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Abstract

The level-set formulation of motion by mean curvature is a degenerate parabolic equation. We show it can be

interpreted as the value function of a deterministic two-person game. More precisely, we give a family of discrete-

time, two-person games whose value functions converge in the continuous-time limit to the solution of the motion-

by-curvature PDE. For a convex domain, the boundary’s “first arrival time” solves a degenerate elliptic equation;

this corresponds, in our game-theoretic setting, to a minimum-exit-time problem. For a nonconvex domain the two-

person game still makes sense; we draw a connection between its minimum exit time and the evolution of curves with

velocity equal to the “positive part of the curvature.” These results are unexpected, because the value function of

a deterministic control problem is normally the solution of a first-order Hamilton-Jacobi equation. Our situation is

different because the usual first-order calculation is singular.
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1 Introduction

We analyze the continuum limit of a family of two-person games. The games are intuitive and easy
to understand; they were introduced 25 years ago in connection with problems from combinatorics.
Their continuum limit is interesting due to its geometric character. In the simplest case – when the
game is played in a convex domain in R2 – the continuum limit reduces to motion by curvature.
Thus our work gives a new game-theoretic interpretation for this geometric evolution law.

Our deterministic-control-based approach to motion by curvature has precursors. A closely
related idea was introduced 10 years ago as a numerical approximation scheme for motion by
curvature [CDK, Gu]; more recently, similar approximation schemes have been developed for other
geometric flows [C, Pa] and in higher dimensions [CL]. These authors’ goals and results were
however quite different from ours, as we shall explain in Section 1.1.

Motion by curvature is well-understood. Its usual interpretation involves steepest-descent for
the perimeter functional. Our game-theoretic interpretation provides an entirely different view-
point, parallel to the theory of Hamilton-Jacobi equations. There are in fact two different ways of
linking an optimal control problem with the associated Hamilton-Jacobi equation. One, known as
a “verification argument,” works best when the solution is smooth. The other, involving “viscosity
solutions,” is more general since it requires no smoothness. The analysis of our continuum limit can
be done using either technique. The verification argument proves convergence with a rate, while
the viscosity-solution argument proves convergence with no rate. The latter result is weaker, of
course; but the argument is more universal, since it uses no information about the smoothness of
the limiting curvature flow.

Convexity is preserved under motion by curvature, so a convex boundary shrinks monotonically.
Thus when Ω is convex, the curvature flow of ∂Ω can be described in two equivalent ways: by
following the moving boundary as an evolving surface, or by specifying for each x ∈ Ω the “arrival
time” when the boundary reaches x. In our game-theoretic interpretation, the latter viewpoint is
associated with a minimum-exit-time problem.

The minimum-exit-time problem makes sense for nonconvex domains, but its continuum limit
is not familiar. We characterize its value function in two different ways. First: its level sets are
the images of the boundary as it moves by the “positive curvature flow,” i.e. with normal velocity
κ+ = max{κ, 0}. Second: it is the unique viscosity solution of an appropriate boundary-value
problem. Our proof of the latter statement requires Ω to be star-shaped.

The preceding paragraphs – and most of this paper – address motion by curvature in two space
dimensions. Our methods extend, however, to higher dimensions. If the game is not modified, its
continuum limit corresponds to the motion of a hypersurface with normal velocity equal to the
maximum principal curvature. There is however a natural modification which achieves the mean
curvature flow in any dimension.

Our analysis combines two key ideas. One is the level-set approach to the analysis of motion by
curvature and related geometric flows (see [ESp, CGG, Gi1]). The other is the analysis of differential
games via dynamic programming and Hamilton-Jacobi equations (see e.g. [ESo, Bardi, BC]). Ten
years ago it seemed a happy accident that viscosity solutions – invented for applications in optimal
control – were also the right tool for analyzing motion by curvature. Now we see that this is no
accident; it is in fact quite natural, since motion by curvature can be viewed as an optimal control
problem.

Ours is not the first control-theoretic characterization of motion by curvature. An interpretation
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involving stochastic control was developed in [BCQ, ST1]. There is a link between our deterministic
viewpoint and the stochastic framework; we sketch it at the end of Section 1.1.

Our approach is entirely deterministic. One might wonder how such a thing is possible, since
deterministic control problems usually lead to first-order Hamilton-Jacobi equations and the level-
set formulation of motion by curvature is a second-order PDE. The answer is explained in Section
1.2. Briefly, the Hamilton-Jacobi equation comes from the principle of dynamic programming via
Taylor expansion. For our two-person game the Taylor expansion must be carried to second order,
leading to a second-order PDE.

1.1 Getting started

To explain in more detail, let’s start with the game. Let Ω be a bounded set in R2. There are two
players, Paul and Carol. Paul starts at a point x ∈ Ω, and his goal is to reach the boundary. Carol
is trying to obstruct him. The rules of the game are simple. At each timestep:

1. Paul chooses a direction, i.e. a unit vector v ∈ R2 with ∥v∥ = 1.

2. Carol chooses whether to let Paul’s choice stand or reverse it – i.e. she chooses b = ±1 and
replaces v with bv.

3. Paul takes a step of size
√

2ε, moving from x to x +
√

2εbv.

Here ε is a small parameter, fixed throughout the game, and we are interested in the continuum
limit ε → 0.

R

/ R
2 2

ε2

x

(a) (b)

εε

Figure 1: (a) If Paul starts close enough to the boundary, and he chooses v in the tangent direction,
then he exits in one step no matter what Carol does. (b) If Paul starts farther from the boundary,
his optimal strategy is to choose v at each stage tangent to the associated circle.

Can Paul reach the boundary? Yes indeed. The explanation – and the optimal strategy – are
easily found using the method of dynamic programming. The key observation is that if Ω is a circle
of radius R, then Paul can exit in a single step if his initial position satisfies |x|2 + 2ε2 > R2, in
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other words if |x| > R − ∆R with ∆R ≈ ε2/R. He has only to choose v tangent to the circle;
Carol cannot stop him, since he exits whether she reverses him or not (see Figure 1a). For initial
positions x lying farther from the boundary, we can find the minimum exit time – and the optimal
strategies – by repeating this calculation as many times as necessary. For example, starting from
the innermost circle shown in Figure 1b, Paul can exit in three steps. He should choose v at each
step tangent to the circle on which he sits. (Notice that the optimal paths are not unique: Paul
has two equally valid choices of direction at each timestep; moreover the one he actually uses is
determined by Carol’s whim.)

The figure is convincing, and the argument is local. So it is intuitively clear that for any convex
domain in the plane, as ε → 0, the sets from which Paul can exit in a fixed number of steps converge
(after an appropriate scaling in time) to the trajectory of ∂Ω as it evolves under the curvature flow.
The main goal of the present paper is to prove this statement and generalize it.

How many steps does Paul need to exit? A convex domain shrinks to a point under motion by
curvature [GH, Gr]. Since the area changes at constant rate 2π, its disappearance time T is exactly
|Ω|/2π. Now, the point x∗ to which ∂Ω shrinks is the location from which Paul needs the most
steps to exit. Our results show that starting from x∗ he needs approximately T/ε2 steps to exit.

We digress to link Paul’s exit time with Holditch’s theorem, a classical result from plane geom-
etry. For any bounded convex domain Ω, consider the curve

(1.1) γ1 = the midpoints of segments of length 2
√

2ε whose endpoints lie on ∂Ω.

The region inside it is the set from which Paul needs at least two steps to exit; in other words, it is
the set where Paul’s scaled exit time (defined by (1.3) below) satisfies U ε ≥ 2ε2. Holditch’s theorem
says that the area inside γ1 is exactly |Ω| − 2πε2. (See [Br] for a charming modern discussion of
this result, which dates back to 1858. There is a technical condition, always satisfied if ε is small
enough: γ1 must be a simple closed curve, and the orientation of the segments referred to in (1.1)
must vary monotonically as their endpoints move around ∂Ω.) This construction can be repeated:
for k = 1, 2, . . . let

γk+1 = the midpoints of segments of length 2
√

2ε whose endpoints lie on γk.

The region bounded by γk is the set from which Paul needs at least k + 1 steps to exit, i.e. where
U ε ≥ (k + 1)ε2. If Holditch’s theorem holds for all these curves (i.e. if the technical condition
mentioned above is satisfied for all k with ε held fixed) then the area bounded by γk is exactly
|Ω| − 2πε2k. The process stops when k = [|Ω|/2πε2], since at the next step the area would go
negative. Thus we expect – though we have not proved – that Paul can always exit in at most
[|Ω|/2πε2] + 1 steps.

The preceding discussion – about Paul’s exit time – is limited to convex domains. But the game
can also be played in a nonconvex domain. In fact, the nonconvex case is interesting and different,
because Paul can only exit at the convex part of ∂Ω. We will focus on this topic in Section 1.4.

We first learned of this game from Joel Spencer, who introduced it in [Sp1] (Game 1). It is a
variant of his “pusher-chooser” game (see [Sp2]), which is similar except the game is played in Rn

and the number of steps is exactly equal to n. Paul’s ability to exit is related to the question of
discrepancy of two-color colorings of sets (see also [Sp3]).

The curves γk defined above provide a continuous-space, discrete-time approximation to motion
by curvature. The “morphological scheme for mean curvature motion” developed in [CDK] gives
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precisely the same approximation in the convex case. However our goals and results are quite
different from those of [CDK]. Indeed:

(a) Our goal is to study the continuum limit of our two-person game and its generalizations;
theirs was to give a semidiscrete approximation to motion by curvature in the plane.

(b) For nonconvex domains, our time-discretization of motion by mean curvature remains varia-
tional in character (see Section 1.3) while the one in [CDK] does not.

(c) Our analysis emphasizes the connection with control theory. As we explain in Sections 1.2 and
1.3, the level-set equation is like a Hamilton-Jacobi-Bellman PDE. Being elliptic or parabolic,
it has no characteristics. And yet Paul’s paths play a role closely analogous to those of
characteristics in the first-order HJB setting.

(d) Our methods and results are different from those of [CDK] even when our numerical approx-
imation is the same. In fact, when Ω is strictly convex we prove convergence with a rate,
using a verification argument. The corresponding analysis in [CDK] uses viscosity-solution
methods. It is more general, but gets no convergence rate.

There is a relation between our deterministic, two-person game and the stochastic control
viewpoint of [BCQ, ST1]. Those papers (specialized to motion by curvature in the plane) assume
Paul follows a controlled diffusion process

(1.2) dy = v(y, t)dw

where v is a unit vector (chosen by Paul, depending on his current position y), w is Brownian
motion, and the initial position is x ∈ Ω. Paul’s goal is to choose v so he reaches ∂Ω by time t∗(x)
with probability one, and to make t∗ as small as possible. Remembering that Brownian motion can
be approximated by a random walk, (1.2) models the situation in which Carol makes her decisions
randomly, by flipping an unbiased coin at each step. Paul’s optimal strategy (his choice of v) is the
same for this stochastic problem as for our deterministic one. In the deterministic setting, choosing
an optimal v makes him indifferent to Carol’s action; choosing any other direction is worse, because
Carol will take advantage of his error. In the stochastic setting Carol is passive – she just flips coins
– but if Paul makes the wrong choice of v then Carol takes advantage of his error with probability
1/2. This has the same effect as taking advantage of it systematically, since the stochastic problem
requires Paul to arrive at the boundary by time t∗ with probability 1.

The stochastic and deterministic problems are, according to the preceding discussion, closely
related. However the tools required to analyze them are rather different. Our deterministic view-
point is, we think, more elementary. Our Hamilton-Jacobi-Bellman equations are second order
due to Taylor expansion; those in [BCQ, ST1] are second order due to Ito’s lemma. The stochastic
viewpoint has been applied to surfaces of any codimension [ST1, ST2]. Our deterministic viewpoint
can be extended similarly; see Example 5 in Section 1.7 for the case of a one-dimensional curve in
R3.

1.2 The minimum exit time, for convex domains in the plane

Our analysis uses the method of dynamic programming. To explain the main ideas, we focus first
on the minimum exit time problem, for a bounded convex domain in the plane. For any ε > 0,
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consider the minimum exit time

(1.3) U ε(x) =
{

ε2k if Paul needs k steps to exit, starting
from x and following an optimal strategy.

Clearly U ε satisfies the principle of dynamic programming

(1.4) U ε(x) = min
∥v∥=1

max
b=±1

{ε2 + U ε(x +
√

2εbv)}.

We shall show that as ε → 0, U ε converges to the solution of the PDE

(1.5)

{
∆U − ⟨D2U ∇U

|∇U | ,
∇U
|∇U |⟩ + 1 = 0 in Ω

U = 0 at ∂Ω.

This equation was first studied by Evans and Spruck in [ESp]. Its solution has the property that
each level set U = t is the image of ∂Ω under motion by curvature for time t. To see why, consider
neighboring level sets U = t and U = t+∆t (see Figure 2). If the normal distance between them is
∆x then |∇U | ≈ ∆t/∆x, while the curvature of the level set is κ = −div(∇U/|∇U |). One verifies
by elementary manipulation that the PDE (1.5) is equivalent to

|∇U |div
(

∇U

|∇U |

)
+ 1 = 0

when |∇U | ̸= 0. Thus the PDE says κ = 1/|∇U | ≈ ∆x/∆t, whence ∆x ≈ κ∆t as asserted.

∆ x

∆U = t + t

U = t

Figure 2: Level sets of U , the arrival time of the mean curvature flow.

The analysis of (1.5) in [ESp] uses the framework of viscosity solutions. This is necessary
because in its classical form the PDE (1.5) does not make sense where |∇U | = 0. However there is
nothing wrong with the solution. Indeed, for a convex domain, ∂Ω remains smooth under motion
by curvature, and it becomes asymptotically circular as it shrinks to a point [GH, Gr]; using this,
we prove in Appendix A that U is C3 in the entire domain, with D2U(x∗) = −I and D3U(x∗) = 0
at its unique critical point x∗.
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The PDE (1.5) is, in essence, the Hamilton-Jacobi-Bellman equation associated with our exit-
time problem. To explain, let us derive it heuristically, using the dynamic programming principle
(1.4) and Taylor expansion. The former suggests that

U(x) ≈ min
∥v∥=1

max
b=±1

{
ε2 + U(x +

√
2εbv)

}
.

Expanding U we get

U(x) ≈ min
∥v∥=1

max
b=±1

{
ε2 + U(x) +

√
2εbv ·∇U(x) + ε2⟨D2U(x)v, v⟩

}
,

which simplifies to

(1.6) 0 = 1 + min
∥v∥=1

{
1
ε

√
2|v ·∇U(x)| + ⟨D2U(x) v, v⟩

}
.

As ε → 0 the first term in the minimum requires v ·∇U = 0, in other words v = ±∇⊥U/|∇U |, and
with this substitution (1.6) becomes

(1.7) 0 = 1 + ⟨D2U
∇⊥U

|∇U | ,
∇⊥U

|∇U | ⟩.

Since we are in two space dimensions

∆U = ⟨D2U
∇U

|∇U |
,
∇U

|∇U |
⟩ + ⟨D2U

∇⊥U

|∇U |
,
∇⊥U

|∇U |
⟩,

so (1.7) can be rewritten as

0 = 1 + ∆U − ⟨D2U
∇U

|∇U |
,
∇U

|∇U |
⟩,

which is precisely (1.5).
The preceding calculation, though formal, captures the essence of the matter. It shows, in

particular, why the Hamilton-Jacobi-Bellman equation for this game is second rather than first
order. The reason is that first-order Taylor expansion does not suffice to characterize U ; rather,
it tells us only that Paul should choose v⊥∇U . We need the second-order terms in the Taylor
expansion to know how effective this strategy is. Notice that while Carol does not prevent Paul
from reaching the boundary, she certainly slows him down. Indeed, Paul’s local velocity (step size
per time step) is

√
2ε, but his macroscopic velocity (distance travelled divided by number of time

steps) is of order ε2.
In optimal control, the Hamilton-Jacobi-Bellman equation can be used in two rather different

ways. One, known as a “verification argument,” uses a solution of the PDE to bound the minimum
exit time. The other characterizes the value function of the optimal control problem as the unique
viscosity solution of the PDE. The two approaches are complementary, and both are useful for
the problem at hand. The viscosity-solution framework is extremely robust, since it requires no
information about the PDE solution U ; we shall apply it in Sections 4 and 5. When U is smooth
enough however the verification argument gives stronger result, namely convergence with a rate:
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Theorem 1 Let Ω be a smoothly bounded strictly convex domain in the plane, and let U(x) be the
time ∂Ω arrives at x as it shrinks under motion by curvature, i.e. the solution of (1.5). For ε > 0,
let U ε(x) be Paul’s scaled minimum exit time, defined by (1.3). Then there exists a constant C
such that for all x ∈ Ω

∥U ε(x) − U(x)∥L∞(Ω) ≤ Cε.

Moreover C depends only on the C3 norm of U .

The proof is given in Section 3. The exit problem from a nonconvex domain is discussed in
Sections 1.4 and 5.

1.3 Motion by curvature

The curvature flow of ∂Ω is well-defined even if Ω is not convex. So it should have a game-theoretic
interpretation that does not require convexity. We develop such an interpretation here and in
Section 4.

The idea is simple: Paul and Carol play the same game as before, but Paul’s goal is different.
He has an “objective function” u0 and a “maturity time” T , and his goal is to optimize the value
of the objective at maturity. More precisely: his goal is

(1.8) minu0(y(T )),

where y(s) is his piecewise linear path – determined by his choices and Carol’s – starting from
position x at time t. (His stepsize is

√
2ε as before, and each step takes time ε2.)

This is closely related to our previous discussion. The level sets of u0 form a nested family of
domains in the plane, and Paul’s goal is to reach the outermost domain possible by time T . This
is different from exiting a specific domain in minimum time – but not very different.

To explain our analysis heuristically, consider Paul’s value function

(1.9) uε(x, t) = minimal value of u0(y(T )), starting from x at time t.

It satisfies the dynamic programming principle

(1.10) uε(x, t) = min
∥v∥=1

max
b=±1

uε(x +
√

2εbv, t + ε2).

We shall show that as ε → 0, uε converges to the solution of

(1.11)

{
ut + ∆u − ⟨D2u ∇u

|∇u| ,
∇u
|∇u|⟩ = 0 for t < T

u = u0 at t = T .

This PDE is familiar from the level-set approach to interface motion. With the time change τ = T−t
it becomes

uτ − ∆u + ⟨D2u
∇u

|∇u| ,
∇u

|∇u|⟩ = 0

for τ > 0, with u = u0 at τ = 0. This is equivalent to

uτ

|∇u|
= div

(
∇u

|∇u|

)
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so the PDE says that each level set of u moves with normal velocity equal to its curvature. In the
original time variable t the statement is this: as t decreases from T , each level set u = c describes
the curvature flow of the corresponding level set of u0.

