(t)) ≤ C|log ε|
∫

Ω×[0,T ]
|∂tuε|2 ≤ C|log ε|.

Then, Vε being defined by

(1.19) Vε = (∂2(iuε, ∂tuε)− ∂t(iuε, ∂2uε),−∂1(iuε, ∂tuε) + ∂t(iuε, ∂1uε))

there exist µ ∈ L∞([0, T ],M(Ω)) of the form

µ(t) = 2π
∑

i

Di(t)δpi(t) di(t) ∈ Z,

and V ∈ L2([0, T ],M(Ω)) such that, after extraction,

µε ⇀ µ in (C0,γ
c ([0, T ]× Ω))′, ∀γ > 0,

Vε ⇀ V in (C0,γ
c ([0, T ]× Ω))′, ∀γ > 0,

with

(1.20) ∂tµ + div V = 0.

Moreover, for any X ∈ C0
c ([0, T ]× Ω,R2) and f ∈ C0

c ([0, T ]× Ω), we have

(1.21) lim
ε→0

1
|log ε|2

∫

Ω×[0,T ]
|X · ∇uε|2

∫

Ω×[0,T ]
f2|∂tuε|2 ≥ 1

4

∣∣∣∣∣
∫

Ω×[0,T ]
V · fX

∣∣∣∣∣
2

.

Observe that taking |X| ≤ 1 and |f | ≤ 1, for solutions of (1.1) assuming
∫
Ω |∇uε|2 ≤

C|log ε|, we have 1
|log ε|

∫
Ω×[0,T ] |X · ∇uε|2 ≤ CT , while 1

|log ε|
∫
Ω×[0,T ] |∂tuε|2 = Eε(uε(0)) −

Eε(uε(T )), thus the relation (1.21) states essentially that for such solutions,

(1.22) |pi(T )− pi(0)|2 ≤ CT (Eε(uε(0))−Eε(uε(T )))

or in condensed notation

(1.23) |∆p|2 ≤ C∆T∆E
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relating ∆p the difference in position p, ∆T the difference in time, and ∆E the difference in
energy. This crucial relation reflects of course the parabolic scaling and will be used to bound
from below collision times.
The product estimate also allowed us to define limiting continuous (in fact C0, 1

2 ) vortex-
trajectories as follows.

Proposition 1.1 (Vortex trajectories - see [SS2]). Let uε(x, t) be defined over Ω × R+

and such that (1.18) holds with T = +∞ (in particular these hold for uε solving (1.1) with
(1.27) holding). Then, after extraction of a subsequence, there exist points pi(t) and integers
Di(t) ∈ Z and n(t) ∈ N such that

curl (iuε,∇uε)(t) ⇀ µ(t) = 2π

n(t)∑

i=1

Di(t)δpi(t) as ε → 0,

moreover t 7→ 〈ζ, µ(t)〉 ∈ H1((0,∞)) for every ζ ∈ C1
c (Ω). If in addition, for a given τ ,∑n(t)

i=1 |Di(t)| ≤
∑n(τ)

i=1 |Di(τ)| for every t ≥ τ , and Di(τ) = ±1 with the pi(τ) distinct, then
there exists T∗ > τ such that for every t ∈ [τ, T∗)

µ(t) = 2π

n(τ)∑

i=1

Di(τ)δpi(t)

where the pi(t) are distinct points and pi ∈ H1((τ, T∗), Ω). Moreover, if T∗ < ∞ then

lim
t→T−∗

min
(

min
i6=j

|pi(t)− pj(t)|, min
i

dist(pi(t), ∂Ω)
)

= 0.

Returning to our two relations (1.16) and (1.17), once they are proved, we combine them
with (1.15), and integrate in time, which leads to

Eε(uε(0))− Eε(uε(T )) ≥ 1
2
‖∂tuε‖2

Xε
+ ‖∇XεEε(uε)‖2

Xε

≥ 1
2

∑

i

∫ T

0
π|dtpi|2 +

1
π
|∇iWD(p)|2 + o(1)

≥
∑

i

∫ T

0
〈−dtpi,∇iWD(p)〉+ o(1)(1.24)

≥ WD(p1(0), · · · , pn(0))−WD(p1(T ), · · · , pn(T )) + o(1).

When uε(0) is “very well-prepared”, this implies that Eε(uε(T )) ≤ πn|log ε|+ WD(pi(T )) +
nγ +o(1). But the Γ-convergence of Eε yields the opposite inequality, hence there is equality,
in particular equality in the Cauchy-Schwarz relation (1.24) which allows to retrieve the
dynamical law ∂tpi = − 1

π∇iWD(p1, · · · , pn), as long as the number of vortices remains fixed.
An important fact which follows is that “very well-preparedness” is preserved through the
flow, i.e. we always have Eε(uε(t)) = πn|log ε|+ WD(p1(t), · · · , pn(t)) + nγ + o(1).

Part of what we do here is to prove that this scheme can be carried out even after blow-up
in space-time, allowing to treat the situation when vortices are at a distance l ¿ 1, as long
as l is not too small. This will be the object of Theorems 4 and 6.
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Let us now turn to the other part of the approach. Vortices colliding corresponds to the
more general fact that several vortices converge to the same limit as ε → 0, with possible
(but not necessarily) limiting degree 0. When vortices are well separated, then time needs
to be accelerated as in (1.1) in order to see vortex-motion, as first observed in [RS]. But
this is not true when vortices become very close, because formally the phase-excess ϕ of the
solution uε then decays according to an accelerated heat equation ∂tϕ

|log ε| = ∆ϕ, as pointed out
in [Li, JS, BOS1], thus in the faster time-scale 1

|log ε| , while the other remote vortices should
not move. The task will thus consist in retrieving these phenomena quantitatively.

For solutions of the gradient-flow, we have seen that the energy dissipation-rate is

(1.25) − d

dt
Eε(uε(t)) = ‖∂tuε‖2

Xε
= ‖∇XεEε(uε)‖2

Xε
.

If we write for simplicity that (1.11) holds, with fε = ∂tuε
|log ε| , we have fε = − 1

|log ε|∇XεEε(u)
in the previous notations, and

(1.26) ‖∇XεEε(u)‖2
Xε

= |log ε|‖fε‖2
L2(Ω)

Combining this to (1.25), we see that knowing ‖fε‖L2 gives the energy-dissipation rate (in
time), or rather − 1

|log ε|
d
dtEε. If ‖fε‖L2 is large, then the energy dissipates fast, thus decreasing

to a point which allows to rule out certain configurations (for example if Eε decreases so much
that Eε ≤ C then there can be no more vortices). On the other hand, if fε is small, then
the behavior of vortices can be controlled through the results obtained in Part I [S1]. The
idea is thus to use this alternative in a quantitative way, in order to obtain information on
vortex-collisions or other pathological situations.

Let us recall one of the main results of Part I (see Theorem 1 in [S1]): assuming that uε

solves (1.11) and under the additional hypotheses

Eε(uε) ≤ M |log ε|(1.27)

|uε| ≤ 1 |∇uε| ≤ M

ε
(1.28)

‖fε‖2
L2(Ω) ≤

1
εβ

for some β < 2,(1.29)

then we can find what we called a “good collection” of vortices and degrees (ai, di) of uε, and
we have

(1.30) ∀α < 1, απ
n∑

i=1

d2
i ≤

Eε(uε)
|log ε| + C|log ε|7/2ε1−α‖fε‖L2(Ω) + o(1),

and

(1.31) o(1) ≤ Eε(uε)−
(

π
n∑

i=1

d2
i log

1
ε

+ Wd(a1, · · · , an) +
n∑

i=1

γ(Vi)

)
≤ C‖fε‖2

L2(Ω)+o(1),

where γ(Vi) are constants depending on the di’s and equal to γ when di = ±1.
This allows to deduce two important ingredients: an upper bound on the number of actual

zeroes of uε from (1.30), and a differential inequality on the energy through (1.31), which is
optimal, and allows to retrieve the fast parabolic scaling.
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1.3 Main results on the dynamics

Several of our results give information on the vortices of the solutions uε at the ε-level,
giving asymptotic time-scales of collisions and of energy-dissipation. This is of course a little
more precise than just characterizing the trajectories of the limiting vortices, which we do
in Theorem 5. We also derive the dynamical law after blow-up (at any not too small scale)
during collisions, which is also more precise.

The first application of the theorems proved in [S1] consists in showing that the “very-
well prepared assumption” that was used in [SS2] is not restrictive since “well-prepared” data
becomes instantaneously (i.e. in o(1) time) “very well-prepared”, by fast dissipation of the
energy-excess obtained in (1.31). In fact, we can further relax the well-prepared assumption
through the following.

Theorem 2 (Instantaneous “very-well preparedness”). Assume that uε is a solution
of (1.1) such that (1.28) holds and

(1.32) curl (iu0
ε,∇u0

ε) ⇀ 2π
n∑

i=1

Diδp0
i

as ε → 0,

with Di = ±1 and the p0
i are distinct points, and such that

(1.33) Eε(u0
ε) ≤ πn|log ε|+ |log ε|

(log |log ε|)β

for some β > 1. Then, there exists a time Tε ≤ C log |log ε|
|log ε| such that for every tε ∈ [0, Tε], we

have

(1.34) curl (iuε,∇uε)(tε) ⇀ 2π
n∑

i=1

Diδp0
i

as ε → 0,

and

(1.35) Eε(uε(Tε)) ≤ πn|log ε|+ WD(p0
1, · · · , p0

n) + nγ + o(1).

That is, under these weaker assumptions (an energy-excess À 1 is allowed in (1.33)), in a
time Tε = o(1), the initial vortices have not moved, and uε has become well-prepared, i.e. all
excess-energy has dissipated; one can then apply the previous results [JS, Li, SS2] starting at
the time Tε and retrieve the same dynamical law (1.8).

As an application of Theorem 2 of [S1], we get the next result, which allows to continue
the dynamics after vortex-collisions. Let us assume that we are in the following generic case:
uε has a dipole of vortices of degree ±1 colliding, i.e. which are at a distance l ¿ 1 (as ε → 0)
from each other and converging to a point pdip as ε → 0, and n other vortices of degree ±1,
converging to distinct points p1, · · · , pn, distinct from pdip. This situation implies that

(1.36) curl (iu0
ε,∇u0

ε) ⇀ 2π

n∑

i=1

Diδp0
i

as ε → 0,

with Di = ±1. We may also assume that there exists pε → pdip such that, considering
uε(x) = uε(pε + lx, 0) we have

(1.37) curl (iuε,∇uε) ⇀ 2π
(
δb+ − δb−

)
as ε → 0
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where |b+ − b−| = 1.
We may also assume that this situation is inherited from a well-prepared data at a previous

time, so we may assume that uε is well-prepared with respect to these vortices, i.e. Eε(uε) ≤
πn|log ε|+ 2π log l

ε + O(1).

Theorem 3 (Collisions). Let uε be a solution of (1.1) such that at time 0, (1.28) and
(1.36)–(1.37) hold, and

Eε(u0
ε) ≤ πn|log ε|+ 2π log

l

ε
+ O(1),

with l = o(1). Then there exists a first time T1 ≤ C1l
2 +C2|log ε|4e−2

√
|log ε| ≤ o(1) for which

uε(T1) has exactly n zeroes (i.e. the dipole has collided). If l ≥ εβ with β < 1, then also
T1 ≥ C3l

2. Moreover, there exists a time T2 ≤ T1 + C4
log |log ε|
|log ε| ≤ o(1) such that for every

tε ≤ T2, we have

(1.38) curl (iuε,∇uε)(tε) ⇀ 2π

n∑

i=1

Diδp0
i

as ε → 0

and

(1.39) Eε(uε(T2)) ≤ πn|log ε|+ WD(p0
1, · · · , p0

n) + nγ + o(1)

The relation (1.38) indicates that the vortices not involved in the collision have not moved
during the time T2 = o(1), and (1.39) that uε has become well-prepared again relative to
those vortices within that time. Thus all excess-energy carried by the colliding vortices has
dissipated in o(1) time, and the previously known results apply after that time T2, i.e. one may
continue and retrieve the dynamical law with the remaining vortices. Moreover, our result
shows that the actual collision of the zeroes should happen in O(l2) time (the lower bound
on the collision time is simply provided by an appropriate version of the “product-estimate”
Theorem 1 or (1.23)), in agreement with the expectation that the distance between colliding
vortices decreases like

√
T∗ − t, if they interact according to the expected law dai

dt = 1
π

aj−ai

|aj−ai|2 ,

while the leftover energy-excess dissipates in log |log ε|
|log ε| time, in agreement with the time-scaling

of the equation. A further justification is given by the result of Theorem 4 below.
Analogous results can be derived from Theorems 1 and 2 of [S1] for other “bad” situations

when vortices accumulate in an unbalanced cluster i.e. with
∑

i d
2
i 6= (

∑
i di)2, for example

two repulsing +1 starting at a distance l. These results are are given in Sections 3.2, 3.3.

