Limiting Vorticities for the Ginzburg-Landau
Equations

Etienne Sandier (M)
Sylvia Serfaty (2

(1) Département de Mathématiques,
Université Paris-12 Val-de-Marne,
61 ave du Général de Gaulle,

94010 Créteil Cedex, France.

e-mail: sandier@univ-parisi2.fr

(2) CMLA, CNRS UMR 85 36, ENS Cachan,
61 avenue du Président Wilson,

94235 Cachan Cedex, France.

current address : Courant Institute,

251 Mercer St, New York, NY 10012, USA.
e-mail: serfatyQcims.nyu.edu

Abstract

We study the asymptotic limit of solutions of the Ginzburg-Landau equations in
two dimensions with or without magnetic field. We first study the Ginzburg-Landau
system with magnetic field describing a superconductor in an applied magnetic field,
in the “London limit” of a Ginzburg-Landau parameter x tending to infinity. We
examine the asymptotic behavior of the “vorticity-measures” associated to the vor-
tices of the solution, and prove that passing to the limit in the equations (via the
“stress-energy tensor”) yields a criticality condition on the limiting measures. This
condition allows to describe the possible locations and densities of the vortices. We
establish analogue results for the Ginzburg-Landau equation without magnetic field.



I Introduction

I.1 The full Ginzburg-Landau equations

We are interested in studying the asymptotic limit of the following Ginzburg-Landau equa-
tions of superconductivity, referred to as (G.L):

(L.1) ~Viu = r*u(l — |u)*) inQ
(1.2) ~V*th = (iu, Vau) inQ
(L3) h=he on o
(I.4) (Vu —iAu)-v =0 on 0f.

The solutions of this system are the critical points of the following Ginzburg-Landau
energy :

(I.5) J(u, A) / |V qul? 5 (1 — |ul ) + |h — hex)?.

This energy-functional was introduced by the physicists Ginzburg and Landau in the 50s
as a model for superconductivity. Here, we have performed some rescalings of the original
functional, and the unit length is the “penetration depth”. The simplification made here,
which is common, consists in restricting to a two-dimensional model, corresponding to a
infinite cylindrical domain of section 2 C R* (smooth and simply connected), when the
applied field is parallel to the axis of the cylinder, and all the quantities are translation-
invariant. Here, & is a dimensionless constant (the Ginzburg-Landau parameter) depending
only on characteristic lengths of the material and of temperature. he, > 0 is the intensity of
the applied magnetic field (it is just a real parameter), A : Q — R? is the vector-potential,
and the induced magnetic field in the material is the real-valued function A = curl A =
—0h A1 + 01 A3. V4 =V —iA is the associated covariant derivative. The complex-valued
function u is called the “order-parameter”. It is a pseudo-wave function that indicates
the local state of the material. There can be essentially two phases in a superconductor:
|u(z)| ~ 0 is the normal phase, |u(z)| ~ 1, the superconducting phase. The Ginzburg-
Landau model was based on Landau’s theory of phase-transitions. Since then, the model
has been justified by the microscopic theory of Bardeen-Cooper-Schrieffer (BCS theory).
|u(x)|? is then understood as the local density of superconducting electron pairs, called
“Cooper pairs”, responsible for the superconductivity phenomenon. For a more detailed
physical presentation, we refer to the physics literature [T, DeG]| (one can also see our
previous papers [SS1, SS2, SS3]).

We are interested in the asymptotics of a large x which corresponds to “extreme-type
II” materials. Thus, we set

e — —
K

and will let € tend to 0, while sometimes writing .J..
The Ginzburg-Landau equations and functional are invariant under U (1)-gauge-transformations
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(it is an abelian gauge-theory) of the type :

U Ueiq)
(L.6) { Ars A+ VO

The physically relevant quantities are those that are gauge-invariant, such as the energy
J, |ul, h, etc... This gauge-invariance can be “frozen” by choosing a gauge, for example
the Coulomb gauge

(L7) { divA=0 in Q

A-v=0 on 0N

In previous papers [SS1, SS2, SS3] (see also [S1, S2, S3]), we already studied the family
of energy-functionals (I.5) as ¢ — 0, but we focused on global minimizers of the energy.
We proved in [SS2, SS3] their convergence to minimizers of a limiting energy, in a suitable
regime for the applied field. Here, we wish to address the question of the behavior of critical
points in general, i.e. the asymptotic behavior, as ¢ — 0, of solutions of the Ginzburg-
Landau system (I.1)—(I.4), that are not necessarily global or local minimizers. We will
restrict to families which satisfy reasonable energy bounds.

Before stating our hypotheses, let us briefly sum up the known results. In the regimes
we are interested in, solutions are mainly characterized by the existence (or not) of vortices.
There have been many mathematical studies of maps with vortices in the Ginzburg-Landau
type framework, particularly for the Ginzburg-Landau equation without magnetic field that
we examine in Section [.4. Let us say the first main study of vortices for the Ginzburg-
Landau equation without magnetic field was the book by Bethuel, Brezis and Hélein [BBH],
and this kind of analysis was first adapted to Ginzburg-Landau with magnetic field in the
paper of Bethuel and Riviere [BR] (in which a fixed Dirichlet boundary condition was
imposed instead of the natural Neumann condition (1.4)).

Vortices are isolated zeros of the complex-valued order parameter u, carrying a nonzero
integer-valued winding degree (the topological degree of the map u/|u| around a zero),
called the degree of the vortex. In [S1, SS1], we proved that there exists a value H,,
of hex named by physicists “first critical field”, such that for he, < H,,, the only global
minimizer of the energy is the unique vortex-free solution of (G.L), and for he, > H,,, global
minimizers of J have vortices. We obtained (see [S1, SS1]), the asymptotic expansion

(1.8) H, = gl

= 1
" 2 max(1 — hg) +00),

where hy is the solution of the London equation

(19) { —Aho + h() =0 in Q

ho =1 on 0f2.

There exists a second critical field H,, = O(%) above which the only global minimizer (and
maybe only critical point) is the normal solution (u = 0, h = hey) (see [GP]). Between H,,
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and H,,, it is the “mixed state” where minimizers of the energy exhibit vortices, surrounded
by superconducting phase |u| ~ 1. These vortices are more and more numerous as hey
increases and tend to arrange in triangular arrays (“Abrikosov lattices”). We proved in
[SS2] and [SS3] that global minimizers (for H, < he, < H,,) converge to the minimizer
of a limiting energy depending essentially on the ratio \1322\' We were able to extract a
vortex-density measure associated to these minimizers, defined by f—i > dibq;, a; being
the vortex-centers, and d; the associated degrees. These measures converge to a uniform
density supported in a subdomain of €2, (which depends again on the ratio |l:§"s|). The
total vorticity is thus proved to be proportional to the applied field he, in this mixed state.

1.2 Main results

Let us now describe our assumptions. Let ¢, — 0, and let (u,, 4,) denote a sequence
of critical points of J. , for an external field hey. h, will denote curl A,,. Of course, for
the reasons we just pointed out, we need to let he, vary with € (one can consider it as a
function of ). Here, we deal mainly with intermediate fields he, < Cllog . |log €] is a
relevant order of magnitude of hey, it is the order of H,. , and it allows large numbers of
vortices. We could easily extend our results to larger applied fields (see Remark 1.1). We
make the following hypotheses:

(I.10) hex < Cllog €|
(L.11) Je(us, A.) < ChZ,.

As long as heyx < E% with § small enough, we can adjust the ball-construction that we
did in [SS2] to the present needs and obtain the following result :

Proposition 1.1 If he, < E%, there exists g such that if ¢ < &y and (u., A;) satisfies
(1.11) and ||V a u.| =) < <, there exists a family of balls (depending on £) (B;)ier. =
(B(ai, 1:))ier. satisfying:

(1.12) lug] > 1 — min <hi4 ®> in Q\g Blas, ).
(I.13) Card I, < Ch2
(I.14) r; > Ceh? and Zri < ez
i€l
(L.15) 3¢ > 0 %/B Va2 > Cldi[log £(1 — o(1)),

where d; = deg(“=,0B;) if B; C Q and 0 otherwise.

uel”
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Thus, from (I.15), if he, < Cllog ¢|,

(1.16) N. =21 " |di] < Chey.
iEIE

For any such set of balls, we can associate to u. the vorticity-measure (an object we
had already used in [SS3])

. 2T Zz diéai

11 . :
(L.17) 0 .

which remains bounded as ¢ — 0.
Let us now state our main result. We denote by H{(Q) the set {f € H(Q),f -1 €
H}(Q)}, and M(Q) the space of bounded Radon measures on 2.

Theorem 1 A. Convergence
Let €, — 0, and (uy, Ap) be critical points of J., (or, equivalently, solutions of (I.1)—
(I1.4)), with hypotheses (1.10)-(1.11) satisfied, then, up to extraction of a subsequence,

h
s he i HI (),
Prex
and strongly in Ny<sWHP(Q).
For any (a;,d;) satisfying the results of Proposition 1.1, up to extraction

. 2m Zz d,ﬁai R
 he

B. Properties of the limit
heo s stationary with respect to inner variations for the functional

o, fhoo := —Ahoo + hoo  weakly in M(S) i.e. in (C5(Q))".

(1.18) L(h) = %/ |Vh|?> + h?

defined over H{ (), meaning that for any smooth compactly supported vector field X : Q —
R?, the derivative at t = 0 of L(hy) is zero, where hy(xz) = h(zx +tX (x)). This is equivalent
to

(1.19)

: : W o | 1 ([ (D2heo)? = (01hso)” —201 hoo Oz hos
Vi=12 div Ly =0, Ly =700+ < hhaudohse  (Biha) — (Doheo)? )
A consequence of (1.19) is that |Vhy| € C°(Q). I fwe assume moreover that Vhey € C°(2)
and |[Vhe| € BV (Q) (this is the case if ps € LP(Q),p > 2 for example), then,

,uothoo =0

heo € CH(Q)(Va < 1)

0<hye<1

Poo = hooliwhy =0 thus s 18 a nonegative L™ function.