We have been a bit cavalier: it is not obvious how to interpret these PDE’s where |∇u| = 0.
The proper framework, developed by Chen, Giga, & Goto [CGG] and Evans & Spruck [ESp], uses
the notion of a viscosity solution. This is reviewed in Section 4.

To link the game and the PDE, we argue as in the previous subsection. The dynamic program-
ming principle (1.10) suggests that

u(x, t) ≈ min
∥v∥=1

max
b=±1

u(x +
√

2εbv, t + ε2)

≈ min
∥v∥=1

max
b=±1

{
u(x, t) +

√
2εbv ·∇u + ε2(ut + ⟨D2u v, v⟩)

}

using Taylor expansion in the second step. This simplifies to

(1.12) 0 = min
∥v∥=1

{
1
ε

√
2|v ·∇u| + ut + ⟨D2u v, v⟩

}
.

As ε → 0 the first term in the minimum requires v · ∇u = 0. Since we are in 2D the remaining
terms give precisely (1.11).

We noted earlier that there are two approaches to the rigorous analysis: one via a verification
argument, the other via viscosity solutions. The verification argument is behind the proof of
Theorem 1, which asserts convergence for the the exit-time problem, with a rate that is linear in
ε. The verification argument can also be used in the present setting if u(x, t) is smooth enough.
Rather than repeat that argument, however, we prefer to showcase the approach based on viscosity
solutions:

Theorem 2 Consider the game described above, with a continuous “objective function” u0 : R2 →
R that is constant outside a compact set. Let uε(x, t) be the associated value functions, defined by
(1.9). Then the functions uε converge as ε → 0, uniformly on compact sets, to the unique viscosity
solution of (1.11).

The proof is given in Section 4. This theorem is very similar to the convergence result in
[CDK, Pa]. The approach in [Pa] is perhaps the most efficient: it uses the fact that any monotone,
stable, consistent, scheme is necessarily convergent [BS]. We have chosen to give a different proof,
based directly on the optimal control problem. It has the advantage of showing how Paul’s paths
are like characteristics. In addition, it lays essential groundwork for Section 5.

1.4 The minimum exit time, for nonconvex domains in the plane

Let’s return now to the minimum exit time problem. What happens when the domain Ω is noncon-
vex? Qualitatively, the situation is pretty clear. Paul can still exit – but only from the convex part
of ∂Ω. If he starts near the concave part of the boundary he needs many steps to exit, because the
convex part of the boundary is far away (see Figure 3). But not too many: we’ll show in Section 2
that the scaled minimum exit time U ε, defined by (1.3), is bounded independent of ε.

As in the convex case, our goal is to characterize the limit of U ε as ε → 0. In fact we offer two
distinct characterizations:
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Figure 3: The dotted line consists of midpoints of segments of length 2
√

2ε with endpoints on ∂Ω.
If Paul starts on or outside it then he can exit in one step.

(a) it is the unique viscosity solution of the boundary value problem (1.5), interpreting the bound-
ary condition in the viscosity sense; and

(b) its level sets trace the evolution of ∂Ω under the “positive curvature flow,” i.e. the evolution
with normal velocity κ+ = max{κ, 0}.

Our proof of (a) requires Ω to be star-shaped.
The first characterization is more or less expected. It is directly analogous to the situation

for the first-order Hamilton-Jacobi equations associated with pursuit-evasion games [BC]. In that
context, as in ours, the Dirichlet boundary condition should be imposed only on the part of the
boundary from which Paul can exit. By interpreting the boundary condition in the “viscosity
sense” – as explained in Section 5 – we assure that it is only imposed on the appropriate part of
the boundary.

The proper statement of assertion (a) requires a bit of care, because limε→0 U ε may not exist,
and the relevant viscosity solution can be discontinuous. An example of such behavior is given in
Appendix C. Therefore it is natural to consider

U = lim sup∗U ε i.e. U(x) = lim sup
y→x, ε→0

U ε(y)(1.13)

U = lim inf∗U ε i.e. U(x) = lim inf
y→x, ε→0

U ε(x).(1.14)

We will prove:

Theorem 3 Let Ω be a bounded domain in the plane, possibly nonconvex. Let U ε(x) be Paul’s
minimum exit time, defined by (1.3). Then U , defined by (1.13), is a viscosity subsolution of (1.5);
similarly U , defined by (1.14), is a viscosity supersolution of (1.5).

Usually a convergence theorem is proved by combining a statement like Theorem 3 with a
suitable comparison result. Unfortunately, very little is known about comparison theorems for
viscosity solutions of second-order elliptic equations like (1.5) in nonconvex domains. So rather
than apply a general comparison result, we must prove one from scratch. Appendix C shows:
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Theorem 4 (Barles and Da Lio) Assume Ω is a bounded, star-shaped domain in Rn. Let u be
a viscosity subsolution of (1.5), and let v be a viscosity supersolution. Then u∗ ≤ v and u ≤ v∗,
where

u∗(x) = lim inf
y→x

u(y), v∗(x) = lim sup
y→x

v(y).

Taken together, Theorems 3 and 4 show that when Ω is star-shaped, U∗ = U and U = U∗. This
characterizes the limiting behavior as the unique-up-to-envelope (possibly discontinuous) viscosity
solution of (1.5).

We turn now to the second characterization of the limit. To explain the relevance of the positive
curvature flow, consider the modified game in which Paul is no longer required to choose a unit
vector – instead, he can choose any v such that ∥v∥ ≤ 1. For the exit-time problem, we will prove
in Section 5.3 that Theorem 3 also holds for the modified game. Thus the ∥v∥ = 1 and ∥v∥ ≤ 1
versions of the exit-time problem are equivalent: they give the same arrival times, at least if Ω is
star-shaped. However the time-dependent versions of the two games – with “objective function”
u0, to be minimized at time T – are different. Let us see formally how. Repeating the discussion
of Section 1.3 for ∥v∥ ≤ 1 version of the game, we find that the time-dependent Hamilton-Jacobi-
Bellman equation is

0 = min
∥v∥≤1

{
1
ε

√
2|v ·∇u| + ut + ⟨D2u v, v⟩

}
.

rather than (1.12). As ε → 0 the first term forces v⊥∇u. Since

(1.15) min
∥v∥≤1,v·∇u=0

⟨D2u(x)v, v⟩ =
(
⟨D2u(x)

∇⊥u(x)
|∇u(x)| ,

∇⊥u(x)
|∇u(x)| ⟩

)

−
,

using the notation x− = min{x, 0}, the associated PDE is

ut +
(
⟨D2u,

∇⊥u

|∇u|
,
∇⊥u

|∇u|
⟩
)

−
= 0.

This is equivalent (in 2D) to

(1.16) ut +
(
|∇u|div

(
∇u

|∇u|

))

−
= 0.

Since κ = curv(u) = −div(∇u/|∇u|) is the curvature of a level set of u, the level sets of u solve the
“positive curvature flow” backward in time, in other words they flow with

normal velocity =
{

κ where κ ≥ 0, i.e. the curve is convex
0 where κ ≤ 0, i.e. the curve is concave.

The existence and uniqueness of this “positive curvature flow” follows from the general framework
of [CGG], see also the reference [GG] focusing specifically on curvature flows.

The preceding discussion was formal, but its conclusion is correct:

Theorem 5 Consider the modified game where Paul’s choices are restricted by ∥v∥ ≤ 1 rather
than ∥v∥ = 1. Assume the “objective function” u0 : R2 → R is continuous, and constant outside a
compact set. Let uε(x, t) be the associated value functions, defined by (1.9). Then the functions uε

converge as ε → 0, uniformly on compact sets, to the unique viscosity solution of (1.16) satisfying
u = u0 at t = T .
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The point of course is that the minimum-exit-time problem and the positive curvature flow are
related. Indeed, we shall show that in the limit ε → 0, the level sets of Paul’s minimum exit time
are precisely the images of ∂Ω as it evolves under the positive curvature flow. The proof uses the
underlying game: we show, in essence, that the associated control problems have the same optimal
strategy:

Theorem 6 Let Ω be a bounded domain in the plane (possibly nonconvex), and let U ε(x) be Paul’s
minimum exit time, defined using the modified game in which ∥v∥ ≤ 1 is permitted. Let uε(x, t)
be the value function for the time-dependent version of the modified game, with objective function
u0 and maturity T , and recall from Theorem 5 that the level sets of u = limε→0 uε execute the
positive-curvature-flow backward in time. Finally, suppose Ω = {u0 > 0}. Then we have

(1.17) u(x, T − U(x)) = u(x, T − U(x)) = 0

where U and U are defined in (1.13)–(1.14).

Not much is known about the positive curvature flow of a nonconvex curve in the plane, though
it has sometimes been used for image processing, see e.g. [MS]. We conjecture the existence of a free
boundary separating the curve into two parts: one strictly convex (moving with normal velocity
equal to its curvature), the other strictly concave (and stationary); see Figure 4. Moreover we
expect that the concave, stationary part decreases monotonically in size, eventually disappearing
– after which the evolution becomes ordinary motion by curvature.

Figure 4: Schematic of motion by positive curvature for a nonconvex curve in the plane. The solid
curve is the locus at a specific time; the dotted curves give the locus at two later times; we expect
the “free boundary” separating the convex and concave parts to move along the solid curve.

What do these conjectures say about the value functions of our games? They suggest that once
a part of the curve starts moving it never stops, i.e. that the solution of (1.16) is strictly monotone
in time. Thus we ask:

(1.18) is ut > 0 for x ∈ Ω?

If so, then (1.17) would show U = U , proving convergence of U ε and continuity of the limit without
making use of a comparison theorem. (Such behavior is consistent with the example in Appendix
C, since the discontinuity in the example is at the boundary.)
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We cannot prove the preceding conjectures, but are able to prove a related result:

Theorem 7 Let Ω be a domain in the plane with C2 boundary, and let ∂Ω+ and ∂Ω− be the strictly
convex and concave parts of ∂Ω respectively. Then U and U , defined by (1.13)–(1.14), satisfy

U(x) → 0 as x → x∗ ∈ ∂Ω+(1.19)
lim inf U(x) > 0 as x → x∗ ∈ ∂Ω−.(1.20)

This theorem says, in essence, that if Paul starts near a convex part of the boundary he exits
quickly; but if he starts near a concave part of the boundary he cannot exit quickly – because
he must travel to the convex part of the boundary. The proof of Theorem 7 makes no use of
the viscosity framework; rather, it is based directly on the game. In terms of motion by positive
curvature (1.20) is a “waiting-time” result: it says that the strictly concave part of ∂Ω sits still for
a nonzero time interval before it begins to move. Note that even though waiting-time results are
not known for mean curvature flow, some have been established for the Gauss curvature flow, see
for example [CEI].

We are not yet quite done. Our assertion (b) was that the exit times of the original game, with
∥v∥ = 1, have level sets given by the positive curvature flow. But Theorem 6 links the positive
curvature flow to the exit times of the modified game, with ∥v∥ ≤ 1. To close the loop, we shall
show that the two games’ exit times yield viscosity sub and supersolutions of the same elliptic
boundary value problem:

Theorem 8 Let Ω be a bounded domain in the plane, possibly nonconvex. Let U ε(x) be Paul’s
minimum exit time for the ∥v∥ ≤ 1 game. Then U , defined by (1.13), is a viscosity subsolution of
(1.5), and U , defined by (1.14), is a viscosity supersolution of (1.5).

This theorem closes the loop, provided we have uniqueness for viscosity solutions of (1.5). Such
uniqueness is valid for star-shaped domains, as a consequence of Theorem 4.

Theorems 3 through 8 are proved in Section 5, except for Theorem 4 which is proved in Appendix
C.

1.5 Higher dimensions

Our discussion has thus far been in the plane. Paul and Carol can play the same game in higher
dimensions, but the result is not motion by mean curvature. Rather, it is motion with velocity
equal to the largest principal curvature. But the game can easily be modified to give motion by
mean curvature in any space dimension. In R3, for example, the rules are as follows:

(a) Paul chooses two orthogonal unit-length directions, i.e. vectors v,w ∈ R3 with ∥v∥ = ∥w∥ = 1
and v⊥w.

(b) Carol chooses whether to let Paul’s choices stand or reverse them – i.e. she chooses b = ±1,
β = ±1 and replaces v,w with bv and βw.

(c) Paul takes steps of size
√

2ε in each direction, moving from x to x +
√

2ε(bv + βw).
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This game has a simple geometric interpretation, analogous to (1.1): for Paul to exit from a point
x in one step, there must exist an “orthonormal cross” of size 2

√
2ε centered at x whose four

endpoints belong to R3\Ω.
To see that this new game works, consider the argument that led to (1.11). The analogue of

(1.12) for the modified game is

0 = min
∥v∥=∥w∥=1

v⊥w

{
1
ε

√
2(|v ·∇u| + |w ·∇u|) + ut + ⟨D2u v, v⟩ + ⟨D2uw,w⟩

}
.

As ε → 0 the coefficient 1/ε forces v ·∇u = w ·∇u = 0. The terms involving D2u give the trace of
D2u in the plane perpendicular to ∇u. Thus the limiting equation is

ut + ∆u − ⟨D2u
∇u

|∇u| ,
∇u

|∇u|⟩ = 0,

i.e. level set equation for motion by mean curvature backward in time, valid in any space dimension.
It is easy to generalize this procedure for higher dimensions (see Section 6).

This game is very similar to the original one, so it is not surprising that our results extend to
it:

Theorem 9 The natural analogues of Theorems 2 – 8 are valid for this game.

We justify this assertion in Section 6. Theorem 1 would extend as well if we knew that U (the
arrival time of the mean curvature flow) was C3. However this estimate remains open in higher
dimensions. The analogue of Theorem 7 specifies the boundary behavior of U at points where ∂Ω
is strictly concave or strictly convex; it is silent concerning the behavior where the boundary is
saddle-shaped.

We shall return to the three-dimensional version of the game in Example 5 of Section 1.7,
drawing a connection to the motion of a one-dimensional curve with velocity equal to its curvature
vector.

1.6 The inverse game

Here and in Section 1.7 we discuss some natural modifications of the game. They lead, at least
formally, to interesting geometric motions.

Consider first the “inverse game.” By this we mean the game with the same rules but opposite
goals – Paul wants stay in Ω as long as possible, while Carol wants to force him to exit. This
reverses the min-max into a max-min. We must stick to the rule ∥v∥ = 1, since otherwise Paul
could always avoid exiting trivially by picking v = 0. His value function is characterized by

(1.21) U ε(x) = max
∥v∥=1

min
b=±1

U ε(x +
√

2εbv).

The by-now-familiar formal calculation gives the same elliptic equation as before. Thus the exit-
time version of the inverse game leads again to motion by positive curvature.
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Next, consider the time-dependent version of the “inverse game.” Paul’s goal is to maximize
(rather than minimize) the value of some objective function u0 at time T . His value function
satisfies

(1.22) uε(x, t) = max
v

min
b=±1

uε(x +
√

2εbv, t + ε2)

with uε(x, T ) = u0(x). If Paul’s choices are restricted to ∥v∥ = 1 then the usual formal calculation
leads to the level-set formulation of motion by curvature (1.11). But in the time-dependent setting
it makes sense to permit ∥v∥ ≤ 1. For this version of the game, arguing as in (1.15), (1.22) leads
formally to

ut +
(
⟨D2u

∇⊥u

|∇u| ,
∇⊥u

|∇u| ⟩
)

+

= 0.

In this case the level sets of u execute the “negative curvature flow” backward in time, i.e. the flow
with

normal velocity =
{

κ where κ ≤ 0, i.e. the curve is concave
0 where κ ≥ 0, i.e. the curve is convex.

1.7 Other geometric flows

It is natural to ask which other geometric evolutions have game-theoretic interpretations. This
question is open, but the following examples show that the class of such evolutions is quite large.

Example 1: Motion by a function times curvature. Suppose Paul’s step size is
√

2εf(x, t, v) rather
than

√
2ε. Here f can be any continuous function of position, time, and direction such that

f(x, t, v) = f(x, t,−v). Then Paul’s value function (for the time-dependent version of the game)
satisfies

uε(x, t) = min
∥v∥=1

max
b=±1

uε
(
x +

√
2bεfv, t + ε2

)
.

In the limit ε → 0 we get

ut + |∇u|div
(

∇u

|∇u|

)
f2(x, t,

∇⊥u

|∇u|
) = 0.

Example 2: Motion by curvature plus a constant. Suppose Paul’s motion law is changed as follows:
he takes a step of size

√
2ε in direction v (possibly reversed by Carol) and also a step of size νε2 in

a direction w which he is free to choose. The associated value function satisfies

uε(x, t) = min
∥v∥=1

min
∥w∥=1

max
b=±1

uε
(
x +

√
2bεv + νε2w, t + ε2

)
.

In limit ε → 0 this gives

ut + |∇u|div
(

∇u

|∇u|

)
− ν|∇u| = 0.
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Example 3: Motion by a convex function of curvature. We now explain how to get the continuum
law

(1.23) ut − |∇u|ϕ(curv(u)) = 0

where curv(u) = −div(∇u/|∇u|) is the curvature of the level set of u. The following scheme, an
adaptation of one in [Pa], works for any convex function ϕ which can be represented in the form

(1.24) ϕ(κ) = max
s≥0

(
1
2
κs2 − |f(s)|

)

for some function f(s) such that f(0) = 0. The scheme applies, for example, to ϕ(κ) = (κ+)γ with
γ > 1, which has the form (1.24) with f(s) = cγs

2γ
γ−1 .

Here is the game corresponding to (1.23). At each time step Paul picks an orthonormal frame
v, v⊥ and a real number s ≥ 0; then he moves ±εs in direction v and ±ε2f(s) in direction v⊥,
where Carol chooses both signs. Focusing on the time-dependent version of the game, Paul’s value
function satisfies

uε(x, t) = min
∥v∥=1,s≥0

max
b=±1,β=±1

uε(x + bεsv + βε2f(s)v⊥, t + ε2).

The usual formal (Taylor-expansion) argument gives, at order ε, the relation

0 = min
∥v∥=1,s≥0

max
b=±1

bs∇uε(x) · v.

This forces s = 0 or ∇uε(x) · v = 0; in either case we have sv = s∇⊥uε(x)
|∇uε(x)| . Proceeding now to the

next order ε2, we get

0 = ∂tu
ε(x) + min

s≥0

(
|f(s)||∇uε(x)| + s2

2
⟨D2uε(x)

∇⊥uε(x)
|∇uε(x)| ,

∇⊥uε(x)
|∇uε(x)| ⟩

)
.

