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Abstract

We show that a broad class of fully-nonlinear second-order parabolic or ellip-
tic PDE’s can be realized as the Hamilton-Jacobi-Bellman equations of deter-
ministic two-person games. More precisely: given the PDE, we identify a de-
terministic, discrete-time, two-person game whose value function converges in
the continuous-time limit to the viscosity solution of the desired equation. Our
game is, roughly speaking, a deterministic analogue of the stochastic represen-
tation recently introduced by Cheridito, Soner, Touzi, and Victoir [Comm. Pure
Appl. Math. 60, 2006, 1081-1110]. In the parabolic setting with no u-dependence,
it amounts to a semidiscrete numerical scheme whose timestep is a min-max.
Our result is interesting, because the usual control-based interpretations of second-
order PDE’s involve stochastic rather than deterministic control. c© 2000 Wiley
Periodicals, Inc.

1 Introduction

This paper develops a deterministic control interpretation, via “two person re-
peated games,” for a broad class of fully nonlinear equations of elliptic or parabolic
type. The equations we consider have the form

(1.1) −ut + f (t,x,u,Du,D2u) = 0

or

(1.2) f (x,u,Du,D2u)+λu = 0

where f is “degenerate-elliptic” in the sense that

f (t,x,u, p,M +N)≤ f (t,x,u, p,M) when N is nonnegative.

We need additional conditions on the continuity, growth, and u-dependence of f ;
they are specified at the end of this section. In the stationary setting (1.2) we focus
on the Dirichlet problem, solving the equation in a domain Ω with u = g at ∂Ω.
In the time-dependent setting (1.1) we address the Cauchy problem, solving the
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equation for t < T with u = h at t = T . The PDE’s and boundary conditions are
always interpreted in the “viscosity sense” (for a review of what this means see
Section 3). Many results about viscosity solutions require that f be nondecreasing
in u. We avoid such a hypothesis, but without it we only get a subsolution and
a supersolution of the PDE. To know they agree we need a comparison principle,
which is generally available only when f is nondecreasing in u.

Our games have two opposing players, Helen and Mark, who always make
decisions rationally and deterministically. The rules depend on the form of the
equation, but there is always a small parameter ε , which governs the spatial step
size and (in time-dependent problems) the time step. Helen’s goal is to optimize her
worst-case outcome; therefore her task is roughly speaking one of “robust control.”
We shall characterize her value function uε by a version of the principle of dynamic
programming. (For the details of our games and the definition of Helen’s value
function, see Section 2.) Our main result, roughly speaking, is that

limsupε→0 uε is a viscosity subsolution of the PDE, and
liminfε→0 uε is a viscosity supersolution.

(For more precise statements see Theorem 2.2 in Section 2.3 and Theorem 2.7 in
Section 2.4. For the general theory of viscosity solutions to fully nonlinear equa-
tions, we refer to [20].) This result is most interesting when the PDE has a compar-
ison principle, i.e. when every subsolution must lie below any supersolution. This
is the case for many (though not all) of the PDE’s covered by our analysis. For
such equations, we conclude that limuε exists and is the unique viscosity solution
of the PDE. Thus, if the PDE has a comparison principle, then its solution is the
limiting value of Helen’s value function as ε → 0.

Our analysis provides a new type of connection between games and PDE’s.
More familiar connections include the following:

(a) For first-order Hamilton-Jacobi equations with concave or convex Hamil-
tonians, the viscosity solution is the value function of an optimal control
problem (the celebrated Hopf-Lax solution formula is a special case of this
result, see e.g. [3, 21]).

(b) For first-order Hamilton-Jacobi equations with more general Hamiltonians,
the viscosity solution is the value function of an associated deterministic
two-person game [3, 23, 24].

(c) For many second-order elliptic and parabolic equations, the solution is the
value function of an associated stochastic control problem (see e.g. [25,
26]).

(d) For the infinity-Laplacian, the Dirichlet problem can be solved using a
rather simple two-person stochastic game [39] (see also [1, 2, 8, 22, 34,
40, 46, 47] for related work including extensions to evolution problems
and the p-Laplacian).

Until recently, the only control-based interpretations of second-order elliptic or par-
abolic equations involved stochasticity. That situation was changed by our recent
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work [35], which gave deterministic game interpretations for a variety of geometric
evolution laws including motion by curvature. (For related prior work see [16, 19],
and for further progress along similar lines see [14, 15, 30, 31, 33].) The inter-
pretation in [35] can be viewed as a deterministic, robust-control analogue of the
stochastic-control-based viewpoint of [11, 41, 42, 43]. The method of [35] seems
restricted to geometric evolution laws, a rather special class of PDE. But in light
of that development, it was natural to wonder whether other second-order equa-
tions might also have deterministic game interpretations. The answer is yes, as
explained in this paper (see also [36], where our approach to the time-dependent
problem (1.1) with f independent of u was sketched without proofs).

Our games are deterministic, but our approach is closely related to a recently-
developed stochastic representation formula due to Cheridito, Soner, Touzi, and
Victoir [17]. Their work uses a “backward stochastic differential equation” (whose
structure depends on the form of the equation). Ours uses a two-person game
(whose structure depends similarly on the form of the equation). The connection,
loosely speaking, is this: in our game, Helen optimizes her worst-case result by
making herself indifferent to Mark’s choices. If, rather than being clever, Mark
made his choices randomly, then Helen’s task would be like controlling a diffusion
and the randomized version of our game would resemble a discrete version of [17].
In brief: the present paper is to [17] as our prior paper [35] was to [11, 41, 42, 43].

It should be emphasized that while our games are related to the processes in
[17], our goals and methods are entirely different. Concerning goals: ours is a
deterministic-game interpretation, which amounts in many cases to a semidiscrete
numerical scheme; theirs was a stochastic representation formula, which offers the
possibility of solving the PDE by a Monte-Carlo method (avoiding the curse of di-
mensionality). Concerning methods: the players in our games use only elementary
optimization to determine their moves, rather than the more sophisticated frame-
work of backward stochastic differential equations.

Examples are enlightening, so it is natural to ask: what is the “game” inter-
pretation of the linear heat equation? The answer, as we’ll explain in Section 2.1,
is related to the Black-Scholes-Merton approach to option pricing. This surprised
us at first, but in retrospect it seems natural. An investor who hedges a European
option using the Black-Scholes-Merton theory is indifferent to the market’s move-
ments. If the market were not random but deterministic – always moving so as to
give the investor the worst possible result – it would make no difference. So an
investor such as Helen – whose goal is robust control (optimizing the worst-case
outcome) – will make the same choices as one who adopts the Black-Scholes-
Merton viewpoint. This robust-control perspective on the Black-Scholes-Merton
theory of option pricing was previously noted in [10].

A parabolic equation is typically solved by time-stepping. When f is indepen-
dent of u, our game provides a semidiscrete numerical scheme (discrete in time,
continuous in space) whose timestep is a min-max. When the solution is smooth
the scheme reduces more or less to explicit Euler, as we’ll discuss in Section 7.1.
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But our scheme can be used even if the equation is highly nonlinear and/or degener-
ate, and our convergence results hold even when the solution is not smooth. Thus,
our game provides a generalization of the explicit Euler timestepping scheme, for
a broad class of (possibly degenerate) parabolic equations.