(.20)



This theorem provides an interesting result mostly when V. is of the order of he,. If it is not
the case, then, we can get a more precise result by looking at a better-suited normalization
of the vorticity-measure: we define

. 2T Zz diéai . 27 Zz d,ﬁai

[.21 - = .
(121) ” N.. om -, Ids|

v, will behave like p,, when % < N,, < Che. We also set
(1.22) fn = hp — hexho,
where hy is the solution of (I1.9).

Theorem 2 Let ¢, — 0, and (uy, A,) be critical points of J., (or, equivalently, solutions
of (I.1)—(1.4)), with hypotheses (1.10)-(1.11) satisfied. Up to extraction of a subsequence,
- if Ne, > hex, then v, — 0 weakly in M(2).

- if Ng, < hey, then

& 4h() mn HII(Q)
Prex
% — foo in WyP(Q) Vp <2
2 . (;0,.
n i— ’/TZ]\;dZdll — Vo = —Afoo+foo wea’kly ZTLM(Q)

In addition,
(123) VothU = 0,

i.e. Vo 18 supported in the set of critical points of hy which is a finite set of points (see
[S55]), and vy is a finite combination of Dirac masses at these points.

Remark I.1: If |log ] < hex < Eiﬂ where (3 is some small power, then the natural bound
(I.11) on the energy still allows us to construct vortex-balls and Theorem 2 remains valid.
But it does not ensure that ), |d;| < Che i.e. that the vorticity measures f. remain
bounded. If we add this as a hypothesis, then our proofs remain valid, and the result of
Theorem 1 still holds for these larger fields. More generally, it seems reasonable to believe
that, for all fields he, < E%, if (I.11) is satisfied, then again the same results should hold.

I.3 Interpretation

These theorems provide a general result on the behavior of sequences of solutions of (G.L),
under the assumptions (I.10)-(I1.11), and these results include in particular, as they should,
the case of global minimizers studied in [SS3]. Indeed, let us recall the main results of [SS3].

We assumed that A = lim,_,q “?i;' exists and is finite and, if A\ = 0, hex < 1/£2, then,
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considered, for every &, (u., A.) minimizing J, and h. = curl A, the associated magnetic
field. We proved the existence of balls which are as in Proposition I.1, thus getting vortices
(a;,d;), and defining the vorticity-measure p. as in (I.17).

Theorem ([SS3]) If (u., A.) minimizes J. and \ < oo, then, as e — 0,

e —h,  strongly in WHP(Q),Vp < 2,

hex e—0

he h, weakly in H'(Q),

hex e—0

where h, s the unique minimizer of

B =5 [1=af+ fl+5 [ 195F+1F 1P,

and the solution of the free-boundary problem :

h, € H (Q)
A
(P) h* 2 1-— 5 in Q \
Vv € H{(Q2) such that v > 1 — > / (—Ahy, + hy) (v—"he) >0
Q

On the other hand
pe = px = —Ah, + h, in M(Q),

and, in addition,

(>8] AE
lim 7J(u )

2
e—0 h’ex

A 1
:E(h*):g[2|M*|+§[2|Vh*|2+|h*—1|2.

The connection, which turns out to be a duality, between the minimization of E(f) and
the free boundary problem (P) is made clear in the recent work of H.Brezis and S.Serfaty
[BS]. In this theorem, we derived a limiting energy F (I'-limit of };]TE), and proved that
minimizers of J. converge to minimizers of E. The necessary condition derived in our
Theorem 1, that h,, is stationary with respect to inner variations for £, is the equivalent
condition for limits of critical points. (£ can thus also be seen as a limiting energy for h—i)

Let us return to the theorem of [SS3] we just quoted. A free-boundary problem (P)
arose, the associated free-boundary is the boundary of wy := {z € Q,h, =1 — %}, which
is exactly the support of the limiting vorticity measure p, = (1 — A) 1,,. When dw, is

2
regular (which is generically true, see [BM]), problem (P) can be rewritten as

( —Ah, +h, =0 in Q\wy
A .
hy=1—— in wy
(1.24) - 2
=0 on Ow,
on
\ h, =1 on 0f).




One can picture the domain €2 as split into two regions: a central region wy in which the
vortices are scattered with a limiting uniform density, and where the limiting field h, is
constant; and an outer region in which there are essentially no vortices, and h, satisfies
—Ah, + h, = 0. The size of w) depends on A, hence on the value of the applied field hey.
wy = @ for hexy < H,,, then is a point, and then inflates as hex increases for hey > H,,,
until wy = €2. For lim, % > lim. %, N, is of the order of he. For more details,
we refer to [SS3]. Now this result fits into the result of Theorem 1, taking h,, = h,, and
foo = s Indeed, h, and p. do satisfy (1.20) since {z € Q, |Vh.| = 0} = wy = Supp p..
The case described in Theorem 1 is of course more general since it can account for more
general supports for the limiting measure fio.

In the case of (nonminimizing) critical points, we see from Theorems 1 and 2 that three
cases can be distinguished : either N, ~ Chey, or N. > hey, or No < hex. If N > hey,
ve — 0, thus there should be many vortex dipoles (pairs of positive degree-negative degree
vortices close to each other that sort of annihilate) and removing such dipoles, we should
be led back to one of the other two cases. If % < N, < (Chey, then this allows for
vortex regions, i.e. [, can be a density distributed over a subregion of Q (with nonzero
volume), as in the case of global minimizers. On the contrary, when N, < hey, V. can
only converge to a sum of Dirac masses at the critical points of hy (this set is a finite
set of points as seen in [SS5]), i.e. the vortex points all converge to the same few points
depending only on the geometry of the domain. (If, for example, the domain is convex,
then the set of critical points of hg is reduced to its unique minimum point.) For example,
if hex = Cllog €| and N, = O(1) (finite number of vortices), then as ¢ — 0, they all
converge to these points. This was already proved for global minimizers : N, < hex when
hex < H., + O(log |log £|) (proved in [SS5]), and in this case, the vortices of the global
minimizers converge to the finite set of points of minimum of hg, which we denoted by A,
as we decribed in [S1, S3, SS1, SS5]. In [S3], some local minimizers of the energy with
N. < O(1) were exhibited and studied. They also corresponded to v, supported in A.

Observe that the result of Theorem 2 excludes many possibilities, such as the case of a
two-dimensional lattice of N, vortices, N, < hey, filling a subregion of 2. In other words,
if there are N, vortices with mutual distances > ﬁ’ then necessarily N. > Chey.

The relations (I.19), (I.20) tell us that the limiting vorticity measure and the limiting
field satisfy some necessary criticality conditions. Let us focus on the relation fio,Vheo
in (1.20) or (I.23). (These relations should be compared to a result of [BBH], see Section
[.4.) In the case of Theorem 1, when we get a density, or u. < dz, (I1.20) can also be
understood as : “hs is constant on each connected component of the support of fis.”
Denoting by w the support of p, a model case for (I.20) is that of

—Ahg + hoeo =0 in Q\w

heo = ¢ in w
I.2
(1.25) _8hoo =0 on Ow
on
he =1 on 0f2.



This is valid when w is connected, and smooth enough.

Already, the difference in (1.25) with the case of minimizers (I.24), is that all constant
values of ho, and ps in w can be allowed by (1.20), and this is totally independent of hey.
As was the result of [SS3], this is very reminiscent of the formal model established by J.
Chapman, J. Rubinstein and M. Schatzman in [CRS]. In fact, the system of equations
they propose in the steady-state case is exactly (1.25).

We conjecture that all solutions of this system (for all constant values ¢ in a certain

interval of [0, 1]), can be achieved as limits of sequences of critical points for any applied
fields. We already know from the result of [SS3], that all the solutions of (I.25) with
2max(1l — hy) + 1 < ¢ < 1 are achieved as limits of minimizers with A = 2(1 — ¢). More
generally, the question of knowing which h, solving (I.20) can actually be achieved as
limits of sequences of critical points of J. and for which he(g), is an interesting open
problem.
There are cases in (I.25) where w is not connected (for certain nonconvex domains, it is
already the case for minimizers). In this case, we can expect as many constants as there
are connected components of w. Let us also point out that the vortex-free case is included.
In [S3] the existence of vortex-free solutions, for the same regime of applied fields, even for
hex > H,,, was proved. Then the limit of h—f:x is hg, and this case is included in (I1.25) and
(I.20) with w = @. In order to include it, we had to allow energies of the order of h2_ as
we did in hypothesis (L.11).

In the case of Theorem 1, there is unfortunately no way to ensure that ., < dx is true,
unless we know that Vh. € C° and |Vhoo!| € BV; i could be a measure concentrated on
points or more likely lines (since it has to belong to H~!). Yet, our result only asserts that
|Vheo! is continuous, but not necessarily Vhs,. There are counter-examples of (hao, fiso)
satisfying these conclusions with Vh,, discontinuous, thus without p. < dz. Here is a
counter-example. Let us solve

—Ahl + h1 =0 in B(O, Rl)

hi=1 on 0B(0, Ry).
—Ahg + hg =0 in B(O, RQ)\B(O, Rl)
h,l =1 on aB(O, Rl) U 8B(0, RQ)

Both functions are radial, and we can adjust R; and R, in such a way that %(Rl) =
—22(R;). Now, we can define h as hy in B(0,R;) and hy in B(0, R;)\B(0, Ry), h is
in H'(B(0, Rz)), Vh is discontinuous on dB(0, R;) while |Vh| remains continuous. We

can check that (I.19) holds because (%)2 is continuous (see the proof of Lemma IV.1).
p = —Ah + h is a positive measure supported on 0B(0, R;), thus p < dz does not

hold. Nothing allows us to exclude that there are sequences of critical points converging to
such limiting configurations. They would correspond to solutions with vortices of positive
degrees concentrating along the circle 9B(0, Ry). One could imagine many other counter-
examples which would not satisfy y < dx, implying Vh,, discontinuous.