(The choice s = 0 is special, since for this s the optimal v is parallel not perpendicular to ∇uε; this
is why must assume f(0) = 0.) Since

⟨D2u
∇⊥u

|∇u| ,
∇⊥u

|∇u| ⟩ = |∇u|div
(

∇u

|∇u|

)
= −|∇u|curv(u)

we obtain the limiting PDE

ut + |∇u|min
s≥0

(
|f(s)|− s2

2
curv(u)

)
= 0.

This is equivalent to (1.23) with ϕ given by (1.24).
It is natural to ask which functions can be represented in the form (1.24) with f(0) = 0. The

answer is: ϕ has such a representation if and only if it is lower semicontinuous and convex, and
its Fenchel transform (defined by ϕ∗(k) = supt∈R(tk − ϕ(t))) satisfies ϕ∗ ≥ 0, ϕ∗(0) = 0, and
ϕ∗(t) = +∞ for t < 0. The proof that these conditions assure the desired representation is easy:
any lower semicontinuous convex ϕ satisfies ϕ = ϕ∗∗, i.e.

(1.25) ϕ(k) = sup
t∈R

(tk − ϕ∗(t)).
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If ϕ∗(t) = +∞ for t < 0 then the sup is effectively over t ≥ 0. If in addition ϕ∗ ≥ 0 and ϕ∗(0) = 0
then (1.25) gives a representation in the desired form with |f(s)| = ϕ∗(s2/2). The proof of the
converse is only slightly more difficult: if ϕ has the form (1.24) with f(0) = 0 then it is clearly
lower semicontinuous and convex. Moreover considering s = 0 we see that ϕ(κ) ≥ 0 and ϕ(0) = 0,
whence ϕ∗(0) = maxk{−ϕ(k)} = 0. Now, (1.24) stipulates that ϕ = g∗ where

g(s) =
{

+∞ s < 0
|f(s)| s ≥ 0.

Therefore ϕ∗ = g∗∗ is the largest lower semicontinuous convex function less than or equal to g. It
follows easily that ϕ∗ ≥ 0 and ϕ∗(t) = ∞ for t < 0.

A different but closely related class of examples is obtained by replacing (1.24) by

(1.26) ϕ(κ) = max
s>0

(
1
2
κs2 − |f(s)|

)

for f such that |f(s)| → ∞ as s → 0+. The game is as above, except that Paul cannot choose
s = 0. An example of such a ϕ is

ϕ(κ) =
{

−|κ|γ κ ≤ 0
∞ κ > 0

for 0 < γ < 1, which has the form (1.26) with f(s) = cγs
2γ

γ−1 . One verifies that ϕ has the form
(1.26) with f → ∞ as s → ∞ if and only if ϕ is lower semicontinuous and convex, and its Fenchel
transform satisfies ϕ∗ ≥ 0 and ϕ∗(t) = ∞ for t ≤ 0.

Example 4: Motion by a concave function of curvature. This example is parallel to the previous
one, except that it uses the “inverse game” in which Paul’s goal is to maximize the value of u0 at
time T . It achieves the continuum law

(1.27) ut − |∇u|ϕ(curv(u)) = 0

when ϕ has either the form

(1.28) ϕ(κ) = min
s≥0

(
1
2
s2κ + |f(s)|

)

with f(0) = 0, or the form

(1.29) ϕ(κ) = min
s>0

(
1
2
s2κ + |f(s)|

)

with |f(s)| → ∞ as s → 0. The framework (1.28) applies to

ϕ(κ) =
{

−|κ|γ κ ≤ 0
0 κ ≥ 0

when γ > 1, while the framework (1.29) applies to

ϕ(κ) =
{

−∞ κ < 0
κγ κ ≥ 0
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for 0 < γ < 1. In each case the representation uses f(s) = cγs
2γ

γ−1 .
The situation is similar to Example 3, so we shall be brief. Let’s focus for simplicity on (1.29).

The game is like that of Example 3, except that Paul’s goal is to maximize rather than minimize
his objective at time T . (Thus, he plays the “inverse game” discussed in Section 1.6). His value
function satisfies

uε(x, t) = max
∥v∥=1,s≥0

min
b=±1,β=±1

uε(x + bεsv + βε2f(s)v⊥, t + ε2).

Arguing as before, we find that Paul’s choices should satisfy sv = s∇⊥uε(x)
|∇uε(x)| , and Taylor expansion

to order ε2 gives

0 = ∂tu
ε(x) + max

s≥0

(
−|f(s)||∇uε(x)| + s2

2
⟨D2uε(x)

∇⊥uε(x)
|∇uε(x)| ,

∇⊥uε(x)
|∇uε(x)| ⟩

)
.

We thus obtain the limiting PDE

ut − |∇u|min
s≥0

(
|f(s)| + s2

2
curv(u)

)
= 0.

This is equivalent to (1.27) with ϕ given by (1.28).

Example 5: Motion by curvature for one-dimensional curves in R3. Soner and Touzi have given
a stochastic control interpretation of motion by curvature for manifolds of any codimension [ST1,
ST2]. Focusing for simplicity on curves in R3, we now give the analogous deterministic interpreta-
tion.

The heart of the matter is the level-set approach to higher-codimension motion by curvature
developed by Ambrosio and Soner in [AS]. To model the motion of a curve Γ0 in R3 with velocity
equal to its curvature vector, they start by choosing a nonnegative, uniformly continuous function
u0 which vanishes exactly on Γ0. Then they define u(x, t) for t > 0 by specifying that u(x, 0) = u0

and that each level set of u has normal velocity equal to the smaller of its two principal curvatures.
(If for example u0(x) = dist(x,Γ0) then for ρ ≈ 0 the set u0 = ρ is a cylinder of radius ρ about Γ0.
The larger of its principal curvatures is therefore quite large – namely 1/ρ; however the smaller
one remains bounded as ρ → 0, and it approaches the curvature of Γ0.) The evolution of u is
well-defined, and the zero-level-set Γt = {x : u(x, t) = 0} depends only on Γ0, not on the choice
of u0. Moreover Γt agrees with the classical solution of motion by curvature as long as the latter
exists. So it is natural to view Γt as a weak solution of motion by curvature. (Note however that
we cannot rule out “fattening:” once a classical solution ceases to exist the set Γt may have positive
measure.)

The corresponding game is very simple. Indeed, it is precisely the three-dimensional version of
our time-dependent game, using the function u0 as objective. Paul chooses a unit vector in R3;
Carol accepts or reverses it; then Paul moves distance

√
2ε in the resulting direction. His goal is to

minimize the value of the objective u0 at a specified final time. Arguing as in Section 1.3, Paul’s
value function satisfies (formally, in the limit ε → 0) the HJB equation

(1.30) ut + min
∥v∥=1, v⊥∇u

⟨D2u v, v⟩ = 0
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for t < T , with u(x, T ) = u0(x). The eigenvalues of D2u on the plane perpendicular to ∇u are
precisely |∇u| times the principal curvatures of the level set of u. Thus the zero-level-set of u is
the Ambrosio-Soner weak solution of motion by curvature, backward in time.

The attentive reader may be puzzled. In Section 1.5 we said the 3D version of the game gave
motion with normal velocity equal to the largest principal curvature, yet here we are getting normal
velocity equal to the smallest principal curvature. The distinction lies in the convexity or concavity
of u0. In Section 1.5 we assumed Paul’s goal was to exit from a region (for the exit-time version of
the game) or to get to the outermost of a family of nested regions u0 = constant by time T (for the
time-dependent version of the game). Here Paul’s goal is to reach a one-dimensonal target (for an
arrival-time version of the game) or to get to the innermost of a family of nested regions (for the
time-dependent version).

Additional examples are clearly possible. For example one easily formulates a modified game
whose dynamic programming principle is

uε(x, t) = min
∥v∥=1

max
w

max
b=±1

uε
(
x +

√
2bεv + ε2w, t + ε2

)
− ε2g(w).

The associated PDE is
ut + |∇u|div

(
∇u

|∇u|

)
+ g∗(∇u) = 0

where g∗ is the Legendre transform of g.

1.8 Open questions

Our study raises as many questions as it answers. We collect the main ones here.

1. Let Ω be a bounded convex domain in Rn with n ≥ 3, and consider the associated exit time
U . For the game described in Section 1.5, U is the arrival time of ∂Ω as it evolves under
motion by mean curvature, and the unique viscosity solution of (1.5). Is it C3? (If so, then
the verification argument in Section 3 works in higher dimensions.)

2. Let Ω be a bounded but nonconvex domain in R2, and consider the elliptic PDE (1.5) which
should determine Paul’s exit time. Does it have a comparison principle? Are its viscosity
solutions unique? (Appendix C gives an affirmative answer, but only for star-shaped do-
mains.) Also: is the viscosity solution continuous in Ω? (Appendix C shows it need not have
a well-defined limit at the boundary.)

3. We argued in Section 1.4 that for nonconvex curves in the plane there should be a free
boundary separating the (moving) convex part and the (stationary) concave part (see Figure
4). Is it true that the concave part decreases monotonically in size, and that the curve
becomes convex before it shrinks to a point? Can one estimate the velocity of the free
boundary? Once a part of the curve starts to move, can it ever stop? (In other words, does
the level-set representation have ut > 0 in Ω, c.f. (1.18)?)

4. Does every second-order geometric evolution law have a deterministic game-theoretic inter-
pretation?
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5. Does a numerical method based on our game offer any advantages over other more standard
approaches to simulating motion by curvature?

Acknowledgements: We are grateful to Joel Spencer for bringing this problem to our attention, and
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2 Some preliminary results

Section 2.1 gives a more careful definition of the scaled minimum exit time U ε, and reviews the
(easy) proof that it is bounded independent of ε. Section 2.2 proves an elementary but fundamental
lemma, which will be used throughout the paper.

2.1 The scaled minimum exit time

We defined U ε by (1.3). That definition is correct, but somewhat informal. Moreover it does not
explain how to evaluate U ε.

Here is a more constructive viewpoint – essentially, a more careful treatment of the construction
implicit in Figures 1 and 3, discussed earlier in connection with Holditch’s theorem. It applies to
any plane domain, convex or not. If Paul starts at x ∈ R2\Ω then he is already outside Ω so
U ε(x) = 0. If his starting point x has the property that x + ε

√
2v and x − ε

√
2v both belong to

R2\Ω for some unit vector v, then he can exit in one step and U ε(x) = ε2. Such points x can be
characterized as follows: consider all segments of length 2

√
2ε whose endpoints both lie on ∂Ω or

in R2\Ω. The midpoints of these segments define a closed curve γ1, which partitions R2 into two
regions. The points x ∈ Ω from which Paul can exit in one step are those that lie on γ1 or in the
unbounded component of R2\γ1. Let Ω1 be the complement of this set in Ω (in other words, Ω1

consists of those x ∈ Ω from which Paul needs two or more steps to exit). Iterating this procedure
we find a nested family of subdomains Ω1,Ω2,Ω3, . . . with ∂Ωj = γj such that Paul needs at least
j + 1 steps to exit from Ωj. Evidently U ε = (j + 1)ε2 on Ωj\Ωj+1. We shall show in Lemma 2.1
that if Ω is bounded then Paul can always exit in at most C/ε2 steps. Therefore Ωj is empty for j
sufficiently large, and the scaled exit time U ε is uniformly bounded.

The inductive character of this construction is captured by the following alternative definition
of U ε:

Definition 1 Let Ω be any plane domain, convex or not. If x ∈ R2\Ω then U ε(x) = 0. For x ∈ Ω,
U ε(x) = ε2 if there exists a unit-norm vector v such that x +

√
2εv and x −

√
2εv both belong to

R2\Ω. For any k ≥ 1, and x ∈ Ω, U ε(x) = kε2 if there exists a unit-norm vector v such that
max(U ε(x +

√
2εv), U ε(x −

√
2εv)) = (k − 1)ε2.

Actually, we will make little direct use of Definition 1. Rather, our arguments rely mainly on
the following characterization:

(2.1)

{
U ε(x) = min∥v∥=1 maxb=±1 U ε(x +

√
2εbv) + ε2 for x ∈ Ω

U ε(x) = 0 for x ∈ R2\Ω.

This is simply a restatement of (1.4); it follows easily from Definition 1.
The following lemma and its proof are taken from [Sp2].
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Lemma 2.1 For any bounded plane domain Ω, U ε is uniformly bounded (independent of ε).

Proof: Let R be the diameter of Ω. Consider any x ∈ Ω, an arbitrary b1 = ±1 and v1 of norm
one, and a path such that ⎧

⎨

⎩

y(0) = x
y(ε2) = x +

√
2εb1v1

y(kε2) = y((k − 1)ε2) +
√

2εbkvk

where for each k ≥ 2, vk is taken to be perpendicular to the direction joining y((k − 1)ε2) to x.
Choosing a convenient coordinate system, we may suppose without loss of generality that x is the
origin. Whatever the choices of bk, we have

∥y(kε2)∥2 = ∥y((k − 1)ε2) +
√

2εbkvk∥2 = ∥y((k − 1)ε2)∥2 + 2ε2,

since vk is perpendicular to y((k − 1)ε2) and b2
k∥vk∥2 = 1. It follows that

∥y(kε2)∥2 = 2kε2

for all k. In particular, if R is the diameter of Ω we have y(kε2) ∈ R2\Ω for 2kε2 ≥ R2.
The argument can be concluded using either the less formal definition (1.3) or else the dynamic

programming principle (2.1). To use the former, we observe that the preceding calculation was
independent of bk. So the proposed strategy, though possibly not optimal, assures that Paul needs
at most R2/(2ε2) steps to exit. Therefore (1.3) gives U ε ≤ R2/2.

To use the dynamic programming principle (2.1), assume Carol acts optimally, and let k∗ be
the first k such that y(kε2) ∈ R2\Ω. We have shown that k∗ ≤ R2/(2ε2), and by definition
U ε(y(k∗ε2)) = 0. An easy inductive argument based on (2.1) gives U ε(y([k∗ − j]ε2)) ≤ jε2 for
j = 1, 2 . . . , k∗. When j = k∗ we obtain the same bound as before: U ε(0) ≤ k∗ε2 ≤ R2/2. !

We remark that the min in (2.1) is achieved because (holding ε fixed) U ε is bounded and
essentially integer-valued. We will use dynamic programming principles like (2.1) repeatedly in the
sequel. The optimal v is always achieved, for the dynamic programming principle associated with
any exit-time problem, by the argument just given.

2.2 The fundamental lemma

The crucial step in our formal argument was the passage from (1.6) to (1.7). The following lemma
will be used be used repeatedly to make that argument (and others like it) rigorous.

Lemma 2.2 Let φ be a C3 function on a compact subset of R2. Then

(a) for any x and any vector v, we have

max
b=±1

φ(x +
√

2εbv) ≥ φ(x) + ε2⟨D2φ(x) v, v⟩ − Cε3.

(b) for any x such that ∇φ(x) ̸= 0 we have

min
∥v∥=1

max
b=±1

φ(x +
√

2εbv) ≤ φ(x) + ε2⟨D2φ(x)
∇⊥φ(x)
|∇φ(x)| ,

∇⊥φ(x)
|∇φ(x)| ⟩ + Cε3;
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(c) if ∇φ(x) ̸= 0, we have

min
∥v∥=1

max
b=±1

φ(x +
√

2εbv) ≥ φ(x) + ε2⟨D2φ(x)
∇⊥φ(x)
|∇φ(x)|

,
∇⊥φ(x)
|∇φ(x)|

⟩ − C(1 +
1

|∇φ(x)|
)ε3.

In each estimate, the constant C depends only on the C3 norm of φ, not on x or ε.

Proof: Part (a) is an immediate consequence of the Taylor expansion

(2.2) φ(x +
√

2εbv) = φ(x) +
√

2εbv ·∇φ(x) + ε2⟨D2φ(x)v, v⟩ + O(ε3).

For part (b), we observe that when v = ∇⊥φ/|∇φ|, (2.2) gives

max
b=±1

φ(x +
√

2εbv) = φ(x) + ε2⟨D2φ(x)
∇⊥φ(x)
|∇φ(x)|

,
∇⊥φ(x)
|∇φ(x)|

⟩ + O(ε3).

The minimum of the left hand side over all ∥v∥ = 1 can only be smaller, so (b) is proved.
For (c), we begin by observing the existence of a constant c1 (depending only on the C2 norm

of φ) with the following two properties for all unit vectors v: (i)
√

2|∇φ(x) · v| ≥ c1ε implies
√

2ε|∇φ(x) · v| + ε2⟨D2φ(x)v, v⟩ ≥ ε2⟨D2φ(x)
∇⊥φ(x)
|∇φ(x)| ,

∇⊥φ(x)
|∇φ(x)| ⟩;

and (ii)
√

2|∇φ(x) · v| ≤ c1ε implies
√

2ε|∇φ(x) · v| + ε2⟨D2φ(x)v, v⟩ ≥ ε2⟨D2φ(x)
∇⊥φ(x)
|∇φ(x)| ,

∇⊥φ(x)
|∇φ(x)| ⟩ −

c2ε3

|∇φ(x)| .

Indeed, property (i) holds provided c1 ≥ 2max∥v∥=1 |⟨D2φ(x)v, v⟩|. The hypothesis of (ii) on the
other hand implies that ∣∣∣∣⟨

∇φ(x)
|∇φ(x)| · v⟩

∣∣∣∣ ≤
c1ε√
2|∇φ|

.

If ε
|∇φ(x)| is small, then the angle between v and ∇φ(x)/|∇φ(x)| is close to π/2 and so v is close to

±∇⊥φ(x)/|∇φ(x)|, more precisely
∣∣∣∣v ± ∇⊥φ(x)

|∇φ(x)|

∣∣∣∣ = O

(
ε

|∇φ(x)|

)
.

This inequality is also trivially true when ε
|∇φ(x)| is not small. It follows that

ε2⟨D2φ(x)v, v⟩ = ε2⟨D2φ(x)
∇⊥φ(x)
|∇φ(x)|

,
∇⊥φ(x)
|∇φ(x)|

⟩ + O

(
ε3

|∇φ(x)|

)
,

and this implies property (ii).
With these preliminaries in hand, part (c) of the Lemma is easy. For any unit vector v,

maximization over b = ±1 in the Taylor expansion (2.2) gives

max
b=±1

φ(x +
√

2εbv) ≥ φ(x) +
√

2ε|v ·∇φ(x)| + ε2⟨D2φ(x)v, v⟩ + O(ε3).

If
√

2|∇φ(x)·v| ≥ c1ε we estimate the right hand side using alternative (i); if the opposite inequality
holds we estimate it using alternative (ii); either way, we get

max
b=±1

φ(x +
√

2εbv) ≥ φ(x) + ε2⟨D2φ(x)
∇⊥φ(x)
|∇φ(x)|

,
∇⊥φ(x)
|∇φ(x)|

⟩ − C(1 +
1

|∇φ|
)ε3.