When f depends on u, we use (following [17]) a “level-set” approach. Roughly
speaking, this means (in the time-dependent setting) that we obtain uε(x, t) implic-
itly, by first determining a function Uε(x,z, t) defined for x ∈ Rn and z ∈ R, then
solving Uε(x,uε(x, t), t) = 0. For first-order equations, such a level-set approach
has been explored analytically and numerically by [32, 45] (see also [4] for such
an approach to some second-order equations, [9] for related work on systems, and
[28, 29, 45] for a related scheme that works for a conservation law when the solu-
tion has a shock). Our analysis focuses on uε , making no use of results like those in
[32], but analysis based on the level-set viewpoint could be a fruitful direction for
further work (see Remark 2.3). We note that while in [4, 32, 45] the level-set func-
tion U is just a tool for representing the solution, in our game-based interpretation
it has a natural financial meaning.

Here is a brief summary of the paper, including our main results and the overall
strategy of our analysis:

• Section 2 presents the two-person games we associate with the PDE’s (1.1)
and (1.2), motivating and stating our main results. The section starts with
some simple cases before addressing the general one. It is entirely elemen-
tary: understanding our games is easy, though proving a link to the PDE
is more technical. When f is independent of u, our game determines a
“value function” uε . When f depends on u it determines a pair of value
functions vε and uε . Section 2 includes an informal argument linking the
principle of dynamic programming to the PDE in the limit ε → 0. In the
time-dependent setting with f independent of u, the game can be viewed
as a semidiscrete numerical scheme, and our informal argument amounts
to checking consistency.

• Section 3 addresses the link between our game and the PDE will full rigor.
A landmark paper by Barles and Souganidis [7] showed that if a numeri-
cal scheme is monotone, stable, and consistent, then the associated “lower
semi-relaxed limit” is a viscosity supersolution and the associated “upper
semi-relaxed limit” is a viscosity subsolution. The numerical scheme asso-
ciated with our game is monotone from its very definition (as is typical for
schemes associated with dynamic programming). The main result in Sec-
tion 3 is basically the Barles-Souganidis theorem specialized to our setting:
if vε and uε remain bounded as ε → 0 then the lower semirelaxed limit of
vε is a viscosity supersolution and the upper semirelaxed limit of uε is a
viscosity subsolution. We also have vε ≤ uε with no extra hypotheses in
the parabolic setting, or if f is monotone in u in the elliptic setting. If the
PDE has a comparison principle then it follows (as usual, c.f. [7]) that
limuε = limvε exists and is the unique viscosity solution of the PDE.
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• The analysis in Section 3 shows that consistency and stability imply con-
vergence. Sections 4 and 5 provide the required consistency and stability
results. As noted above, the informal derivation of the PDE in Section 2
amounts to a back-of-the-envelope check of consistency; the task of Sec-
tion 4 is to make it rigorous. Concerning stability: the argument in Section
3 requires only that uε and vε be locally bounded. But the argument in
Section 5 proves more, obtaining a global, uniform bound. Of course this
requires appropriate hypotheses on the PDE and the data (for example,
in the time dependent setting the final-time value h(x) must be uniformly
bounded).

• Section 6 provides additional a priori estimates for uε , under additional
hypotheses on f . The basic idea is familiar: for a translation-invariant
equation such as −ut + f (Du,D2u) = 0, a global-in-space Lipschitz bound
propagates in time (see e.g. [16] or [19] or Appendix B of [35]). When
f depends on x, t, and u the argument gets more complicated, but if the
dependence is mild enough one can still get global control on the Lipschitz
continuity of uε and derive an independent proof of compactness of uε .
Similar methods permit us to prove in Section 6.2 that for T − t sufficiently
small, Helen’s two value functions vε and uε are equal and converge to a
solution of the PDE.

• Section 7 provides supplementary remarks in two directions. First, in Sec-
tion 7.1, we discuss the character of our game as a timestepping scheme
for time-dependent equations of the form −∂tu + f (Du,D2u) = 0. Then,
in Section 7.2, we discuss an alternative game (more like that of Section
2.1 than those of Sections 2.2-2.3) for solving ∂tu+∆u+ f (t,x,u,Du) = 0.

We close this introduction by listing our main hypotheses on the form of the
PDE. The real-valued function f in (1.1) is defined on R×Rn ×R×Rn ×Sn,
where Sn is the space of symmetric n×n matrices. It is assumed throughout to be
a continuous function of all its variables, and

• f is monotone in Γ in the sense that

(1.3) f (t,x,z, p,Γ+N)≤ f (t,x,z, p,Γ) for N ≥ 0.

In the time-dependent setting (1.1) we permit f to grow linearly in |z| (so solutions
can grow exponentially, but cannot blow up). However we require uniform control
in x (so solutions remain bounded as ‖x‖→∞ with t fixed). In fact we assume that

• f has at most linear growth in z near p = 0, Γ = 0, in the sense that for any
K we have

(1.4) | f (t,x,z, p,Γ)| ≤CK(1+ |z|)

for all x ∈ Rn and t,z ∈ R, when ‖(p,Γ)‖ ≤ K.
• f is locally Lipschitz in p and Γ in the sense that for any K, we have

(1.5) | f (t,x,z, p,Γ)− f (t,x,z, p′,Γ′)| ≤CK(1+ |z|)‖(p,Γ)− (p′,Γ′)‖
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for all x ∈ Rn and t,z ∈ R, when ‖(p,Γ)‖+‖(p′,Γ′)‖ ≤ K.
• f has controlled growth with respect to p and Γ, in the sense that for some

constants q,r ≥ 1 we have

(1.6) | f (t,x,z, p,Γ)| ≤C (1+ |z|+‖p‖q +‖Γ‖r)

for all x, t, z, p, and Γ.

In the stationary setting (1.2) our solutions will be uniformly bounded. To prove
the existence of such solutions we need the discounting to be sufficiently large. We
also need analogues of (1.5)–(1.6) but they can be local in z since z will ultimately
be restricted to a compact set. In fact, we assume

• There exist η ,C∗ > 0 such that

(1.7) | f (x,z,0,0)| ≤ (λ −η)|z|+C∗

for all x ∈Ω and z ∈ R; here λ is the coefficient of u in the equation (1.2).
• f is locally Lipschitz in p and Γ in the sense that for any K,L we have

(1.8) | f (x,z, p,Γ)− f (t,x,z, p′,Γ′)| ≤CK,L‖(p,Γ)− (p′,Γ′)‖

for all x ∈Ω, when ‖(p,Γ)‖+‖(p′,Γ′)‖ ≤ K and |z| ≤ L.
• f has controlled growth with respect to p and Γ, in the sense that for some

constants q,r ≥ 1 and for any L we have

(1.9) | f (x,z, p,Γ)| ≤CL (1+‖p‖q +‖Γ‖r)

for all x, p and Γ, and any |z| ≤ L.

2 The games

This section presents our games. We begin, as a warm-up, by discussing the
linear heat equation. Section 2.2 addresses the time-dependent problem with f
independent of u. Section 2.3 discusses the time-dependent problem with f de-
pending nonlinearly on u; our main rigorous result for the time-dependent setting
is stated there (Theorem 2.2). Finally, Section 2.4 discusses the stationary setting,
and states our main rigorous results for that case (Theorem 2.7).