I.4 Ginzburg-Landau without magnetic field

The method that we just exposed for the Ginzburg-Landau equations of superconductivity
actually also applies to the “simpler” and well-known Ginzburg-Landau equation, i.e. the
one without magnetic field. Let us recall a few facts about it. The Ginzburg-Landau
functional (without magnetic field) defined over H'(£2, C) is

1 1
1.26 E.(u)== [ |[Vu]*+—=(1—|ul’)?
(126) () =5 [ 1Val+ 550 = P
and the associated Euler-Lagrange equation is the Ginzburg-Landau equation
u
(1.27) —Au = ?(1 — Jul?).

There has been intensive studies of this equation in two-dimensional domains and in the
asymptotics of ¢ — 0. The asymptotic behavior of minimizers and critical points for a
fixed Dirichlet boundary condition was totally described by Bethuel, Brezis and Hélein in
[BBH]. The boundary condition is a map g : dQ — S which has a topological degree (or
winding number) d. When d # 0 (say d > 0), solutions of (I.27) have vortices (exactly |d|
vortices for the minimizers).

In view of the study of the Ginzburg-Landau equations of superconductivity, it is inter-
esting to ask what happens when the number of vortices, or the total degree, is unbounded
when € — 0. A first result in that direction was obtained by Sandier and Soret in [SaSo],
for the discrete problem on the vortex-points : they consider minimizers of the renormal-
ized energy with a boundary condition that has winding number n — oo on a ball, and
they prove that the points all go to the boundary of the domain.

A recent paper of Jerrard and Soner [JS2] investigated the Gamma-limit of the Ginzburg-
Landau functionals E. as € — 0, allowing large energies and a total degree that can go to
infinity as ¢ — 0. They got the analogue results as those we obtained in [SS3] i.e. derived
a limiting cost of the vortices, with upper and lower bounds for arbitrary sequences, i.e.
not necessarily critical points. What we are able to do here is to derive a characterization
of the limiting vorticity for solutions of (1.27) using the fact that they are stationary with
respect to inner variations for the energy.

For the case of a fixed Dirichlet boundary condition, this was done in Theorem X.5 of
[BBH], where a family of critical points u. is shown to converge (up to extraction) to a
limiting S'-valued map u, with vortices a;, and total degree d, which can be written as

r—a \ % r—a, \" .
u*(x‘) = <_71> .. <_7n> 6“»0(5’3),
|z — a4 |z — a,|

with ¢ an harmonic function. The limiting vortex-points a; are not located arbitrarily,
they are necessarily critical points of a function of their locations, called the “renormalized
energy” and satisfy the “vanishing gradient property” :

(128) VJ, VQOj((Ij) = 0,
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where ¢; is defined by wu.(x) (;_—Z')d] = (@), This fact was also formally derived in
the case of a single vortex by Fife and Peletier in [FP], and was proved in [BBH]. It
corresponds to the fact that u. is stationary for E. with respect to inner variations, and
it was derived by passing to the limit in an equation on the Hopf-differential of u., which
amounts to what we do, i.e. passing to the limit in the stress-energy tensor.

The results of Theorem 1 and 2, pooVhse = 0 or v, Vhy = 0 can thus be seen as the
analogue of (I.28), and corresponds to the fact that the vortex locations are critical with
respect to inner variations in 2.

Here, the hypotheses are the following: assume we have a family u. of solutions of

(I.27), for which we do not impose any boundary condition. Assume
1 2 1 2\2
(1.29) E.(u:) = 3 |Vu|* + ?(1 — |ue|?)* <

for some 3 > 0 small enough, and || Vu.|| @) < <. (This is true by a priori estimate at

least in each compact of €2, if it does not hold up to the boundary then one needs to work
in any subregion of ). Then, writing formally u. = p.e™¥*, it is well-known (see [BBH])
that (I1.27) implies (by projecting the equation on iu.) that

(1.30) div (p?Vp.) = 0.
Using Poincaré’s lemma, € being simply connected, we can find a U, € H'(Q, R) such that

ViU, = p*Vo. = (iu., Vu,)
(I.31) { fQ U. =0

Thus
AU, = curl (iu., Vu,)

is the Jacobian determinant of u. (whose role has been emphasized in [JS1, JS2, ABO)),
which basically gives the vorticity of the map u.. Thus, U. will play the same role as the
magnetic field h in the case with magnetic field. —Z=— is bounded in H'(2) and thus

e(Ue
has a weak limit U (up to extraction) that we wish to characterize, then AU will be the
limiting vorticity (in this specific normalization). The result of Proposition I.1 remains
true (replacing (ue, A.) by ue, Vi, u. by Vu, and hex by /E.(u.)) and thus we can isolate
disjoint balls B(a;,r;) of small radius that contain all the vortices of u., and define the

vorticity measure
fe = 2T Z di0q;
i

The Jacobian determinant is related to this vorticity measure by the following lemma (the
result was in our previous papers, but is included here in Lemma I1.2 with a shorter proof):

ﬂ

||curl (due, Vue) — prellw-10(0) < £olp) Vp < 2.

11



(A similar result has been proved in [JS1].) Let then again
(1.32) N.=2m > |dil.

The lower bound of the ball-construction shows that
(1.33) N.|log ¢| < CE.(u.).

Theorem 3 Let u. be a family of solutions of (1.27) such that E.(u.) < ELB and [|[Vug|| e () <
%, the following holds as ¢ — 0,

- if N. < \/E.(u.), then up to extraction

Ue

ﬁ —~ U weakly in H'(Q) and strongly in W'P(Q), p < 2
> uE

and
AU = 0.

- if Ne > /E.(uc) then §& — 0 in the weak sense of measures.
- if No ~ C\/E.(u:)(C > 0) then, up to extraction,

Ue

ﬁ —~ U weakly in H'(Q) and strongly in W)P(Q), p < 2,
> uE

% =AU e M(Q)NH Q) weakly in measures

and the Hopf differential of U
(134) w = (81U)2 — (32U)2 — 2231U82U

is holomorphic in Q. This implies that, if ' C Q is an open subdomain of Q with p €
LP(Y),p > 2, then p =10 in .

The interesting case in this theorem is the last case where /E.(u.) and N, are of the same
order, which implies in view of (1.33) that E.(u.) > Cllog ¢|*. In fact, our result seems
really particularly relevant when N, and y/F.(u.) are both of the order of |log |, because
in that case (and only in that case) E.(u.) is of the order of N.|log ¢| as expected. The
first case corresponds to the case where the vortices are too few to be “seen” at the limit,
the second case tells that if there are too many, they should in fact cancel out as a limiting
zero density, like in Theorem 2.

The result on the Hopf differential in the third case is the analogue of the divergence-free
tensor result of Theorem 1. It is equivalent to saying that U is stationary with respect to
inner variations for the Dirichlet energy fQ |IVUJ?. Again here the problem is the regularity
of U. |VU]| can be proved to be continuous but not VU. If VU is regular enough (which
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is the case if u = AU € L?,p > 2), then the fact that w is holomorphic can be rewritten as
VUAU =0 (i.e. puVU = 0, analogue of the “vanishing gradient property” (1.28)), leading
to AU = 0. However, VU does not need to be regular, for example for U(z, o) = |21/,
the Hopf differential is holomorphic but VU is not continuous and VUAU fails to have a
meaning. We do not know if such counter-examples can be achieved as limits of solutions
of (I1.27), this remains an interesting open question. What our result says is that no regular
(LP(p > 2)) nonzero measures can be achieved at the limit, which is pretty striking: for
example, contrarily to the magnetic field case, it is impossible to get a uniform density
of vortices at the limit ¢ — 0, N. — o0o. The measure has to concentrate or to be zero,
which means that either vortices concentrate, for example on lines, (and not on points
because € H™') — an example is yet to be found — or all go to the boundary as it
seems reasonable from the study of [SaSo| (it is at least what should happen for global
minimizers in view of the result of [SaSo]). This phenomenon is a major difference between
the model without magnetic field and the gauge-invariant model. The “simple” Ginzburg-
Landau functional cannot capture “Abrikosov lattices” of vortices that are observed for
large enough fields.

The proof of this theorem is essentially the same as that of Theorem 1, therefore, only
its main steps are stated, in Section VI of the paper.

I.5 Method of the proof

Let us consider a sequence of critical points (u,, 4,) with the hypotheses of Theorem 1. We
can write u, = p,e", with p, = |u,|, at least formally. Of course ¢, is not well-defined
where u,, vanishes. Since (u,, A,) is a critical point or a solution of the (G.L) system, this
immediately implies some a priori estimates : first |u,| < 1 which is standard from the
maximum principle, then, ||V 4, up||1=@) < % (un, Ay,) is in particular a solution of (I1.2),
thus we have

(1.35) V' = 05 (Von — Ay),

and this has a meaning everywhere. Then, as we did in our previous papers (see [SS1, SS2,
SS3]), we can rewrite the energy the following way, using the previous identity:

1 1
Jen(unaAn) = 2 /Q |V|un||2 + |un|2|v¢n - An|2 + |h - h'eX|2 + 2—62(1 - |un|2)2

1 Vh,|? 1
— /|V|un||2+| | +|h,n—h,ex|2+?(1— up |?)?
Q

2 |un|2

1 1
(1.36) > 5 [ VTl P+ [T+ [ = hs 5 (1= P
Q €

Thus, combining this with the hypothesis (I.11), we deduce the usual a-priori upper bounds:

||

lun| <1, bounded in H'(Q), ;Z—n bounded in H; ().

ex ex

13



Hence, up to extraction of a subsequence, we can assume that

hy, _
(1.37) Jheo € H} (), = heo in H} ().
Then, defining p, by (1.17), [, |¢ta| remains bounded in view of (I.16); hence, up to extrac-
tion again, we can assume that it converges weakly in the sense of measures to a limiting
Radon measure fio. Then, we will have, for any choice of (a;, d;) satisfying (1.12)—(I1.15),

2m Zie] d;q, N

A o = —Ahoo + hos  in M(Q).