The next result consists in analyzing the vortex-collisions or vortex-separation by blow-up,
in order to retrieve some dynamical law. Thanks to Theorem 1 of [S1], which allows to control
errors, the analysis of [SS2] which we presented above carries through after blow-up, as long
as the blow-up scale l satisfies log4 l ≤ O(|log ε|). We assume that, blowing-up around pε,
we see blown-up limit vortices bk, and give the dynamical law of the bk’s. This is the result,
where for simplicity of statement we assume there is a unique point p of accumulation of the
vortices (a more general result is given further down in the paper, see Theorem 6). Observe
it is valid for any number of vortices and any interaction (attractive or repulsive).
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Theorem 4 (Exact dynamical law after blow-up). Assume uε is a solution to (1.1)
with (1.27) and (1.28). Assume l = o(1) with log4 l ≤ C|log ε|, and the points pε → p are
such that, defining uε(x, t) = uε(pε + lx, l2t), we have

(1.40) curl (iuε,∇uε)(0) ⇀ 2π
n∑

k=1

Dkδb0k
as ε → 0

with Dk = ±1, and assume

(1.41) Eε(u0
ε) ≤ πn|log ε|+ WP

k Dk
(p)− π

∑

k 6=k′
DkDk′ log(l|b0

k − b0
k′ |) + nγ + rε

with either rε ≤ o(1) or rε ≤ l2|log ε|
(log |log ε|)β for some β > 1. Then, there exist H1((0, T ∗))

trajectories bk(t) such that, for every t ∈ [0, T ∗),

curl (iuε,∇uε)(t) ⇀ 2π
n∑

k=1

Dkδbk(t) as ε → 0

where bk solves the dynamical law

(1.42)





dbk

dt
= − 1

π

∑

k′ 6=k

Dk′Dk
bk′ − bk

|bk′ − bk|2
bk(0) = b0

k

and T ∗ is the first collision-time under this law. Moreover, for every t ∈ (0, T ∗), we have

(1.43) Eε(uε(l2t)) ≤ πn|log ε|+WP
k Dk

(p)−π
∑

k,k′
DkDk′ log(l|bk(t)− bk′(t)|)+nγ + o(1),

as ε → 0.

1.4 The dynamical law of the limiting vortices

Combining easily the results of the previous theorems, we can extend the dynamical law of
the limiting vortices (1.8) passed collision times, provided there are only “simple” or “dual”
collisions.

Definition 1. In Proposition 1.1, we say the collision(s) at time T∗ are simple if for every
i, Card{j 6= i/ limt→T−∗

|pj(t)− pi(t)| = 0} = 1 or 0 if pi(t) → ∂Ω.

We now state the dynamical law, assuming for simplicity that we are in the case of
the Dirichlet boundary condition (which allows to rule out the case of vortices exiting Ω).
The terminology follows that of Proposition 1.1, and the statement is meant to be applied
iteratively to k = 0, 1, 2, · · ·
Theorem 5 (Global in time dynamical law). Let uε solve (1.1) with Dirichlet boundary
condition and be such that (1.28), (1.32) and (1.33) hold. Setting T0 = 0, there exist collision
times 0 < T1 < T2 < · · · < Tk · · · ≤ ∞ such that if either k = 0 or the collisions at times

10



T1, · · · , Tk are simple then, denoting by pk
i the distinct points in Ω and Dk

i = ±1 the integers
such that

µ(t) ⇀ 2π

nk∑

i=1

Dk
i δpk

i
as t → T−k ,

we have

∀t ∈ [Tk, Tk+1) curl (iuε,∇uε)(t) ⇀ µ(t) = 2π
nk∑

i=1

Dk
i δpi(t) as ε → 0

where the pi(t) solve the initial value problem

(1.44)





dpi

dt
= − 1

π
∇iWD(p1, · · · , pnk

)(t)

pi(Tk) = pk
i ,

and Tk+1 ≤ ∞ is the first collision time under this law. Moreover, for every t ∈ (Tk, Tk+1)

(1.45) Eε(uε(t)) = πnk|log ε|+ WD(p1(t), · · · , pnk
(t)) + o(1) as ε → 0.

Finally, nk ≤ nk−1 − 2 hence the number of simple collisions is bounded by n0/2 = n/2.

We may sum this theorem up by the following principle: If uε is a solution of (1.1) such
that (1.28), (1.32) and (1.33) hold, then, as long as there are only simple (and not multiple)
collisions, the dynamical law of its vortices is given by (1.8), where, when two vortices collide,
they should be erased from the list, and the law (1.8) should afterwards be understood as the
law with the remaining vortices.

Let us finally point out that in the course of the paper, we also prove general and sharp
lower bounds for the Ginzburg-Landau energy in terms of vortices, see Section 4.2.

1.5 Perspectives

As we mentioned, one cannot rule out, even though they are not generic, the possibility of
multiple collisions under the law (1.8), i.e. of more than two vortices meeting at the same
time and place, with mutual distances of same order. One would first need to classify all
the types of collisions that are possible under (1.8). Of particular difficulty is the case of
collisions of a group of “balanced” vortices with

∑
i d

2
i = (

∑
i di)

2, because this does not seem
to dissipate any energy. This may be related to the conjecture of Ovchinnikov-Sigal [OS] of
existence of nonradial solutions of Ginzburg-Landau in the whole plane, that is with several
vortices satisfying

∑
i d

2
i = (

∑
i di)

2. The other (i.e. unbalanced) collisions can be treated in
the same way as here for dual collisions.

We have not written down every possible result that can be obtained through our method
but rather we have tried to treat the most striking cases, and explain in the course of the
paper how to generalize to other situations. Contrarily to [BOS1, BOS2], our study does
not really allow to relax further the prepared assumption (1.33) into (1.27) nor to relax the
hypothesis Di = ±1, because under the only hypothesis Eε(u0

ε) ≤ C|log ε|, the hypothesis
(1.32) allows for substructures of vortices converging to each p0

i . However, Theorems 4 and
6 give an example of how to deal with such cases (see Remark 5.3). Also, in very short time

11



we must have ‖ ∂tuε
|log ε|‖2

L2 = ‖fε‖2
L2 ≤ C

εβ , β < 2, and then these substructures of vortices are
well-defined (see Proposition 2.2 in Part I) and satisfy (1.31). The first difficulty here is in
proving that while the small vortex structures form, the p0

i do not move (this should be done
as in Theorem 3, 4 and 6), the second more delicate one is in understanding what happens
to zeroes of degree 6= ±1 (we know that configurations with vortices of degree > 1 can be
stationary even though not stable, on the other hand once we know that a vortex of degree
> 1 has split into several vortices, then we can use our method like in Section 3.2). Then,
these clusters of vortices should interact according to, typically, Theorem 4 or 6. The closest
vortices, at distance l, should collide (or separate) first, in time O(l2), while the others do not
move in that time-scale, then the closest vortices among those left should interact, etc, until,
after a o(1) time there should only be vortices at finite distances left, probably near each p0

i if
Di = ±1 — but not necessarily otherwise — and the configuration should become “very-well
prepared” according to (1.31).

A delicate open problem would be to completely release the assumption (1.27) and thus
the upper bound on the number of vortices.

Finally, it would be interesting to study the law (1.44) and see in particular if the following
results hold: in the Dirichlet case, after a finite time (independent of ε), there are d = deg g ≥
0 vortices of degree 1 left; in the Neumann case, after a finite time, there are no vortices left
in Ω.

2 First applications to the energy dissipation

We start by presenting the most direct applications of the “static” results of Part I. They
rely mainly on studying the energy-decay through a simple differential inequation. We always
assume that uε solves (1.1) with Dirichlet or Neumann boundary condition, with Eε(u0

ε) ≤
M |log ε|, |u0

ε| ≤ 1 and |∇u0
ε| ≤ M

ε . We recall that the existence and uniqueness of the solution
of (1.1) is known, and that standard estimates prove that the above estimates on u0

ε remain
true at later times, with constants independent of t. Thus the results of Part I, where the
error terms only depend on these constants, can be applied, and yield errors independent of
time.

2.1 A clearing-out lemma

We start with a first simple result, because it gives the model for the other proofs; it is a
sort of clearing-out result (here we use this terminology borrowed from the literature — e.g.
Ilmanen’s paper on Allen-Cahn — in a loose sense meaning disappearance of all vortices
and excess-energy), saying that if initially there is little energy (less than what is needed to
create a vortex), then the solution is completely cleaned up in very small time. This may
happen for instance with an initial dipole of vortices of degree ±1 at distance l ≤ εγ , γ > 1

2 ,
initially, which can be constructed to have an energy ≤ 2π log l

ε ≤ 2π(1−γ)|log ε|. The result
corresponds to the energy-decay of the phase-excess through the accelerated heat equation.

We recall the definition of W0 was

(2.1) W0 =
∫

Ω
|∇Φ|2

where Φ = 0 in the Neumann case, and Φ is a harmonic function with ∂Φ
∂ν = (ig, ∂g

∂τ ) on ∂Ω
in the Dirichlet case.

12



Proposition 2.1 (Clearing-out lemma). Let uε be a solution of (1.1) with Dirichlet or
Neumann boundary condition, such that

Eε(u0
ε) ≤ η|log ε|

with η < π (this is possible only if deg g = 0 in the Dirichlet case). Then

1. For any γ < 2 − η/π in the Dirichlet case, resp. γ < 2 − 2η/π in the Neumann case,
there exists a time T1 ≤ εγ, such that ‖1− |uε(T1)|‖L∞(Ω) = o(1).

2. There exists a time T2 ≤ C log |log ε|
|log ε| such that ∀tε ≥ T2, ‖1−|uε(tε)|‖L∞(Ω) = o(1), and

Eε(uε(tε)) ≤ W0 + o(1).

Proof. First, recall that the energy decreases in time so we always have Eε(uε(t)) ≤ η|log ε|
for t ≥ 0. Moreover, writing fε = ∂tuε

|log ε| , we have

|log ε|
∫ t

0
‖fε‖2

L2(Ω) dt = Eε(uε(0))−Eε(uε(t)) ≤ η|log ε|.

Hence, by a mean-value argument, we deduce that, for γ < 2, there exists a time T1 ≤ εγ (T1

depending on ε) such that

(2.2) ‖fε‖2
L2 ≤ ηε−γ .

At time T1, Proposition 2.2 in [S1] applies, and yields vortices (ai, di). Moreover, (1.30)
holds, thus

απ
∑

i

d2
i ≤ η + C|log ε|7/2ε1−α−γ/2 + o(1)

Taking α > η
2π and γ < 2 − 2α, we find, that as ε gets small enough,

∑
i d

2
i < 2, hence∑

d2
i = 0 or = 1. But the di’s given by Proposition 2.2 in [S1] are all nonzero, hence we

deduce that either the set of ai’s is empty, and then ‖1 − |uε(T1)|‖L∞(Ω) = o(1); or there
is only one ai with degree +1 or −1. This implies that the total degree of uε in Ω is ±1,
which is impossible in the Dirichlet case. In the Neumann case, if there is such a vortex
ai, using Lemma 3.3 in [S1] and examining closely the form of Wd, we can show that the
energy is bounded from below by π log l

ε + O(1) where l is dist (ai, ∂Ω). This contradicts
Eε(uε) ≤ η|log ε| unless dist (ai, ∂Ω) ≤ εµ for some µ ≥ 1 − η/π. But then, the second
assertion of Theorem 2 in [S1] would give ‖fε‖2

L2 ≥ C
|log ε|2ε2µ . When γ < 2− 2η/π < 2µ, this

contradicts (2.2).
This proves that the only possible case was that the set of ai’s is empty at time T1, and

thus the desired property holds at time T1.
Let us prove the second property. At any time t ≥ 0, either ‖fε‖2

L2(Ω) ≥ η|log ε| in which
case Eε(uε(t)) ≤ ‖fε‖2

L2(Ω), or ‖fε‖2
L2(Ω) ≤ η|log ε|. In the latter case, Proposition 2.2 in [S1]

applies and gives vortices (ai, di), and (1.30) yields, for every α < 1,

απ
∑

i

d2
i ≤ η + o(1)

13



Since η < π, this implies that
∑

i d
2
i < 1 if ε is small enough, hence (using again the fact that

the di’s are nonzero integers) the set of vortices ai is empty. Applying (1.31) i.e. Theorem 1
of [S1] then yields

Eε(uε(t)) ≤ W0 + C‖fε‖2
L2(Ω) + o(1),

where the constant and the o(1) only depend on the apriori estimates on uε, hence not on t.
Changing C if necessary, this means that in all cases, for every t ≥ 0,

(2.3) Eε(uε(t)) ≤ W0 + C‖fε‖2
L2(Ω) + o(1).