2.1 The linear heat equation
This section offers a deterministic two-person game approach to the linear heat

equation in one space dimension

(2.1)
{

ut +uxx = 0 for t < T
u = h(x) for t = T .

Our goal is to capture, in the simplest possible setting,

• how a deterministic game can lead to a second-order PDE, and
• how our framework provides a deterministic approach to problems usually

studied using stochastic methods.
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The game discussed here shares many features with the ones we’ll introduce in
Section 2.2-2.4, though it is not a special case. (We’ll return to this game and
present a generalization of it to semilinear parabolic equations in Section 7.2.)

There are two players; we call them Helen and Mark, because in the financial
interpretation Helen hedges her investments and Mark represents the market. (The
financial interpretation will be discussed after the game has been presented.) A
small parameter ε > 0 is fixed throughout, as are the final time T and “Helen’s
payoff” (a continuous function h : R → R). The state of the game is described
by its “spatial position” x ∈ R and “Helen’s score” y ∈ R. We suppose the game
begins at time t0; since time steps in increments of ε2, it convenient to assume that
T − t0 = Nε2 for some N.

When the game begins, the position can have any value x0; Helen’s initial score
is y0 = 0. The rules are as follows: if, at time t j = t0 + jε2, the position is x j and
Helen’s score is y j, then

(i) Helen chooses a real number p j.
(ii) After seeing Helen’s choice, Mark chooses b j = ±1. The position then

changes to
x j+1 = x j +

√
2εb j

and Helen’s score changes to

y j+1 = y j−
√

2εb j p j.

(iii) The clock steps forward to t j+1 = t j + ε2 and the process repeats, stopping
when tN = T .

(iv) At the final time tN = T a bonus h(xN) is added to Helen’s score, where xN
is the final-time position.

Helen’s goal is to maximize her final score, while Mark’s goal is to obstruct her.
We are interested in Helen’s “value function” uε(x0, t0), defined informally as her
maximum worst-case final score starting from x0 at time t0. It is determined by the
“dynamic programming principle”

(2.2) uε(x, t j) = max
p∈R

min
b=±1

[
−
√

2ε pb+uε(x+
√

2εb, t j+1)
]

coupled with the final-time condition

uε(x,T ) = h(x).

Evidently, if t0 = T −Nε2 then

(2.3) uε(x0, t0) = max
pN−1∈R

min
bN−1=±1

· · ·max
p0∈R

min
b0=±1

{
h(xN)−

N−1

∑
j=0

√
2εb j p j

}
.

In calling this Helen’s value function, we are using an established convention from
the theory of discrete-time, two-person games (see e.g. [27]).

We now argue formally that uε should converge as ε → 0 to the solution of
the linear heat equation (2.1). Roughly speaking, our argument shows that the
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linear heat equation is the Hamilton-Jacobi-Bellman equation of our two-person
game. The procedure for formal passage from the dynamic programming principle
to an associated PDE is familiar: we assume uε is smooth enough to use Taylor
expansion, and we suppress the dependence of uε on ε . Substituting

u(x+
√

2εb, t + ε
2) = u(x, t)+

√
2εbux(x, t)+ ε

2(ut +uxx)(x, t)+O(ε3)

into the right hand side of (2.2), reorganizing, and dropping the term of order ε3,
we obtain

(2.4) 0≈max
p∈R

min
b=±1

[√
2εb(ux− p)+ ε

2(ut +uxx)
]
.

If p 6= ux then Mark will make
√

2εb(ux − p) = −
√

2ε|ux − p|. This term will
then dominate the right hand side, since ε � ε2; that’s bad for Helen, since it is
negative and her goal was to maximize in p. So Helen’s only reasonable choice is
p = ux(x, t). It makes the order-ε term drop out, and we deduce from the order-ε2

terms in (2.4) that ut + uxx = 0. Notice that when Helen behaves optimally she
becomes indifferent to Mark’s choice; our games will always have this feature.

Now we present a financial interpretation of this game. Helen plays the role of
a hedger, while Mark represents the market. The position x is a stock price which
evolves as a function of time t, starting at x0 at time t0. The small parameter ε

determines the stock price increments (∆x = ±
√

2ε at each time). Helen’s score
keeps track, as we’ll see in a moment, of the profits and losses generated by her
hedging activity.

If ∆x were random, x(t) would be a random walk, approximating the diffusion
described by the stochastic differential equation dx =

√
2dw where w is Brownian

motion. However in our game x(t) is not random; rather it is controlled by Mark,
who is constantly working against Helen’s interest.

Helen’s situation is this: she holds an option that will pay her h(x(T )) at time T
(h could be negative). Her goal (as in the standard Black-Scholes-Merton approach
to option pricing) is to hedge this position by buying or selling the stock at each
time increment. She can borrow and lend money without paying or collecting
any interest, and can take take any (long or short) stock position she desires. At
each step, Helen chooses a real number p j (depending on x j and t j), then adjusts
her portfolio so it contains −p j units of stock (borrowing or lending to finance
the transaction, so there is no change in her overall wealth). Mark sees Helen’s
choice. Taking it into account, he makes the stock go up or down (i.e. he chooses
b j = ±1), trying to degrade her outcome. The stock price changes from x j to
x j+1 = x j +

√
2εb j, and Helen’s wealth changes by −

√
2εb j p j (she has a profit if

this is positive, a loss if it is negative). At the final time Helen collects her option
payoff h(xN). If Helen and Mark both behave optimally at each stage, then

uε(x0, t0)+
N−1

∑
j=0

√
2εb j p j = h(xN).
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by (2.3). In words,

(2.5) uε(x0, t0)+Helen’s worst-case profit/loss = option payoff.

Helen’s decisions are in fact identical to those of an investor hedging an option
with payoff h(x) in a binomial-tree market with ∆x =±

√
2ε at each timestep (see

e.g. [18]). Since the binomial tree market is complete, such an investor takes no
risk. Rather, she identifies an initial wealth (the price of the option) and a dynamic
trading strategy that replicates the option payoff in every final-time state of the tree.
Comparing with (2.5), we recognize that uε(x0, t0) is the price of the option. This
robust-control interpretation of the Black-Scholes-Merton theory was previously
noted in [10].

2.2 Nonlinear parabolic equations without u-dependence
This section presents our two-person game approach to equations of the form

(2.6)
{
−ut + f (Du,D2u) = 0 for x ∈ Rn and t < T
u = h(x) at t = T .

The assumption that f is independent of x and t serves mainly to simplify the
notation. The assumption that f is independent of u is, however, essential; the case
with u-dependence requires additional ideas, presented in Section 2.3.

The game presented here does not reduce to the one of Section 2.1 when f (Du,D2u)=
−∆u. The central idea is similar, but the framework has been adapted to accept a
more or less arbitrary function f . Recall that in Section 2.1 the optimal choice
of Helen’s hedging parameter was p = ux; the games we present now have an
analogous vector-valued hedging parameter, which Helen should choose by taking
p = Du. Thus p serves as a proxy for Du. But f depends on both Du and D2u, so
we also need a proxy for D2u. This is the role of the matrix Γ in the game we now
describe.