Hn =
The main idea underlying the proof of both theorems is to pass to the limit in the stress-
energy tensor instead of (G.L). This is similar to the use of the Hopf differential in Chapter
VII of [BBH]. Knowing that (u, A) is a critical point of J, we know that the associated
stress-energy tensor is divergence-free :

Vi=1,2, Y 9;T; =0,

J

where

o1 |0 u|? — |05 ul? 2(0{u, O3'u)
Tij - <E 4—(1 - |u| ) > 6ZJ +5 ( (aAu aA ) |aé4u|2 . |ai4u|2 )
where we have used the notation d;' = (9; — i4;), i.e. 9'u = dju — iAju.
For the case without magnetic ﬁeld the same holds with

b e L |01u|? — |Oau)? 2(01u, Oqu)
T'U - 4e2 (1 |U| ) 5” + 2 < 2(81U, 32u) |82U|2 — |81U|2 '

It is in fact a general property in the calculus of variations, which is only a particular
case of Noether’s theorem. It comes from writing that (u, A), critical point of the energy-
functional, is critical with respect to domain-diffeomorphisms. In other words, let us
consider x; a one-parameter family of diffeomorphisms of €2, such that x, = Id, and
x: = Id outside of a compact set, then we must have

d

%tZOJ(uOXhAOXt):Oa

(respectively %‘t:o E.(uox;) = 0 for the case without magnetic field). Then, using the
fact that such diffeomorphisms can be generated by smooth vector-fields of €2, one is led

to the divergence-free property of the stress-energy tensor. For further reference, one can
see [JT], [He].

Then, the idea is to pass to the limit n — oo in the tensors 13- (T") associated to (uy,, A,)

14



to get a limiting tensor (L;;). One can easily see that, formally, the limiting tensor should
be

R 1 [ (02hso)? — (O1hoo)? —201 hooDahse
(1:39) Lij==20u + 3 < 90, hau Doy (O1hos)? — (Byhoo)? ) ’

which happens to be the stress-energy tensor associated to the Lagrangian L.

Thus, if we pass to the limit in the identities div Zj = 0, we get a limiting identity
div L;; = 0 which provides some new information on h, enough to get the result of the

theorem. Indeed, formally again,
(I.40) div L;jj =0 & (—Ahe + hoo)Vhe = 0.

The main difficulty of the proof is to make these limits rigorous. Passing to the limit in
T;;/h%, seems to require strong convergence in H'(§2) of ;L‘—;, but this convergence is false
in general. Indeed, for he, < C|log |, there is a loss of compactness in the vortices, as
seen in [SS3] for minimizers.

The problematic terms in T;; behave like (9,h,)? — (82hy,)? and 01k, 02h,. One could
think of passing to the limit in these terms by Delort’s theorem, used to pass to the limit
in Euler equations (see [De] or the presentation in [Ch]), which applies exactly to such
terms. But it would require that Ah,/he be bounded in L! with an additional condition,
essentially that the vorticity measure has a sign, or that its negative (or positive) part
goes to 0. But here, such a condition is not necessarily fulfilled, and there would also be
problems in controlling the other terms. Yet, this indicates that morally, in spite of the
lack of strong convergence of 2= in H', the terms in T};/hZ, should converge weakly thanks

hex
to a compensation phenomenon.

Finally, in order to overcome this convergence difficulty, we prove in Section II another
result: there is strong convergence of :—i to hoo in H! outside of a set of arbitrarily small
perimeter. This set essentially is the union over n of the vortex-cores, i.e. U,>n U; B;. If
we think as the vortices as being of characteristic size ¢, and the typical case when there
are O(hey) vortices, the total perimeter of the “bad set” is of order ehey.

Once we have it, we show that this result is still sufficient to get div L = 0, through the
use of the co-area formula.

Remark I.2: What we prove amounts to the following lemma (see Lemma III.2): if
fn is a bounded family in L'(Q) and for all 6 > 0 there exists a set Fjs of perimeter
< 0 such that fQ\E5 |fn — fl = 0, f € LY(Q); and if Df, is bounded in L'(Q2), with D a

linear combination of first order derivatives, then D f, — D f in the weak sense of measures.
The conclusion that div L = 0 will yield some regularity on hy. Yet, the formal result

(1.40) will only be true if we can have some additional regularity: Vhe, € C°(Q).
For Theorem 2, the key point is to substract hechg to h, and study the remainder f,.
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Such a splitting was already used in [S2]. Formally

CASut fo =203 dids i Q)
fn=0 on 0.

When N, < hey, fn is negligible compared to heghg, thus, when we expand the terms in
Ti; using hy, = f,, + hexho, there only remain the cross-terms, which yield v, Vhy = 0.

Remark on notations : - denotes the scalar product in R?, (.,.) the scalar product in C
identified with R?, and C' a positive constant.

Acknowledgments: We thank Professors A. Ancona and G. David for their helpful sug-
gestions in the proof of Proposition II.1.

IT  h,/hex — hoo converges to 0 strongly except on a set
of small perimeter

Let us recall the definition of the p-capacity (for further reference, see for example [EG,
Fr, Z]). The p-capacity (p > 1) is first defined for compact sets by

cap,(F) = inf{/ IVplP ¢ € C5°(2),6 > 11in E}
0

Then, it can be extended to all Borel sets. We also recall that the 1-capacity is a definition
of the perimeter (see [Fr]). As already mentioned, up to extraction, we can assume that
kn, = }%’; converges weakly in H}(Q) to some hs, with —Ahy + he € M(Q) hence
Ahs € M(Q) N H(Q). This section is devoted to proving the following proposition :

Proposition II.1 For all § > 0, there exists Ey C Q with cap,(Es) < § and
/ 'V (kn — hoo)|? — 0 as n — oo.
O\E;

The proof of this proposition relies on the following idea: we have approximately

~Ahy + hy =21 ) did,.

This is of course not really true, but let us assume it for a moment for the sake of simplicity.
Then, with our assumptions, we could say that —Ak, + k, is bounded in the sense of
measures. In addition, with a similar argument as in [SS3|, we can say that k, converges
to hso strongly in WHP(Q), for all p < 2. Thanks to this fact, we can apply a standard
result in capacity theory (see [Fr, Z]), which asserts that we can find 6, — 0 such that
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capy (An = {z € Q, [kn — hoo| > 0n}) — 0 as n — oo.
Then, we denote k, — ho, the function k, — ho truncated at the level 6, i.e.

ky — hoo where |k, — hoo| < 0y,
kp — heo = {0, where k, — hy > 6,
—0, where k, — hy < =6,

We have ||k, — heol| (@) — 0, and

/Q\A IV (kn — hoo)|? = /|Vk—h /Vk—h, V(k ~ hoo)
(IL.1) _ —/QA(kn—h T,

after integration by parts. But A(k, — hs) was supposed to be bounded in measures, and
kn — ho converges uniformly to 0, hence the last integral tends to 0. We would thus get
that fQ\An |V (kp — hoo)|* converges to 0, where cap,(A,) tends to 0, which is the desired
conclusion. Here is now the complete proof without simplification. Instead of comparing
directly k,, to hs, we need to introduce auxiliary functions and to evaluate the difference
between k, and h., as the sum of three differences.

We start with the following lemma, which allows to replace u by a unit-valued map,
except on a small exceptional set, which consists of the balls B; given by Proposition 1.1.

Lemma I1.1 Let (u, A) satisfy the second Ginzburg-Landau equation (1.2)-(1.3) and the
energy bound J(u, A) < Cllog e|”. Let (By)ics be an associated family of vortez balls. Then
there exists (u, A) € H*(Q) x HY(Q,R?) such that, letting h = curl A,

11113l = [l < log &1 and [l =1 in Q\ Uses Br.
—Vth = (i1, V i) in Q and h = he, on 9Q.

(i, ¥ 40) — (i, ¥ 4) 2y < Cllog e and [~ Ky < Cllog 2] .
For any i € I, deg(u,0B;) = deg(u, 0B;).

If (u, A) and (i, A) satisfy the Coulomb gauge condition (1.7), then ||(iu, Vu) —
(i, V)| 2 () < Cllog ]2

Proof :  The strategy of the proof is to modify |u| in order for 1) to be satisfied by the

resulting map v. Then we minimize J(v, B) with respect to B, to obtain a configuration

(v, B) that will satisfy 2). Properties 3) and 4) will be byproducts of this construction.
We define v. Let x : [0,1] — [0, 1] be such that

x(z)=z f0<z<3
(I1.2) X(@) =1 ifx>1— ot

X is affine between % and 1 — —1

[Tog en|*
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We let

vi= x(|u|>ﬁ.

Clearly, v satisfies property 1). We define
1 .
E(u, A) = / (i, Vau)
2 Jq

|ul
which is the part of J(u, A) that depends on A. To be precise,

2
+ |curl A — hey %,

1 1 2
T, A) = Bl 4) + 5 [ [Vlulf + 55 (1= )"

Consider a minimizing sequence (B,), for E(v, B) with v fixed. Although this sequence
may not be bounded in a good function space, the configuration (v, B,,) is gauge equivalent
to (un, Ay) with div A, =0in Q and A,.v = 0 on Q and (uy,, A,) is bounded in H! x H!
(see [BR]). Thus a subsequence (u,, A,) weakly converges in H' x H' to a configuration
(a, fl), we may also assume it converges a.e. and strongly in LP, for any 1 < p < +00.