Now minimization over v gives the conclusion of part (c). !
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3 The minimum exit time, analyzed by a verification argument

This section proves Theorem 1. The analysis is restricted to bounded, convex domains in the plane.
We can use a verification argument because the solution of the limiting PDE (1.5) is classical. In
fact, we have the following result, which will be proved in Appendix A:

Lemma 3.1 Let Ω be a smoothly bounded strictly convex domain in the plane, and let U(x) be the
time ∂Ω arrives at x as it shrinks under motion by curvature. Then

(a) U is C3 in Ω and solves the degenerate elliptic equation (1.5).

(b) U has just one critical point x∗ in Ω. At this point U achieves its maximum and D2U(x∗) =
−I.

(c) D3U(x∗) = 0.

Our verification argument has two distinct parts. One gives an upper bound on U ε by consid-
ering a specific, possibly suboptimal strategy. The other gives a lower bound on U ε by considering
the optimal strategy. We present the two parts separately, as Propositions 3.1 and 3.2. The proofs
use parts (a) and (b) of Lemma 3.1 but not part (c).

Proposition 3.1 Let Ω be a smoothly bounded, strictly convex domain in the plane. Then

(3.1) U ε(x) ≤ U(x) + Cε

for all sufficiently small ε > 0 and every x ∈ Ω. The constant C depends on Ω, but not on x or ε.

Proof: Let us first prove that U ε is lower semi-continuous. Since U ε only takes values kε2 (k ∈ N),
it is sufficient to prove that for every k, Σk = {x ∈ R2, U ε(x) ≤ kε2} is closed. The case k = 0 is
obvious. Suppose by induction that Σk is closed. Assume that xn ∈ Σk+1 converges to x0 ∈ R2.
Then by Definition 1 there exists vn with ∥vn∥ = 1 such that

max(U ε(xn +
√

2εvn), U ε(xn −
√

2εvn)) ≤ ε2k.

In other words, xn±
√

2εvn ∈ Σk. We may assume that vn converges to v0 by taking a subsequence.
Since Σk is assumed to be closed, we see that x0 ±

√
2εv0 ∈ Σk. By Definition 1 this implies that

U ε(x0) ≤ ε2(k + 1) i.e. x0 ∈ Σk+1 so that Σk+1 is closed, and U ε is lower semi-continuous.
Let now x∗ be the unique critical point (maximum) of U . It is sufficient, by continuity of U

and lower semi-continuity of U ε, to prove (3.1) for x ̸= x∗. So consider any x0 ̸= x∗ in Ω, and let
v0 = ∇⊥U(x0)/|∇U(x0)|. From the dynamic programming principle (2.1), we have

U ε(x0) ≤ max
b=±1

U ε(x0 +
√

2εbv0) + ε2.

Let b0 achieve the maximum in this relation, and consider x1 = x0 +
√

2εb0v0. By construction, it
satisfies

U ε(x0) ≤ U ε(x1) + ε2.
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In addition, Taylor expansion (2.2) combined with the PDE (1.5) give

U(x1) = U(x0) + ε2⟨D2U(x0)
∇⊥U(x0)
|∇U(x0)|

,
∇⊥U(x0)
|∇U(x0)|

⟩ + O(ε3)

= U(x0) − ε2 + O(ε3).(3.2)

If ε is small enough, (3.2) gives U(x1) < U(x0), which shows in particular that x1 ̸= x∗.
Therefore we can iterate the preceding construction. This gives a sequence xk ∈ Ω and bk = ±1
(k = 1, 2 . . .) with xk+1 = xk +

√
2εbk∇⊥U(xk)/|∇U(xk)|, such that U ε(xk) ≤ U ε(xk+1) + ε2 and

U(xk+1) = U(xk) − ε2 + O(ε3). Adding these relations as k varies, we have

(3.3) U ε(x0) ≤ U ε(xk) + kε2

and

(3.4) U(xk) = U(x0) − k(ε2 + O(ε3)).

The iteration stops when the sequence xk leaves Ω. Now, U is positive and bounded in Ω,
whereas (3.4) would force U(xk) to be negative for k > U(x0)/(ε2 +O(ε3)). Therefore the sequence
terminates in at most U(x0)/(ε2 + O(ε3)) steps, i.e. there exists K < U(x0)/(ε2 + O(ε3)) (K
depends on ε and x0) such that xK ∈ Ω but xK+1 = xK +

√
2εbK∇⊥U(xK)/|∇U(xK)| lies outside

Ω (here the O(ε3) is the same function as in (3.4)).
Since xK+1 lies outside Ω we have U ε(xK+1) = 0 and U ε(xK) = ε2; therefore (3.3) becomes

U ε(x0) ≤ (K + 1)ε2.

On the other hand, (3.4) with k = K gives

U(x0) = U(xK) + K(ε2 + O(ε3)) ≥ Kε2 + O(ε)

since K ≤ C
ε2 and U(xK) > 0. Subtracting these relations, we conclude that U ε(x0)−U(x0) ≤ O(ε).

This proves the Proposition. !

Proposition 3.2 Let Ω be a smoothly bounded, strictly convex domain in the plane. Then

U ε(x) ≥ U(x) − Cε

for all sufficiently small ε > 0 and every x ∈ Ω. The constant C depends on Ω but not on x or ε.

Proof: Let x = x0 be in Ω. We start again from the characterization (2.1), but this time we choose
v0 to achieve the min in (2.1):

U ε(x0) = max
b=±1

U ε(x0 +
√

2εbv0) + ε2;

in particular, for each b = ±1 we have

U ε(x0) ≥ U ε(x0 +
√

2εbv0) + ε2.
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Let x1 = x0 +
√

2εb0v0 (the convenient choice of b0 = ±1 will be specified later). Let us iterate this
process: given xk (k ≥ 1), choose vk so that

U ε(xk) = max
b=±1

U ε(xk +
√

2εbvk) + ε2

and let xk+1 = xk +
√

2εbkvk where bk = ±1 will be chosen later. For each k, we have

(3.5) U ε(xk) ≥ U ε(xk+1) + ε2.

Combining these inequalities, we have

(3.6) U ε(x0) − U ε(xk) ≥ kε2.

We claim that if the bk’s are chosen properly then

(3.7) U(xk+1) − U(xk) ≥ −ε2 + O(ε3).

Recall that by Taylor expansion, as in Lemma 2.2, we have for any unit-norm v,

(3.8) max
bk=±1

U(xk +
√

2εbkv) − U(xk) =
√

2ε|∇U(xk) · v| + ε2⟨D2U(xk)v, v⟩ + O(ε3).

Let us assume for the moment that ∇U(xk) ̸= 0 and write temporarily v = cos θ ∇U(xk)
|∇U(xk)| +

sin θ∇⊥U(xk)
|∇U(xk)| . Then the right hand side of (3.8) is equal to

√
2ε| cos θ||∇U(xk)| + ε2 cos2 θ⟨D2U(xk)

∇U(xk)
|∇U(xk)|

,
∇U(xk)
|∇U(xk)|

⟩

+ ε2 sin2 θ⟨D2U(xk)
∇⊥U(xk)
|∇U(xk)| ,

∇⊥U(xk)
|∇U(xk)|

⟩

+ 2ε2 sin θ cos θ⟨D2U(xk)
∇U(xk)
|∇U(xk)|

,
∇⊥U(xk)
|∇U(xk)|

⟩ + O(ε3).

It follows using (1.5) that

(3.9) max
bk=±1

U(xk +
√

2εbkv) − U(xk) ≥
√

2ε| cos θ||∇U(xk)|

+ ε2 cos2 θ⟨D2U(xk)
∇U(xk)
|∇U(xk)|

,
∇U(xk)
|∇U(xk)|

⟩

− 2ε2| cos θ|
∣∣∣∣⟨D

2U(xk)
∇U(xk)
|∇U(xk)|

,
∇⊥U(xk)
|∇U(xk)|

⟩
∣∣∣∣ − ε2 + O(ε3).

We observe that the right-hand side is a polynomial of degree 2 of | cos θ| ∈ [0, 1], so we we see
that there exists a (large) constant c1 (depending on k) such that |∇U(xk)| ≥ c1ε implies that for
every θ, the expression on the right-hand side is bounded below by −ε2 + O(ε3). On the other
hand, if |∇U(xk)| ≤ c1ε then xk must be near the point x∗ where U achieves its maximum. Since
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U is C3 and D2U(x∗) = −I, we have |∇U(x)| ≥ (1/2)∥x − x∗∥ in a neighborhood of x∗. Therefore
|∇U(xk)| ≤ c1ε implies ∥xk − x∗∥ = O(ε), and (2.2) gives

max
bk=±1

U(xk +
√

2εbkvk) ≥ U(xk) + ε2⟨D2U(xk)vk, vk⟩ + O(ε3)

= U(xk) + ε2⟨D2U(x∗)vk, vk⟩ + O(ε3)
= U(xk) − ε2 + O(ε3),

using Lemma 3.1(b) for the last step. We choose bk achieving this max. Thus our claim (3.7) is
valid for all xk (even if ∇U(xk) = 0). Combining the relations (3.7) as k varies, we conclude that

(3.10) U(x0) − U(xk) ≤ k(ε2 + O(ε3)),

provided xk ∈ Ω.
The iteration stops when the sequence xk leaves Ω. Since U ε is bounded, this happens in at

most O(1/ε2) steps. If xK ∈ Ω but xK+1 = xK +
√

2εbKvK lies outside Ω then our results give

U ε(x0) ≥ (K + 1)ε2

and
U(x0) ≤ U(xK) + K(ε2 + O(ε3)) ≤ Kε2 + O(ε)

since K = O(1/ε2) and U(xK) = O(ε) (because xK is near ∂Ω, and U vanishes at ∂Ω). Subtracting
these relations, we conclude that U ε(x0) − U(x0) ≥ O(ε). This proves the proposition. !

Taken together, Propositions 3.1 and 3.2 establish Theorem 1. By the way, in proving the
propositions we used the existence of a classical solution U of (1.5), but not its uniqueness. So
Theorem 1 also gives, as a byproduct, an independent proof of uniqueness.

4 Motion by curvature, analyzed by the viscosity method

This section proves Theorem 2. Our attention is thus on the finite-horizon-time version of the game,
where Paul’s goal is to minimize u0(y(T )) for a given “maturity” time T and a fixed “objective”
function u0. Theorem 2 asserts that the level sets of the limiting value function u(x, t) execute
motion by curvature backward in time.

If u(x, t) is smooth enough, convergence can be proved by a verification argument similar to the
one in Section 3. However, to avoid redundancy and achieve greater generality we present only the
argument based on viscosity methods. The main point is to prove that limε→0 uε(x, t) is a viscosity
solution of (1.11).

As noted in the Introduction, Theorem 2 is quite close to the results in [CDK, Pa]. The proof
in [CDK] uses a nonlinear semigroup framework, following [Ev1]; the one in [Pa] uses the fact
that monotonicity, stability, and consistency imply convergence [BS]. We have chosen to give a
different proof, based directly on the optimal control problem. We like this argument because it
is quite elementary (modulo the use of a comparison result from the theory of viscosity solutions).
It is, moreover, quite similar to the standard argument connecting the viscosity solution of a first-
order Hamilton-Jacobi-Bellman equation with the value function of the associated control problem.
Finally, this control-based argument will also be needed in Section 5.
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One might expect the proof to proceed in two steps, first showing the existence of u = limε→0 uε

then proving that the limit is a viscosity solution. Actually it does not proceed this way: the
viscosity method proves simultaneously that the limit exists and that it is a viscosity solution. But
it is perhaps of interest that the compactness of the functions uε can also be proved by a more
classical (not viscosity-based) method. We give this argument in Appendix B.

In the time-dependent setting of this section there is no domain Ω; rather, the game is played in
all R2. Our argument has no convexity hypotheses; the main requirement is that u0 be continuous
and constant outside of a compact set. These assumptions are used only to know that the viscosity
solution of the limiting PDE is unique, as proved in [CGG, ESp] (see also [Gi1]).

4.1 The value function

We are interested in the value function uε(x, kε2), defined by (1.9). For ε > 0 the maturity time is
Tε = Nε2 with N = Nε chosen so that limε→0 Tε = T . Our main tool is the dynamic programming
principle, already stated as (1.10), which we restate here:

(4.1) uε(x, kε2) = min
∥v∥=1

max
b=±1

uε(x +
√

2εbv, (k + 1)ε2)

with uε(x,Nε2) = u0(x). Here the min is achieved, because uε is continuous in x. (The proof
of Proposition B.1 in Appendix B shows that uε is Lipschitz continuous in x if u0 is Lipschitz
continuous; one can show by the same method that any modulus of continuity for u0 is also a
modulus of continuity for uε.)

4.2 Mean curvature flow

We recall that the level-set approach to mean-curvature flow (in any dimension) consists of solving
(1.11) backward in time. For the following definition refer also to [CIL].

Definition 2 ([ESp]) 1. An upper semicontinuous function u is a viscosity subsolution of (1.11)
if whenever φ(x, t) is smooth and u − φ has a local maximum at (x0, t0) we have

(4.2) ∂tφ + ∆φ − ⟨D2φ
∇φ

|∇φ| ,
∇φ

|∇φ|⟩ ≥ 0 at (x0, t0)

if ∇φ(x0, t0) ̸= 0, and

(4.3) ∂tφ +
∑

ij

(δij − ηiηj)φxixj ≥ 0 at (x0, t0)

for some η with ∥η∥ ≤ 1, if ∇φ(x0, t0) = 0.

2. A lower semicontinuous function u is a viscosity supersolution of (1.11) if whenever φ(x, t) is
smooth and u − φ has a local minimum at (x0, t0) then

(4.4) ∂tφ + ∆φ − ⟨D2φ
∇φ

|∇φ| ,
∇φ

|∇φ|⟩ ≤ 0 at (x0, t0)
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if ∇φ(x0, t0) ̸= 0, and

(4.5) ∂tφ +
∑

ij

(δij − ηiηj)φxixj ≤ 0 at (x0, t0)

for some η with ∥η∥ ≤ 1, if ∇φ(x0, t0) = 0.

3. u is a viscosity solution of (1.11) if it is both a sub and a supersolution.

A slightly different but equivalent definition is given in [CGG]. As we already mentioned, this
viscosity solution has been proved to be unique in [ESp, CGG].

4.3 Proof of convergence

Notice that if the objective function u0 is uniformly bounded in R2 then so are the value functions
uε for all ε. Following the literature on viscosity solution, we define

u = lim sup∗uε i.e. u(x) = lim sup
y→x, ε→0

uε(y)(4.6)

u = lim inf∗uε i.e. u(x) = lim inf
y→x, ε→0

uε(x).(4.7)

Clearly u is upper semicontinuous, u is lower semicontinuous and u ≤ u. We will prove that u is a
viscosity subsolution (in the sense of Definition 2) and u a viscosity supersolution.

Proposition 4.1 u is a viscosity subsolution of (1.11).

Proof: We argue by contradiction. If not, then there is a smooth φ such that (x0, t0) is a local
maximum of u − φ, with

(4.8) ∂tφ + ∆φ − ⟨D2φ
∇φ

|∇φ| ,
∇φ

|∇φ| ⟩ ≤ θ0 < 0 at (x0, t0)

if ∇φ(x0, t0) ̸= 0, or

(4.9) ∂tφ +
∑

i,j

(δij − ηiηj) φxixj ≤ θ0 < 0 at (x0, t0)

for all η with ∥η∥ ≤ 1, if ∇φ(x0, t0) = 0. Adding to φ a nonnegative function whose derivatives at
(x0, t0) are all zero up to second order, we can assume that (x0, t0) is a strict local maximum of
u − φ.

Changing θ0 if necessary, we can find a δ-neighborhood of (x0, t0) in which (4.8)-(4.9) hold, and
in which (x0, t0) is the unique maximum of u − φ. We can also find, up to extraction, a sequence
(x0

ε, t
0
ε) → (x0, t0) such that uε(x0

ε, t
0
ε) → u(x0, t0). Assume for the moment that ∇φ ̸= 0 in the

δ-neighborhood under consideration. We construct the following sequence (which depends on ε)

X0 = (x0
ε, t

0
ε)

X1 =
(
x0

ε +
√

2εb0
∇⊥φ(x0

ε,t0ε)
|∇φ(x0

ε,t0ε)| , t
0
ε + ε2

)
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and by induction

Xk+1 = Xk +
(√

2εbk
∇⊥φ(Xk)
|∇φ(Xk)| , ε

2

)
.

Here the bk = ±1 are to be determined later. Finally the continuous path X(s) is taken to be the
path that affinely interpolates between these points i.e. X(s) = Xk +

(
s
ε2 − k

)
(Xk+1 − Xk) for

t0ε + kε2 ≤ s ≤ t0ε + (k + 1)ε2, and we write X(s) = (x(s), s).
Using the characterization (4.1) we have, for all v such that ∥v∥ = 1,

(4.10) uε(x, t0ε + kε2) ≤ max
b=±1

uε(x +
√

2εbv, t0ε + (k + 1)ε2).

Applying this to Xk and v = ∇⊥φ(Xk)
|∇φ(Xk)| , we can now choose the bk’s that achieve the max in all the

quantities above and get

(4.11) uε(Xk) ≤ uε(Xk+1).

Summing up these inequalities, we are led to

(4.12) uε(X0) ≤ uε(Xk).

Next, let us evaluate φ(X(t0 + s)) − φ(X(t0)). We have

(4.13)
∂

∂t
φ(X(t)) = ∂tφ(x(t), t) + ∇φ(x(t), t) · dtx(t).

But
∂

∂t
∇φ(x(t), t) = ∇φt(x(t), t) + D2φ(x(t), t)dtx(t)

hence when dtx(t) is a constant, we have

(4.14)
∂2

∂t2
φ(X(t)) = ∂2

t φ(X(t)) + 2∇φt(X(t)) · dtx(t) + ⟨D2φ(X(t))dtx(t), dtx(t)⟩.

Observing that for s ∈ [t0ε + kε2, t0ε + (k + 1)ε2), we have dtx(t) = bk

√
2

ε
∇⊥φ(Xk)
|∇φ(Xk)| , we deduce,

writing a Taylor expansion of φ(X(t)) around t0ε + kε2, that

(4.15) φ(Xk+1) − φ(Xk) = ε2
(
∂tφ(Xk) + ∇φ(Xk) · bk

√
2

ε

∇⊥φ(Xk)
|∇φ(Xk)|

)

+
ε4

2

(
∂2

t φ(Xk) + 2∇φt(Xk) · bk

√
2

ε

∇⊥φ(Xk)
|∇φ(Xk)|

+
2
ε2

⟨D2φ(Xk)
∇⊥φ(Xk)
|∇φ(Xk)|

,
∇⊥φ(Xk)
|∇φ(Xk)|

⟩
)

+ o(ε2).