On the other hand, we have dEε
dt = −|log ε|‖fε‖2

L2(Ω), hence we may write

(2.4) Eε(uε(t)) ≤ W0 + o(1)− C

|log ε|
dEε(uε(t))

dt
.

Solving this ordinary differential inequality, we find

(2.5) Eε(uε(t)) ≤ W0 + o(1) +
(
Eε(u0

ε)−W0 + o(1)
)
e−t|log ε|/C .

Therefore, if t ≥ c log |log ε|
|log ε| with c well-chosen, we have e−t|log ε|/C ≤ |log ε|−2 and thus from

(2.5), using (1.27),
Eε(uε(t)) ≤ W0 + o(1).

On the other hand, it is not difficult to check that
∫

Ω

(1− |uε|2)2
ε2

≤ C (Eε(uε)−W0)

hence
∫
Ω

(1−|uε|2)2

ε2 ≤ o(1), and since |∇uε| ≤ C
ε , this implies by standard arguments that

|uε| ≥ 1− o(1) at any time t ≥ c log |log ε|
|log ε| , hence the result.

2.2 Proof of Theorem 2

In this subsection, we prove Theorem 2 which shows that, under some weaker assumptions,
solutions become “very well-prepared” in short time.

We start with a lemma which will be used several times, and whose proof is very similar to
that of Proposition 2.1. It asserts that, under a weak condition on the initial energy, solutions
become very well-prepared in time O( log |log ε|

|log ε| ) if we know that their vortices do not move
during that time.

Lemma 2.1 (Instantaneous very-well preparedness provided vortices do not move).
Let uε be a solution of (1.1) with Dirichlet or Neumann boundary condition, and (1.28). There
exists a time Tε = M log |log ε|

|log ε| such that, if

(2.6) ∀tε ∈ [0, Tε], curl (iuε,∇uε)(tε) ⇀ 2π

n∑

i=1

Diδp0
i

where the p0
i ’s are distinct points in Ω and Di = ±1, and

(2.7) Eε(u0
ε) ≤ π(n + η)|log ε|
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for some η < 1, then for every tε ≤ Tε,

(2.8) Eε(uε(tε)) ≤ πn|log ε|+ WD(p0
1, · · · , p0

n) + nγ + C|log ε|e−tε|log ε|/C + o(1),

in particular, if M is large enough,

(2.9) Eε(uε(Tε)) ≤ πn|log ε|+ WD(p0
1, · · · , p0

n) + nγ + o(1).

Proof. The strategy is as in the previous proof. For each time, either ‖fε‖2
L2(Ω) = ‖ ∂tuε

|log ε|‖2
L2(Ω) À

|log ε|, in which case we automatically have

(2.10) Eε(uε(t)) ≤ πn|log ε|+ WD(p0
1, · · · , p0

n) + nγ + C‖fε‖2
L2(Ω) + o(1),

or we have ‖fε‖2
L2(Ω) ≤ O(|log ε|). In that second case, Proposition 2.2 in [S1] applies, gives

vortices (ai, di), and we may apply (1.30). Combining it with the bound on the energy (2.7),
valid for all times, we find, for every α < 1,

απ
∑

i

d2
i ≤ π(n + η) + o(1).

Taking α large enough, and using the fact that the di’s are integers, we find
∑

i

d2
i ≤ n.

Therefore, the number of points ai’s is bounded by n, with equality if and only if there are
n points with di = ±1 for each i. On the other hand, for every t ∈ [0, Tε], we have (2.6),
which implies that there exists at least one ai converging to each p0

k. Combining this with
the above, there can only be one ai converging to each p0

i , with degree di = Di = ±1. But
Theorem 1 of [S1] applies at that time, thus from (1.31), we have

Eε(uε(t)) ≤ πn|log ε|+ WD(a1, · · · , an) + nγ + C‖fε‖2
L2(Ω) + o(1).

Combining this with the above convergence of the ai’s, we find that (2.10) holds in this case
as well. So for every t ∈ [0, Tε], we have

(2.11) Eε(uε(t)) ≤ πn|log ε|+ WD(p0
1, · · · , p0

n) + nγ − C

|log ε|
dEε(uε(t))

dt
+ o(1).

Solving this differential inequality as in (2.5), we find

(2.12) Eε(uε(t)) ≤ πn|log ε|+ WD(p0
1, · · · , p0

n) + nγ

+ e−t|log ε|/C
(
Eε(uε(0))− πn|log ε| −WD(p0

1, · · · , p0
n)− nγ + o(1)

)
+ o(1)

≤ πn|log ε|+ WD(p0
1, · · · , p0

n) + nγ + C|log ε|e−t|log ε|/C + o(1).

We see that choosing Tε = C log |log ε|
|log ε| with C large enough, we get (2.9).

In order to prove Theorem 2, there remains to prove that (2.6) holds, i.e. that the vortices
do not move in time Tε. This will follow from a suitable application of the product estimate
Theorem 1 (see also (1.23)).
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We now assume the hypotheses of Theorem 2 are satisfied. By standard lower bounds (for
example the ones that will be proved below in Proposition 4.3 (4.6)), there exists a constant
K (depending on the p0

i ’s) such that for any uε such that (1.32) holds with Di = ±1, we have

(2.13) Eε(uε) ≥ πn|log ε| −K.

Let us now assume by contradiction that there exists Tε ≤ O
(

log |log ε|
|log ε|

)
such that

|log ε|
∫ Tε

0
‖fε‖2

L2(Ω)(t) dt =
1

|log ε|
∫

Ω×[0,Tε]
|∂tuε|2 = Eε(uε(0))−Eε(uε(Tε)) =

|log ε|
log |log ε|β +K+1.

Thus,

(2.14) Eε(uε(Tε)) = Eε(uε(0))− |log ε|
log |log ε|β −K − 1 ≤ πn|log ε| −K − 1.

Rescaling in time, and considering wε(x, t) = uε(x, Tεt), we have

(2.15)
1

Tε|log ε|
∫

Ω×[0,1]
|∂twε|2 =

|log ε|
log |log ε|β + K + 1.

Applying Theorem 1, we find that for every test-function f compactly supported in [0, 1] such
that |f | ≤ 1, and every test vector field X compactly supported in Ω× [0, 1], we have

(2.16)

∣∣∣∣∣
∫

Ω×[0,1]
V · fX

∣∣∣∣∣
2

≤ lim
ε→0

1
|log ε|2

(∫

Ω×[0,1]
|X · ∇wε|2

∫

Ω×[0,1]
f2|∂twε|2

)

≤ lim
ε→0

(
CTε

|log ε|
log |log ε|β

)
= 0

where V is the limiting velocity associated to the vortices of wε. Here, we have used the upper
bound on the energy, giving

∫
Ω |∇wε|2 ≤ C|log ε|, and (2.15). But Tε

|log ε|
(log |log ε|)β ≤ o(1) be-

cause β > 1 and Tε ≤ log |log ε|
|log ε| , hence we deduce V = 0, or in other words curl (iwε,∇wε)(t) ⇀

2π
∑

i Diδp0
i

for every t ∈ [0, 1]. This means that the vortices of uε do not move in [0, Tε],
hence we must have Eε(uε(Tε)) ≥ πn|log ε| − K, a contradiction with (2.14). This implies
that for every Tε ≤ O

(
log |log ε|
|log ε|

)
, we have

|log ε|
∫ Tε

0
‖fε‖2

L2(Ω)(t) dt =
1

|log ε|
∫

Ω×[0,Tε]
|∂tuε|2

= Eε(uε(0))− Eε(uε(Tε)) <
|log ε|

log |log ε|β + K + 1.

Arguing as above, we deduce that curl (iwε,∇wε)(t) ⇀ 2π
∑

i Diδp0
i

for every t ∈ [0, 1], thus,
after rescaling, that

curl (iuε,∇uε)(tε) ⇀ 2π
∑

i

Diδp0
i

for every tε ≤ O
(

log |log ε|
|log ε|

)
. Then, Lemma 2.1 applies, and proves Theorem 2.
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3 Energy clearing-out during collisions

In this section, we examine how the energy-excess dissipates rapidly during collisions or
separation of vortices. Starting with collisions, for simplicity, we consider the generic case of
n isolated vortices of degree ±1, plus a dipole of two vortices of opposite degree ±1 colliding.
We may also assume that this configuration is inherited from a previous evolution and thus
that the configuration is “well-prepared” with respect to these vortices, i.e.

(3.1) Eε(uε(0)) ≤ πn|log ε|+ 2π log
l(0)
ε

+ O(1)

where l(0) is the initial (small) distance between the two vortices of the dipole.
In a next section, we will show the exact dynamical law of such vortices, Theorem 4, valid

as long as l ≥ 1
|log ε|2 for example. So we may restrict to the situation where l(0) ≤ 1

|log ε|2 .

3.1 Motion of the energy-concentration points

We first wish to show that the collision of the two vortices, even though they carry excess-
energy which dissipates, does not trigger any motion of the other vortices. This requires
examining the evolution of the energy-density space-repartition. This is the only point where
the method is not purely energetic, and uses the equation (1.1).

We denote by

eε(u) =
1
2
|∇u|2 +

(1− |u|2)2
4ε2

the energy-density. It is a standard result (see for example [Li, JS, BOS1]) that

Lemma 3.1. Let uε be a solution of (1.1) and χ be a C2 function in Ω, constant in a
neighborhood of ∂Ω. Then,

(3.2)
d

dt

∫

Ω
χeε(uε(t)) = −

∫

Ω
χ
|∂tuε|2
|log ε| − |log ε|

∫

Ω

∑

i,j=1,2

(∂i∂jχ)Tij

where Tij denotes the “stress-energy tensor” of coefficients Tij = eε(u)δij − (∂iu, ∂ju) as in
[S1].

Proof. A direct calculation yields

∂teε(u(x, t)) = div (∂tu,∇u)−
(
∂tu,

(
∆u +

u

ε2
(1− |u|2)

))
= div (∂tu,∇u)− |∂tu|2

|log ε|
using (1.1). On the other hand, as seen in [S1], eq. (2.3), with another direct computation,
we have ∑

i

∂iTij = −
(
∂ju,∆u +

u

ε2
(1− |u|2)

)
= −

(
∂ju,

∂tu

|log ε|
)

.

We also observe that
(
∂t, u

∂u
∂ν

)
= 0 on ∂Ω in view of the boundary conditions (Dirichlet or

Neumann). Combining these relations, and using several integrations by parts, we are led to
(3.2).

17



We deduce the following lemma, which states that if the energy of a solution concentrates
at initial time only at a finite number of isolated points p1, · · · , pn, then these points of
concentration of energy do not move in time ≤

(
1

|log ε|
)

.

Let xε
1, · · · , xε

n be points such that there exists ρ > 0 independent of ε such that mini6=j |xi−
xj | > 4ρ and mini dist (xi, ∂Ω) > 4ρ. Let us construct a function χ such that

(3.3)





χ ≡ 1 in Ω\ ∪i B(xi, 2ρ)
χ = |x− xi|2 in B(xi, ρ)
χ ≥ ρ2 in Ω\ ∪i B(xi, ρ)
χ ∈ C2(Ω)

Lemma 3.2. Let uε be a solution of (1.1), and let xε
1, · · · , xε

n and χ be as above, then for
any t ≥ 0,

(3.4)
∫

Ω
χeε(uε(t)) ≤ ect|log ε|

∫

Ω
χeε(uε(0)),

where the constant c depends only on ρ.

Proof. We apply Lemma 3.1 with this χ ≥ 0. First, we use the property of |x|2 with respect
to (3.2), as observed by De Giorgi and used in [So, RS] among others: observing that ∂i∂j |x−
x0|2 = 2δij , we find that in B(xk, ρ),

∑

i,j

(∂i∂j |x− xk|2)Tij = 2(T11 + T22) =
(1− |u|2)2

ε2
≥ 0

Therefore, the contributions in ∪iB(xk, ρ) of the right-hand side of (3.2) are nonpositive, and
we can write

∂t

∫

Ω
χeε(u, t) ≤ |log ε|

∫

∪k(B(xk,2ρ)\B(xk,ρ))

∑

i,j

∂i∂jχTij .

Observing that D2χ is bounded, and χ ≥ ρ2 in ∪k (B(xk, 2ρ)\B(xk, ρ)), we may write |D2χ| ≤
Cρχ where the constant depends on ρ. Using in addition the observation that pointwise,
|Tij | ≤ eε(u), we are led (changing Cρ if necessary) to

∂t

∫

Ω
χeε(u(t)) ≤ |log ε|

∫

∪k(B(xk,2ρ)\B(xk,ρ))
Cρχeε(u(t)) ≤ Cρ|log ε|

∫

Ω
χeε(u(t)).

We deduce by Gronwall’s lemma that (3.4) holds.