The overall framework is the same as before: there are two players, Helen and
Mark; a small parameter ε is fixed, etc. Since the PDE is to be solved in Rn,
Helen’s final-time bonus h is now a function of x ∈ Rn. The state of the game is
described by its spatial position x ∈Rn and Helen’s score y ∈R. Helen’s goal is to
maximize her final score, while Mark’s is to obstruct her.

The rules of the game depend on three new parameters, α,β ,γ > 0, whose
presence represents no loss of generality. Their role will be clear in a moment. The
requirements

(2.7) α < 1/3

and

(2.8) α +β < 1, 2α + γ < 2, max(βq,γr) < 2

will be clear from the discussion in this section (the parameters q and r in (2.8)
control the growth of f at infinity, c.f. (1.6).) But our proof of consistency in
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Section 4 needs more: there we will require

(2.9) γ < 1−α, β (q−1) < α +1, γ(r−1) < 2α, γr < 1+α.

These conditions do not restrict the class of PDE’s we consider, since for any q and
r there exist α , β , and γ with the desired properties.

When the game begins, at time t0, the spatial position can have any value x0
and Helen’s score is y0 = 0. The rules are as follows: if, at time t j = t0 + jε2, the
position is x j and Helen’s score is y j, then

(i) Helen chooses a vector p j ∈Rn and an n×n symmetric matrix Γ j (depend-
ing on x j and t j), subject to the constraints

(2.10) ‖p‖ ≤ ε
−β , ‖Γ‖ ≤ ε

−γ .

(ii) Mark sees Helen’s choice. Taking it into account, he picks a vector w j ∈Rn

subject to the upper bound

(2.11) ‖w‖ ≤ ε
−α .

The position then changes to

x j+1 = x j + εw j

and Helen’s score changes to

y j+1 = y j−
(

ε p j ·w j +
ε2

2
〈Γ jw j,w j〉+ ε

2 f (p j,Γ j)
)

.

(iii) The clock steps forward to t j+1 = t j + ε2 and the process repeats, stopping
when tN = T .

(iv) At the final time tN = T a bonus h(xN) is added to Helen’s score, where xN
is the final-time position.

The financial interpretation is much as before. At each step Helen chooses a
“hedge portfolio” associated with p j and Γ j; knowing them, Mark (our malevolent
market) chooses the stock price increment εw j to give Helen the worst possible
result when her wealth decreases by

ε p j ·w j +
ε2

2
〈Γ jw j,w j〉+ ε

2 f (p j,Γ j).

The main differences from Section 2.1 are that

• the “stock price” is now a vector in Rn, accounting for the prices of n
different stocks;

• the price increments are still scaled by ε , but are no longer fixed in magni-
tude; and

• Helen’s gain at time t j depends on the form of the PDE.
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We said Helen’s hedge portfolio was “associated with” p j and Γ j. The financial
interpretation of the vector p is familiar: its components determine her stock po-
sition (so an increment of εw in the stock price produces a loss of ε p ·w). The
financial interpretation of the matrix Γ is less familiar, but it is something akin to
a volatility derivative, since the associated change 1

2 ε2〈Γw,w〉 in Helen’s wealth
depends quadratically on the price movement.

The upper bound (2.11) assures that each stock price increment ∆x = εw is rela-
tively small (since α < 1). Similarly, (2.8) and (2.10) assure that each increment in
Helen’s wealth is relatively small. Condition (2.7) assures that (∆x)3 � ε2. We’ll
need this in a moment, when we use Taylor expansion to link the game with the
PDE.

Helen’s value function uε is determined by the final-time condition uε(x,T ) =
h(x) and the dynamic programming principle

(2.12) uε(x, t j) = max
p,Γ

min
w

[
uε(x+ εw, t j+1)− ε p ·w− ε2

2
〈Γw,w〉− ε

2 f (p,Γ)
]
.

Here the minimization over w is subject to (2.11) and the maximization over p,Γ
is subject to (2.10). It is easy to see that the max/min in (2.12) is achieved and
uε(x, t j) is a continuous function of x at each discrete time. (The proof is by induc-
tion backward in time, using the fact that h and f are continuous, and noting that
p,Γ and w range over bounded sets when ε is held fixed.) There is an equivalent
characterization analogous to (2.3). The notation maxmin . . .maxmin is cumber-
some, so we prefer to write this alternative characterization more informally as
(2.13)

uε(x0, t0) = max
Helen′schoices

h(xN)−
N−1

∑
j=0

[
ε p j ·w j +

ε2

2
〈Γ jw j,w j〉+ ε

2 f (p j,Γ j)
]
.

We now show that the PDE (2.6) is the formal Hamilton-Jacobi-Bellman equa-
tion associated with this game. The argument is parallel to that of the last section.
Suppressing the dependence of uε on ε , and remembering that εw is small, we have
by Taylor expansion

u(x+ εw, t + ε
2)≈ u(x, t)+ εDu(x, t) ·w+ ε

2(ut + 1
2〈D

2uw,w〉)(x, t)

if u is smooth. Substituting this in (2.12) and reorganizing, we obtain

(2.14) 0≈max
p,Γ

min
w

[
ε(Du− p) ·w+ ε

2 (ut + 1
2〈(D

2u−Γ)w,w〉− f (p,Γ)
)]

where Du and D2u are evaluated at (x, t). We have ignored the upper bounds (2.10)-
(2.11) since they permit p, Γ, and w to be arbitrarily large in the limit ε → 0
(we shall of course be more careful in Section 4). Evidently Helen should take
p = Du(x, t), since otherwise Mark can make the order-ε term negative and domi-
nant. Similarly, she should choose Γ ≤ D2u(x, t), since otherwise Mark can drive
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〈(D2u−Γ)w,w〉 to −∞ by a suitable choice of w. After recognizing this, Helen’s
maximization (the right hand side of (2.14)) reduces to

max
Γ≤D2u(x,t)

[ut − f (Du(x, t),Γ)]

Since the PDE is parabolic, i.e. since f satisfies (1.3), Helen’s optimal choice is
Γ = D2u(x, t), and (2.14) reduces formally to −ut + f (Du,D2u) = 0.

As in Section 2.1, when Helen chooses p and Γ optimally she is entirely indif-
ferent to Mark’s choice of w. Our games always have this feature.

2.3 General parabolic equations
This section explains what we do when f depends on u. We also permit depen-

dence on x and t, so we are now discussing a fully-nonlinear (degenerate) parabolic
equation of the form

(2.15)
{
−ut + f (t,x,u,Du,D2u) = 0 for x ∈ Rn and t < T
u = h(x) at t = T .

When f = f (Du,D2u) the game presented here reduces to that of Section 2.2.
In the preceding sections, Helen’s score y was essentially her wealth (her goal

was to maximize it). In this section it is more convenient to work instead with
z = −y, which amounts to her debt. We shall proceed in two steps. Using the
language of our financial interpretation (to which the reader is, we hope, by now
accustomed) we

(a) first consider Uε(x,z, t), Helen’s optimal wealth at time T , if initially at
time t the stock price is x and her wealth is −z;

(b) then we define uε(x, t) or vε(x, t) as, roughly speaking, the initial debt He-
len should have at time t to break even at time T .