Using the fact that φ is smooth, we deduce that

(4.16) φ(Xk+1) − φ(Xk) = ε2

(
∂tφ(Xk) + ⟨D2φ(Xk)

∇⊥φ(Xk)
|∇φ(Xk)|

,
∇⊥φ(Xk)
|∇φ(Xk)|

⟩ + o(1)
)

,
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where the o(1) depends only on the C3 norm of φ. Then, with the hypothesis (4.8), and using the
identity

∆φ − ⟨D2φ
∇φ

|∇φ| ,
∇φ

|∇φ|⟩ = ⟨D2φ
∇⊥φ

|∇φ| ,
∇⊥φ

|∇φ| ⟩,

we deduce that

(4.17) φ(Xk+1) − φ(Xk) ≤ ε2θ0 + o(ε2).

Adding up all these estimates, we finally obtain that

(4.18) φ(Xk) − φ(X0) ≤ kε2(θ0 + o(1)) <
kε2θ0

2
< 0 for ε small enough.

Adding this relation to (4.12), we obtain

(4.19) uε(X0) − φ(X0) ≤ uε(Xk) − φ(Xk).

Now, recall that X0 = (x0
ε, t

0
ε) → (x0, t0) and uε(X0) → u(x0, t0) by construction, thus φ(X0) →

φ(x0, t0) (by continuity of φ). It is tempting to take k of order 1/ε2, so that Xk stays bounded
away from X0, by (4.18). But we cannot necessarily do this: since the spatial step size is ε, Xk can
easily leave our δ-neighborhood of X0 for k of order 1/ε. No matter: we can certainly choose k = kε

so that Xk stays in the δ-neighborhood of (x0, t0), and Xk → (x′, t′) ̸= (x0, t0) (after extraction).
We then have lim φ(Xk) = φ(x′, t′) and obviously by definition of u, lim supε→0 uε(Xk) ≤ u(x′, t′).
Combining all these elements and passing to the limit in (4.19) we are led to

(4.20) u(x0, t0) − φ(x0, t0) ≤ u(x′, t′) − φ(x′, t′).

Since (x′, t′) is not equal to (x0, t0) and is in the δ-neighborhood in which (x0, t0) is the unique
maximum of u − φ, we have reached a contradiction.

We assumed above that ∇φ(x0, t0) ̸= 0. But a similar argument can be used if ∇φ(x0, t0) = 0.
Indeed: we use the same construction whenever ∇φ(Xk) ̸= 0, and we replace ∇⊥φ(Xk)

|∇φ(Xk)| by an
arbitrary unit-norm vector whenever ∇φ(Xk) = 0. Observe that when ∥η∥2 = 1,

∑

ij

φxixj (δij − ηiηj) = ⟨D2φη⊥, η⊥⟩;

therefore (4.9) says that for every v such that ∥v∥ = 1,

(4.21) ∂tφ + ⟨D2φv, v⟩ ≤ θ0 < 0

in the δ-neighborhood of (x0, t0). Using this fact and arguing exactly as above, we once again reach
a contradiction. !

Proposition 4.2 u is a viscosity supersolution of (1.11).

Proof: We argue by contradiction. If not, then there is a smooth φ such that (x0, t0) is a local
minimum of u − φ, with

(4.22) ∂tφ + ∆φ − ⟨D2φ
∇φ

|∇φ| ,
∇φ

|∇φ| ⟩ ≥ θ0 > 0 at (x0, t0)
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if ∇φ(x0, t0) ̸= 0 and

(4.23) ∂tφ +
∑

ij

(δij − ηiηj) φxixj ≥ θ0 > 0 at (x0, t0)

for all η with ∥η∥ ≤ 1, if ∇φ(x0, t0) = 0. Again, without loss of generality, we can assume the
minimum is strict. Changing θ0 if necessary, we can also find a δ-neighborhood of (x0, t0) in which
such assertions hold. Again we can find (x0

ε, t
0
ε) → (x0, t0) such that uε(x0

ε, t
0
ε) → u(x0, t0). Taking

the unit-norm v0 that achieves the minimum in the characterization (4.1), we find

(4.24) uε(x0
ε, t

0
ε) = max

b=±1
uε(x +

√
2εbv0, t

0
ε + ε2).

Let thus X0 = (x0
ε, t

0
ε), X1 = (x0

ε +
√

2εb0v0, t0ε + ε2) and inductively Xk+1 = Xk + (
√

2εbkvk, ε2)
where the vk achieve the min in (4.1) and the bk are to be determined later. We have for all
bk = ±1,

uε(Xk) ≥ uε(Xk+1),

and thus

(4.25) uε(X0) ≥ uε(Xk).

On the other hand, extending Xk into an affine path by affine interpolation, and doing a Taylor
expansion as in (4.15), we find

(4.26) φ(Xk+1) − φ(Xk) = ε∇φ(Xk) · bkvk + ε2
(
∂tφ(Xk) + ⟨D2φ(Xk)vk, vk⟩

)
+ O(ε3).

Let us first consider the case where ∇φ(x0, t0) ̸= 0. We can assume that ∇φ(x, t) ̸= 0 for all (x, t)
in the δ-neighborhood of (x0, t0) we are working in. Then, we use the analogue of Lemma 2.2(c)
(the proof is exactly the same) to see that for all sufficiently small ε the following statement is true:
for every v ∈ R2 such that ∥v∥ = 1, there exists a b = ±1 such that

(4.27) φ(x +
√

2εbv, t + ε2) − φ(x, t)

≥ ε2

(
∂tφ(x, t) + ⟨D2φ(x, t)

∇⊥φ(x, t)
|∇φ(x, t)| ,

∇⊥φ(x, t)
|∇φ(x, t)| ⟩

)
− C

(
1 +

1
|∇φ(x, t)|

)
ε3.

Using the assumption (4.22) (which is assumed to hold in the whole δ-neighborhood of (x0, t0)),
we are led to

(4.28) φ(Xk+1) − φ(Xk) ≥ ε2 θ0

2
,

for ε small enough.
When ∇φ(x0, t0) = 0, we simply write that by the analogue of Lemma 2.2(a), for any ∥v∥ = 1

there exists b = ±1 such that

(4.29) φ(x +
√

2εbv, t + ε2) − φ(x, t) ≥ ε2
(
∂tφ(x, t) + ⟨D2φ(x, t)v, v⟩

)
+ O(ε3).

and using (4.23), we deduce that (4.28) holds as well. Combining these relations as k varies, we
find

(4.30) φ(Xk) − φ(X0) ≥ kε2 θ0

2
,
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and adding this relation to (4.25), we are led to

(4.31) uε(X0) − φ(X0) ≥ uε(Xk) − φ(Xk).

Arguing as in the proof of the previous proposition, we have uε(X0)−φ(X0) → u(x0, t0)−φ(x0, t0)
as ε → 0. We can choose k = kε so that Xk → (x′, t′) belongs to the δ-neighborhood of (x0, t0) but is
different from (x0, t0). Passing to the limit in (4.31) and using the fact that lim inf uε(Xk) ≥ u(x′, t′),
we find

(4.32) u(x0, t0) − φ(x0, t0) ≥ u(x′, t′) − φ(x′, t′)

which contradicts the assumption of strict local minimality of (x0, t0). !

Combining these two propositions, we obtain that u is a subsolution and u a supersolution,
thus from maximum (or uniqueness) principles for viscosity solutions, we must have u ≤ u. On the
other hand, by construction, u ≤ lim inf∗ uε ≤ lim sup∗ uε ≤ u, thus u = u, it can be denoted u and
is the unique viscosity solution of (1.11). This also implies by elementary arguments (see [CIL] or
[Barles] Lemma 4.1 p 86) that uε converges uniformly to this u on every compact subset of R2 ×R.
Thus we have proved Theorem 2.

5 The minimum exit time, for nonconvex domains in the plane

This section considers nonconvex domains, developing a link between the minimum exit time and
“objective function” approaches. As explained in the introduction, this link involves relaxing the
constraint ∥v∥ = 1 to ∥v∥ ≤ 1 in the game. It is now necessary to assume that the objective
function u0 is positive in Ω, 0 on ∂Ω, and nonpositive in R2\Ω.

5.1 Convergence of the time-horizon game

The time horizon game with ∥v∥ ≤ 1 is defined as in (1.10) except that Paul is allowed to choose
a vector ∥v∥ ≤ 1. The dynamic programming characterization then becomes uε(x, T ) = u0(x) and

(5.1) uε(x, t) = min
∥v∥≤1

max
b=±1

uε(x +
√

2εbv, t + ε2)

The solution of the positive mean curvature flow is defined by the analogue of (1.11) (see [CGG])
with |∇u|div

(
∇u
|∇u|

)
replaced by

(
|∇u|div

(
∇u
|∇u|

))

−
where f− denotes the negative part of f . This

equation also has a unique solution in the viscosity sense. It corresponds to the evolution of the
level sets with normal velocity equal to the positive part of their curvature. A restatement of
Theorem 5 is this:

Theorem 5 As ε → 0, the value function uε for the ∥v∥ ≤ 1 game with objective-function u0 and
maturity time T converges locally uniformly to u, the viscosity solution of

(5.2)

⎧
⎨

⎩
ut +

(
|∇u|div

(
∇u

|∇u|

))

−
= 0

u(x, T ) = u0(x)
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The proof is like that of Theorem 2, with a few minor adjustments. First: in proving the
analogue of Proposition 4.1, when ∇φ(x0, t0) ̸= 0 and ⟨D2φ(Xk)

∇⊥φ(Xk)
|∇⊥φ(Xk)| ,

∇⊥φ(Xk)
|∇⊥φ(Xk)|⟩ > 0 we must

replace the previous choice of Xk+1 by Xk +(0, ε2). Second, the relevant analogue of Lemma 2.2(c)
is the following: for every v ∈ R2 such that ∥v∥ ≤ 1, there exists a b = ±1 such that

(5.3) φ(x +
√

2εbv) − φ(x) ≥ ε2

(
⟨D2φ(x)

∇⊥φ(x)
|∇φ(x)| ,

∇⊥φ(x)
|∇φ(x)| ⟩

)

−
− C

(
1 +

1
|∇φ(x)|

)
ε3.

This follows from the fact that

(5.4) min
∥v∥≤1,v·∇φ=0

⟨D2φ(x)v, v⟩ =
(
⟨D2φ(x)

∇⊥φ(x)
|∇φ(x)|

,
∇⊥φ(x)
|∇φ(x)|

⟩
)

−
.

Third, if ∇φ(x0, t0) = 0, then by Taylor expansion we have

(5.5) φ(x +
√

2εbv) − φ(x) ≥ ε2
(
⟨D2φ(x)v, v⟩

)
− + O(ε3)

for any ∥v∥ ≤ 1. Finally, (5.3)-(5.5) have obvious time-dependent analogues. Using these observa-
tions, the proof of Theorem 5 is straightforward.

5.2 Equivalence of the time-horizon and exit games

Now consider the exit-time version of the ∥v∥ ≤ 1 game. The definition of the exit time or value
function U ε is like Definition 1, except that the “unit-norm vector v” is now a vector of norm ≤ 1.
The dynamic programming characterization of U ε is

(5.6) U ε(x) = min
∥v∥≤1

max
b=±1

U ε(x +
√

2εbv) + ε2.

The following result asserts, in essence, that the exit-time and time-horizon versions of the ∥v∥ ≤ 1
game are equivalent.

Lemma 5.1 Let uε and U ε be the value functions of the time horizon game and exit-time games
with ∥v∥ ≤ 1. Then, for all x ∈ Ω, and all t = kε2,

(5.7) U ε(x) ≤ t ⇐⇒ uε(x, T − t) ≤ 0.

Proof: Observe first that since we can take v = 0 as a test vector in (5.1), we have for every x, t,

(5.8) uε(x, t) = min
∥v∥≤1

max
b=±1

uε(x +
√

2εbv, t + ε2) ≤ uε(x, t + ε2),

that is for fixed x, uε increases in time. (This is different from the game with ∥v∥ = 1.)
Let us prove by induction on k that if x ∈ Ω, U ε(x) ≤ kε2 implies uε(x, T − kε2) ≤ 0. The

assertion is true for k = 0 because if U ε(x) = 0 and x ∈ Ω then x ∈ ∂Ω and thus by definition
uε(x, T ) = u0(x) = 0. Assume it is true for k, and U ε(x) ≤ (k + 1)ε2. Then, by characterization
(5.6),

min
∥v∥≤1

max
b=±1

U ε(x +
√

2εbv) ≤ kε2.
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That is there exists v with ∥v∥ ≤ 1, such that for all b = ±1, U ε(x+
√

2εbv) ≤ kε2. If x+
√

2εbv /∈ Ω,
then by definition

uε(x +
√

2εbv, T ) = u0(x +
√

2εbv) ≤ 0

and thus for all k, uε(x+
√

2εbv, T −kε2) ≤ 0 in view of (5.8). If on the other hand x+
√

2εbv ∈ Ω,
then by the induction hypothesis we can also deduce that uε(x+

√
2εbv, T − kε2) ≤ 0 holds for this

v and every b. Thus,
min
∥v∥≤1

max
b=±1

uε(x +
√

2εbv, T − kε2) ≤ 0

which is exactly
uε(x, T − (k + 1)ε2) ≤ 0.

The property is thus proved by induction.
Conversely, let us prove by induction that if x ∈ Ω, uε(x, T −kε2) ≤ 0 implies U ε(x) ≤ kε2. The

property is clearly true for k = 0. Assume it is true for k, and uε(x, T − (k + 1)ε2) ≤ 0. Then by
(5.1), there exists ∥v∥ ≤ 1 such that for every b = ±1, uε(x+

√
2εbv, T −kε2) ≤ 0. By the induction

hypothesis, for all b = ±1, U ε(x +
√

2εbv) ≤ kε2 (this is trivially valid when x +
√

2εbv /∈ Ω). We
deduce that min∥v∥≤1 maxb=±1 U ε(x+

√
2εbv) ≤ kε2, thus by (5.6), U ε(x) ≤ (k+1)ε2. The property

is proved by induction. !

Remark : The exit-time and time-horizon versions of the ∥v∥ = 1 game are not equivalent.

Theorem 6 is an easy consequence of Lemma 5.1.

Proof of Theorem 6: First, we define as before

U = lim sup∗U ε i.e. U(x) = lim sup
y→x, ε→0

U ε(y)

U = lim inf∗U ε i.e. U(x) = lim inf
y→x, ε→0

U ε(x).

From Lemma 5.1, we get that uε(x, T − U ε(x)) ≤ 0. Since uε converges uniformly on compact
subsets of Ω, we deduce that for every x ∈ Ω, u(x, T − U(x)) ≤ 0 and u(x, T − U(x)) ≤ 0. On the
other hand from Lemma 5.1 we also have U ε(x) > t ⇔ uε(x, T−t) > 0. Therefore taking t = U ε−ε2

we have uε(x, T − U ε(x) + ε2) > 0, and passing to the limit ε → 0 gives u(x, T − U(x)) ≥ 0 and
u(x, T − U(x)) ≥ 0 by uniform convergence of uε. Thus

u(x, T − U(x)) = u(x, T − U(x)) = 0,

as asserted. !

5.3 Convergence of the exit-time games

We have proved Theorems 5 and 6. However we have yet to address Theorems 3 and 8, concerning
the convergence of the exit times U ε for the ∥v∥ = 1 and ∥v∥ ≤ 1 games. Recall that by Lemma
2.1 these exit times are uniformly bounded in Ω. The interesting case is of course when Ω is not
convex.

We use the framework of viscosity solutions of boundary-value problems. Since the Hamiltonians
under consideration are not smooth enough, the usual definition (see [CIL, Barles]) needs to be
relaxed as in [ESp] or via “superjets” (see [CIL]). Here is a careful definition of what it means for
u to be a subsolution or supersolution of (1.5).
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Definition 3 1. An upper semicontinuous function U is a viscosity subsolution of

(5.9)

⎧
⎨

⎩
−1 − |∇U |div

(
∇U
|∇U |

)
= 0 in Ω

U = 0 at ∂Ω

if

(a) whenever φ is smooth and U − φ has a local maximum at x0 ∈ Ω then

1 + ∆φ − ⟨D2φ
∇φ

|∇φ|
,
∇φ

|∇φ|
⟩ ≥ 0 at x0

if ∇φ(x0) ̸= 0, and
1 +

∑

ij

(δij − ηiηj)φxixj ≥ 0 at x0

for some η with ∥η∥ ≤ 1, if ∇φ(x0) = 0; and

(b) whenever φ is smooth and U−φ has a local maximum at x0 ∈ ∂Ω, either the previous condition
holds or U(x0) ≤ 0.

2. A lower semicontinuous function U is a viscosity supersolution of (5.9) if

(a) whenever φ is smooth and U − φ has a local minimum at x0 ∈ Ω then

1 + ∆φ − ⟨D2φ
∇φ

|∇φ| ,
∇φ

|∇φ|⟩ ≤ 0 at x0

if ∇φ(x0) ̸= 0, and
1 +

∑

ij

(δij − ηiηj)φxixj ≤ 0 at x0

for some η with ∥η∥ ≤ 1, if ∇φ(x0) = 0; and

(b) whenever φ is smooth and U−φ has a local minimum at x0 ∈ ∂Ω, either the previous condition
holds or else U(x0) ≥ 0.

Our goal is to prove Theorems 3 and 8. Here is a rigorous statement of their combined assertions.

Theorems 3 and 8 For either the ∥v∥ = 1 or ∥v∥ ≤ 1 game, let U ε be the scaled exit time, and
consider

U = lim sup∗U ε i.e. U(x) = lim sup
y→x, ε→0

U ε(y)

U = lim inf∗U ε i.e. U(x) = lim inf
y→x, ε→0

U ε(x).

Then U is a viscosity subsolution of (5.9) and U is a viscosity supersolution of (5.9), as defined in
Definition 3.
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Proof: The overall strategy is the same as for Theorem 2. We focus first, in Steps 1 and 2, on the
∥v∥ = 1 version of the game. Then in Step 3 we’ll consider the ∥v∥ ≤ 1 game.

step 1. We claim that when U ε is the exit time for the the ∥v∥ = 1 game, U is a viscosity
subsolution of (5.9). Clearly it is upper semicontinuous. We argue by contradiction. Suppose φ is
smooth and x0 is a local maximum of U − φ (with x0 ∈ Ω for the moment) such that

(5.10) 1 + |∇φ|div
(

∇φ

|∇φ|

)
= 1 + ⟨D2φ

∇⊥φ

|∇φ| ,
∇⊥φ

|∇φ| ⟩ ≤ θ0 < 0 at x0,

if ∇φ(x0) ̸= 0, and

(5.11) 1 +
∑

ij

(δij − ηiηj) φxixj ≤ θ0 < 0

for all η with ∥η∥ ≤ 1, if ∇φ(x0, t0) = 0. Adding to φ a nonnegative function whose derivatives at
x0 vanish to second order, we can assume that x0 is a strict local maximum of U − φ.