This allows to deduce

Proposition 3.1. Let uε be a solution of (1.1) such that

(3.5) curl (iu0
ε,∇u0

ε) ⇀ 2π

n∑

i=1

Diδp0
i

with Di = ±1. Assume that there exists pε → pdip as ε → 0, with pdip distinct from
{p0

1, · · · , p0
n} and l(0) ≤ 1

|log ε| , such that, considering uε(x) = u0
ε(pε + l(0)x), we have

(3.6) curl (iuε,∇uε) ⇀ 2π
(
δb+ − δb−

)
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where b+ and b− are two points in R2 at distance 1 from each other. Assume also that

(3.7) Eε(u0
ε) ≤ πn|log ε|+ 2π log

l(0)
ε

+ C.

Then, if Tε = η log |log ε|
|log ε| with η a small enough constant, we have

(3.8) ∀tε ∈ [0, Tε], curl (iuε,∇uε)(tε) ⇀ 2π

n∑

i=1

Diδp0
i

and

(3.9) Eε(uε(Tε)) ≤ πn|log ε|+ WD(p0
1, · · · , p0

n) + nγ + o(1).

We can observe right away that this proposition says that in time O
(

log |log ε|
|log ε|

)
, the

solution above becomes “very-well prepared” with respect to its vortices p0
1, · · · , p0

n, thus the
dipole and its energy have completely disappeared in that short time, without affecting the
other vortices.

Proof. We start by applying the lower bounds obtained through the ball-construction method
of Jerrard/Sandier, see for example [SS4], main theorem of Chapter 3. Before we apply
the result, we consider a constant ρ > 0 small enough such that Ω1 := ∪iB(p0

i , ρ) and
Ω2 := B(pdip, ρ) are disjoint. We then apply the main theorem of Chapter 3 of [SS4] in Ω1

and Ω2 successively. In Ω1, we apply it with a final radius 1
|log ε| . It yields the existence of a

finite collection B of disjoint closed balls which cover all the zeroes of u0
ε in Ω1, such that the

sum of their radii is smaller than 1
|log ε| and for every B ∈ B,

∫

B
eε(u0

ε) ≥ π|dB| (|log ε| − C log |log ε|)

where dB = deg(u0
ε, ∂B) if B ⊂ Ω1, and 0 otherwise. In view of the hypotheses (3.5) and

(3.6), u0
ε has at least one zero of nonzero degree converging to each p0

i . Since the B ∈ B cover
these zeroes, we can deduce that for each p0

i , there exists a ball B ∈ B whose center converges
to p0

i , and such that |dB| 6= 0, hence |dB| ≥ 1. Let us call it Bi and denote xi its center. We
have

(3.10)
∫

Bi

eε(u0
ε) ≥ π|log ε| − C log |log ε|.

Similarly, we apply the method in Ω2 = B(pdip, ρ) with final radius l(0)
|log ε| . Since u0

ε has at

least two zeroes of nonzero degree converging to pdip, since the radii are ≤ l(0)
|log ε| ¿ l(0), there

exists at least two balls with nonzero degree, at distance ≤ l(0) from each other, converging
to pdip as ε → 0. They can be included in a larger ball Bdip of radius ≤ 2l(0), centered at
xdip, and such that

(3.11)
∫

Bdip

eε(u0
ε) ≥ 2π log

l(0)
ε
− C log |log ε|.
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We keep this set of balls and discard the others. Combining (3.10), (3.11) and (3.7), we find
that

(3.12)
∫

Ω\(∪n
i=1Bi∪Bdip)

eε(u0
ε) ≤ C log |log ε|,

and

(3.13)
∫

Ω2

eε(u0
ε) ≤ 2π log

l(0)
ε

+ C log |log ε|.

Moreover, since the radii are bounded by max( l(0)
|log ε| ,

1
|log ε|) ≤ 1

|log ε| , we have

∫

Bi

|x− xi|2eε(u0
ε) ≤

1
|log ε|2 Eε(u0

ε) ≤ o(1),

and similarly
∫
Bdip

|x−xdip|2eε(u0
ε) ≤ o(1). Constructing χ associated to the points x1, · · · , xn, xdip,

as in (3.3), we deduce from this and (3.12) that
∫

Ω
χeε(u0

ε) ≤ C log |log ε|.

Applying Lemma 3.2, we deduce that for any t ≥ 0,
∫

Ω
χeε(uε(t)) ≤ Cect|log ε| log |log ε|.

If tε ≤ Tε = η log |log ε|
|log ε| , with η < 1

2c , we find

(3.14)
∫

Ω
χeε(uε(tε)) ≤ C|log ε| 12 log |log ε|.

This suffices to ensure that (3.5) holds. Indeed, if not then, by continuity of the zeroes of uε

in time, this would imply that for some tε ≤ Tε, uε has a cluster of zeroes of nonzero total
degree, at a distance bounded below away from the xi’s by a constant independent of ε. By
the same argument we used above (using lower bounds given by the ball construction), we
would get a lower bound contradicting (3.14). Thus (3.5) holds. We shall prove (3.9) after
the next proposition.

By using the same type of arguments as for Proposition 2.1 and Lemma 2.1, i.e. a
differential inequality, combined with Theorem 2 of [S1], we now deduce an upper bound on
the time of collision of the vortices, characterized by the fact that |uε| ≥ 1

2 in a neighborhood
of the collision point. The fact that u0

ε has a dipole at distance l(0) will only be characterized
through the hypothesis on the energy.

Proposition 3.2 (Upper bound on the collision-time). Under the same hypotheses as
Proposition 3.1, there exists a time

T ′ε ≤ Cl(0)2 + C|log ε|4e−2
√
|log ε|

such that uε(T ′ε) has exactly n zeroes (given by Proposition 2.2 in [S1]) of degree Di.
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Proof. Let Tε be given by Proposition 3.1 and Sε denote the set of times ≤ Tε at which

‖fε‖2
L2(Ω) =

∥∥∥ ∂tuε
|log ε|

∥∥∥
2

L2(Ω)
≥ 1

εβ , for some β < 2. Observe that since

(3.15) |log ε|
∫ t

0
‖fε‖2

L2 = Eε(uε(0))−Eε(uε(t)) ≤ C|log ε|,

we have meas(Sε) ≤ Cεβ.
When t /∈ Sε, we have ‖fε‖2

L2 ≤ 1
εβ thus Proposition 2.2 in [S1] applies, yielding vortices

(ai, di) for which (1.30) holds, hence

απ
∑

i

d2
i ≤ (n + 2)π + C|log ε|7/2ε1−α−β/2,

and we may choose n+2
n+3 < α < 1 and β < 2− 2α, and thus get

∑

i

d2
i < n + 3 + o(1).

This gives an upper bound on the possible number of zeroes of uε : there are fewer than n+2.
Since there is at least one zero converging to each p0

i , this means that there are at most 2 extra
vortices. Moreover, comparing (3.10) with relation (2.33) in [S1], we have

∑
i/ai /∈Ω1

d2
i ≤ o(1)

hence all extra vortices are at a distance bounded below from the p0
i ’s. If there are 0 extra

vortices, then what we want is satisfied. If there were only one extra vortex, then, since it
would have nonzero degree, (3.5) would be contradicted. We are thus left with the case of 2
vortices, far away from the p0

i . Therefore, the sum of their degrees must be 0, otherwise they
would add an extra contribution in (3.5). We may denote by l(t) their distance, and using
lower bounds of Lemma 3.3 in [S1] or arguing as in the proof of Proposition 3.1, (using the
lower bounds of [SS4] but with final radii 1 in Ω1 and l(t)

2 in Ω2), we have

(3.16) Eε(uε(t)) ≥ πn|log ε|+ 2π log
l(t)
ε
− C.

Comparing with (3.7) we must have log l(t) ≤ log l(0) + C hence l(t) ≤ Cl(0), and thus
l(t) = o(1). Therefore, these two vortices form an unbalanced cluster of vortices at scale l(t).
If l(t) À ε

√
|log ε|, then Theorem 2 of [S1] applies and implies that

(3.17) ‖fε‖2
L2(Ω) ≥ min

(
C

l2(t)|log ε| ,
C

l2(t) log2 1
l(t)

)
.

If l(t) ≤ O(ε
√
|log ε|) then the two vortices also form an unbalanced cluster at scale ε|log ε|

and me may also apply Theorem 2 of [S1] and write that ‖fε‖2
L2(Ω) ≥ 1

ε2|log ε|4 .
Since we always have l(t) ≥ ε, we may always write, for t /∈ Sε,

(3.18) ‖fε‖2
L2(Ω) ≥

C

l2(t)|log ε|4 .

To summarize, in all generality, we can write (3.18), and if l(t) ≥ e−
√
|log ε|, we can write

‖fε‖2
L2(Ω) ≥ C

l2(t)|log ε| . Consider S′ε the set of times for which l(t) ≤ e−
√
|log ε|, since (3.15)

and (3.18) hold, we have
|S′ε| ≤ C|log ε|4e−2

√
|log ε|.
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Me way now map R+\(Sε ∪ S′ε) to R+ by a mapping Rε which takes out the times in
Sε ∪ S′ε and translates otherwise, thus which shifts every time by at most |Sε| + |S′ε| ≤
C|log ε|4e−2

√
|log ε|. Considering F (t) = Eε(uε(R−1

ε (t))) and L(t) = l(R−1
ε (t)), we find from

(3.15) and (3.17) that

F (0)− F (t) ≥
∫ t

0

C

L2(t)
dt.

On the other hand F (0) − F (t) = Eε(uε(0)) − Eε(uε(R−1
ε (t))) ≤ 2π

(
log l(0)

ε − log L(t)
ε

)
− C

from (3.16) and (3.7). Denoting M(t) =
∫ t
0

C
L2(t)

dt, we have

(3.19) 2π log
l(0)
L(t)

− C ≥ M(t)

but since M ′(t) = C
L2(t)

, we may write

(3.20) π log
l2(0)
C

+ π log M ′(t) ≥ M(t)

which transforms into

eM(t)/π ≤ l2(0)
C

M ′(t).

Integrating, we find

(3.21) e−M(t)/π ≤ 1− t

Cl2(0)
,

for some constant C. If t ≥ Cl2(0), we find e−M(t)/π ≤ 0 hence a contradiction. We deduce
that the set of times for which we cannot say that uε has exactly n zeroes has a measure less
than T ′ε = |Sε|+ |S′ε|+ Cl2(0) ≤ Cl2(0) + C|log ε|4e−2

√
|log ε|, which implies the result.

Proof of (3.9). From (3.15), the set of times for which ‖fε‖L2(Ω) ≥ η|log ε| is O( 1
|log ε|).

Hence, with the previous Proposition 3.2, the set of times such that either ‖fε‖L2(Ω) ≥
η|log ε| or uε does not have exactly n zeroes of degree Di has a measure less than Cl2(0) +
C|log ε|4e−2

√
|log ε|+ C

|log ε| . We deduce that there exists a time T ′′ε ≤ Cl2(0)+C|log ε|4e−2
√
|log ε|+

C
|log ε| for which uε has exactly n zeroes and ‖fε‖2

L2(Ω) ≤ η|log ε|. In view of (3.5) the zeroes
of uε(T ′′ε ) converge to the p0

i , and thus we may write with (1.31)

Eε(uε(T ′′ε )) ≤ πn|log ε|+ WD(p0
1, · · · , p0

n) + nγ + Cη|log ε|+ o(1).

Choosing η small enough so that Cη < π, we find that Lemma 2.1 applies, and thus after a
time ≤ T ′′ε + O( log |log ε|

|log ε| ), (3.9) holds.
A second possible proof is the following: We claim that, for every t ≤ Tε, we have

(3.22) Eε(uε(t)) ≤ πn|log ε|+ WD(p0
1, · · · , p0

n) + C‖fε‖2
L2(Ω) + o(1).

If ‖fε‖2
L2 À |log ε| then it is trivially true. If not, then ‖fε‖2

L2 ≤ O(|log ε|). Returning to the
proof of Proposition 3.2, we find that in that case, either uε(t) has exactly n zeroes of degrees
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Di, in which case (3.22) follows from (1.31), or uε(t) has two extra vortices, at distance l(t),
with l(t) ≤ Cl(0) ¿ 1

|log ε| , plugging into (3.17) we find ‖fε‖2
L2(Ω) À |log ε|, a contradiction.

Hence, in all cases, we have that (3.22) holds. We may finish as in Lemma 2.1, find that (2.8)
holds, from which (3.9) follows.

To prove Theorem 3, there only remains to prove the lower bounds on the collision time
T1, which will be done in Lemma 5.1, and to see what happens when l(0) ≥ 1

|log ε|2 , which
will be done in Theorem 6 (see the note after Theorem 6).

3.2 Time of separation of two vortices

Let us see another example of application, this time for the separation of two vortices of
degree +1. We consider the simplest case where there are initially two vortices of degree +1
at small distance l(0) from each other, and we assume that initially Eε(u0

ε) ≤ 2π log 1
l(0)ε +C.