The proper definition of Uε(x,z, t) involves a game similar to that of the last sec-
tion. If at time t j Helen’s debt is z j and the stock price is x j, then

(i) Helen chooses a vector p j ∈ Rn and an n× n symmetric matrix Γ j, re-
stricted by (2.10).

(ii) Taking Helen’s choice into account, Mark chooses the next stock price
x j+1 = x j + εw j so as to degrade Helen’s outcome. The scaled increment
w j ∈ Rn can be any vector subject to the upper bound (2.11).

(iii) Helen’s debt changes to

(2.16) z j+1 = z j +
[

ε p j ·w j +
ε2

2
〈Γw j,w j〉+ ε

2 f (t j,x j,z j, p j,Γ j)
]
.

(iv) The clock steps forward to t j+1 = t j + ε2 and the process repeats, stopping
when tN = T . At the final time Helen receives h(xN) from the option.
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Helen’s goal, as usual, is to maximize her worst-case score at time T , and Mark’s
is to work against her. Using the shorthand introduced in (2.13), her value function
is

(2.17) Uε(x0,z0, t0) = max
Helen′schoices

[h(xN)− zN ] .

It is characterized by the dynamic programming principle:

(2.18) Uε(x,z, t j) = max
p,Γ

min
w

Uε(x+∆x,z+∆z, t j+1)

together with the final-time condition Uε(x,z,T ) = h(x)−z. Here ∆x is x j+1−x j =
εw and ∆z = z j+1− z j is given by (2.16), and the optimizations are constrained by
(2.10) and (2.11). It is easy to see that the max/min in (2.18) is achieved and
Uε(x, ,z, t j) is a continuous function of x and z at each discrete time. (The proof is
by induction backward in time, like the argument sketched above for (2.12).)

We turn now to task (b), the definition of uε and vε . As motivation, observe
that when f is independent of z, the functions Uε(x,z, t) defined above and uε(x, t)
defined in Section 2.2 are related by Uε(x,z, t) = uε(x, t)− z. (This can be seen,
for example, by comparing (2.13) to (2.17).) So z0 = uε(x0, t0) is the initial debt
Helen should have at time t0 to be assured of (at least) breaking even at time T .
When f depends on z the function z 7→ Uε(x,z, t) can be non-monotone, so we
must distinguish between the minimal and maximal initial debt with which Helen
breaks even at time T . Thus, we define:

(2.19) uε(x0, t0) = sup{z0 : Uε(x0,z0, t0)≥ 0},

(2.20) vε(x0, t0) = inf{z0 : Uε(x0,z0, t0)≤ 0}.

with the convention that the empty set has sup =−∞ and inf = ∞. (We remark that
the introduction of uε and vε is analogous to the pricing of an option by super or
sub replication.)

Clearly vε ≤ uε , and uε(x,T ) = vε(x,T ) = h(x). It is not immediately clear that
vε >−∞ or uε < ∞ for all t < T ; however we shall establish this in Section 5 under
the hypothesis that |h| is uniformly bounded. It is not clear in general that uε and
vε are continuous.

Since the definitions of uε and vε are now implicit, these functions can no longer
be characterized by a principle of dynamic programming. However we still have
two “dynamic programming inequalities:”

Proposition 2.1. If uε(x, t) is finite then
(2.21)

uε(x, t)≤ sup
p,Γ

inf
w

[
uε(x+ εw, t + ε

2)− (ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t,x,uε(x, t), p,Γ))
]

;
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similarly, if vε(x, t) is finite then
(2.22)

vε(x, t)≥ sup
p,Γ

inf
w

[
vε(x+ εw, t + ε

2)− (ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t,x,vε(x, t), p,Γ))
]
.

As usual, the sup and inf are constrained by (2.10) and (2.11).

Proof. We wrote sup/inf not max/min in these relations, since it is not clear that uε

and vε are continuous. To prove (2.21), consider z = uε(x, t). By the definition of
uε (and remembering that Uε is continuous) we have Uε(x,z, t) = 0. Hence writing
(2.18), we have

0 = max
p,Γ

min
w

Uε(x+ εw,z+ ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t,x,z, p,Γ), t + ε
2).

We conclude that there exist p,Γ (constrained by (2.10)), such that for all w (con-
strained by (2.11)), we have

Uε(x+ εw,z+ ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t,x,z, p,Γ), t + ε
2)≥ 0.

By the definition of uε , this implies that

z+ ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t,x,z, p,Γ)≤ uε(x+ εw, t + ε
2).

In other words, there exist p,Γ such that for every w

z≤ uε(x+ εw, t + ε
2)−

(
ε p ·w+

ε2

2
〈Γw,w〉+ ε

2 f (t,x,z, p,Γ)
)

.

This implies

z≤ sup
p,Γ

inf
w

[
uε(x+ εw, t + ε

2)−
(

ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t,x,z, p,Γ)
)]

.

Recalling that z = uε(x, t), we get (2.21). The proof of (2.22) is entirely parallel.
�

Our PDE (2.15) is the formal Hamilton-Jacobi-Bellman equation associated
with the dynamic programming principles (2.21)–(2.22), by essentially the same
argument we used in the last section to connect (2.12) with (2.6), if one believes
that uε ≈ vε .

Rather than repeat that heuristic argument, let us state the corresponding rigor-
ous result, which follows from the results in Sections 3 – 5. It concerns the upper
and lower semi-relaxed limits, defined by

(2.23) u(x, t) = limsupy→x
t j→t
ε→0

uε(y, t j) and v(x, t) = liminfy→x
t j→t
ε→0

vε(y, t j),

where the discrete times are t j = T − jε2. We shall show, under suitable hypothe-
ses, that v and u are viscosity super and subsolutions respectively. It is natural to
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ask whether they are equal, and whether they give a viscosity solution of the PDE.
This is a global question, which we can answer only if the PDE has a comparison
principle. Such a principle asserts that if u is a subsolution and v is a supersolution
(with some constraint on their growth at infinity if the spatial domain is unbounded)
then u≤ v. If the PDE has such a principle (and assuming u and v satisfy the growth
condition at infinity) then it follows that u≤ v. The opposite inequality is immedi-
ate from the definitions, so it follows that u = v, and we get a viscosity solution of
the PDE. It is in fact the unique viscosity solution, since the comparison principle
implies uniqueness. Here is a careful statement of the result just sketched:

Theorem 2.2. Consider the final-value problem (2.15) where f satisfies (1.3)–
(1.6), and h is a uniformly bounded, continuous function. Assume the parameters
α,β ,γ satisfy (2.7) – (2.9). Then u and v are uniformly bounded on Rn × [t∗,T ]
for any t∗ < T , and they are respectively a viscosity subsolution and a viscosity
supersolution of (2.15). If the PDE has a comparison principle (for uniformly
bounded solutions) then it follows that uε and vε converge locally uniformly to the
unique viscosity solution of (2.15).

This theorem is an immediate consequence of Propositions 3.3 and 5.1. Some
sufficient conditions for the PDE to have a comparison principle can be found in
Section 4.3 of [17]. Note that most comparison results require f (t,x,z, p,Γ) to be
nondecreasing in z.