Since |u,| = |v| for any n we have |u| = |v|, and since v satisfies 1) then so does @.

To prove 2), note that this is the Euler-Lagrange equation (with boundary condition)
which expresses that A is a critical point of the functional B — FE(@, B), which happens
to be convex. Thus proving 2) is equivalent to proving that A minimizes this functional or
that for any B, E(ii, A+ B) > E(i, A). But, using the weak H' convergence of (u,, A,)
to (u, A), and the fact that |u,| is fixed,

E(t,A+ B) — E(a, A)

1 - 1
/ B - (ia, V ;i) + 5|a|2|B|2 + (h — hex)curl B + 5(curlB)2
Q

1 1
= lim [ B- (iun, Va,u,) + §|U|2|B|2 + (curl A,, — hey)curl B + §(cur1B)2

n—-+00 Q

1 1
= lim B - (iv,Vp,v)+ §|v|2|B|2 + (curl B,, — hex)curl B + 5((:urlB)2

n—-+00 Q

= lim E(v,B,+ B) — E(v, By),

n—-+00

which is nonnegative since (B,), is a minimizing sequence for E(v,.). Thus 2) is proved.
We turn to 3). We may assume that E(v, B,) < E(v, A) for any n. We claim that in

this case

(I1.3) [(iw, V au) = (v, Vg, 0) |72y < Cllog |72

The first bound in 3) follows by passing to the limit in (II.3), the second bound being a
consequence of the first one and the fact that —VLh = (it, V ;0) and —V+h = (iu, V 4u)
in Q, while h = h = hee on Q. We now prove (IL3).

Writing u = pe’? and v = pe™ (where p = x(p)) we have

p(Vo — A)
< Cllog | *|p(V — A)],

p(Vo —A) = p(Ve — A)| = ‘p%ﬁ

(IL.4)
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from the definition of y. It follows, using the equality (iu, Vu) = p?(Vip — A) and the
bound J(u, A) < Cllog €|?, that

(IL.5) |E(u, A) — E(v, A)| < Cllog |~
and similarly that
(I1.6) |E(u, Bp) — E(v, By)| < C|log |2

As already noted, the second Ginzburg-Landau equation (I.2)-(1.3) is equivalent to the fact
that A minimizes E(u,.). Therefore E(u, A) < E(u,B,) while we assumed E(v,B,) <
E(v, A). Together with (II.5), (IL.6), this yields

|E(ua A) - E(U, Bn)| < C|10g 6|72‘
Now (I1.2)-(I.3) imply that

B(u, A) - B(w,B)) = 5 / p(2V — A~ By)- p(Bu — A)

+(curl A — curl By,) - (curl A + curl B,, — 2hey)
1

- 5/ 2(B, — A) - p*(Vop — A) = p°|A = B,
Q
+2(curl A — curl B,)(h — hey) — |h — curl B, |?
1
= =5 [ 16T =) = p(Te = B+~ curl B,
Q

which combined with (II.4) yields

Since |1/|u] — 1/|v|| < |log £|™*, (IL.3) follows and 3) is proved.
We then prove 4). First it is clear that deg(u,,dB;) = deg(v, 0B;) = deg(u, 0B;) for

2

(tu, V au) B (iv,Vp,v)

< Cllog £|™2.
Jul [l

L2(Q)

every n. Moreover since |u,| = |v| =1 on 0B;
0
deglun,08) = [ g5 = [ V4294,
oB; | OT B;

where u,, = p,e". Using the fact that p, = |v| and the weak H' convergence of u,, to @
we find
lim deg(uy,0B;) = deg(u, 0B;),

n—-+00

which proves 4).
Finally, we prove 5). From the upper bound J(u, A) < Ch2_, if (I.7) is satisfied, we
deduce the following a priori estimates

(117) ||A||H2(Q) S Chex ||VU||LZ(Q) S Ch,ex.
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Indeed, A can be written V¢ for some £ € HZ(), and ;& = £ is bounded in H'(1)
(see (1.37)), hence [|AE||n1(q) < Chex and || Al g2(o) < C’h,eX follows Then, ||A]|re < Chex

which, combined with ||VAu||L2 < Chey yields ||Vu||Lz < Chey. Similarly, since (i, A)
is also constructed to satisfy the Coulomb gauge, we have

(18) 1A~ All =@y < Cllh ~ hll e < Cllog <[ >
Also, from the energy bound,

(IL.9) 1(p* = 1) AllL2e) < ANl llp® — 1|22 < Cehg

ex’

and the same for (@, A). Therefore,

1774~ P Al < 167~ DA— (7~ DA+ A~ Alps

<
< Cllog e] 2

Then, since (iu, Vu) — (it, Vi) = (iu, V au) — (i@, V 5i1) + p>A — p*A, the result follows
with assertion 3). O

We can then deduce easily that

Lemma I1.2 In the Coulomb gauge, for all v > 0,

< ()
(GO (Q))

(I1.10)

)

curl (itin, Vi,) — 27 Y didy,

el

where (C*7(Q))" is the dual of C*7, and a(vy) some positive exponent depending on v, and
the (a;, d;) satisfy (1.12)—(1.15). Moreover,

(IT.11) [eurl (tun, Vug) — curl (itin, Viin)|| -1q) = 0,
hence
curl (i, Vu,) — 21 Y did,, = 0 in (Hy(Q) N C*7(Q))
iel
and thus in W=YP(Q) for all p < 2.

As we already mentioned, this result was already stated in [SS1], Lemma I1.3, [SS3], [ASS],
Lemma II.2, except that here we give a finer estimate, and the trick of Lemma II.1 allows
us to give a much shorter proof.

Proof : Using the fact that curl (iu,, Vi,) = 0 in Q\ U; B;, we have for any £ € C*7(Q),

(I1.12) /fcurl iy, Vi) = / Ecurl (itiy, Viiy,).
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On the other hand, using |curl (it,, Viu,)| < |Viu,[?, wehave

(max ) llcoroy 3 [ Vi

IN

Z/B_ (€ — &(a;))curl (ity,, Vi,)|

< ||§||00w(n)(m?XTi)WHVUnH%Q(Q)
< ||§||C°w(n)h§x(miax ri)’
(IL.13) < D¢l con (@)

Using Stokes formula,

(IL14) /B Eas)enr (i, Vi) =€) /a i @%) — omdit(ay),

where we have used the fact that |4 = 1 on 0B;. Combining (I1.12)—(I1.14), we get
(I1.10). (IL.11) follows from assertion 5) in Lemma II.1. O

We now introduce g, as the solution of

{ _Agn + gn = ;?_:1 Zz di(Sai in €

(IL.15) o1 on 501

where the (a;, d;) are the “vortices” as defined in (H2). For simplicity, we will also denote

h,
o =
hrex

Lemma I1.3 For all p < 2, there exists a(p) > 0 such that

hex
wbp(Q)
Moreover,
||gn - hoo“WlsP(Q) — 07
and thus )
‘ P _ th 0.
hex WLie(Q)

Proof :  Let us write k, = ,f—; Recall that (@

equation (cf Lemma II.1), i.e. _Vth = (i, V za). Taking the curl of this equation, we
have

) satisfies the second Ginzburg-Landau

(IT.16) —Ahy 4 hy = curl (i, Viiy,) + curl ((1 — |7In|2)/~1n) :
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Combining (I1.16) with (II.15), we have
(IL.17)

. . 1
—A(ky —gn) + kn—gn = . (Curl (110, Vi) — 27 Z di(Sai) +

ex

Hence, in view of (I1.9) and (I1.10), we deduce

_Akjn_n kjn_n <Ca(p)
H (in = gn) b = gml| ) < CF
This provides the desired result, by elliptic regularity.
We treat the case of hoo — g.
(I1.18)
2m ; d,ﬁai
|| — A(hoo — gn) + (hoo — gn)“W—l,p(Q) - H,uoo - Zhiz = ||,uoo - PJ@“W*LP(Q}
ex W-1.2(Q)

In view of (I1.10), p. is bounded in W~1P(Q) for all p < 2. It is also bounded in mea-
sures, hence by Murat’s theorem [Mu] (see [B] for a much simpler proof), it is compact
in W='2(Q) for all p < 2, thus g, — fie strongly in W= for p < 2. Therefore,
| = A(hoo — gn) + (hoo — gn)||lw-1.(0) = 0 and, similarly, we get the result for ho — gn. O

Lemma I1.4 We can find a sequence of sets A, such that cap,(A,) — 0 and
/ IV (kn — gn)|> — 0 as n — oo.
O\ Ay

Proof :
- Step 1 : We apply again the standard result on capacities (see [Fr, Z]) stating that

(I1.19) Vp < 2 cap, ({x € Q, |k~n — gn| > 5@}> <Ce " (©)

gnHWlp

Hence, in view of Lemma I1.3,

(I1.20) cap, ({x € Q, |k, — gn| > s%p)}) < oo

Let us denote by k, — ¢, the function k, — g, truncated at the level ¢ = ,and C, = {z €

Q, [k — gu| > € gp)} (I1.20) means that

pa(p)
2

(I1.21) cap,(Cr) < Ce

- Step 2 : We prove that
(I1.22) / IVgn|* < Cllog €|
Q\U‘Bi
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Indeed, g, (see the definition in (II.15)) can be written as

1
gn =& + s Xl: 9i»
where g; is the solution of

_Agz + g; = 27Tdi5ai in
gi=0 on 092,

and & is the solution of
—A&) + f() =0 in
50 =1 on 0f2.