The case where there are other well-separated vortices in the sample can be treated as well,
as in Theorem 3.

Proposition 3.3. Let uε be a solution of (1.1) with Dirichlet boundary condition of degree
2. Let us assume that at time 0

(3.23) Eε(u0
ε) ≤ 2π log

1
l(0)ε

+ C,

with l0 > l(0) ≥ εβ, β < 1. Then, for every l ≥ 2l(0), there exists a time

Tε ≤ l2 log
l

l(0)
+ |log ε|2e−2

√
|log ε|

for which uε has two vortices of degree +1, at distance ≥ l. If in addition, there exists a point
pε such that, considering uε(x) = u0

ε(pε + l(0)x), we have

(3.24) curl (iuε,∇uε) ⇀ 2π (δb1 + δb2) as ε → 0,

where b1 and b2 are two points in R2 at distance 1 from each other; then we must have
Tε ≥ Cl(0)2.

Proof. Let us argue as before, and let Sε be the set of times for which ‖fε‖2
L2 ≥ 1

εγ , for some
γ < 2. As previously |Sε| ≤ εγ . On the other hand, for t /∈ Sε, we have ‖fε‖2

L2 ≤ ε−γ , hence
Proposition 2.2 in [S1] applies and yields vortices (ai, di), with

απ
∑

i

d2
i ≤ 2π(1 + β) + C|log ε|7/2ε1−α−γ/2

We may choose γ and α such that 2+2β
4 < α < 1− γ/2, and thus get

∑

i

d2
i < 4

for ε small enough. Knowing that
∑

i di = 2 and
∑

i d
2
i ≤ 3, the only possibility is to have

two vortices of degree +1. Denoting by l(t) their distance, we easily check that

(3.25) Eε(u(t)) ≥ 2π log
1

l(t)ε
− C.
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On the other hand, the 2 vortices form an unbalanced cluster at scale l(t) so Theorem 2 of
[S1] yields, if l(t) À ε

√
|log ε|,

‖fε‖2
L2 ≥ min

(
C

l2(t)|log ε| ,
C

l2(t) log2 1
l(t)

)
,

and if l(t) is smaller, we still have a cluster at scale ε|log ε|. In all cases we have

|log ε|‖fε‖2
L2 ≥ C

|log ε|4l2(t)

Consider S′ε the set of times for which l(t) ≤ e−
√
|log ε|, we have

|S′ε| ≤ C|log ε|4e−2
√
|log ε|.

For t /∈ S′ε, comparing (3.25) and (3.23), we have

(3.26) 2π log
l(t)
l(0)

+ C ≥
∫ t

0

C

l2(t)
.

Now, assume by contradiction that we have l(t) ≤ l, then we must have

2π log
l

l(0)
+ C ≥ Ct

l2

and t ≤ Cl2
(
log l

l(0) + 1
)
. Adding the times when t ∈ Sε ∪S′ε, we find there must exist some

t ≤ Cl2 log l
l(0) + C|log ε|4e−2

√
|log ε| for which l(t) ≥ l. The other assertion can be obtained

exactly as in Lemma 5.1.

Remark 3.1. Observe that again we only need to consider small l’s here, because otherwise,
the dynamics is given by Theorem 6.

3.3 Exit through the boundary

The situation of vortices exiting through the boundary can only happen for the Neumann
boundary condition, and is in fact very similar to the case of colliding vortices, since it can
be viewed as the collision of a vortex with its “image vortex”, the vortex of opposite degree
reflected through the boundary. Assume for example that initially uε solution of (1.1) has
a vortex converging as ε → 0 to a point p ∈ ∂Ω, and that ∂Ω is locally flat near p. Then,
Ω and uε can be reflected around this piece of boundary, leading to a double domain with a
colliding dipole. The case of a nonflat boundary requires adjustments, but the spirit is the
same. Therefore, we shall not treat the exit case in details, but mention that exactly the
analogous results to Theorem 3 could be obtained.
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4 Applications to lower bounds

4.1 Time-estimates through blow-up

In this subsection, we rescale the “product-estimate” Theorem 1, in order to bound from
above the movement of the vortices (or bound from below the time it takes them to collide
according to (1.23)). This will allow to retrieve the vortex dynamics after blow-up.

First, we write a blown-up version of Theorem 1.

Proposition 4.1. Let R be a constant. Let l → 0 as ε → 0 with l ≥ εβ for some β < 1, and
let η = ε

l . Let uε(x, t) be defined over [0, l2T ]×B(pε, Rl) such that

∀t ∈ [0, l2t] Eε(uε(t), B(pε, Rl)) ≤ C| log η|(4.1) ∫

B(pε,Rl)×[0,l2T ]
|∂tuε|2 ≤ C| log η|(4.2)

Let us consider uε(x, t) = uε(pε + lx, l2t) defined in [0, T ]×B(0, R).
Then, up to extraction, for every t ∈ [0, T ],

curl (iuε,∇uε) ⇀ µ(t) in C0,γ
C (B(0, R))∗, ∀γ > 0,

where µ(t) is of the form
2π

∑

i

Di(t)δbi(t), Di(t) ∈ Z.

Moreover, there exists a vector-valued measure V such that ∂tµ + div V = 0; and, for every
X ∈ C0

C([0, T ]×B(0, R),R2) and f ∈ C0
C([0, T ]×B(0, R)),

(4.3) lim
ε→0

1
| log η|2

∫

B(0,R)×[0,T ]
|X · ∇uε|2

∫

B(0,R)×[0,T ]
f2|∂tuε|2 ≥ 1

4

∣∣∣∣∣
∫

B(0,R)×[0,T ]
V · fX

∣∣∣∣∣
2

We deduce the existence of vortex trajectories at that scale, analogous to Proposition 1.1
(as in Proposition 3.2 and 3.3 of [SS2] and Corollary 7 if [SS1]).

Proposition 4.2. Let uε satisfy the same hypotheses as the previous proposition. If Di(0) =
±1, the bi(0) are distinct and

∑
i |Di(t)| ≤

∑
i |Di(0)| for every t ∈ [0, T ], then there exists

T ∗ < T and n = n(0) functions bi(t) ∈ H1((0, T ∗),R2) such that for all t ∈ [0, T ∗), the points
bi(t) are distinct and µ(t) = 2π

∑
i Di(0)δbi(t). Moreover, if T ∗ < T , as t → T ∗, one bi(t)

tends to ∂B(0, R) or there exists i 6= j such that bi(t) and bj(t) tend to the same point.
If in addition,

∫
B(0,R) |∇uε|2 ≤ 2πn| log η|(1 + o(1)) for all t ∈ [t1, t2] ⊂ [0, T ∗), then we

have

(4.4) lim
ε→0

1
| log η|

∫

B(0,R)×[t1,t2]
|∂tuε|2 ≥ π

∑

i

∫ t2

t1

|∂tbi|2 dt.

4.2 Applications to lower bounds

This section is a little detour out of the question of Ginzburg-Landau dynamics into the ques-
tion of sharp lower bounds for the Ginzburg-Landau energy. Thanks to the time-dependent
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approach, we can obtain in a simple manner very general lower bounds for the energy, im-
proving that of Lemma 3.3 in [S1] (which required ‖fε‖ ≤ C

εγ so that we have vortex small
balls given by Proposition 2.2 in [S1]).

The idea is to flow the configuration for a very short time according to (1.1). This
decreases the energy and smoothes out small irregularities. It yields an alternative to a
discrete parabolic regularisation as done in [AB].

Proposition 4.3. Assume uε is such that (1.2) or (1.3) hold with (1.27) and (1.28). Then,
up to extraction, we may assume that there exist distinct points pj and integers Dj such that

(4.5) curl (iuε,∇uε) ⇀ 2π
n∑

j=1

Djδpj as ε → 0.

Moreover we have

(4.6) Eε(uε) ≥ π
∑

j

|Dj ||log ε|+ WD(p1, · · · , pn) +

(
n∑

i=1

|Di|
)

γ + o(1).

If there exists a bounded number of points pε
j → pj (where the pj’s are the ones above plus

possibly some additional ones with Dj = 0) and lj = o(1) with | log lj | ¿ |log ε| such that,
denoting uεj = uε(pε

j + ljx) we have

(4.7) curl (iuεj ,∇uεj) ⇀ 2π
m∑

k=1

Dj,kδbj,k

with Dj,k ∈ Z,
∑m

k=1 Dj,k = Dj. Then,

(4.8) Eε(uε) ≥ π
∑

j,k

|Dj,k||log ε|+ WD(p1, · · · , pn)

− π
∑

j

∑

k,k′
Dj,kDj,k′ log(lj |bj,k − bj,k′ |) +

∑

j,k

|Dj,k|γ + o(1).

Proof. The fact that we may assume (4.5) comes again from the compactness of the Jacobians
curl (iuε,∇uε).

Let us write u0
ε for uε and consider the solution of the Cauchy problem (1.1) with initial

data u0
ε at time 0, and let us denote it uε(x, t). We have

∫ T
0 |∂tuε|2 = |log ε|(Eε(uε(0)) −

Eε(uε(t)) ≤ C|log ε|2. Therefore, by a mean-value argument, there exists Tε ≤ 1
|log ε|2 such

that
∫
Ω |∂tuε|2(Tε) ≤ C|log ε|4. So uε(Tε) solves (1.11) with ‖fε‖2

L2(Ω) ≤ C|log ε|2. On
the other hand, from Theorem 1, arguing as in the proof of Lemma 2.1 for example, since
Tε ¿ 1

|log ε| , we have

curl (iuε,∇uε)(Tε) ⇀ 2π
∑

i

Djδpj as ε → 0

i.e. the limiting vortices pj have not moved. Moreover, since the parabolic flow decreases the
energy, we have

Eε(u0
ε) ≥ Eε(uε(Tε)).
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Therefore, in order to bound from below Eε(u0
ε), we may replace it with uε(Tε), which has the

same vortices in the sense of (4.5) and satisfies (1.11) with ‖fε‖L2(Ω) ≤ C|log ε|. We denote
by uε again the map obtained after replacement. Since we wish to prove (4.6), we may always
assume that

(4.9) Eε(uε) ≤ π
∑

j

|Dj ||log ε|+ WD(p1, · · · , pn) +
n∑

i=1

|Di|γ,

otherwise the result is true.
Since ‖fε‖L2(Ω) ≤ C|log ε|, uε satisfies (1.11), (1.29), and the results of Proposition 2.2 in

[S1], in particular this yields the (ai, di)’s, with

∑

i

d2
i ≤

Eε(uε)
|log ε| + o(1),

from (1.30). From (4.9), we deduce
∑

i d
2
i ≤

∑
j |Dj |. But, since

∑
i/ai→pj

di = Dj , this
implies that the di’s are all ±1, every ai converges to one of the pj ’s (recall di 6= 0), and that
for each j, the degrees di associated to ai → pj all have the sign of Dj , hence Dj 6= 0.

We may find balls B(pj , ρ) with ρ ¿ 1 converging to 0 slower than the distance of the
ai’s to the pj ’s. This ensures that the hypotheses of Lemma 3.4 of [S1] hold for these balls,
and (4.6) is a direct consequence of the result of Lemma 3.4 in [S1].

For the second part of the Proposition, we follow the same reasoning. Arguing as above,
let us flow uε according to (1.1). By a mean value argument, as before, letting l = minj lj ,
we may find Tε ≤ 1

|log ε|2 such that uε(Tεl
2) solves (1.11) with

(4.10)
∫

Ω
|fε|2 ≤ C

|log ε|4
l2

and in view of the hypotheses on lj , this ensures that (1.29) is satisfied at time l2Tε. On the
other hand, considering uεj = u(pε

j + ljx, l2j t), we have curl (iuεj ,∇uεj)(Tε) ⇀ 2π
∑

k Dj,kδbj,k

i.e. the bj,k’s haven’t moved in that time, according to Proposition 4.1 (see (4.3)). Since the
energy decreases in time, this means that we can assume that uε is such that (1.11)–(1.29)
hold. We may also assume that

Eε(uε) ≤ π
∑

j,k

|Dj,k||log ε|+WD(p1, · · · , pn)−π
∑

j

∑

k,k′
Dj,kDj,k′ log(lj |bj,k−bj,k′ |)+

∑

j,k

|Dj,k|γ

otherwise the desired result is true. Since | log lj | ¿ |log ε|, this implies

(4.11) Eε(uε) ≤ π
∑

j,k

|Dj,k||log ε|(1 + o(1)).