Remark 2.3. If Uε(x,z, t) is a strictly decreasing function of z then uε(x, t)= vε(x, t)
is determined by the implicit equation Uε(x,uε(x, t), t). It is natural to guess that
as ε → 0, Uε converges to a solution of the “level-set PDE” obtained by either (a)
applying our usual formal argument to the dynamic programming principle (2.18),
or (b) differentiating the relation U(x,u(x, t), t) = 0 (see [32]). A proof of this
conjecture would seem to require new ideas, such as a comparison principle for the
PDE satisfied by U (which is presently unavailable except in some rather special
cases, see Remark 2.5 of [32]). The correspondence between U and u has mainly
been studied for some classes of first-order equations [32, 45], but there are also
some results in the second-order case [4] and for systems [9]. The analysis in the
present paper does not use the level-set framework; instead we work mainly with
uε and vε .

When the PDE is Burgers’ equation and the solution has a shock, we do not
expect either uε or vε to converge to the entropy-decreasing weak solution. Rather,
we expect the locus where Uε = 0 to resemble the multivalued graph of an “over-
turning solution.” (The papers [28, 29, 45] discuss how the level-set method can
be modified to avoid overturning and get the entropy weak solution; we have not
explored whether a similar modification is possible in the present context.)

We close this section with the observation that if Uε(x,z, t) is a strictly decreas-
ing function of z then vε(x, t) = uε(x, t). A sufficient condition for this to hold is
that f be non-decreasing in z:
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Lemma 2.4. Suppose f is non-decreasing in z, in the sense that

(2.24) f (t,x,z1, p,Γ)≥ f (t,x,z0, p,Γ) whenever z1 > z0.

Then Uε satisfies

(2.25) Uε(x,z1, t j)≤Uε(x,z0, t j)− (z1− z0) whenever z1 > z0

at each discrete time t j = T − jε2. In particular, Uε is strictly decreasing in z and
vε = uε .

Proof. Since Uε(x,z,T ) = h(x)−z, (2.25) holds with equality at the final time. We
shall use the dynamic programming principle (2.18) to show that if (2.25) holds at
time t + ε2 then it also holds at time t. For any p, Γ, and w, let ∆x = εw and set

∆z0 = ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t,x,z0, p,Γ),

∆z1 = ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t,x,z1, p,Γ).

Note that
∆z1 ≥ ∆z0

as a consequence of (2.24). Therefore (2.25) at time t + ε2 (i.e., the induction
hypothesis) implies

(2.26) Uε(x+∆x,z1 +∆z1, t + ε
2)

≤Uε(x+∆x,z0 +∆z0, t + ε
2)− ((z1 +∆z1)− (z0 +∆z0))

≤Uε(x+∆x,z0 +∆z0, t + ε
2)− (z1− z0).

Minimizing over w then maximizing over p,Γ, we obtain the desired inequality
(2.25). The remaining assertions of the Lemma are immediate consequences of
this relation. �

When f is not monotone in z the preceding argument breaks down, but we can still
prove that Uε is monotone in z for T − t sufficiently small. This will be done in
Section 6.2.

2.4 Nonlinear elliptic equations
This section explains how our game can be used to solve stationary boundary

value problems. The framework is similar to the parabolic case, but two new issues
arise:

(i) we must introduce discounting, to be sure Helen’s value function is finite;
and

(ii) we must be careful about the sense in which the boundary data are imposed.
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Concerning (i): discounting is needed because we consider an arrival-time prob-
lem, and Helen’s optimal arrival time could be infinite. The discounting affects the
PDE; therefore we focus on

(2.27)
{

f (x,u,Du,D2u)+λu = 0 in Ω

u = g on ∂Ω.

The constant λ (which plays the role of an interest rate) must be positive, and large
enough that (1.7) holds. (If f is independent of z then any λ > 0 will do.)

Concerning (ii): this issue is new only because we chose to address just Cauchy
problems in Sections 2.2-2.3 (see however Remark 2.8). Our framework applies
even to first-order Hamilton-Jacobi equations, where it is clear from elementary ex-
amples that data can only be imposed in the classical sense on part of the boundary.
At the level of the PDE, the proper handling of this issue is well-understood: the
boundary condition in (2.27) must be understood in the viscosity sense (see Defi-
nition 3.2 in Section 3). At the level of the game, the corresponding phenomenon
is that Helen’s value function may not be a continuous function of x ∈Ω.

We now present the game. The main differences from Section 2.3 are the pres-
ence of discounting, and the fact that play stops when Helen gets to ∂Ω or when
her score gets too large in absolute value, rather than at a fixed time. The bound-
ary condition g is assumed to be a bounded, continuous function on ∂Ω. It enters
the game as an “exit bonus;” since the final position can be (slightly) outside Ω,
we shall assume that g has been extended to a continuous function defined on a
neighborhood of Ω. Besides the parameters α,β ,γ introduced previously, in the
stationary case we need two new parameters, M and m. Both are positive constants;
M serves to cap the score, and m determines what happens when the cap is reached.
We shall in due course choose m = M−1 and require that M be sufficiently large
(see Remark 2.6). Like the choices of α,β ,γ , the parameters M and m are used to
define the game but they do not influence the resulting PDE. As in Section 2.3, we
proceed in two steps:

(a) first we introduce Uε(x,z), the optimal worst-case present value of Helen’s
wealth if the initial stock price is x and her initial wealth is −z;

(b) then we define uε(x, t) and vε(x, t) as the maximal and minimal initial debt
Helen should have at time t to break even upon exit.

The definition of Uε(x,z) for x ∈Ω and z ∈ R involves a game of the usual type.

(i) Initially, at time t0 = 0, the stock price is x0 = x and Helen’s debt is z0 = z.
(ii) Suppose, at time t j = jε2, the stock price is x j and Helen’s debt is z j with

|z j| < M. Then Helen chooses a vector p j and an n×n symmetric matrix
Γ j, restricted in magnitude by (2.10). Knowing these choices, Mark deter-
mines the next stock price x j+1 = x j + εw j, with w j restricted by (2.11).
Helen experiences a loss at time t j of

(2.28) δ j =
[

ε p j ·w j +
ε2

2
〈Γ jw j,w j〉+ ε

2 f (x j,z j, p j,Γ j)
]
.
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As a consequence, her time t j+1 = t j + ε2 debt becomes

z j+1 = eλε2
(z j +δ j)

(the factor eλε2
takes into account her interest payments).

(iii) If z j+1 ≥ M then the game terminates, and Helen pays a “termination-by-
large-debt penalty” worth eλε2

(m− δ j) at time t j+1. Similarly, if z j+1 ≤
−M then the game terminates, and Helen receives a “termination-by-large-
wealth bonus” worth eλε2

(m+δ j) at time t j+1. If the game stops this way
we call t j+1 the “ending index” tN .

(iv) If |z j+1| < M and x j+1 6∈ Ω then the game terminates, and Helen gets an
“exit payoff” worth g(x j+1) at time t j+1. If the game ends this way we call
t j+1 the “exit index” tE . Notice that if g is defined in a neighborhood of Ω

then the exit payoff is well-defined, since the distance from x j+1 to Ω is at
most ‖εw j‖ ≤ ε1−α � 1.