It is easy to see that
1
/ |Vgi|* < Cd?log —,
O\B; T

thus

IVgnllz2@\us) < C+ 2l Vol <C+ C%l log 7|2

hex ex

But, by hypothesis (I1.14), r; > Ce and ), |d;| < Chey, thus

(11.23) / Vaul? < Cllog |.
Q\UiBi

- Step 3 : We can find a ( that satisfies

C: 0 in U; B(ai,ri)

C =1 in Q\ U; B(ai, 27”Z)
(11.24) 0<¢<1

<117 < Cllog e[

V¢l < s < aiog

min; 7; ellog )4
Indeed, we need only choose (; such that
Ci =0 in B(CI,Z', 7”2')
Ci =1 in Q\B(a,, 27"Z)
0<¢G<1

and then set ( = min; (;. Then,
/|VC|2§Z/ VG < CCard T
Q i [¢)
< Cllog ¢]®,
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using (1.13).
- Step 4 : Let us then set A, = C,, U (U;erB(a;, 21;)). We have
cap;(A,) < cap(Cp) +2 Z T
< cap,(Cy) + 0(12)
because the cap, is dominated by the cap, (p > 1). Thus, using (IL.21), we are led to

cap, (A,) — 0.
On the other hand,

/ V(R — g2 <
2\ A,
(I1.25) <

k _gn : (k _gn)

Q
But, since —A(kNR —gn) + k., — gn is supported in U;B(a;,r;), and ¢ vanishes there, we have

/<Ak—gn “ o) /Ck—gn ga) = o(1).

Therefore,

/ V=l < R gl 19 (19 o + [Vl

(11.26) < e log e[,

where we have used (11.20), (I1.24), (I1.22). Thus, we can conclude that
(11.27) [ 196 g < o)
O\Ay

which is the desired result. O

Lemma I1.5 There exists a set B, such that cap,(B,) — 0 and

/ V(g0 — hoo) P — 0.
O\By,

Proof : As seen in Lemma I1.3, we have [|g, — heo|lw1r — 0 for p < 2, hence from the
same theorem on capacities, writing B, = {z € Q,|g, — hoo| > 5}, we have

—h p
Capp(Bn) Hgn 5p00||W1,p'

IN
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Therefore, we can choose a suitable §,, — 0 such that
(I1.28) cap, (B,) — 0.

As previously, we denote by ¢, — hs the function g, — hs truncated at the level 6,,. We
have [|gn — hool|zoo(0) < C6n — 0, and furthermore

(I1.29) / VRl = / V(g — hoe) - V(g — o) = — / Agn — hoo) (g — o).

By definition of g, (see (II.15) and (I.16)), A(g, — hs) remains bounded in the sense of
measures, thus (I1.29) implies that

/ 1V (gn — hao)|? = 0.
O\B,,
]

Now, for any § > 0, we can consider B, U A, (given by Lemmas I1.4 and II.5), and
extract a further subsequence such that Vn, B, U A, C Ej;, where Ej satisfies cap, (Es) < d.
Then, combining Lemmas II.4 and I1.5, 3) of Lemma II.1, and the triangle inequality, we
are led to the conclusion of Proposition II.1.

III Passing to the limit in the stress-energy tensor

We recall that the “stress-energy tensor” associated to the solution (u, A) of the Ginzburg-
Landau equations is (dropping the subscripts)

- 1 22\ s 1 |31AU|2_ |3§4u|2 2(81AU7 8§4u)
(LY Ty = (? ~ gkl ) %t 3 ( 200w, bu)  |Oful? — [O:hul?

Here, d,; is the Kronecker symbol, and (.,.) the scalar product in C identified to R?.
A tedious but straightforward computation allows to check that

(I11.2) (u, A) is solution of (G.L) = Vi, » _ 9;T;; =0.
J
In other words,
Vi, div Tj; = 0.

As already explained in the introduction, this is a general fact known as “the stress-energy
tensor associated to a critical point is divergence-free”.

We then wish to apply this result to (u,, A,) and pass to the limit n — oo in the tensor,
in order to obtain a limiting tensor L;;.

25



Proposition II1.1 For all 6 > 0, there exists E5 such that cap,(Es5) < § and

(I11.3) Vi, j /
O\ Ej

where L;; was defined in (1.39).

Ty
e~ L

ex

as n — 0o,

(The set Ej here is the one constructed in Proposition II.1.) Let us start by rewriting the
tensor a little. In Q\ U; B;, since |u,| > 1 — o(1), u, does not vanish (for n large enough),
hence, as previously, we can write formally u, = p,e** with p, = |u,|. From now on, we
will drop the subscripts again. Then, we can give a meaning to

Jul
and thus
(I1L.4) { O ul* = (9;0) + (50 — A;)?
(9w, 05'u) = D1pdap + p*(Drp — A1) (Oap — As).

But, since (u, A) verifies (1.2), we recall we have
(T11.5) ~Vth = p*(Vy — A).
Hence, at least in Q\ U; B;, we can write

0 uf? = Dyful? + 1257

(IIL6) Ohuf? = Dyu? + 12
(0'u, 05'u) = 01 |uldafu| — Zo".
Thus, T;; can be written in the following form :
h? 1 919
T, = (5 - - 1u2) 3
—i—l Or|ul?> — Oalul? 20, |u|d:|ul
2 281|U|82|U| 82|U|2 - 81|U|2
1 (0oh)? — (O1h)*  —20,hdsh
(IIL.7) TP ( 20, hdsh (0h)2 — (Buh)?

We prove that the second term in the right-hand side tends to 0.

Lemma IIL.1 Writing p, = |u,|, we have

e
/ [Ven| —i——z(l—pi)Q—)O as n — 0o.
Q\U; B(a;,2r;) 2 de
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Proof : For ease of notations, we drop again the subscripts n. We follow the scheme of
the proof of Proposition VIL.1 of [BR]. Projecting the first equation (I.1) on u yields the
following equation on p, valid in Q\ U; B;:

Vh? 1
(ITL.8) A+ p3| = 5ol =),

We use again the function ¢ defined in (I1.24), multiply (III.8) by (1 — p) and integrate :

[Vh|®
P2

[ =canti=p)+ S5c =) = 5 [ = oot + )

Integrating by parts, since % = 0 on 052 (see the boundary condition (I.4)), we are led to

ang) [ (e L [Ty s ve w0 )

Knowing that ¢ = 0 on U;B(a;,1;), and that 0 <1 — p, < O(m) in Q\ U; B;, we can
bound the first term of the right-hand side :

Vhl|?
/Q| p3| C(l_P)‘ < /Q|Vh|2||1—ﬂ||L°°(Q\uiBi)

< o(1),

using the fact that [, |Vh|* < ChZ,. The second term of the right-hand side can be
bounded as follows :

(I11.10)

[e-wiu —p>\ < Vol |11 = plls V¢

In view of (I1.24), [|V(||z= < 1/(g|log ¢]*), while, from (I.36), we have ||Vpl|z2 < O(hey)
and [(1 — p)? < Ce*hZ.. Combining all this, we get

[c-v0a-n| =,

hence the right-hand side of (I11.9) tends to 0.
On the other hand, the left-hand side can be bounded from below as follows

11— p)2p(1+ 1 1— p?)?
Q € Q\U; B(a;,2r;) €

from which we deduce the desired result. O

Since U; B(a;, 2r;) is included in Ej, this lemma yields the convergence to 0 in L'(Q\Ej) of
the second term of the right-hand side of (II1.7), as well as that of the term 3> (1—|u[?)2;;.
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h—f:X converges t0 hy weakly in H', hence strongly in L?(Q2), hence the term

verges to %&j in LY(Q).
For the third term, we use ||ui|2 — 1| gee(my) — 0, (since |u| > 1 —o(1) in Q\ U; B;), and
combine it with the result of Proposition II.1. We are thus led to

h? 5
55045 CON-

(IIL.11)

1 (Oghy,)? — (O1hn)?*  —201hy,05h,, . (Oaheo)? — (O1hoo)?  —201hooO2hso
h2 |un)? \ —201h,0zhy, (01hn)? — (D2hn)? —201 hooO2hoe (01ho)? — (O2hoo)?
strongly in L'(Q\ Ejs). This completes the proof of Proposition III.1. O

Proposition I11.2

(OT' VZ, Zj ajLij =0 in Q)

Proof : Tt relies on Proposition III.1 and the co-area formula. Let & be a C§°(Q) test-
function. Let us denote v, = {x € Q,&(x) = t} the level-sets of £&. Since div T;; = 0, we
have

(I11.12) Vi=1,2, / Ti-v=0.
Yt

On the other hand, using the co-area formula of Federer and Fleming, we can write

(IIL.13) Vi /QLij.vg:/</ Lij.u> dt.
3 Tt

We recall that cap,(E;) < 0, where Ej is given in Proposition III.1, and that the cap,
controls the perimeter, hence

(I1.14) meas{t,y; N Es # @} < Cper(E;) < os(1).

Using the coarea formula again,

Vi / </ <Lij— 2a>.y> dt‘ _ / (Lij_ 2a>.vg‘
tmnEs—o \J, h2, 2€0/E(2)¢E(Es) hex
7"2..
< / Lz‘j—hQJ |VE]
Q¢ (@) 26 (By) ex
7”7:.
(ITL.15) < IIV§||L°°(Q>/ Lij = 35 0,
Q\E5 ex

from the result of Proposition III.1. Thus, with (II.12),

t/MNEs=2 \J vt
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We write f(t) = f% Lij-v. f € L"because L;; € L' :
Jistende= [1[ Lyvfae< [ [ Lslde< [ jLolive < oo,
t t 1Sy tJ oy Q

From (II1.16),
Vo > 0, /f(t)lt/va,;z dt = 0,

t

but from (II1.14), 14/,,np;=e — 1 almost everywhere, as 6 — 0. Hence, from Lebesgue’s
dominated convergence theorem, passing to the limit § — 0, we get

(TIL.17) / F(#)dt = 0.