Applying Proposition 2.2 in [S1], we find a bounded collection of (ai, di). Combining
(4.11) with (1.30) yields
(4.12)

α
∑

i

d2
i ≤

∑

j,k

|Dj,k|+ε1−α|log ε|7/2‖fε‖L2(Ω) +o(1) ≤
∑

j,k

|Dj,k|+ε1−α|log ε|7/2 |log ε|2
l

+o(1)

with (4.10). Using the fact that | log lj | ¿ |log ε| i.e. l ≥ εcε with cε → 0, and taking α close
to 1, we find, since the di’s and Dj,k’s are integers, that

∑
i d

2
i ≤

∑
j,k |Dj,k|. This implies that
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each di = ±1 and has the sign of the corresponding Dj,k. Moreover, this also implies that
(since di 6= 0) all the ai’s are close to the pε

j + ljbj,k. Let us now consider the yj,k = pε
j + ljbj,k,

all the ai’s remain inside the B(yj,k, ρlj) for some ρ ¿ 1. We may also choose ρ large enough
so that the hypotheses of Lemma 3.4 in [S1] are satisfied for these balls. The total degree on
each ball is Dj,k and using that result, we easily deduce (4.8).

Remark 4.1. If | log lj | ¿ |log ε| is not satisfied but we still have lj ≥ εβ for some β < 1,
then we may still get analogue results from Lemma 3.4 in [S1].

5 Exact dynamical laws - Theorems 4 and 5

5.1 Statement of the result

Given points bk and integers Dk, we introduce

(5.1) W (b1, · · · , bm) = −π
∑

i6=j

DiDj log |bi − bj |.

Observe that

(5.2) ∇kW (b1, · · · , bm) = −π
∑

i6=k

DiDk
bi − bk

|bi − bk|2 .

Remark 5.1. It would be interesting to prove that if
∑

i6=k DiDk 6= 0 then ∇W (bi) 6= 0.

Our main result of this section is

Theorem 6. Assume uε is a solution to (1.1), with (1.27) and (1.28). Assume l = o(1)
with log4 l ≤ C|log ε|, and the points pε

j → pj, j ∈ [1, n] are such that, defining uεj(x, t) =
uε(pε

j + lx, l2t), we have

(5.3) curl (iuεj ,∇uεj)(0) ⇀ 2π
m∑

k=1

Dj,kδb0j,k
as ε → 0,

with Dj,k = ±1,
∑

k Dj,k = Dj, and assume
(5.4)
Eε(u0

ε) ≤ π
∑

j,k

|Dj,k||log ε|+WD(p1, · · · , pn)−π
∑

j

∑

k 6=k′
Dj,kDj,k′ log(l|b0

j,k−b0
j,k′ |)+

∑

j,k

|Dj,k|γ+rε

with either rε ≤ o(1) or rε ≤ l2|log ε|
(log |log ε|)β with β > 1. Then, there exist H1((0, T ∗)) trajectories

bj,k(t) such that for every t ∈ [0, T ∗),

curl (iuεj ,∇uεj)(t) ⇀ 2π
∑

k

Dj,kδbj,k(t) as ε → 0

where bj,k solves the dynamical law

(5.5)





dbj,k

dt
= − 1

π

∑

k′ 6=k

Dj,k′Dj,k
bj,k′ − bj,k

|bj,k′ − bj,k|2 = − 1
π
∇kW (bj,i)

bj,k(0) = b0
j,k
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and T ∗ is the first collision-time under this law. Moreover, for every time t ∈ (0, T ∗),

(5.6) Eε(uε(l2t)) ≤ π
∑

j,k

|Dj,k||log ε|+ WD(p1, · · · , pn)

− π
∑

j

∑

k,k′
Dj,kDj,k′ log(l|bj,k(t)− bj,k′(t)|) +

∑

j,k

|Dj,k|γ + o(1),

as ε → 0.

Remark 5.2. Observe that this result includes the possibility of only one or several vortices
at distance ¿ l from pε

j, in which case there is only one bj,1 equal to the origin, which does
not move in this time-scale, according to (5.5). This allows to treat, among others, the case
of one dipole colliding while other vortices remain fixed, just as in Theorem 3.

End of the proof of Theorem 3. To complete the proof of Theorem 3, there remained to con-
sider the case 1

|log ε|2 ≤ l = l(0) ≤ o(1), which can be treated by bridging with Theorem 6.
To prove that Theorem 3 also holds in this case, it suffices to show the existence of a time
Tε ≤ Cl(0)2 at which the hypotheses of Theorem 3 are satisfied (taking the new initial time
to be Tε) with vortices at distance 1

|log ε|2 , and that

(5.7) ∀t ∈ [0, Tε], curl (iuε,∇uε)(t) ⇀ 2π
n∑

i=1

Diδp0
i

as ε → 0.

Let us thus start with uε satisfying the hypotheses of Theorem 3 at time 0, with l(0) ≥
1

|log ε|2 . It also satisfies the hypotheses of Theorem 6, taking l = l(0) and the points pj to
be p0

1, · · · , p0
n, pdip (with the notations of Section 3). We also have b0

1,1 = · · · , b0
n,1 = 0 while

bn+1,1 = b+ and bn+1,2 = b−. Applying Theorem 6, we obtain the dynamical law of the bj,k(t):
the bj,1(t) are fixed for j = 1, · · · , n, that is the points p0

i do not move in time O(l(0)2), which
will prove that ∀t ≤ Cl(0)2, we have curl (iu,∇u)(t) ⇀ 2π

∑n
i=1 Diδp0

i
, that is (5.7) holds.

There remains to prove the existence of Tε. Examining the dynamical law (5.5) for the dipole
after space-time rescaling

db+(t)
dt

=
1
π

b− − b+

|b− − b+|2
(and the symmetric law for b−) we see that d

dt |b+ − b−|(t) = − 2
π

1
|b+−b−|(t) , so we easily find

that

(5.8) |b+ − b−|(t) =

√
|b+ − b−|2(0)− 4t

π
.

Now we saw in Section 3 (see the proof of Proposition 3.2 which still applies here) that for all
times except a measure εβ of times, uε(t) has vortices given by Proposition 2.2 in [S1], and
has exactly n of them converging to each p0

j , plus two (the dipole) at distance o(l(0)) from
pdip + l(0)b±(t). Therefore, in original space-time, the distance between the vortices of the

dipole is l(0)
√

l(0)2 − 4t
πl(0)2

+ o(l(0)). Thus, in time t1 = 3πl(0)2

16 , the vortices of the dipole

are at a distance l1 = l(0)/2 + o(l(0)) < 3
4 l(0). Moreover, at that time t1, the configuration is

well-prepared because (5.6) holds. The hypotheses of Theorem 6 are satisfied again at initial
time t1 with scale l1. Applying Theorem 6 with this new scale, we find a time t2 = t1 + 3πl21

16
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at which the distance between the vortices of the dipole is l2 = l1/2 + o(l1) < 3
4 l1. We may

iterate this process and find times

(5.9) tk =
3π

16
(
l(0)2 + l21 · · ·+ l2k

)

at which the distance between the vortices is < 3
4 lk with

(5.10) lk <
3
4
lk−1.

This reasoning applies as long as log4 lk ≤ C|log ε|, hence we may apply it until final lK ≤
1

|log ε|2 . Combining (5.9) and (5.10), we find that tK ≤ Cl(0)2. Adding if necessary the
times for which Proposition 2.2 in [S1] does not apply, we find that in time Tε ≤ εβ + tK ≤
Cεβ + Cl(0)2, we have a dipole at distance ≤ 1

|log ε|2 with (5.6) holding. We have seen also
that (5.7) holds. Therefore, all the hypotheses of Theorem 3 hold at that new initial time and
the proof of Theorem 3 under the restriction l(0) ≤ 1

|log ε|2 can be used to finish the general
proof.

5.2 Proof of Theorem 5

The existence of collision times follows from Proposition 1.1. Notice also from the form of
W that in the Dirichlet case, no vortex can exit from Ω under the law (1.8). Also with any
boundary condition, no pairs of vortices of degree +1 (or −1) can collide under the law (1.8).

Using Theorem 2 (which yields a time Tε) and then applying the result of [Li, JS, SS2] to
the solution uε(x, t + Tε) on Ω× R+, we find that

curl (iuε,∇uε)(t + Tε) ⇀ 2π

n∑

i=1

Diδpi(t) as ε → 0, ∀t ∈ [0, T∗)

where the pi’s solve (1.8) and T∗ is the first collision time under (1.8). Moreover, since (1.34)
holds for every tε ∈ [0, Tε] and since the pi(t) are continuous in time, we deduce that

(5.11) curl (iuε,∇uε)(t) ⇀ µ(t) = 2π

n∑

i=1

Diδpi(t) ∀t ∈ [0, T∗).

Arguing as in [SS2], the first collision time T∗ is also equal to T1 the first collision time of the
trajectories in the sense of Proposition 1.1. At the collision time T1, there exist one or several
pairs of vortices colliding at different places in Ω. Let us assume for simplicity that there is
only one pair, say |p1(t) − p2(t)| → 0 as t → T−1 . We must have D1 = −D2 (otherwise it
would contradict the dynamical law after blow up Theorem 6). We deduce

(5.12) µ(t) ⇀ 2π
n∑

i=3

Diδp1
i

as t → T−1 ,

where p1
i = limt→T−1

pi(t) for i = 3, · · · , n, are distinct points.
By a mean-value argument combining (1.25) and (1.27), we may find a positive τε → 0

such that at the time T1 − τε we have ‖fε‖2
L2(Ω) ≤ O(1) (where fε denotes ∂tuε

|log ε|). Applying
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then (1.30), we find that the vortices (ai, di) of uε(T1 − τε) given by Proposition 2.2 of [S1]
satisfy

∑
i d

2
i ≤ n. It is then easy to check that there is one vortex ai of degree Di converging

to each p1
i respectively as ε → 0 for i = 3, · · · , n; and two vortices of opposite degrees a1, a2,

at distances o(1) respectively to p1(T1−τε) and p2(T2−τε), hence at a distance lε = o(1) from
each other. Denoting by vε(t) = uε(t + T1 − τε), we deduce that vε satisfies the hypotheses
(1.36)–(1.37) of Theorem 3. Moreover, from (1.31) (see Theorem 1 in [S1]) and the bound on
‖fε‖L2 , in view of the expression of W , we have Eε(vε(0)) ≤ π(n−2)|log ε|+2π log lε

ε +O(1).
Therefore, we may apply Theorem 3 to vε, and we deduce the existence of a time τ ′ε = o(1)
such that

curl (ivε,∇vε)(tε) ⇀ 2π
n∑

i=3

Diδp1
i

∀tε ∈ [0, τ ′ε)

and
Eε(vε(τ ′ε)) ≤ π(n− 2)|log ε|+ WD(p1

3, · · · , p1
n) + (n− 2)γ + o(1).

We deduce

(5.13) curl (iuε,∇uε)(tε) ⇀ 2π
n∑

i=3

Diδpi ∀tε ∈ (T1 − τε, T1 − τε + τ ′ε) as ε → 0.

We may now apply the result of [Li, JS, SS2] to vε starting at time τ ′ε and find that

∀t ∈ [0, T∗) curl (ivε,∇vε)(t + τ ′ε) ⇀ 2π
n∑

i=3

Diδpi(t)

where pi(t) solves

(5.14)





dpi

dt
= − 1

π
∇iWD(p3, · · · , pn)(t)

pi(0) = p1
i i = 3, · · · , n,

until the first collision time T∗ under this law. Combining with (5.13) and using the continuity
of the pi’s, we find

curl (iuε,∇uε)(t) ⇀ 2π
n∑

i=3

Diδp1
i (t)

for every t ∈ [T1, T2) where T2 = T1 + T∗ is the second collision time. The relation (1.45)
follows easily from the analysis of [SS2] for example.

The case of more than one collision pair can be treated similarly, observing that just like
for Theorems 3 and 6 (applying the method of Proposition 3.1) collisions centered at distinct
points in Ω do not interfere with one another. Moreover the number of vortices decreases by
at least 2 during each collision. The proof can then be iterated at the next collision time T2,
under the assumption of simple collisions. This completes the proof of Theorem 5.

5.3 Proof of Theorem 6

Before we prove this theorem, we will state a few propositions.
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Proposition 5.1. Let uε be such that (1.27) holds. Assume for each j, the points pε
j are such

that, defining uεj(x) = uε(pε
j + lx), we have

(5.15) curl (iuj ,∇uj) ⇀ 2π
∑

k

Dj,kδbj,k
as ε → 0

with Dj,k = ±1,
∑

k Dj,k = Dj and log4 l ≤ C|log ε|, and for every constant R,

(5.16) Eε(uε, B(pε
j , lR)) ≤ π

∑

k

|Dj,k||log ε|(1 + o(1))

and

(5.17) log4 l ≤ O(|log ε|).

Then, we have

(5.18) lim
ε→0

(
|log ε|l2

∫

Ω
|∆u +

u

ε2
(1− |u|2)|2

)
≥ 1

π

∑

j

‖∇W (bj,k)‖2 + oR(1),

where oR(1) → 0 as R →∞.