(v) If the game hasn’t terminated then Helen and Mark repeat this procedure
at time t j+1 = t j + ε2. If the game never stops then the “exit time” tE is
+∞.

Helen’s goal is a bit different from before, due to the presence of discounting:
she seeks to maximize the minimum present value of her future income, using the
discount factor of e− jλε2

for income received at time t j. If the game ends by exit at
time tE then the present value of her income is

Uε(x0,z0) = −z0−δ0− e−λε2
δ1−·· ·− e−(E−1)λε2

δE−1 + e−Eλε2
g(xE)

= e−Eλε2
(g(xE)− zE).

If the game never ends then (since z j and g(x j) are uniformly bounded) we can
take E = ∞ in the preceding formula to see that the present value of her income is
0. If the game ends by capping at time tN with zN ≥ M then the present value of
her income is

Uε(x0,z0) = −z0−δ0− e−λε2
δ1−·· ·− e−(N−1)λε2

δN−1− e−(N−1)λε2
(m−δN−1)

= e−(N−1)λε2
(−zN−1−m);

similarly, if the game ends by capping at time tN with zN ≤ −M then the present
value of her income is

Uε = e−(N−1)λε2
(−zN−1 +m).

Using the shorthand introduced in (2.13), Helen’s value function is thus
(2.29)

Uε(x0,z0) = sup
Helen′schoices


e−Eλε2

(g(xE)− zE) if the game ends by exit

e−(N−1)λε2
(−zN−1−m) if it ends by capping above,

e−(N−1)λε2
(−zN−1 +m) if it ends by capping below.
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To get a dynamic programming characterization of Uε , we observe that if |z0|< M
then

(2.30) Uε(x0,z0) = sup
p,Γ

inf
w


e−λε2

Uε(x1,z1) if x1 ∈Ω and |z1|< M
e−λε2

(g(x1)− z1) if x1 6∈Ω and |z1|< M
−z0−m if z1 ≥M
−z0 +m if z1 ≤−M.

Since the game is stationary (nothing distinguishes time 0), the associated dynamic
programming principle is that for |z|< M,

(2.31) Uε(x,z) = sup
p,Γ

inf
w


e−λε2

Uε(x′,z′) if x′ ∈Ω and |z′|< M
e−λε2

(g(x′)− z′) if x′ 6∈Ω and |z′|< M
−z−m if z′ ≥M
−z+m if z′ ≤−M

where x′ = x+ εw and z′ = eλε2
(z+δ ), with δ defined as in (2.28). Here p,Γ, and

w are constrained as usual by (2.10)–(2.11), and we write sup, inf rather than max,
min since it is no longer clear that the optima are achieved (since the right hand
side is now a discontinuous function of p,Γ, and w). The preceding discussion
defines Uε only for |z|< M; it is natural to extend the definition to all z by

(2.32)
Uε(x,z) =−z−m for z≥M
Uε(x,z) =−z+m for z≤−M

which corresponds to play being “capped” immediately. Notice that when extended
this way, Uε is strictly negative for z≥M and strictly positive for z≤−M.

Is Uε well-defined and computable? We shall use a fixed-point argument to give
an affirmative answer in Section 5.2, when M is sufficiently large and m = M−1.
An alternative viewpoint uses a time-dependent version of the game similar to that
of Section 2.3. If, rather than letting Helen and Mark play indefinitely, we introduce
a finite final time T , then our situation is similar to that of Section 2.3. There is
a principle of dynamic programming (an obvious modification of (2.31)) which
determines Helen’s value function by stepping backward in time. Our Uε is the
function to which this time-dependent solution converges as t →−∞. (The fixed-
point argument in Section 5.2 amounts to a proof that the solution has a limit as
t →−∞.)

The definitions of uε and vε are slightly different from those in Section 2.3:

(2.33) uε(x0) = sup{z0 : Uε(x0,z0) > 0},

(2.34) vε(x0) = inf{z0 : Uε(x0,z0) < 0}.
The change from Section 2.3 is that the inequalities in (2.33) and (2.34) are strict.
This change seems necessary to make the proof of Proposition 2.5 work. It has,
however, an important consequence: the relation vε ≤ uε is no longer obvious. For
example, if z 7→Uε(x0,z) is strictly positive for z < a, identically 0 for a ≤ z ≤ b,
and strictly negative for z > b, then (2.33)-(2.34) give uε(x0) = a and vε(x0) = b.
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This issue does not affect our proof that v and u are viscosity super and subso-
lutions. But we cannot conclude (via a comparison principle) that v = u unless we
somehow know that v≤ u. Our main scheme for knowing this is an elliptic version
of Lemma 2.4: we will show in Section 5.2 that if f is nondecreasing in z then Uε

is strictly decreasing in z, from which it follows easily that vε = uε .
Note that since Uε > 0 for z ≤ −M and Uε < 0 for z ≥ M, we always have

|uε(x)| ≤M and |vε(x)| ≤M.
We have the following analogue of Proposition 2.1:

Proposition 2.5. Let m1 be a constant with 0 < m1 < M. Then whenever x ∈ Ω

and −m1 ≤ uε(x) < M we have
(2.35)

uε(x)≤ sup
p,Γ

inf
w

[
−ε p ·w− ε2

2
〈Γw,w〉− ε

2 f (x,uε(x), p,Γ)+ e−λε2
ûε(x+ εw)

]
when ε is small enough (depending on m1 and on the parameters of the game but
not on x). Similarly, if x ∈Ω and −M < vε(x)≤ m1 then when ε is small enough
(2.36)

vε(x)≥ sup
p,Γ

inf
w

[
−ε p ·w− ε2

2
〈Γw,w〉− ε

2 f (x,vε(x), p,Γ)+ e−λε2
v̂ε(x+ εw)

]
.

Here p,Γ, and w are constrained as usual by (2.10) and (2.11), and ûε , v̂ε are de-
fined to be the extensions of uε ,vε by g off Ω; in other words we use the convention
that for any function φ ,

(2.37) φ̂(x) =
{

φ(x) if x ∈Ω

g(x) if x 6∈Ω.

Proof. We shall focus on (2.35); the argument for (2.36) is entirely parallel. Since
−m1 ≤ uε(x) < M, there is a sequence zk ↑ uε(x) such that Uε(x,zk) > 0. Since
uε(x) is bounded away from−M, we may suppose that zk also stays bounded away
from −M. Dropping the index k for simplicity of notation, consider any such
z = zk. The fact that Uε(x,z) > 0 tells us that the right hand side of the dynamic
programming principle (2.31) is positive. So there exist p,Γ satisfying (2.10) such
that for any w satisfying (2.11),

0 <


e−λε2

Uε(x′,z′) if x′ ∈Ω and |z′|< M
e−λε2

(g(x′)− z′) if x′ 6∈Ω and |z′|< M
−z−m if z′ ≥M
−z+m if z′ ≤−M

where x′ = x + εw and z′ = eλε2
(z + δ ). Capping above (the alternative z′ ≥ M)

cannot occur, since when it happens the right hand side is negative. Capping below
(the alternative z′ ≤−M) cannot occur either (if ε is sufficiently small), because z
is bounded away from −M and δ is bounded by a positive power of ε . Therefore
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only two cases can occur. If x+ εw ∈Ω then we have

0 < Uε(x+ εw,eλε2
(z+δ ))

whence by the definition of uε

uε(x+ εw)≥ eλε2
(z+δ ).