Inserting (II1.17) into (III.13), we obtain

(IIL.18) Vi, / Li; - VE=0.
0
This is true for any £ € C§°(§2), thus div L;; = 0. O

Extending this proof, we can in fact get the more general result stated in the introduction:

Lemma II1.2 If Df is some linear combination of first order derivatives of f, f, bounded
in L'(Q), f € LY (), Df, bounded in L*(Q), and V6 > 0, IE; such that cap,(Es) < § and
fQ\E5 |fo — f] = 0, then Df, — Df in the sense of distributions, hence also in the weak
sense of measures.

IV Consequences for h, and

Let us recall that the expression of L;; was given in (I.39), and that L is itself the stress-
energy tensor associated to the Lagrangian :

1
(IV.1) L(h) = —/ |Vh|* + h? :/z,
2 Ja Q
defined over H/ (). Indeed,

ol
IV.2 Lij(h) = | L0ij — Ojh=—==— | (h),
(1v.2) 0 = (83~ o )
which is exactly the expression for the stress-energy tensor associated to £ (see [He] for
example).
Similarly as for J, the following general property holds again for £ : h. is station-
ary for £ with respect to inner variations (i.e. domain diffeomorphisms), if and only if
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div L;;(he) = 0. Hence, we deduce from Proposition III.2 that h. is stationary for H
with respect to inner variations.

We now use the complex-variables notations 9 = 9, —id, and 0 = 0; +i0,, and introduce
the Hopf differential of h., :

1
Obviously,
1

(IV.4) U= 5(81100)2.
Now, div L;; = 0 is equivalent to

1 2 2 - h3

- ((81hoo) — (a2hoo) ) — Zalhooaghoo —_—
(IV.5) div | 2 ; = div 20 |

alhooGQhoo + 5 ((8117,00)2 — (agh,oo)2) — ?oo

which we can also write )
or

_ B2
(IV.6) oU = 0=

We notice that this is an elliptic equation for U, which will provide some extra regularity
of U since dh% € LP(Q) for all p < 2 (since hy € H} (Q)).
Lemma IV.1 div L;; = 0 implies that

|Vhoo|> € WHP(Q) V1 < p < oo.

Proof : The main problem is to get regularity of U up to the boundary.

Equation (IV.5) expresses that hy, is stationary with respect to inner variations for (IV.1).
Since €2 is simply connected, up to a conformal transformation, we can reduce to the case
of the unit ball By, with a A stationary with respect to inner variations for a new functional
[, IVh[? 4 ¢h* over H{(By), thus solution of another equation of the form

% ((01h)? = (92h)?) — i01hdah

(IV.7) div i
Oihdoh + 5 ((01h)* = (0:1)°)

=div F,

where F' has the same regularity as h% , thus in W?P(By) for all p < 2. Then, since h = 1
on 0B, we can perform a Schwartz reflexion to extend it to R?, by setting

h(z) = h(%) € R\B,.
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Notice that % = —g—z on dB,. h is also stationary with respect to inner variations for a
functional of the form [g, 5 [VA[*+¢h?, thus again is solution of an equation of the form

(IV.7). For simplicity, let us denote by h the function equal to h in B, extended by h in
% ((01h)? - (0oh)?) — i hOsh
01 hdsh + % ((0:1)% — (921)?)
part on 0B;. Indeed, its value should not depend on the choice of coordinates, thus, near
a point xy € 0By, we can assume that the orthonormal coordinate frame is the local frame

(1,v). Or in other words, we can work near the point (0,1). Since h = 1 on 0By, at this
point, we have 0;h = 0. Then

(3 (8ih)* = (82h)?) — iD1hdah |
iv ( d1hdsh + % ((0:h)? — (:h)2) ) = div

R?\B;. We claim that div ( ) does not have any singular

_1(32}02

7
——(0yh)2.

L @:n)
But (9:h)?(0,1) = (%)2 (0, 1) remains continuous, thus this divergence will not have any

singular part on dB;. Therefore, we can write

% ((01h)? = (92h)?) — i01hdah

(IV.8) div i
Oihdoh + 5 ((01h)* — (0:1)°)

=div F,

over all R?, with F' some W'?(R?) field (Vp < 2). Going back to our original problem, we
can assume that equation (IV.6) holds in a strictly bigger domain than Q. Consequently,
by elliptic regularity,

(IV.9) UeW(Q) Vp<2.
Thus, U € L1(Q2), Vq. But, from (IV.4),

1
(IV.10) \U| = 5|Vhoo|2,

hence we deduce that |[Vha|? € N L9(2). Thus he € N,WH(Q), and going back to (IV.6)
and using elliptic regularity again, we get that U € N,W4(Q), hence L;; too. Using
(IV.10) again, we are led to |Vhe|? € N,W4(Q). O

Proposition IV.1 h, is critical with respect to inner variations for L over H (), and,
if Vheo € CO(Q),
(Vhoo) fhoo = 0.

Proof : The first assertion has already been justified.
Let us set hy(x) = hoo(z + tX (x)) where X (z) € C5°(Q, R?). If Vhy, is continuous, then,
by definition of the derivative,

heo tX — heo
(IV.11) limy e (Z + X (%)) (z)

t—0 t

= Vheoo(z) - X(z) uniformly in z,
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the uniformity coming from the continuity of Vh,,. Therefore,
(IV.12) hi(z) = hoo(x) + tVho(x) - X(2) + 0(t).

Now, we perform variations in £ with this family of functions.

1
£lt) = L) = 5 | V0 = [Vl 1 = e
0 0
— Lhy) = — hi - Vhs + hihso
il S0 = | T
0

(IV.13) =

= —Ahy, + ho)hy.
ot lt:O/Q( + fioo)

Indeed, —Ahq + hs is a measure, h; is C?, hence this integral and the integration by parts
have a meaning. From (IV.12),

o o
9 . _A X
o, L) = 5l [ (=84 )+ - X (1)
(IV.14) — [ (~Bho 4 o)V - X
Q

Again, this integration is valid since —Ah, + ho is a measure and Vh, - X is continuous.
Since hy is stationary with respect to domain-diffeomorphisms, % ‘t:[] L(h;) =0, and thus
in view of (IV.14)

VX € CP(Q,R?) /(—Ahoo + hoo)Vhoo - X = 0.
Q

Consequently,

This is the desired conclusion, and again, it has a meaning as the product of a measure
lhso With a continuous function Vh,. l

Proposition IV.2 If Vh, € C°(Q) and |[Vhy| € BV (Q), then hy and ps satisfy the
additional properties

0<hyeo<1
Moo = hoo]-\Vhoo\:(]-
Hence o is a positive measure, absolutely continuous with respect to the Lebesgue measure.

Proof : We start by proving the following lemma. For BV functions and perimeters, we
refer to [EG, Gil.
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Lemma IV.2 Let f € BV (Q)), there exists a sequence s,, — 0 such that s,|{f = s,}| = 0,
where |.| denotes the perimeter.

Proof :  Let us denote by Uy = {x € Q/f(x) > t}. By definition of BV, we have, for
f e L)
€ BV(Q) @/ V| < @/ 00, |ds < o,
Q seR
where |.| denotes the perimeter. Let us assume by contradiction that there exists n > 0

such that, for all s in a neighborhood of 0, s|0U;| > 5. Then, |0U,| > 2 and [, |0U,|ds
would diverge. Hence the assertion of the lemma is true. 0

We apply this lemma to f = |Vhy| assumed to be in BV(Q2). There exists s, — 0
such that s,|0{|Vhs| > s,}| — 0.
Let now h_ denote the negative part of h,,. We may write

(IV.15) / (—Aheo + hoo)h =
|[Vhoo!|>$n
hoo
- / Ohoc ), +/ Vhay - Vh_ + haoh._.
P |V hoo|>8n

{|Vhoo|>sn} on

But, by choice of s,

on

Oh oo
/ —h_‘ < ||h,oo||Loo(m/ Vhac| = lhecllzoe5al04|Vhoc| > 50| = 0.
{|Vhoo!|>sn} {|Vhoo!|>sn}
Therefore, passing to the limit n — oo in (IV.15), we get

lim (=Ahge + hoo)h_ = / IVh_|* + h2.

N0 J |V hoo |>5n |Vheo|>0

But, Vn,
/ (= Aho + hao)h =0
|Vhoo!|>sn

since, in view of Proposition IV.1, (=Ahy + he)1jvh >0 = 0. Consequently,

/ IVh_]?+h? =0.
[Vhoo!|>0

{r € Q,hee <0} C {x € Q,|Vhy| =0},

in addition A, > 0 on 02, hence hy, > 0 in €.
Arguing similarly, let (ho, — 1) be the positive part of ho, — 1. Testing it against (—Ahy +
Poo)L|Vho|>s, > We Obtain

We deduce that

/ hoo(hoo = 1) + [V (heo — 1)1 = 0,
[Vhoo!|>0
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thus
{r € Qho > 1} C {x € Q,|Vhy| =0}

and ho < 1in €.
For the second assertion, it goes as follows. Let us consider this time a sequence s,

such that s,,|0{|Vheo| < sn}| — 0, and let us consider a test-function £ € C§°(€2). In view
of the result of Proposition IV.1, toc1jvp, >0 = 0, hence we have

/Q foof = /th<snuoo€

hoo
(IV.16) = / 8—6 + / Vhso - VE + hoof.
B{|Vhoo|<sn} on [Vhoo|<sn

But, on the one hand

[ T et < 5l 0
O{|Vhoo|<sn} T

by choice of s,, and, on the other hand

\ / Vha, vg\ < Conl[VE ] = 0.
Vhoo!|<sn

Thus, passing to the limit in (IV.16) yields the relation
(IV.17) Ve € G, [ = ook,
Q Vhoo|=0

We conclude that pis, = hooljva,|=0, hence p is a positive (recall that hy, > 0) L
function. O
This completes the proof of Theorem 1.