Changing θ0 if necessary, we can find a δ-neighborhood of x0 in Ω in which (5.10)-(5.11) hold,
and in which x0 is the unique maximum of U − φ. We can also find, up to extraction, a sequence
x0

ε → x0 such that U ε(x0
ε) → U(x0). Assume for the moment that ∇φ ̸= 0 in the δ-neighborhood

under consideration. We construct the following sequence

X0 = x0
ε

Xk+1 = Xk +
√

2εbk
∇⊥φ(Xk)
|∇φ(Xk)| .

Here the bk = ±1 are to be determined later. Finally the continuous path X(s) is taken to be the
path that affinely interpolates between those points, i.e. X(s) = Xk +

(
s
ε2 − k

)
(Xk+1 − Xk) for

kε2 ≤ s ≤ (k + 1)ε2.
Using the characterization (2.1), we can choose the bk’s such that

(5.12) U ε(Xk) ≤ U ε(Xk+1) + ε2.

Summing up these inequalities over k, we are led to

(5.13) U ε(X0) ≤ U ε(Xk) + kε2.

On the other hand, by Taylor expansion, we have

(5.14) φ(Xk+1) − φ(Xk) = ε2 < D2φ(Xk)
∇⊥φ(Xk)
|∇φ(Xk)| ,

∇⊥φ(Xk)
|∇φ(Xk)|

> +o(ε2)

and from (5.10), we deduce that

(5.15) φ(Xk+1) − φ(Xk) ≤ ε2(−1 + θ0) + o(ε2).

Adding up all these estimates, we obtain that

(5.16) φ(Xk) − φ(X0) ≤ kε2(−1 + θ0 + o(1)) < −kε2 for ε small enough.
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Now combining (5.13) and (5.16) we conclude that

(5.17) U ε(X0) − φ(X0) ≤ U ε(Xk) − φ(Xk).

Recall that X0 = x0
ε → x0 and uε(X0) → U(x0, t0) by construction, and φ(X0) → φ(x0) by the

continuity of φ.
As in the proof of Proposition 4.1, it is tempting to take k of order 1/ε2, so that Xk stays

bounded away from X0 by (5.16). But we cannot necessarily do this: since the spatial step size
is ε, Xk can easily leave our δ-neighborhood of X0 for k of order 1/ε. No matter: we can choose
k = kε so that Xk stays in the δ-neighborhood of x0, and Xk → x′ ̸= x0 (after extraction). We then
have lim φ(Xk) = φ(x′) and obviously by definition of U , lim supε→0 U ε(Xk) ≤ U(x′). Combining
all these elements and passing to the limit in (5.17) we conclude that

U(x0) − φ(x0) ≤ U(x′) − φ(x′).

But x′ is in the δ-neighborhood where x0 is the unique maximum of U − φ, and x′ ̸= x0. This is a
contradiction.

We assumed above that ∇φ(x0) ̸= 0 in the δ-neighborhood of x0. But this assumption was not
really necessary. When ∇φ(Xk) = 0 we need merely replace ∇⊥φ(Xk)

|∇φ(Xk)| by an arbitrary unit-norm
vector. The argument still works, with obvious modifications, leading as before to a contradiction.

Finally, consider x0 ∈ ∂Ω. Arguing by contradiction as usual, we suppose (5.10)-(5.11) hold
and also

U(x0) ≥ η > 0.

Taking x0
ε → x0 such that U ε(x0

ε) → U(x0), we have U ε(x0
ε) ≥

η
2 for ε small enough. This implies

that x0
ε ∈ Ω (since by definition U ε = 0 on ∂Ω). We can apply the exact same construction as

above. For k < η
2ε2 we have, in view of (5.13), U ε(Xk) > 0 and therefore Xk ∈ Ω. So we can

complete the argument as before (keeping k < η
2ε2 ), obtaining a contradiction in this case too.

step 2: Now let’s show that when U ε is the exit time for the the ∥v∥ = 1 game, U is a viscosity
supersolution of (5.9). Clearly it is lower semicontinuous. We argue by contradiction. Suppose φ
is smooth and x0 is a strict local minimum of U − φ (again we can assume strictness without loss
of generality) and

(5.18) 1 + ⟨D2φ
∇⊥φ

|∇φ|
,
∇⊥φ

|∇φ|
⟩ ≥ θ0 > 0 in a neighborhood of x0

if ∇φ(x0) ̸= 0, or

(5.19) 1 + (δij − ηiηj)φxixj ≥ θ0 > 0 in a neighborhood of x0

for all η with ∥η∥ ≤ 1, if ∇φ(x0) = 0. We need only consider x0 ∈ Ω since U = lim inf U ε ≥ 0, so
that part (b) of the definition of a supersolution is trivially satisfied.

Let x0
ε → x0 such that U ε(x0

ε) → U(x0). Let us construct again a sequence Xk with X0 = x0
ε

by iteration. Using the characterization (2.1), Xk being constructed, we can choose vk and Xk+1 =
Xk +

√
2εbkvk such that for any choice of bk = ±1,

(5.20) U ε(Xk) ≥ U ε(Xk+1) + ε2.
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Adding up those relations leads to

(5.21) U ε(X0) ≥ U ε(Xk) + kε2.

On the other hand, using Lemma 2.2(c) with (5.18) if ∇φ(x0) ̸= 0, and (5.19) if ∇φ(x0) = 0, we
can choose the bk’s above in such a way that

(5.22) φ(Xk+1) ≥ φ(Xk) + ε2(−1 + θ0) + o(ε2)

and thus

(5.23) φ(Xk) ≥ φ(X0) − kε2.

Adding up (5.21) and (5.23) yields

(5.24) U ε(X0) − φ(X0) ≥ U ε(Xk) − φ(Xk).

Now take k ≤ O( 1
ε2 ) so that Xk stays in the δ-neighborhood and (up to extraction) Xk → x′ ̸= x0.

We have lim infε→0 U ε(Xk) ≥ U(x′), and passing to the limit in (5.24) we get

(5.25) U(x0) − φ(x0) ≥ U(x′) − φ(x′).

This is a contradiction, since x0 was the unique minimum of U − φ in the δ-neighborhood.

step 3: We turn now to the ∥v∥ ≤ 1 version of the game. Arguing exactly as in Steps 1 and 2, we
see that U is a subsolution and U a supersolution of

(5.26)

⎧
⎨

⎩
−1 −

(
|∇U |div

(
∇U
|∇U |

))

−
= 0 in Ω

U = 0 at ∂Ω

No new idea is need; the main departure from the previous argument is that we must use (5.3) in
place of Lemma 2.2.

The assertion of the theorem is that U and U are sub and supersolutions of (5.9) not (5.26).
But actually the two equations have the same sub and supersolutions. This is a consequence of the
elementary facts that for any y ∈ R,

(5.27) 1 + y− ≥ 0 ⇐⇒ y ≥ −1 ⇐⇒ 1 + y ≥ 0

and

(5.28) 1 + y− ≤ 0 ⇐⇒ y ≤ −1 ⇐⇒ 1 + y ≤ 0.

For example, suppose U is a subsolution of (5.26). Then for every smooth φ, if U − φ has a local
maximum at x0 ∈ Ω we have

(5.29) 1 +
(
⟨D2φ

∇⊥φ

|∇φ|
,
∇⊥φ

|∇φ|
⟩
)

−
≥ 0 at x0
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if ∇φ(x0) ̸= 0, and

(5.30) 1 +

⎛

⎝
∑

ij

(δij − ηiηj)φxixj

⎞

⎠

−

≥ 0

for some η with ∥η∥ ≤ 1, if ∇φ(x0) = 0. Moreover if U −φ has a local maximum at x0 ∈ ∂Ω, either
the preceding condition holds or U(x0) ≤ 0. By (5.27), (5.29) and (5.30) are equivalent to

1 + ⟨D2φ
∇⊥φ

|∇φ| ,
∇⊥φ

|∇φ| ⟩ ≥ 0 at x0

and
1 +

∑

ij

(δij − ηiηj)φxixj ≥ 0

respectively. Therefore U is also a subsolution of (5.9). The proof that every supersolution of (5.26)
is also a supersolution of (5.9) is similar, using (5.28). !

As noted in the Introduction, Theorem 4 assures us that U∗ = U and U = U∗ for star-shaped
domains. This characterizes the limiting value function as the unique-up-to-envelope (possible
discontinuous) viscosity solution of (5.9).

5.4 Behavior of the exit time at the boundary

This section proves Theorem 7. Recall that at finite ε, Paul can only exit from the convex part
of the boundary (see Figure 3). If he starts a distance of order ε2 from the convex part of the
boundary, he should be able to exit in just a few steps; but if he starts near the concave part of the
boundary he should need many steps, since he must exit at a distant location. Theorem 7 refines
these two assertions, by proving analogous statements about the scaled exit times.

Proof of (1.19): We must show that if Paul starts near the strictly convex part of ∂Ω then his scaled
exit time is small. The proof resembles the argument used for Lemma 2.1. The plan is simple:
we shall specify an exit strategy for Paul. The strategy is not optimal, but this doesn’t matter: it
gives the desired upper bound on his minimum exit time.

Fix x∗ ∈ ∂Ω and assume ∂Ω is strictly convex and C2 nearby. Let R∗ be the radius of curvature
at x∗, so ∂Ω is well-approximated near x∗ by its osculating circle, which has radius R∗. Now
consider a larger circle that’s also tangent to ∂Ω at x∗; let p be it’s center, and R > R∗ its radius.
If δ is sufficiently small then the concentric circle

∥x − p∥2 = R2 − δ

meets ∂Ω in two points near x∗ and determines a crescent-shaped neighborhood of x∗ in Ω (see
Figure 5; the crescent-shaped region lies between the circular arc ZW and ∂Ω). We claim that
if Paul starts in this crescent-shaped region then he requires at most 1

2δε−2 steps to exit. Put
differently: for all x in this crescent-shaped region U ε(x) ≤ δ/2. This is clearly sufficient to justify
(1.19).
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Figure 5: Left: The crescent-shaped region in the proof of (1.19). Right: the rectangle ABCD in
the proof of (1.20).

The proof of our claim is easy. Consider the following strategy for Paul: at position x, choose
the direction orthogonal to x−p. Starting from x = x0 in the crescent shaped region, Paul’s distance
from p increases monotonically, regardless of Carol’s choices:

∥xk − p∥2 = ∥x0 − p∥2 + 2kε2, for k = 1, 2 . . ..

This argument applies until Paul leaves the crescent-shaped region. Since his distance from p is
monotonically increasing, he can only leave this region by reaching ∂Ω. This happens in at most K
steps, where ∥x0−p∥2+2Kε2 = R2. Since x0 was in the crescent-shaped region, ∥x0−p∥2 ≥ R2−δ,
and it follows that K ≤ 1

2δε−2 as asserted. !

Proof of (1.20). We must show that if Paul starts near the strictly concave part of ∂Ω then his
scaled exit time is large. The proof resembles an argument used in Appendix C.3. The plan is
simple: we consider a specific strategy for Carol. The strategy is not optimal, but this doesn’t
matter: it gives the desired lower bound on Paul’s minimum exit time.

Fix x∗ ∈ ∂Ω and assume ∂Ω is strictly concave and C2 near x∗. For any x ∈ Ω near x∗, we can
find a rectangle with with vertices ABCD, entirely contained in Ω, such that x is on the segment
AB, and the other three sides BC, CD, and DA stay at least distance r > 0 away from ∂Ω (see
the right side of Figure 5). Here r is uniform for all x near x∗, since ∂Ω is C2 and strictly concave
at x∗. We claim that starting from x, Paul needs at least 1

2r2ε−2 steps to exit. Put differently: we
claim that U ε(x) ≥ r2/2. This is obviously sufficient to justify (1.20).

We may assume, without loss of generality, that [A,B] is parallel to the x1 axis and lies at the
bottom of the rectangle (as in the figure). Suppose Carol’s strategy is to keep Paul’s x2 increments
greater than or equal to 0. In other words, if at a given stage Paul’s choice of direction is (v1, v2),
Carol chooses b = ±1 so that v2b ≥ 0. Clearly no matter what strategy Paul uses, he cannot exit
ABCD along the segment AB. So if he ever exits the rectangle, it happens at some point x along
BC, CD, or DA. When this happens Paul is far from ∂Ω – specifically, his distance to ∂Ω is at
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least r. Thus he must exit from a ball of radius r about x before reaching ∂Ω. Now, the optimal
exit strategy for a ball is to choose each v in the tangent direction, and starting from the center
one reaches radius r in 1

2r2ε−2 steps. Thus if Carol pursues the proposed strategy, then Paul needs
at least 1

2r2ε−2 steps to exit from Ω, no matter what strategy he uses. !

6 Higher dimensions

We explained in Section 1.5 how the game must be modified to get motion by mean curvature in
R3:

(a) Paul chooses two orthogonal unit-length directions, i.e. vectors v,w ∈ R3 with ∥v∥ = ∥w∥ = 1
and v⊥w.

(b) Carol chooses whether to let Paul’s choices stand or reverse them – i.e. she chooses b = ±1,
β = ±1 and replaces v,w with bv and βw.

(c) Paul takes steps of size
√

2ε in each direction, moving from x to x +
√

2ε(bv + βw).

The extension to higher dimensions is obvious: in Rn, Paul chooses n − 1 orthogonal unit vectors,
and Carol can reverse any of them.

Our results connecting the scaled exit time to the positive curvature flow made use of the
“∥v∥ ≤ 1 game.” Its analogue in R3 replaces (a) above with

(a’) Paul chooses two orthogonal vectors with the same length, i.e. v,w ∈ R3 with ∥v∥ = ∥w∥ ≤ 1
and v⊥w.

In dimension n, Paul chooses n − 1 orthogonal vectors, all of the same norm ≤ 1.
Theorems 2–8 proved convergence of the scaled value functions, for both the time dependent

and minimum-exit-time versions of our planar game, and connected the exit time with the positive
curvature flow. Their proofs extend straightforwardly to the higher dimensional setting, using
Lemma 6.1 below in place of Lemma 2.2. Theorem 1 would extend too, if we knew that the arrival
time of the mean-curvature flow was C3.

Lemma 6.1 Let φ be a C3 function on compact subset of R3.

(a) for any x and any vectors v,w,

(6.1) max
b=±1,β=±1

φ(x +
√

2ε(bv + βw)) − φ(x)

≥ ε2
(
⟨D2φ(x)v, v⟩ + ⟨D2φ(x)w,w⟩

)
− Cε3.

(b) for any x such that ∇φ(x) ̸= 0, we have

(6.2) min
∥v∥=1,∥w∥=1,v⊥w

max
b=±1,β=±1

φ(x +
√

2ε(bv + βw)) − φ(x)

≤ ε2

(
∆φ(x) − ⟨D2φ

∇φ(x)
|∇φ(x)| ,

∇φ(x)
|∇φ(x)| ⟩

)
+ Cε3.
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(c) for any x such that ∇φ(x) ̸= 0 we have

(6.3) min
∥v∥=1,∥w∥=1,v⊥w

max
b=±1,β=±1

φ(x +
√

2ε(bv + βw)) − φ(x)

≥ ε2

(
∆φ(x) − ⟨D2φ(x)

∇φ(x)
|∇φ(x)| ,

∇φ(x)
|∇φ(x)| ⟩

)
− C

(
1 +

1
|∇φ(x)|

)
ε3.

In each estimate, the constant C depends only on the C3 norm of φ.

Proof: By Taylor expansion

φ(x +
√

2ε(bv + βw)) = φ(x) +
√

2ε∇φ(x) · (bv + βw)
+ε2⟨D2φ(x)(bv + βw), (bv + βw)⟩ + O(ε3)

= φ(x) +
√

2ε∇φ(x) · (bv + βw)
+ε2

(
⟨D2φ(x)v, v⟩ + ⟨D2φ(x)w,w⟩ + 2bβ⟨D2φ(x)v,w⟩

)
+ O(ε3).(6.4)

For any given v and w, we can choose b = ±1 so that b∇φ(x) · v = |∇φ(x) · v|. For this b

(6.5) φ(x +
√

2ε(bv + βw)) − φ(x) ≥
√

2ε|∇φ(x) · v| + ε2
(
⟨D2φ(x)v, v⟩) + ⟨D2φ(x)w,w⟩

)

+
√

2βε∇φ(x) · w + 2ε2βb⟨D2φ(x)v,w⟩ + O(ε3).

Grouping the terms that are linear in β, we can choose β = ±1 to make their net effect positive;
therefore

(6.6) max
b=±1,β=±1

φ(x +
√

2ε(bv + βw)) − φ(x) ≥
√

2ε|∇φ(x) · v|

+ ε2
(
⟨D2φ(x)v, v⟩ + ⟨D2φ(x)w,w⟩

)
+ O(ε3).

This proves assertion (a).
Our estimate (6.6) treats v and w asymmetrically. Of course the analogous estimate holds with

v replaced by w. Later we will make use of the symmetrized result obtained by averaging these
two estimates:

(6.7) max
b=±1,β=±1

φ(x +
√

2ε(bv + βw)) − φ(x) ≥
√

2
2

ε (|∇φ(x) · v| + |∇φ(x) · w|)

+ ε2
(
⟨D2φ(x)v, v⟩ + ⟨D2φ(x)w,w⟩

)
+ O(ε3).

To prove assertion (b), we make a convenient choice of v and w. By hypothesis ∇φ(x) ̸=
0. It therefore makes sense to restrict the quadratic form associated with D2φ(x) to the plane
perpendicular to ∇φ(x). The resulting 2D quadratic form can be diagonalized. We choose v and
w to be its (orthonormal) eigenvectors, and we denote the associated eigenvalues by k1 and k2.
Notice that v, w, and ∇φ(x) form an orthonormal basis of R3. Therefore

(6.8) ∆φ(x) = ⟨D2φ(x)
∇φ(x)
|∇φ(x)| ,

∇φ(x)
|∇φ(x)| ⟩ + k1 + k2

= ⟨D2φ(x)
∇φ(x)
|∇φ(x)| ,

∇φ(x)
|∇φ(x)| ⟩ + ⟨D2φ(x)v, v⟩ + ⟨D2φ(x)w,w⟩.
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Since v and w are perpendicular for D2φ, in other words ⟨D2φ(x)v,w⟩ = 0, we have, for all
b = ±1,β = ±1,

φ(x +
√

2ε(bv + βw)) = ε2
(
⟨D2φ(x)v, v⟩ + ⟨D2φ(x)w,w⟩

)
+ O(ε3)

= ε2

(
∆φ(x) − ⟨D2φ(x)

∇φ(x)
|∇φ(x)|

,
∇φ(x)
|∇φ(x)|

⟩
)

+ O(ε3).