This proposition will be proved further below. We also need a result which is an analogue
of Theorem 2 after blow-up.

Proposition 5.2. Under the hypotheses of Theorem 6 without the hypothesis (5.17), there
exists Tε ≤ log(l2|log ε|)

l2|log ε| with Tε ≤ o(1), and such that for every tε ∈ [0, Tε],

(5.19) curl (iuj ,∇uj)(tε) ⇀ 2π
∑

k

Dj,kδb0j,k
,

and
(5.20)
Eε(uε(l2Tε)) ≤

∑

j,k

|Dj,k||log ε|+WD(p1, · · · , pn)−π
∑

j

∑

k 6=k′
Dj,kDj,k′ log(l|b0

j,k−b0
j,k′ |)+

∑

j,k

|Dj,k|γ+o(1).

Moreover, there exists T0 and C independent of ε such that for every R,

(5.21)
1

| log η|
∫

B(0,R)×[Tε,T0]
|∂tuj |2 ≤ C

and thus the results of Propositions 4.1 and 4.2 apply, giving H1 trajectories bj,k(t) for t ∈
[0, T0) (before collision time).

Proof. Let us start with the first assertion, the existence of Tε. If l2|log ε|
(log |log ε|)β ≤ o(1) then

one should take rε = o(1) and Tε = 0 and there is nothing to prove. We can thus focus on
l2 ≥ C (log |log ε|)β

|log ε| , which implies that Tε = o(1) in all cases, and | log l| ¿ |log ε|.
We can easily show an analogue of Lemma 2.1: there exists a time Tε = log(l2|log ε|)

l2|log ε| such
that if ∀t ∈ [0, Tε], and for all j, curl (iuεj ,∇uεj)(t) ⇀ 2π

∑
k Dj,kδb0j,k

, then (5.20) holds.
The proof is exactly along the same lines as Lemma 2.1. We show that the hypothesis (5.4)
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combined with (1.30) implies that for most times tε ≤ l2Tε, uε(tε) has exactly 1 vortex of
degree Dj,k converging (after rescaling) to each b0

j,k. Then, (1.31) i.e. Theorem 1 of [S1], and
a differential inequality lead to

Eε(uε(t)) ≤ π
∑

j

∑

k

|Dj,k||log ε|+ WD(p1, · · · , pn) + π
∑

j

∑

k 6=k′
Dj,kDj,k′ log(l|b0

j,k − b0
j,k′ |)

+
∑

j,k

|Dj,k|γ + Ce−t|log ε|rε.

Taking Tε = log(l2|log ε|)
l2|log ε| , in view of the bound on rε, we find that (5.20) holds, provided the

vortices have not moved.
To prove that the vortices bj,k have not moved in that time, we argue as in the proof of

Theorem 2, and use the product estimate as given in Proposition 4.1.
Assuming that there exists Tε ≤ log(l2|log ε|)

l2|log ε| for which

(5.22) Eε(uε(0))− Eε(uε(l2Tε)) = rε + K.

Defining for each j, w(x, t) = uεj (x, Tεt) = uε(pε
j + lx, l2Tεt). Since

1
|log ε|

∫

B(0,R)×[0,1]
|∂tw|2 =

Tε

|log ε|
∫

B(pε
j ,lR)×[0,l2Tε]

|∂tuε|2 ≤ Tε

(
Eε(u0

ε)− Eε(uε(l2Tε))
)
.

Letting V be the vortex-velocity associated to w, we deduce that for every compactly sup-
ported X and |f | ≤ 1,

(5.23)

∣∣∣∣∣
∫

R2×[0,1]
V · fX

∣∣∣∣∣
2

≤ 4 lim
ε→0

1
|log ε|2

∫

R2×[0,1]
|X · ∇w|2

∫

R2×[0,1]
f2|∂tw|2

≤ lim
ε→0

CTε(rε + K)

≤ C
log(l2|log ε|)

l2|log ε|
(

l2|log ε|
(log |log ε|)β

+ K

)
≤ log |log ε|

(log |log ε|)β
= o(1).

We deduce V = 0, and thus, the vortices of w do not move in time 1 i.e. the vortices of uεj

do not move in time Tε, which implies, from Proposition 4.3 (whose hypotheses are satisfied)
the lower bound
(5.24)
Eε(uε(l2Tε)) ≥ π

∑

j,k

|Dj,k||log ε|+WD(p1, · · · , pn)+π
∑

j

∑

k 6=k′
Dj,kDj,k′ log(l|b0

j,k−b0
j,k′ |)+

∑

j,k

|Dj,k|γ+o(1)

a contradiction with (5.22) if K is chosen large enough. We deduce that for every t ≤
log(l2|log ε|)

|log ε| we have Eε(uε(0)) − Eε(uε(t)) ≤ rε + K, and following the same reasoning, that
the vortices of uεj do not move in time t

l2
. This proves the first part of the proposition.

For the second part, the reasoning is the same. First, we may start from the new initial
time l2Tε and assume that the solution is very-well prepared originally i.e. that (5.20) holds.
Assume by contradiction that there exists τε ¿ l2 such that

(5.25) Eε(uε(0))− Eε(uε(τε)) = 1,
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arguing as above (replacing Tε by τε and rε by 1) we find that V = 0 in (5.23), and thus the
vortices of uεj have not moved in time τε

l2
, a contradiction between (5.25), (5.20) holding at

time 0 and the lower bound (4.8). Thus, we deduce that there exists a constant T0 independent
of ε such that Eε(uε(0))−Eε(uε(l2T0)) ≤ 1, from which (5.21) follows.

We now show the lower bound on the collision time, which was left to prove from Section
3 to complete the proof of Theorem 3.

Lemma 5.1 (Lower bound on collision time). Under the hypotheses of Theorem 3, letting
T1 be the first time such that uε(x, t) has only n zeroes, we have T1 ≥ C1l

2, for some constant
C1 > 0.

Proof. We may consider uε(x, t) = uε(pε + lx, l2t). Arguing exactly as in the previous proof,
we can show that there exists a constant T0 > 0 independent of ε such that

C ≥ Eε(uε(0))− Eε(uε(l2T0)) =
1

|log ε|
∫ l2T0

0

∫

Ω
|∂tuε|2 ≥ 1

|log ε|
∫ T0

0

∫

B(0,R)
|∂tuε|2

and thus Proposition 4.2 applies, giving H1 trajectories b+(t) and b−(t) for the vortices of
uε. Since |b+(0)− b−(0)| = 1, by continuity, |b+(t)− b−(t)| ≥ 1

2 in some time-interval [0, C1]
which implies that uε does have 2 zeroes near pε in the time interval [0, C1l

2], hence n + 2
zeroes total, implying T1 ≥ C1l

2.

Proof of Theorem 6. Under the hypotheses of Theorem 6, Proposition 5.2 applies. It first
proves that we can reduce to the case of very-well prepared data, i.e. the case where (5.20)
holds, since Tε = o(1). It also proves that Propositions 4.1 and 4.2 apply on some interval
[0, T0] (or [0, l2T0] in original time), giving that for each j, the bj,k(t)’s move continuously and
remain distinct until collision, while the pj ’s do not move in that time-scale. Moreover, we
can check through lower bounds that at each time t ≥ 0, the hypothesis (5.16) of Proposition
5.1 holds and we may apply it to uε(t).

We then follow the scheme of [SS2], as presented in the introduction (see for example
(1.24)) and write

Eε(uε(0))−Eε(uε(l2t)) =
1

|log ε|
∫

Ω×[0,l2t]
|∂tuε|2

=
1
2

∫

Ω×[0,l2t]

1
|log ε| |∂tuε|2 +

1
2

∫

Ω×[0,l2t]
|log ε||∆uε +

uε

ε2
(1− |uε|2)|2

Now given R, since l = o(1), the B(pε
j , Rl) are disjoint balls for ε small enough, hence, after

a change of scales, we may write

Eε(uε(0))− Eε(uε(l2t)) ≥
∑

j

( 1
|log ε|

∫

B(0,R)×[0,t]

1
2
|∂tuεj |2

+
1
2

∫

B(pε
j ,Rl)×[0,t]

l2|log ε||∆uε +
uε

ε2
(1− |uε|2)|2(l2t)

)
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Using the fact that |log ε| ∼ | log η| and plugging in (4.4) for the first part and (5.18) for the
second, we are led to

(5.26)

Eε(uε(0))−Eε(uε(l2t)) ≥
∑

j

(∫ t

0

(
π

2

∑

k

|dtbj,k|2 +
1
2π
‖∇W (bj,k(t)‖2 + oR(1)

)
ds + o(1)

)

Using the crucial Cauchy-Schwarz argument of [SS2], this becomes

Eε(uε(0))−Eε(uε(l2t)) ≥ −
∑

j

∫ t

0

∑

k

dtbj,k · ∇kW (bj,k(t)) + oR(1) + o(1)

hence (taking the limit R →∞)

(5.27) lim
ε→0

(
Eε(uε(0))−Eε(uε(l2t))

) ≥
∑

j

W (bj,k(0))−W (bj,k(t))

with equality if and only if for every j, ∂tbj,k = − 1
π∇kW (bj,i) for every k. But, in view of

Proposition 4.3, we must have

Eε(uε(l2t)) ≥ π
∑

j

∑

k

|Dj,k||log ε| − π
∑

j

∑

k,k′
Dj,kDj,k′ log l +

∑

j

W (bj,k(t)) + C + o(1)

where the constant C depends only on the pj ’s and the set of degrees Dj,k both constant
during the motion. Examining the hypothesis at initial time t = 0, we see that

(5.28) Eε(uε(0))−Eε(uε(l2t)) ≤
∑

j

W (bj,k(0))−W (bj,k(t)) + o(1)

Hence there has to be equality in (5.27) and we conclude that (5.5) holds.

Remark 5.3. Of course, this can be generalized to multiple scales. Here we have zoomed up
at the scale l, but one should first zoom up at the smallest scale when we see distinct vortices,
and rescale time by that l2. In that timescale, the other vortices do not move, just like the
pj’s do not move, only the vortices at small distances from the others move, etc...

5.4 Proof of Proposition 5.1

We assume for simplicity that pε
j is the origin. We recall that η = ε

l and that | log l| ¿ |log ε|
so that | log η| ∼ |log ε|. First, we may assume that

(5.29) ‖fε‖2
L2(Ω) ≤

C

l2|log ε|
otherwise, the result stated is true.

Then, Proposition 2.2 in [S1] applies and gives vortex points ai. For each j, let us consider
the ai’s which are at distance O(l) from pε

j , and consider their blown-up points ai =
ai−pε

j

l .
We may find a constant K such that, for R arbitrarily large, B(pε

j , 2Rl)\B(pε
j ,Kl) does not

contain any of these ai’s. Moreover, we claim that the ai’s converge, up to extraction, to some
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points, which are the bj,k’s of (5.15). Indeed, if not, then there would be some subset of them
converging to another point, with total degree 0 (otherwise it would appear in the right-hand
side of (5.15)). But they would then form an unbalanced cluster of vortices at original scale
¿ l. From Theorem 2 of [S1] we would deduce ‖fε‖2

L2(Ω) À 1
l2|log ε| , contradicting (5.29).

We may thus find a radius ρ > 0 such that the B(bj,k, ρ) are disjoint, and for small ε, the
B(ai,

Rεε
l ) we consider are included in the B(bj,k, ρ), and we recall

∑
i/ai→bj,k

di = Dj,k = ±1.
Let us define

(5.30)
{ −∆Φ0 = 2π

∑
k Dj,kδbj,k

in B(0, R)
Φ0 = h on ∂B(0, R),

where h will be specified later, and G by

(5.31)

{
−∆xG(x, y) = δy in B(0, R)
G(x, y) = h(x)

2π
P

k Dj,k
on ∂B(0, R),

and S(x, y) = 2πG(x, y) + log |x− y|, we have

Φ0(x) = 2π
∑

k

Dj,kG(x, bj,k) =
∑

k

−Dj,k log |x− bj,k|+ Dj,kS(x, bj,k).

We introduce the renormalized energy relative to the ball B(0, R):

(5.32) WR(b1, · · · , bm) = −π
∑

k 6=k′
Dj,kDj,k′ log |bj,k − bj,k′ |+ 2π

∑

k,k′
Dj,kDj,k′S(bj,k, bj,k′)

+
∫

∂B(0,R)
h(x)

∂Φ0

∂ν

It is a direct calculation identical to the one done for Lemma 3.1 of [S1] to show that

(5.33)
1
2

∫

B(0,R)\∪kB(bj,k,r)
|∇Φ0|2 = π

∑

k

D2
j,k log

1
r

+ WR(bj,k) + or(1).

Let us now gather a few intermediate results.