V Proof of Theorem 2

Let us first rule out the case of N >> he. In view of Lemma I1.2 combined with (I1.16),
we have

—Ahy, + hy,
v (BTN
Ww-1Llp
But ;2 is bounded in H'(§2) hence %2 — 0 in H'(Q2). Then, §(=Ahy +h,) = 0in H ',

and, passmg to the limit in (V.1), we are led to v, — 0.

From now on, we assume that we are in the other case N < hec. The method is the
same as for Theorem 1. We start with the following lemma.
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Lemma V.1 an 15 compact in Wol’p(Q) and, up to extraction, converges to fu.
For all 6 > 0, there exists Es such that cap,(E;) < d and

Jn )
VI - 00
fra7 (55
Proof :

- Step 1 : From the result of Lemma II.2 with (II.16), and the fact that —Ahg + hy = 0,
we have

2
— 0 as n — oo.

| = Afut fu— 27D didallw-1o() < @

Hence
g

— 0.
N N

W1 ()

But v, is bounded in the sense of measures hence is bounded in W~1?(Q2), and it converges
weakly in M(Q) to a limiting measure vy, (after extraction). Applying Murat’s theorem
again, we deduce that —A% + an is compact in W~1?(Q) and converges to v,. Since
fn =0 on 022, we deduce that an converges strongly to some f,, in WHP(Q), for p < 2. Tt
is clear that Voo = —Afs + foo-

- Step 2 : If we set fn = h,~n — hexhg, where hNn was defined in Lemma II.1, we have
| fn = fullr1(@) = 0. Then, we introduce, as in Proposition IL.1 g, solution of

—Agn + gn = Vp inQ
(V-2) { g =0 on 0f).

Again, [, |Vgn|> < Cllog €|. Then, it follows exactly as in Lemma II.3 that for any p < 2,
there exists a(p) such that

fu
7~ 9n

< o)
N 9

wbp(Q)
9n — foollwrm) — 0.

- Step 8 : Exactly as in the proof of Lemmas II1.4 and II.5, we can find A, and B, with
cap, (A,) — 0 and cap,(B,,) — 0 such that

(V3) !Awlvwn—ﬁJV%O

(V.4 L v(%—%)

35

— 0.




We can then add the union of the balls to get Es as done in Proposition II.1. O
We are then going to pass to the limit again in the relation div 7;; = 0. Let us define the
following tensor

V) h2 1 ( (02ho)? — (B1ho)? —201hoO2ho )

0
= s =
I 2 Y + 2 \ —201hy02hg (O1ho)? — (D2hy)?

It is easy to see that, since —Ahg + hy = 0, we have div R;; = 0 for 2 = 1,2. Let us then
write

h? 1 < (O2h)? — (O1hn)? —20,h,, 02 h, )

(V.6) Mi; = ?5” + 2\ —20,h,05h, (01hn)? = (O2hy)?

We start again from the expression of T;; given in (IIL.7). Using Lemma III.1, we deduce
that

O\ B

Then, prove the following

Lemma V.2

M. —h2 R..
[t )
Q\E5 NheX
where
L [ 02h¢0s foo — O1ho01 foo —2(01 fooO2ho + 02 fos01ho) )

V.8) K;i = hofsslii + = )
(V-8) 7= hofocbiy + 2 < —2(01 foo02ho + 02 fooO1ho) 01ho01 foo — 021002 foo
Proof : Just expand h,, as f, + hexho and observe that
Mij — hszij — fr% 5 4 1 (ann)2 - (81fn)2 _281fn62fn

Nhex 2Nhex * 2Nhex _Qalfnann (81fn)2 - (ann)2

+fnh0 5ot L[ 02ho0s fr — O1hoO1 [ —2(01 fnOzho + 0o fr01ho)
N " 2N\ —2(01fn02ho + 02 fn01ho) O1hoOy fr, — OohoOafy, )

In view of Lemma V.1, and since N < hey, the first part tends to 0 in L'(Q\Fjs), while
the second part tends to Kj; in L'(Q\Ey). O

Now div (T;; — h2 R;;) = 0 for all n. Using (V.7) and Lemma V.2, we may pass to the
limit in this relation as we did in Proposition II1.2. We deduce that

div Kij = 0,

where K;; was defined in (V.8). Since hy € C*, we can check, by using test-functions,
that in the sense of distributions,

Observe that this product has a meaning since —Af, + fy is a measure and Vhy a
continuous function. Therefore, we have

This completes the proof of Theorem 2.
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VI The case without magnetic field

Exactly as in the magnetic-field case, knowing that w. is solution of (I.27) implies that the
stress-energy tensor is divergence-free:

: 1 N25 |31Ue|2 - |32Ue|2 2(51%;32“5) _
(VI.1) div {—2—62(1 — |ue|*)"6i; + < 2(dyu.., Dy O 2 — D10 ? =0.

(This is a fact that was used in [BBH].) The method consists again in passing to the limit
in this equation. But we saw in the introduction that we can define a U, by

{ VLU, = p*Vo. = (iu., Vu,)

(V1.2) LU =0

First of all

(VL.3) IVU|> = pl| V.| < p2|Ve.]? < |Vue|?,

where we have used p. < 1, hence
1
(V1.4) 3 / IVU.|* < E.(u.)
Q

and —Z— is bounded in H'(Q2) and has a weak limit U, up to extraction.
AR () p

Formally, since |u.| ~ 1,

{ |81U5|2 — |82U5|2 ~ (32U5)2 — (81U5)2

(VI5) (81U5, 8211,5) ~ 31U532U5.

and the same method as in Sections II-—IV, will yield

() — (V)2 200U\
(V1.6) div < 200U, @) — @0y ) =

which is the same as saying that the Hopf differential of U is holomorphic.

VI.1 Step 1

From wu. we can construct vortex-balls as in Proposition I.1 and define . and p. = |u.| as
in (I1.2), and then solve for

AE = div (0.2V.) = div ((p.2 — p?)Ve.) in Q
(VL7) { £ =0 on 0f).

Using the fact that [|(3.> — p?)Ve||r2@) — 0, we have ||V& |2y — 0. Then, using
Poincaré’s lemma again, there exists U, such that

~ 2 177
Pe v@a - v§e =V Ua
VI.g Y
(VL8) {kmzu
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Then again, substracting this relation from (VI.2)
||U5 - UEHHl(Q) — 0

Like for the magnetic field case, we can replace p. by g. and U, by U., and we will only
make an o(1) error in the quadratic terms in VU.. Hence, without loss of generality, we
may assume that p. = 1 outside of the balls B;, and thus that AU, = curl (p>V.) = 0
outside of the balls too.

V1.2 Step 2

As already mentioned, we define yi. = 27 . d;0,, where the (a;,d;) are any vortices satis-
fying the results of Proposition I.1. We have as in Lemma II.2,

(VIg) ||AUE - ,LLE”W—I’P(Q) S ga(p) vp < 2.

If N. = [, |p| < /E-(u.) then \/J% — 0 in the strong sense of measures and thus

strongly in W—1?(Q) for p < 2. From (VIL.9), we get that AU, is compact in W~1P (p < 2)
and its limit is 0.

If N. > \/E:(u.) then VTZE — 0 in L*(Q) from (VI.4). Thus, from (VI1.9), 1*\”,—2 — 0 in
W-Lr (p < 2). But, it is also bounded in the sense of measures, thus converges weakly to

0 in that sense.

We may now restrict to the third case where N, ~ C'\/E.(u.) as € — 0. Then ﬁ
remains bounded in the sense of measures, thus up to extraction, converges weakly to the

limiting vorticity measure g, which in view of (VI.9), is equal to AU.
Defining this time g. by

E-(ue)

(VI.10)
gn =10 on 0f2.

{ Ag, = &= in Q

One can check that fQ\UiBi |Vg.|? < Cllog ¢|.
From now on we work on any compact K & €2, and the constants will depend on K.
We have the analogue results of Lemma I1.2 and I1.3, i.e.

(VI.11) Y _ e < Ceo?)
V EE(,U’E) Wl,p(K)
(VL12) 19 = Ullyw 20y = 0
U
(VL.13) U 0.
B (ue) Wio? (2)
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V1.3 Step 3

Using a truncation function x € C§°(€2) which is 1 in K, we can prove exactly as in Lemmas
1.4 and IL.5 that for all 6 > 0 there exists F5 C  with cap,(Fs) < ¢ and

U ’
(VI14) /QX v (m _ U)‘ o

Also, like in Lemma III.1, we can prove that

1 1
VI.15 / X(Vpgz—i-—l—p?Z)—)O.
( ) () Jonoun, V| 262( )

If we denote by T;; the elements of the tensor

1 2\2 5 |alua|2 - |82U5|2 2(81%3, azug)
_2—62(1 - pz) dij + ( 2(Dy e, Do) |32u5|2 _ |61Ue|2
and
1 @U) = () 20,Ud,U
v 20,U0,U (aIU)Z — (82U)2
then, we deduce that for all § > 0, there exists Fs C Q with cap,(Fs) < d and
T,
VI.16 / x‘ L= o.
( ) Q\Ejs Es(ue) I

Like in Proposition III.2, this implies that
div Lij =0 in K.

This being true for every K & 2, we have div L;; = 0 in € which is exactly like writing

Ow=0 in

where w = (8U)2 = (81U)2 — (82U)2 - 2281U82U

VI.4 Step 4

As a consequence, we get that |VU|* € C*°(Q) but not necessarily VU. If we assume in
addition that VU € C°, (which will be the case in particular if 4 = AU € L?,p > 2), then,
we may prove as in Proposition IV.2 that pVU = 0. Then if also |VU| € BV (which will
also be implied by p € LP p > 2), we will deduce as in Proposition IV.2 that AU = p = 0.
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