This proves (b).
For assertion (c), we observe (as in Lemma 2.2), the existence of constants c1 > 0, C > 0 such

that for all unit vectors v and w with v ⊥ w,

(i) |∇φ(x) · v| ≥ c1ε or |∇φ(x) · w| ≥ c1ε imply

(6.9)
√

2
2

ε (|∇φ(x) · v| + |∇φ(x) · w|) + ε2
(
⟨D2φ(x)v, v⟩ + ⟨D2φ(x)w,w⟩

)

≥ ε2

(
∆φ(x) − ⟨D2φ(x)

∇φ(x)
|∇φ(x)| ,

∇φ(x)
|∇φ(x)| ⟩

)

(ii) |∇φ(x) · v| ≤ c1ε and |∇φ(x) · w| ≤ c1ε imply

(6.10)
∣∣∣⟨D2φ(x)v, v⟩+⟨D2φ(x)w,w⟩+⟨D2φ(x)

∇φ(x)
|∇φ(x)|

,
∇φ(x)
|∇φ(x)|

⟩−∆φ(x)
∣∣∣ ≤ C

(
ε

|∇φ(x)|

)
.

(The main point is that when ∇φ · v and ∇φ ·w are both small, v,w and ∇φ(x)/|∇φ(x)| are close
to being an orthonormal basis of R3.)

If |∇φ(x) · v| ≥ c1ε or |∇φ(x) · w| ≥ c1ε then combining (6.7) with (6.9), we obtain the desired
result. If on the other hand |∇φ(x) · v| ≤ c1ε and |∇φ(x) · w| ≤ c1ε, then (6.7) and (6.10) give

(6.11) max
b=±1,β=±1

φ(x +
√

2ε(bv + βw)) − φ(x) ≥ ε2
(
⟨D2φ(x)v, v⟩ + ⟨D2φ(x)w,w⟩

)
+ O(ε3)

≥ ε2
(
∆φ(x) − ⟨D2φ(x)

∇φ(x)
|∇φ(x)|

,
∇φ(x)
|∇φ(x)|

⟩
)
− C

(
1 +

1
|∇φ(x)|

)
ε3.

!
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APPENDICES

A Addendum to Section 3: Regularity of the exit time

This appendix proves Proposition 3.1, the regularity result needed for the verification argument in
Section 3. Our focus is thus on the evolution of a closed, strictly convex, planar curve ∂Ω as it
evolves under motion by curvature. It remains convex and becomes asymptotically circular as it
shrinks to a point at the extinction time T = 1

2π |Ω| [GH]. We write x∗ for the point to which it
shrinks (which has no simple formula in terms of ∂Ω).

Since the evolving curve is convex, it can be parametrized by its tangent angle θ. Thus it is the
locus of

γ(θ, t) = (x(θ, t), y(θ, t))

and its unit tangent and (inward) normal vectors are

t(θ, t) = (cos θ, sin θ), n(θ, t) = (− sin θ, cos θ).

We are interested in U(x) = the time when the moving boundary arrives at x. It is characterized
by

(A.1) U(γ(θ, t)) = t.

Its smoothness is obvious away from x∗; our task is to show that U is C3 at x∗, with

(A.2) D2U(x∗) = −I and D3U(x∗) = 0.

We shall accomplish this task by differentiating (A.1) several times, then considering the limit
t → T .

The smoothness of U near x∗ is clearly related to the roundness of γ as it shrinks to a point.
The estimates expressing this roundness are best expressed in terms of

k(θ, t) = curvature of γ at angle θ and time t

or, even better, the rescaled curvature as a function of logarithmically stretched time:

(A.3) κ(θ, τ) =
√

2(T − t)k(θ, t), where τ = −1
2

log(T − t).

The fact that γ undergoes motion by curvature is equivalent to the PDE

(A.4) kt = k2kθθ + k3,

and also to the PDE

(A.5) κτ = κ2κθθ + κ3 − κ.

The asymptotic roundness of γ was proved by Gage and Hamilton, and is expressed by the following
estimates:

(A.6)

⎧
⎨

⎩

κ → 1 uniformly as τ → ∞
∥∂ℓκ/∂θℓ∥∞ ≤ Cα,ℓe−2ατ for all 0 < α < 1 and ℓ ≥ 1

∥∂ℓk/∂θℓ∥∞ ≤ Cα,ℓ(T − t)α−1/2 for all 0 < α < 1 and ℓ ≥ 1.
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These assertions are respectively Corollary 5.6, Theorem 5.7.1, and Corollary 5.7.2 of [GH].
The estimates (A.6) are enough to prove U is C2. For the proof that it is C3 however we will

need the following sharpened version of the first assertion:

Lemma A.1 ∥κ − 1∥∞ ≤ Cαe−2ατ for all 0 < α < 1.

Proof: The essential idea is that κ = 1 is an unstable state for the PDE (A.5). If κ ever wandered
far from 1 the linear instability would take over; but we know that κ → 1 uniformly, so it must in
fact stay very close to 1.

To pursue this idea, let κ = 1 + δ. The PDE becomes

δτ = 2δ + [(1 + δ)2δθθ + 3δ2 + δ3].

We know δ → 0 and |δθθ| ≤ Ce−2ατ , so this gives (at any fixed θ)

|δ|τ ≤ (2 + ε)|δ| + Ce−2ατ

and
|δ|τ ≥ (2 − ε)|δ| − Ce−2ατ

for any ε > 0 and sufficiently large τ . Now observe that the differential inequality

fτ ≤ βf + Ce−2ατ

integrates to

e−βτ1f(τ1) − e−βτ0f(τ0) ≤
C

2α + β

[
e−(2α+β)τ0 − e−(2α+β)τ1

]
.

If in addition f is uniformly bounded then taking τ1 → ∞ gives

f(τ0) ≥ − C

2α + β
e−2ατ0 .

A similar argument starting from fτ ≥ βf − Ce−2ατ gives

f(τ0) ≤
C

2α + β
e−2ατ0 .

Applying these results to f(τ) = |δ(θ, τ)| we get

|κ − 1| ≤ Ce−2ατ

as desired. !

We need one more basic fact: the decomposition of γt and γθ with respect to the tangent t and
normal n at angle θ and time t. We claim that

(A.7) γθ =
1
k
t and γt = kn − kθt.

The first assertion is easy: if s denotes arclength along the curve then

γθ =
ds

dθ
γs =

1
k
t
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since k = dθ/ds. To justify the second half of (A.7), we observe that ⟨γt,n⟩ = k, since the curve is
moving with normal velocity k. Differentiating this in θ gives

⟨γtθ,n⟩ − ⟨γt, t⟩ = kθ

since t = (cos θ, sin θ) and n = (− sin θ, cos θ). But

⟨γtθ,n⟩ =
∂

∂t
⟨γθ,n⟩ = 0

by (A.7). So ⟨γt, t⟩ = −kθ, as asserted.

Proof of Lemma 3.1: Differentiating (A.1) using the chain rule gives

(A.8) DU(γ) · γt = 1 and DU(γ) · γθ = 0.

Using (A.7) we conclude that

(A.9) ∇U =
1
k
n.

(This relation is also an immediate consequence of the definition of U as the arrival time of the
curvature flow.)

Differentiating (A.8) gives

⟨D2U(γ), γt ⊗ γt⟩ + DU(γ) · γtt = 0
⟨D2U(γ), γt ⊗ γθ⟩ + DU(γ) · γθt = 0(A.10)
⟨D2U(γ), γθ ⊗ γθ⟩ + DU(γ) · γθθ = 0.

To simplify these, observe that

γtt = ktn− kθtt
γθt = −k−2ktt(A.11)

γθθ =
1
k
n− kθ

k2
t

so we may write (A.10) as

⟨D2U(γ), γt ⊗ γt⟩ +
kt

k
= 0

⟨D2U(γ), γt ⊗ γθ⟩ = 0(A.12)

⟨D2U(γ), γθ ⊗ γθ⟩ +
1
k2

= 0.

The C2 character of U follows easily. Indeed, the frame

γt/k = n − kθ

k
t

kγθ = t
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is nearly orthonormal as t → T , since
kθ

k
=

κθ

κ
→ 0

by (A.6). The components of D2U in this frame are

⟨D2U(γ),
γt

k
⊗ γt

k
⟩ = − kt

k3

⟨D2U(γ),
γt

k
⊗ kγθ⟩ = 0(A.13)

⟨D2U(γ), kγθ ⊗ kγθ⟩ = −1.

We claim that

(A.14)
kt

k3
→ 1 as t → T.

Indeed, from the definition (A.3) we have k(θ, t) = ρ(t)κ(θ, τ) with ρ = 1/
√

2(T − t) and τ =
−1

2 log(T − t). Since ρt = ρ3 and dτ/dt = ρ2 we have

kt

k3
=

ρ3κ + ρκt

ρ3κ3
=

1
κ2

+
κτ

κ3
.

We conclude using (A.5) and (A.6) that (A.14) holds. Thus D2U(x) has a limit as x approaches
x∗, and

D2U(x∗) = −I.

The proof that U is C3 at x∗ is similar in concept, though more complicated in detail. We start
by differentiating (A.12), to get

⟨D3U(γ), γt ⊗ γt ⊗ γt⟩ + 2⟨D2U(γ), γtt ⊗ γt⟩ + ∂t

(
kt

k

)
= 0(A.15)

⟨D3U(γ), γθ ⊗ γt ⊗ γt⟩ + ⟨D2U(γ), γtt ⊗ γθ⟩ + ⟨D2U(γ), γt ⊗ γtθ⟩ = 0(A.16)
⟨D3U(γ), γθ ⊗ γθ ⊗ γt⟩ + ⟨D2U(γ), γtθ ⊗ γθ⟩ + ⟨D2U(γ), γt ⊗ γθθ⟩ = 0(A.17)

⟨D3U(γ), γθ ⊗ γθ ⊗ γθ⟩ + 2⟨D2U(γ), γθθ ⊗ γθ⟩ + ∂θ

(
1
k2

)
= 0(A.18)

The terms involving γtt, γtθ, and γθθ can be simplified by expressing these vectors in the frame
γt, γn then using (A.12). An elementary calculation using (A.4), (A.7) and (A.11) gives

γtt =
kt

k
γt + (ktkθ − kkθt)γθ

γθt = −k(kθθ + k)γθ

γθθ =
1
k2

γt,
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and, using these relations, (A.15)-(A.18) simplify to

⟨D3U,
γt

k
⊗ γt

k
⊗ γt

k
⟩ =

1
k3

[

2
(

kt

k

)2

− ∂t

(
kt

k

)]

(A.19)

⟨D3U, kγθ ⊗
γt

k
⊗ γt

k
⟩ =

1
k3

(ktkθ − kkθt)(A.20)

⟨D3U, kγθ ⊗ kγθ ⊗
γt

k
⟩ = 0(A.21)

⟨D3U, kγθ ⊗ kγθ ⊗ kγθ⟩ = −k3∂θ

(
1
k2

)
.(A.22)

Our goal is to show that D3U is C3 at x∗, with D3U(x∗) = 0. We shall achieve this by showing
that the right hand sides of (A.19)-(A.22) tend to 0 as t → T . Easiest first: the right side of (A.22)
is

−k3∂θ

(
1
k2

)
= 2kθ → 0

by (A.6). The right side of (A.20) is only a little more difficult: by (A.4)

ktkθ − kkθt = kθ(k2kθθ + k3) − k(k2kθθ + k3)θ

so
1
k3

(ktkθ − kkθt) = −kθ

k
kθθ − 2kθ − kθθθ;

each of the terms on the right tends to 0, using (A.6) and the fact that kθ/k = κθ/κ.
It remains to show that the right side of (A.19) tends to 0 as t → T . This is a bit more sensitive.

Recall that k(θ, t) = ρ(t)κ(θ, τ) with ρ = 1/
√

2(T − t) and τ = −1
2 log(T − t). We have

kt = ρtκ + ρκt = ρ3(κ + κτ )

and similarly
ktt = ρ5(3κ + 4κτ + κττ ).

Therefore

(A.23)
2
(

kt
k

)2 − ∂t
(

kt
k

)

k3
=

3k2
t − kktt

k5
=

2ρκκτ + 3ρκ2
τ − ρκκττ

κ5
.

To see that the first two terms in the numerator tend to 0 we combine (A.5) with (A.6) and Lemma
A.1:

(A.24) |κτ | = |κ2κθθ + κ3 − κ| ≤ Ce−2ατ

for any α < 1. Since ρ = (1/
√

2)eτ , it follows that ρκτ → 0 and ρκ2
τ → 0, as asserted. The

argument for the third term in the numerator of (A.23) is similar: differentiating the κ-equation
with respect to τ gives

κττ = 2κκθθκτ + κ2κθθτ + 3κ2κτ − κτ

= κτ (2κκθθ + 3κ2 − 1) + κ2(κ2κθθ + κ3 − κ)θθ.
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It follows from (A.6) and (A.24) that

|κττ | ≤ Ce−2ατ

for any α < 1, whence ρκττ → 0. Thus U is C3 and D3U(x∗) = 0, as asserted. !.

Remark: It is natural to conjecture that the analogous result holds in any dimension. Thus, if Ω
is a smoothly bounded, strictly convex domain in Rn with n > 2, we conjecture that the arrival
time U(x) associated with the mean curvature flow is C3, with D3U(x∗) = 0. Huisken showed in
[H2] that U is C2, with D2U(x∗) = − 1

n−1I. The proof takes just a few lines, given the higher-
dimensional analogues of (A.6) which were proved in [H1]. However a C3 estimate seems to require
a different technique – including, most likely, a higher-dimensional analogue of Lemma A.1.

B Addendum to Section 4: Equicontinuity of the value functions

Section 3 proved the existence of the limit u = limε→0 uε and characterized it simultaneously, using
viscosity methods. Briefly: we showed that u and u are respectively a subsolution and supersolution
of the level-set equation for motion by curvature. Then a standard comparison theorem gave u = u,
implying existence of the limit.

However it is also possible to prove directly, by elementary means, that the family {uε} is
compact (which shows that the limit exists, at least for a subsequence). We think the argument is
interesting, because it captures the sense in which our game is a stable discretization of motion by
curvature.

This appendix discusses only the time-dependent version of the game. A similar proof of
equicontinuity can be given for the exit-time game in a strictly convex domain. However we do not
know how to prove equicontinuity for the exit-time game in a nonconvex domain. This is related
to the question whether the limiting function U can be discontinuous.

Proposition B.1 Consider the time-dependent version of the game, as in Section 4. Assume the
objective function u0 is C2. Then the associated value functions uε(x, t) are uniformly equicontin-
uous.

Proof: The argument rests on two lemmas:

Lemma B.1 The process of stepping backward in time is L∞-stable. In other words, if

(B.1) f1(x) = min
∥v∥=1

max
b=±1

f0(x +
√

2εbv)

and

(B.2) f̃1(x) = min
∥v∥=1

max
b=±1

f̃0(x +
√

2εbv)

then

(B.3) ∥f1 − f̃1∥L∞ ≤ ∥f0 − f̃0∥L∞ .

This relation holds for any pair of continuous functions f0, f̃0, and any ε > 0.
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Lemma B.2 If f0 has uniformly bounded second derivatives then we can control how much the
value changes at the first backward timestep. In fact, the function f1 defined by (B.1) satisfies

(B.4) ∥f1 − f0∥L∞ ≤ Mε2,

for some constant M , which depends on f0 but not on ε.

Let’s show right away that Lemmas B.1 and B.2 imply equicontinuity of the family {uε(x, t)}
as ε → 0. First, we show that if u0 is uniformly Lipschitz in x with Lipschitz constant C, then the
same is true of uε(x, t) at each discrete time:

(B.5) |uε(x, T − kε2) − uε(x′, T − kε2)| ≤ C|x − x′|

for every ε, every k ∈ Z, and every x, x′. The proof is by induction on k. The assertion is true
for k = 0 by the definition of C, since uε(x, T ) = u0(x). For the inductive step we may assume
that (B.5) is true at time T − kε2, and we must prove that it holds at time T − (k + 1)ε2. For
any a ∈ R2 we may apply Lemma B.1 with f0(x) = uε(x, T − kε2) and f̃0(x) = uε(x − a, T − kε2)
(these functions are continuous, by the inductive hypothesis). The associated f1(x) and f̃1(x) are
uε(x, T − (k + 1)ε2) and uε(x− a, T − (k + 1)ε2) respectively. Combining the conclusion of Lemma
B.1 with the inductive hypothesis, we get

(B.6) |uε(x − a, T − (k + 1)ε2) − uε(x, T − (k + 1)ε2)|
≤ ∥uε(x − a, T − kε2) − uε(x, T − kε2)∥L∞ ≤ C|a|.

Taking a = x − x′ this gives (B.5) at time T − (k + 1)ε2. The induction is now complete.

Next, we show that if u0 has uniformly-bounded second derivatives then uε is “Lipschitz con-
tinuous in discrete time,” i.e.

(B.7) |uε(x, t) − uε(x, t′)| ≤ M |t − t′| for all x and all t = T − kε2, t′ = T − k′ε2.

This follows from the lemmas, combined with the autonomous character of our game and an
inductive argument. Indeed, for any t = T − kε2,

uε(x, t + ε2) =
{

optimal value at position x and time t, if the
final time is T − ε2 and the objective is u0(x)

while
uε(x, t) =

{
optimal value at position x and time t, if the
final time is T − ε2 and the objective is ũ0(x) = uε(x, T − ε2)

By Lemma B.2, the two objectives don’t differ very much:

∥u0 − ũ0∥L∞ ≤ Mε2.

By an obvious induction based on Lemma B.1, it follows that the two values don’t differ very much
either:

(B.8) |uε(x, t + ε2) − uε(x, t)| ≤ Mε2 for any t = T − kε2.
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The desired Lipschitz continuity (B.7) follows easily, by applying (B.8) to each timestep between t
and t′.

Finally, we observe that Lipschitz continuity in space (B.5) and “Lipschitz continuity in discrete
time” (B.7) imply equicontinuity. Indeed, we may consider uε(x, t) to be defined at all times
t < T by linear interpolation. Thus extended, the functions {uε} are Lipschitz continuous in the
conventional sense, uniformly in ε.