Lemma 5.2. We have

(5.34)
∫

B(0,R)\∪kB(bj,k,ρ)
|∇Φ−∇Φ0|2 → 0 as ε → 0

where Φ0 is defined as the solution of (5.30), Φ as Φ(pε
j + lx) (where Φ solves (3.5) in [S1]),

and h is taken to be the uniform limit of Φ− 1
2πR

∫
∂B(0,R) Φ on ∂B(0, R). Moreover,

(5.35) lim
R→∞

‖∇WR(bj,1, · · · , bj,m)−∇W (bj,1, · · · , bj,m)‖L∞(B(0,K+1)m) = 0

Lemma 5.3. Let the bj,k, Dj,k be as before, with Dj,k = ±1 and (5.16), then for any ρ such
that the B(bj,k, ρ) are disjoint and do not intersect ∂B(0, R), we have

1
2

∫

B(bj,k,ρ)
|∇uεj |2 = π| log η|(1 + o(1))(5.36)

∫

B(0,R)\∪kB(bj,k,ρ)
|∇|uεj ||2 +

1
2η2

(1− |uεj |2)2 ≤ o
(
l2 log2 l‖fε‖2

L2(Ω)) + 1
)

(5.37)
∫

B(0,R)\∪kB(bj,k,ρ)
|∇uε − iuε∇⊥Φ0|2 ≤ o

(
l2 log4 l‖fε‖2

L2 + 1
)
.(5.38)
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Once we have these results, we can follow closely the proof of [SS2], Proposition 3.5. For
simplicity, we drop the subscripts j.

Through the change of scales we have
(5.39)

E(uε, B(0, R)) :=
1
2

∫

B(0,R)
|∇uε|2+(1− |uε|2)2

2η2
=

1
2

∫

B(pε
j ,lR)

|∇u|2+(1− |u|2)2
2ε2

≤ C|log ε| ≤ C| log η|.

By scaling, from (5.29), for every R > 0,

(5.40)
∫

B(0,R)
|∆uε +

uε

η2
(1− |uε|2)|2 ≤ C

|log ε| ,

and also o(1)l2‖fε‖2
L2 log4 l ≤ o(1) log4 l

|log ε| ≤ o(1) from the assumption (5.17). Hence all the
right-hand sides in (5.37) and (5.38) tend to 0 and we can rewrite this

(5.41)
∫

B(0,R)\∪kB(bj,k,ρ)
|∇|uε||2 +

1
2η2

(1− |uε|2)2 ≤ o(1)

(5.42)
∫

B(0,R)\∪kB(bj,k,ρ)
|∇uε − iuε∇⊥Φ0|2 ≤ o(1).

The relation (5.40) is used to obtain as in [SS2], (iuε,∇uε) ⇀ ∇⊥Φ0 + cst, and in view of
(5.42), the constant vector is 0, that is

(5.43) (iuε,∇uε) ⇀ ∇⊥Φ0.

As in [SS2], we consider a set of vectors (V1, · · · , Vm) ∈ R2, and χt a family of diffeomor-
phisms of B(0, R) preserving ∂B(0, R) and such that χt(x) = x + tVk in each B(bj,k, ρ). We
also define bj,k(t) = bj,k + tVj,k, and

(5.44)




−∆Φt = 2π

∑
j,k Dj,kδbj,k(t) in B(0, R)

∂Φt

∂ν
=

∂Φ0

∂ν
on ∂B(0, R).

From Φt we define ψt exactly as in [SS2], eq. (3.24), vanishing on ∂B(0, R), and vε(χt(x), t) =
uε(x)eiψt . Reproducing the proof of [SS2] yields that under the previous conditions (5.41),
(5.42) and (5.43), we have

(5.45)
d

dt |t=0
E(vε(x, t)) = lim

r→0

d

dt |t=0

1
2

∫

B(0,R)\∪iB(bj,k(t),r)
|∇Φt|2.

while

(5.46)
1

| log η|
∫

B(0,R)
|∂tvε|(0)2 = π

∑

k

|Vk|2 + o(1).

As in [SS2], this follows from (5.36) and [SS1], Corollary 4.
Next, we claim we have

(5.47) lim
r→0

d

dt |t=0

1
2

∫

B(0,R)\∪kB(bj,k(t),r)
|∇Φt|2 =

d

dt |t=0
WR(bj,k(t)) =

∑

k

∇kWR(bj,k) · Vk
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(the proof can be reproduced from (3.39) of [SS2].) This will suffice to conclude that

(5.48) | log η|
∫

B(0,R)
|∆uε +

uε

η2
(1− |uε|2)|2 ≥ 1

π
‖∇WR(bj,k)‖2 + o(1),

that is

(5.49) |log ε|l2
∫

B(pε
j ,Rl)

|∆uε +
uε

ε2
(1− |uε|2)|2 ≥ 1

π
‖∇WR(bj,k)‖2 + o(1).

Indeed, it follows as in [SS2] by a simple Cauchy-Schwarz inequality: choosing Vk =
∇kWR(bi); since vε(x, t) = uε(x) on ∂B(0, R) for each t, we have

(5.50)
d

dt |t=0
E(vε(x, t)) =

∫

B(0,R)
∂tvε(0)

(
∆uε +

uε

η2
(1− |uε|2)

)

≤
(

1
| log η|

∫

B(0,R)
|∂tvε|2(0)

) 1
2
(
| log η|

∫

B(0,R)
| −∆uε +

uε

η2
(1− |uε|2)|2

) 1
2

≤
(

π
∑

k

|∇kWR(bj,k)|2 + o(1)

) 1
2
(
|log ε|l2

∫

B(pε
j ,Rl)

|fε|2
) 1

2

,

using (5.46) and the choice of Vk. Inserting this and (5.47) into (5.45), we are led to (5.49).
Adding up the relations (5.49) over j and using (5.35), we conclude that (5.18) holds.

Remark 5.4. This proof is the only place where the assumption (5.17) is needed.

5.5 Proof of the additional lemmas

Proof of Lemma 5.2. First, we recall that Φ verifies −∆Φ = 2π
∑

i diδai with
∑

i diδai ⇀∑
k Dj,kδbj,k

in the weak sense of measures in B(0, R). Moreover, since B(pε
j , 2Rl)\B(pε

j ,Kl)
does not contain any vortex, thus examining (3.5) of [S1], as for (3.9) of [S1], we have

|∇Φ| ≤ C
Rl on ∂B(pε

j , Rl)(5.51)

|D2Φ| ≤ C
R2l2

on ∂B(pε
j , Rl)(5.52)

so |∇Φ| ≤ C
R and |D2Φ| ≤ C

R2 on ∂B(0, R). Thus, Φ − 1
2πR

∫
∂B(0,R) Φ is uniformly bounded

and equicontinuous on ∂B(0, R) and we may assume it converges uniformly to some h, as
ε → 0. Moreover, returning to (3.5) of [S1], and since B(pε

j , 2Rl)\B(pε
j ,Kl) contains no ai,

Φ behaves more and more like a constant on ∂B(pε
j , Rl) as R becomes large. That is h → 0

uniformly on ∂B(0, R) as R →∞.
On the other hand, Φ − 1

2πR

∫
∂B(0,R) Φ − Φ0 tends to 0 uniformly on ∂B(0, R) and its

Laplacian tends to 0 in the weak sense of measures on B(0, R), we may conclude that the
function converges to 0 uniformly on B(0, R) as ε → 0. Then, using an integration by parts
(and assuming 1

2πR

∫
∂B(0,R) Φ = 0 for simplicity), we have

∫

B(0,R)\∪kB(bj,k,ρ)
|∇Φ−∇Φ0|2

=

∣∣∣∣∣
∫

∂B(0,R)
(Φ− Φ0)

∂

∂ν
(Φ− Φ0)−

∑

k

∫

∂B(bj,k,ρ)
(Φ− Φ0)

∂

∂ν
(Φ− Φ0)

∣∣∣∣∣ → 0
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in view of the bounds on |∇Φ| and |∇Φ0|. This proves (5.34).
Let us now prove (5.35). We observe that S(x, y) = 2π(G0(x, y) + Gh(x)) + log |x − y|

where G is written as G0 + Gh, with

(5.53)
{ −∆xG0(x, y) = δy in B(0, R)

G0(x, y) = 0 on ∂B(0, R),

and

(5.54)
{ −∆Gh = 0 in B(0, R)

Gh = h(x) on ∂B(0, R).

It is a standard fact that G0 is symmetric i.e. G0(x, y) = G0(y, x). In fact there is an explicit
expression (in complex coordinates)

(5.55) G0(x, y) =
1
2π

log
∣∣∣∣
R(x− y)
R2 − xy

∣∣∣∣ .

Thus S(x, y) is the sum of a symmetric function and a function that depends only on x.
Now,

WR(bj,k)−W (bj,k) = 2π
∑

k,k′
Dj,kDj,k′S(bj,k, bj,k′) +

∫

∂B(0,R)
h(x)

∂

∂ν

(
2π

∑

k

Dj,kG(x, bj,k)

)
,

hence

∇(WR(bj,k)−W (bj,k)) = 2π
∑

k,k′
Dj,kDj,k′

(∇xS(bj,k, bj,k′) +∇yS(bj,k, bj,k′)
)

+
∫

∂B(0,R)
h(x)

∂

∂ν

(
2π

∑

k

Dj,k∇yG0(x, bj,k)

)

Thus, to conclude that (5.35) holds, it suffices to check that maxx,y∈B(0,K+1) |∇xS| and
maxx,y∈B(0,K+1) |∇yS| tend to 0 as R →∞, and that | ∂

∂ν∇yG0(x, bj,k)| ≤ C
R2 . The second fact

follows from the formula (5.55). For the first fact, use that S(x, y) = 2π (G0(x, y) + Gh(x, y))+
log |x−y|. Gh is harmonic, with values h → 0 on ∂B(0, R), hence tends to 0 in C1(B(0,K+1))
as R →∞, by elliptic estimates. The remaining part of S is easy to handle.

Proof of Lemma 5.3. By an application of the standard lower bounds, since all the vortices
converge to the bj,k’s with total degree Dj,k = ±1, we have

1
2

∫

B(bj,k,ρ)
|∇uε|2 ≥ π log

1
η
(1− o(1))

and since (5.16) holds, we must have (5.36).
On the other hand Theorem 1 of [S1] yields

∫

B(0,R)
|∇|uε||2 +

(1− |uε|2)2
η2

≤ o
(
l2 log2 l‖fε‖2

L2(Ω) + 1
)
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and

(5.56)
∫

B(0,R)
|∇ψ|2 ≤ o

(
l2 log4 l‖fε‖2

L2(Ω) + 1
)

,

where ψ is the blown-up of ψ. This proves (5.37). In addition, we can easily check that
|∇uε − iuε∇⊥Φ0|2 = |∇|uε||2 + |uε|2|∇ψ +∇⊥Φ−∇⊥Φ0|2, hence
∫

B(0,R)\∪kB(bj,k,ρ)
|∇uε − iuε∇⊥Φ0|2 ≤

∫

B(0,R)\∪kB(bj,k,ρ)
|∇|uε||2 + 2|∇ψ|2 + 2|∇(Φ− Φ0)|2

and in view of (5.34) and (5.56), (5.38) follows.
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symétrie radiale. C. R. Acad. Sci. Paris, Ser. I 323 (1996), no 6, 593–598.

[RS] J. Rubinstein and P. Sternberg, On the slow motion of vortices in the Ginzburg-Landau
heat-flow, SIAM J. Appl. Math 26 (1995), 1452-1466.

[OS] Y. N. Ovchinnikov and I. M. Sigal, Symmetry-breaking solutions to the Ginzburg-
Landau equation. J. Exp. Theor. Phys. 99, (2004), no. 5, 1090-1107.

[Sa1] E. Sandier, Lower bounds for the energy of unit vector fields and applications. J. Funct.
Anal. 152 (1998), no. 2, 379–403; Erratum, Ibid, 171 (2000), no. 1, 233.

[Sa2] E. Sandier, Locally minimising solutions of −∆u = u(1 − |u|2) in R2. Proc. Roy. Soc.
Edinburgh Sect. A 128 (1998), no. 2, 349–358.

[So] H. M. Soner, Ginzburg-Landau equation and motion by mean curvature. I. Convergence
II. Development of the initial interface, J. Geom. Anal. 7 (1997), no. 3, 437-491.

[SS1] E. Sandier and S. Serfaty, A product estimate for Ginzburg-Landau and corollaries, J.
Funct. Anal. 211 (2004), no. 1, 219–244.

[SS2] E. Sandier and S. Serfaty, Gamma-convergence of gradient flows and application to
Ginzburg-Landau, Comm. Pure Appl. Math. 57 (2004), no. 12, 1627–1672.

41



[SS3] E. Sandier and S. Serfaty, A Rigorous Derivation of a Free-Boundary Problem Arising
in Superconductivity, Annales Sci. Ecole Normale Sup., 4e série, 33 (2000), 561-592.
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