Proof of Lemma B.1: Let v1 and b1 be optimal in the definition of u1, so that

(B.9) f1(x) = f0(x +
√

2εb1v1) ≥ f0(x −
√

2εb1v1)

with ∥v1∥ = 1 and b1 = ±1. Using v1 as a trial-vector in the definition of f̃1, we have (for some
b̃1 = ±1)

(B.10) f̃1(x) ≤ f̃0(x +
√

2εb̃1v1) ≤ f0(x +
√

2εb̃1v1) + ∥f0 − f̃0∥L∞ .

From (B.9) we have f1(x) ≥ f0(x +
√

2εb̃1v1); subtracting this from (B.10) we conclude that

f̃1(x) − f1(x) ≤ ∥f0 − f̃0∥L∞ .

A symmetric argument gives
f1(x) − f̃1(x) ≤ ∥f0 − f̃0∥L∞ ;

together, these amount to the desired inequality (B.3). !

Proof of Lemma B.2: By Taylor expansion we have

(B.11) max
b=±1

f0(y +
√

2εbv) = f0(y) +
√

2ε|v ·∇f0(y)| + ε2⟨D2f0(y)v, v⟩ + o(ε2)

for any unit vector v. Choosing v⊥∇f0(y) we conclude that

min
∥v∥=1

max
b=±1

f0(y +
√

2εbv) ≤ f0(y) + Mε2.

On the other hand, (B.11) implies

max
b=±1

f0(y +
√

2εbv) ≥ f0(y) − Mε2

for any v, so
min
∥v∥=1

max
b=±1

f0(y +
√

2εbv) ≥ f0(y) − Mε2.

!

C Addendum to Section 5: A weak comparison theorem and an
example, by Guy Barles and Francesca Da Lio

This Appendix proves Theorem 4, the comparison result needed in Section 5 for the boundary value
problem which characterizes Paul’s arrival time. It also gives an example, showing that U and U
can be different.
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C.1 A weak comparison result

We shall prove a “weak comparison result” result for the following problem
⎧
⎨

⎩
−

(
∆u − ⟨D2uDu,Du⟩

|Du|2

)
− 1 = 0 in Ω

u(x) = 0 on ∂Ω.
(C.1)

By contrast with a “strong comparison result” which says that any usc subsolution is below any
lsc supersolution and which implies, as a by-product, the continuity of the (unique) solution, our
“weak comparison result” yields the same type of result but by using suitable envelopes of the sub
and supersolutions. It implies the uniqueness of the solution (in a suitable sense) even in the case
when it is discontinuous. In the next section, we provide an example of such a case for (C.1). This
uses the starshapedness of Ω in a crucial way. Starshapedness is a convenient tool to get comparison
results for discontinuous solutions (see for example [Gi2] for another example of such a use though
in a quite different setting).

For simplicity of notation we write the equation below as F (Du,D2u) = 1, where, for p ̸= 0
and M ∈ SN , F is given by

F (p,M) = −
(

Tr[(Id − p ⊗ p

|p|2 )M ]
)

.

If p = 0, the definition of viscosity sub and supersolutions use suitable extensions by upper or lower
semicontinuity.

The basic assumption on the domain Ω is the following

(H0) Ω is a bounded open subset of IRN which is starshaped with respect to the origin, i.e. there
exists λ0 > 1 and γ > 0 such that, for all λ ∈ (1,λ0)

(C.2) dist(x, ∂Ω) ≥ γ(1 − λ−1) if x ∈ λ−1Ω

We write BUSC(Ω) (respectively, BLSC(Ω)) for the class of bounded upper semicontinuous (re-
spectively, bounded lower semicontinuous) functions on Ω. Here is a more careful statement of
Theorem 4.

Theorem 4 Assume (H0). Let u ∈ BUSC(Ω), v ∈ BLSC(Ω) be respectively viscosity sub- and
supersolutions of (C.1). Then u∗(x) ≤ v(x) and u(x) ≤ v∗(x) in Ω.

Proof: We start by two key remarks.

1. We first claim that every v ∈ BLSC(Ω) viscosity supersolution of (C.1) is nonnegative. Indeed,
since v is lsc on Ω, it achieves its minimum at some point x̄. By applying the definition of viscosity
supersolution at this point, it is easy to see that the viscosity inequality associated to the equation
cannot hold and therefore necessarily, x̄ ∈ ∂Ω and v(x̄) ≥ 0. And the claim follows.

2. If u ∈ BUSC(Ω) is a viscosity subsolution of (C.1), then, for all δ < 1, the function uδ(x) = δu(x)
satisfies

(C.3) F (Duδ,D
2uδ) ≤ δ < 1 in Ω .

53



Thus we may assume without restriction that we deal with a strict subsolution of (C.1). In the
following, we drop the δ and just denote by u one of the uδ.

3. The next arguments are inspired from Theorem 3.1 of [BD]. For λ > 1, close to 1, we set
Ωλ = λ−1Ω and we introduce the function

uλ(x) := λ−2u(λx), x ∈ Ωλ.

Because of the form of the equation, the function uλ is a subsolution of

F (Duλ,D2uλ) ≤ δ < 1 in Ωλ .(C.4)

In order to prove the result, we are going to show that, if λ is close enough to 1, we have

(C.5) uλ(x) ≤ v(x) in Ωλn ∩ Ω .

Indeed, if x ∈ Ω, we have lim supλ uλ(x) ≥ u∗(x) and (C.5) implies u∗(x) ≤ v(x). The other
inequality is obtained in a similar way.

4. To prove (C.5), we suppose by contradiction that there exists a sequence (λn)n, λn > 1, λn → 1,
for which

(C.6) max
(Ωλn∩Ω)

[uλn(x) − v(x)] > 0 .

From now on, we drop the index n to simplify the notations. For fixed λ > 1 and for all ε > 0,
we consider the function Φε : Ωλ × Ω → IR, defined by

Φε(x, y) = uλ(x) − v(y) − |x − y|4

ε4
.

Let (xε, yε) ∈ Ωλ × Ω be a maximum point of Φε. The inequality Φε(xε, yε) ≥ Φε(x, x) for any
x ∈ Ωλ ∩ Ω together with the boundedness of uλ and v yield

|x − y|4

ε4
≤ C

for some constant C depending on ||uλ||∞ and ||v||∞. Moreover by the compactness of Ωλ∩Ω there
exists a subsequence of (xε, yε) (that we continue to denote by (xε, yε) ) such that xε, yε converge
to xλ ∈ Ωλ ∩ Ω as ε → 0. The following inequalities hold:

(C.7) lim inf
ε→0

Φε(xε, yε) ≥ max
(Ωλ∩Ω)

[uλ(x) − v(x)] ,

lim sup
ε→0

Φε(xε, yε) ≤ lim sup
ε→0

(uλ(xε) − v(yε)) − lim inf
ε→0

|xε − yε|4

ε4
(C.8)

≤ max
(Ωλ∩Ω)

[uλ(x) − v(x)].

By combining (C.7) and (C.8) we get (up to subsequence)

|xε − yε| = o(ε) as ε → 0,
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lim
ε→0

[uλ(xε) − v(yε)] = uλ(xλ) − v(xλ) = max
(Ωλ∩Ω)

[uλ(x) − v(x)],

and the upper and lower semicontinuity of uλ and v imply that

uλ(xε) → u(xλ), v(yε) → v(xλ), as ε → 0.

We claim that, for ε > 0 small enough, the viscosity inequalities associated to F hold for both
uλ(xε) and v(yε). Indeed, suppose that we have xε ∈ ∂Ωλ. From (C.6), it follows that we have
uλ(xε) − v(yε) > 0; but since v(yε) ≥ 0, this implies that uλ(xε) > 0 . Therefore, even if xε ∈ ∂Ωλ,
the boundary condition in the viscosity sense reduces to the F inequality. As a consequence, the
F–viscosity inequality holds for uλ(xε) wherever xε lies.

On the other hand, since |xε − yε| = o(ε) and (H0) holds, we have that necessarily yε ∈ Ω and
thus the viscosity inequality hold for v(yε) as well.

5. We denote by ζ(x, y) :=
|x − y|4

ε4
. Since the equation is singular at Du = 0, we have to consider

separately the two cases Dζ(xε, yε) ̸= 0 and Dζ(xε, yε) = 0.
We first assume that there exists a subsequence of (xε, yε) (which we continue to denote by

(xε, yε)) such that Dζ(xε, yε) ̸= 0. By standard arguments (cf. Theorem 3.3 in the “User’s guide” of
Crandall, Ishii and Lions [CIL]), for any α > 0, there exists (p,X) ∈ J 2,+

uλ(xε), (q, Y ) ∈ J 2,−
v(yε)

such that
p = q = Dxζ(xε, yε) = −Dyζ(xε, yε) ,

and, if Aε = D2ζ(xε, yε)

(C.9) −(
1
α

+ ||Aε||)Id ≤
(

X 0
0 −Y

)
≤ (Id + αAε)Aε .

Moreover the viscosity inequalities for uλ and v read

(C.10) F (p,X) ≤ δ < 1 ,

(C.11) F (q, Y ) ≥ 1 .

From (C.9), it follows that, for any r, s ∈ IRN ,

⟨Xr, r⟩ − ⟨Y s, s⟩ ≤ ⟨Bε(r − s), (r − s)⟩ ,

with Bε = D2
xxζ(xε, yε) = D2

yyζ(xε, yε) = −D2
xyζ(xε, yε). By choosing r = s we obtain that X ≤ Y.

Thus subtracting (C.11) from (C.10) and recalling that p = q, we can write the result in the form

(C.12) 0 ≤ δ − 1 .

which is a contradiction.

6. If, on the contrary, for all ε > 0, Dζ(xε, yε) = 0 , this means that xε = yε and we have also
D2ζ(xε, yε) = 0. But yε is a minimum point of v(·)−u(xε)+ ζ(xε, ·) and, by applying the definition
of viscosity supersolution, we are led to

F (−Dyζ(xε, yε),−D2
yyζ(xε, yε)) ≥ 1 ,

i.e. 0 = F ∗(0, 0) ≥ 1. This contradiction shows that this case cannot happen either.
The proof of Theorem 4 is now complete. !
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C.2 An alternative proof

Here is another, rather different proof of the same result.

1. The function u+ := max(u, 0) is still a subsolution of (C.1) as the maximum of two subsolutions
(c.f. Perron’s method, discussed for example in the User’s guide [CIL]). We can therefore assume
without loss of generality that u ≥ 0 on Ω and we will do it in the sequel.

2. We start by extending u and v to IRN by setting

ũ(x) =
{

u(x) in Ω,
0 in (Ω)c,

ṽ(x) =
{

v(x) in Ω,
0 in Ωc.

Since u and v are nonnegative on Ω, it is clear that ũ is usc and ṽ is lsc.
We claim that ũ and ṽ are respectively sub and supersolution of

(C.13) max(F (Du,D2u) − 1, u − ψ) = 0 in IRN ,

where ψ(x) = C11Ω(x) with C > max(||u||∞, ||v||∞) and F is defined as above.

3. We first show that ũ is a subsolution of (C.13). This is obvious if x ∈ Ω or x ∈ (Ω)c.
Let x ∈ ∂Ω be a maximum point of ũ − φ for some function φ ∈ C2(IRN ). Two cases may

occur : either ũ(x) > 0 but then ũ(x) = u(x) and x is still a maximum point of u − φ on Ω. Thus
since there is loss of boundary condition for the subsolution u at x, we have

F∗(Dφ(x),D2φ(x)) ≤ 1.

Moreover the inequality ũ(x) ≤ ψ∗(x) = C holds by construction, thus we get

(C.14) max(F∗(Dφ(x),D2φ(x)) − 1, ũ(x) − ψ∗(x)) ≤ 0 .

The other case is when ũ(x) = 0; then it is easy to check that x is also a local maximum point of
0 − φ; since 0 is a subsolution of the equation in IRN , this yields

F∗(Dφ(x),D2φ(x)) ≤ 1 .

Thus (C.14) is satisfied.

4. Next we show that ṽ is a supersolution of (C.13). This assertion is almost obvious since (i) on
Ωc, ψ∗ ≡ 0 and therefore ṽ ≥ ψ∗ on Ωc since v ≥ 0 on Ω, and (ii) in Ω the inequality associated to
the equation holds. Hence, in both cases, the “max” is nonnegative.

5. The next step consists in comparing ũ and ṽ in IRN . To do so, we modify ũ as in the first proof:
first we change ũ to ũδ := δũ for 0 < δ < 1 close to 1. This function satisfies

(C.15) max(F (Du,D2u) − δ, u − δψ) ≤ 0 in IRN .

Then, we fix δ (and drop the dependence in δ in ũδ) and, for λ > 1 close to 1, we introduce the
function ũλ(x) := λ−2ũ(λx). The function (ũλ)∗ is a subsolution of

(C.16) max(F (Duλ,D2uλ) − δ, ũλ − ψδ,λ) ≤ 0 .
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where ψδ,λ(x) := δλ−2ψ(λx) in IRN . The main point is that, because of (H0), we have for λ close
enough to 1, ψ∗

δ,λ ≤ ψ∗ in IRN .

6. Using comparison arguments like those in the first proof and noticing that ũ(x) = ṽ(x) = 0 for
|x| large enough (which simplifies matters since we do not have any problem at infinity), it is easy
to show that

(C.17) ũλ(x) ≤ ṽ(x) in IRN .

Examining the consequences of this inequality for x in Ω yields the result exactly as in the first
proof. !

C.3 An example where the minimum exit time is discontinuous

We provide in this section an example where the minimum time function has non-artificial discon-
tinuities at two points of the boundary. This example shows that one cannot have in this case
a “strong comparison result” for this problem and that the “weak comparison result” above is
optimal. It is worth pointing out anyway that, in this example, the domain Ω is not smooth. It
would be interesting to have such a counter-example either for a smooth domain or with an interior
discontinuity.

✁
✁
✁
✁✁

❆
❆

❆
❆❆

!
!!

❅
❅❅

Ω

Γ

A B

• (x̄, ȳ)

Figure 6: Paul’s limiting exit time is discontinuous at A and B. In fact, it vanishes along the
segments joining A to B (and on the whole boundary), but it is bounded away from zero just above
the dotted line.

In order to describe our example, we first introduce the function χ : IR → IR defined by

χ(x) =

⎧
⎪⎨

⎪⎩

x + 1 if x ≤ −1 ,

|x|− 1 if |x| ≤ 1 ,

−x + 1 if x ≥ 1 .
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Then we introduce the domain Ω ⊂ IR2 given, for R > 0 large enough, by

Ω := [(−2R, 2R) × (−R, 2R)] ∩ {(x, y) ∈ IR2; y > χ(x)}

(see Figure 6). We claim that the minimum time function has two discontinuities at the points
A := (−1, 0) and B := (1, 0). We are going to prove the claim for A, the situation is symmetric for
B.

We denote by U the minimum time function. We are going to show that

(i) lim sup
δ↓0

U(−1, δ) is “large”, but

(ii) lim inf
(x,y)→(−1,0)
(x,y)∈Ω, y<0

U(x, y) = 0.

We first prove (i) by a Dynamic Programming Principle type argument. To do so, we focus on
U ε, starting the game from any of the points (−1, δ). Suppose Carol uses the following strategy: if
Paul chooses (v1, v2), Carol takes b = 1 if v2 ≥ 0, b = −1 if v2 < 0. She persists with this strategy
until Paul exits the rectangle (−R,R) × (0, R). Of course, because of Carol’s strategy, Paul can
exit this rectangle only on the part of the boundary corresponding to x = −R, x = R or y = R
(not the part where y = 0). We denote by Γ the part of the boundary where Paul can exit.

From the definition of U ε, we have

U ε(−1, δ) ≥ U ε(x̄, ȳ) ,

where (x̄, ȳ) is the first point outside the square (−R,R) × (0, R) which is achieved by Paul.
If ε is very small, (x̄, ȳ) is very close to Γ and if R is sufficiently large, the square (x̄−1, x̄+1)×

(ȳ − 1, ȳ + 1) is included in Ω and, starting from (x̄, ȳ), the minimum exit time from Ω is clearly
bigger than the minimum exit time from this square; moreover, this minimum exit time from the
(x̄, ȳ)–square is independent of (x̄, ȳ); let’s denote it by γ > 0. It follows that

U ε(−1, δ) ≥ γ .

Passing to the limit ε → 0 we conclude that U(−1, δ) ≥ γ for δ > 0. Thus (i) is proved.

To prove (ii), we use the parallel between the minimum time problem and the motion by the
signed mean curvature.

First, it is clear that the minimum exit time from Ω is smaller than the minimum exit time
from the epigraph of χ, which is infinite everywhere except perhaps on the triangle {(x, y); y ≥
χ(x) and y ≤ 0}.

To study the exit time of the epigraph of χ, we have to solve the initial value problem

wt −
w+

xx

1 + w2
x

= 0 in IR × (0,+∞) ,

w(x, 0) = χ(x) in IR .

By standard arguments in viscosity solutions theory, this problem has a unique solution which
satisfies

χ(x) ≤ w(x, t) in IR × (0,+∞) .
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Moreover let us denote by χ̂ the concave envelope of χ which is defined in the same way as χ except
on the interval [−1, 1] where χ̂ ≡ 0. Then χ̂ is a supersolution of the problem (this can be proved
by easy approximation and regularization arguments) and by classical comparison results

w(x, t) ≤ χ̂(x) in IR × (0,+∞) .

Putting all this information together, it is clear that, in order to compute w, it is enough to
solve the equation only on the interval [−1, 1] with the Dirichlet boundary condition

w(1, t) = w(−1, t) = 0 for all t > 0 .

On this interval where χ is convex, one can even solve the pde with wxx instead of w+
xx and the

Strong Maximum Principle implies that

w(x, t) > χ(x) for any t > 0 .

But we recall that {(x, y); y ≤ w(x, t)} = {(x, y); Ũ(x, y) ≤ t}, where Ũ is the minimum exit time
from the epigraph. Therefore the point (−1, 0) is the limit of points for which the minimum exit
time from the epigraph (and therefore from Ω) is less than t for any t which proves (ii).

References

[AS] L. Ambrosio and H.M. Soner, Level set approach to mean curvature flow in arbitrary
codimension, J. Diff. Geom. 43 (1996) 693-737.

[Bardi] M. Bardi, in Viscosity Solutions and Applications. Lectures Given at the 2nd C.I.M.E.
Session Held in Montecatini Terme, June 12–20, 1995. Edited by I. Capuzzo Dolcetta and
P. L. Lions. Lecture Notes in Mathematics, 1660. Springer, (1997).

[BC] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations, Birkhäuser Boston, (1997).
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