If on the other hand x+ εw /∈Ω then we have

0 < g(x+ εw)− eλε2
(z+δ ).

Combining these cases, we have shown the existence of p,Γ such that for every w,

(2.38) z≤−
(

ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (x,z, p,Γ)
)

+ e−λε2
ûε(x+ εw)

where ûε is defined by (2.37). Remembering that z = zk ↑ uε(x), we pass to the
limit on both sides of (2.38) (with p, Γ, and w held fixed) to see that

uε(x)≤−
(

ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (x,uε(x), p,Γ)
)

+ e−λε2
ûε(x+ εw).

Since this is true for some p,Γ and for every w, we have established (2.35). The
proof of (2.36) is parallel. �

We shall prove in Section 5.2 that if M is sufficiently large and m = M−1 then
Uε(x,z) exists and V ε(x,z) = Uε(x,z) + z satisfies |V ε(x,z)| ≤ m. This implies,
by an elementary argument (given there), that |uε(x)| ≤ m and |vε(x)| ≤ m. Thus,
when M is sufficiently large the hypothesis of Proposition 2.5 will hold with m1 =
m = M−1.

Remark 2.6. In defining the game, our choice of what happens when play ends
by capping may seem rather mysterious. It was governed by our desire to have
V ε(x,z) = Uε(x,z)+ z be a decreasing function of z when f is nondecreasing in z
(see Lemma 5.4). Since we also want |V ε | ≤m, it is natural to take V ε(x,−M) = m
and V ε(x,M) =−m. Our capping scheme was chosen to have this property.

The PDE (2.27) is the formal Hamilton-Jacobi-Bellman equation associated
with the dynamic programming inequalities (2.35)–(2.36), by the usual Taylor-
expansion based argument, if one accepts that −M < vε ≈ uε < M. Rather than
dwell on that heuristic argument, we now state our main rigorous result in the
stationary setting, which follows from the results in Sections 4 and 5. It concerns
the upper and lower semi-relaxed limits, defined for any x ∈Ω by

(2.39) u(x) = limsupy→x
ε→0

uε(y) and v(x) = liminfy→x
ε→0

vε(y).

with the convention that y approaches x from within Ω (since uε and vε are only
defined on Ω).
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Theorem 2.7. Consider the stationary boundary-value problem (2.27) where f
satisfies (1.3) and (1.7) – (1.9), and g is a uniformly bounded continuous function.
Assume the parameters of the game α,β ,γ satisfy (2.7) –(2.9), M is sufficiently
large, and m = M − 1. Then uε and vε are well-defined when ε is sufficiently
small, and they satisfy |uε | ≤ m and |vε | ≤ m. Their semi-relaxed limits u and v
are respectively a viscosity subsolution and a viscosity supersolution of (2.15). If
in addition we have v≤ u and the PDE has a comparison principle, then it follows
that uε and vε converge locally uniformly in Ω to the unique viscosity solution of
(2.15).

This is an immediate consequence of Propositions 3.5 and 5.3. A sufficient
condition for v ≤ u is that f be nondecreasing in z (see Lemma 5.4). Sufficient
conditions for the PDE to have a comparison principle can be found for example
in Section 5 of [20], and (for more recent results) in [5, 6].

Remark 2.8. In Section 2.3 we discussed only Cauchy problems, i.e. parabolic
equations solved in the whole space Rn. However parabolic problems on bounded
domains (with a Dirichlet condition u = g at the boundary) can easily be handled
using ideas from the present section. Briefly: the game must stop when Helen
exits, and she collects g evaluated at the exit point.

3 Convergence

This section presents our main convergence results, linking the limiting behav-
ior of vε and uε as ε → 0 to the PDE. The argument uses the framework of [7]
and is basically a special case of the theorem proved there; we give the details
anyway, to make this paper self-contained. Convergence is a local issue: in the
time-dependent setting, Proposition 3.3 shows that in any region where the lower
and upper semi-relaxed limits v and u are finite they are in fact viscosity super
and subsolutions respectively. (The analogous statement for the stationary case is
somewhat more subtle; see Remark 3.6.)

3.1 Viscosity solutions
Our PDE’s can be degenerate parabolic, degenerate elliptic, or even first order.

Therefore we cannot expect a classical solution, and we cannot always impose
boundary data in the classical sense on the entirety of ∂Ω. The theory of viscosity
solutions provides the proper framework for handling these issues. We review
the basic definitions for the reader’s convenience. Consider first the final-value
problem (2.15) in Rn,{

−ut + f (t,x,u,Du,D2u) = 0 for x ∈ Rn and t < T
u = h(x) at t = T

where f (t,x,z, p,Γ) is continuous in all its variables and satisfies the monotonicity
condition (1.3) in its last variable.
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Definition 3.1. A real-valued, lower-semicontinuous function u(x, t) defined for
x ∈Rn and t∗ ≤ t ≤ T is a viscosity supersolution of the final-value problem (2.15)
if

(a) for any (x0, t0) with t∗ ≤ t0 < T , and any smooth φ(x, t) such that u−φ has
a local minimum at (x0, t0) we have

∂tφ(x0, t0)− f (t0,x0,u(x0, t0),Dφ(x0, t0),D2
φ(x0, t0))≤ 0, and

(b) u≥ h at the final time t = T .
Similarly, a real-valued upper-semicontinuous function u(x, t) defined for x ∈ Rn

and t∗ ≤ t ≤ T is a viscosity subsolution of the final-value problem (2.15) if
(a) for any (x0, t0) with t∗ ≤ t0 < T , and any smooth φ(x, t) such that u−φ has

a local maximum at (x0, t0) we have

∂tφ(x0, t0)− f (t0,x0,u(x0, t0),Dφ(x0, t0),D2
φ(x0, t0))≥ 0, and

(b) u≤ h at the final time t = T .
A viscosity solution of (2.15) is a continuous function u that is both a subsolution
and a supersolution.

Now consider the stationary problem (2.27). The definitions are similar to the
time-dependent setting, however we must be careful to impose the boundary con-
dition “in the viscosity sense:”

Definition 3.2. A real-valued, lower-semicontinuous function u(x) defined on Ω is
a viscosity supersolution of the stationary problem (2.27) if

(a) for any x0 ∈Ω and any smooth φ(x, t) such that u−φ has a local minimum
at x0, we have

f (x0,u(x0),Dφ(x0),D2
φ(x0))+λu(x0)≥ 0; and

(b) for any x0 ∈ ∂Ω and any smooth φ such that u−φ has a local minimum on
Ω at x0, we have

max
{

f (x0,u(x0),Dφ(x0),D2
φ(x0))+λu(x0),u(x0)−g(x0)

}
≥ 0.

Similarly, a real-valued upper-semicontinuous function u(x) defined on Ω is a vis-
cosity subsolution of the stationary problem (2.27) if

(a) for any x0 ∈Ω and any smooth φ(x, t) such that u−φ has a local maximum
at x0 we have

f (x0,u(x0),Dφ(x0),D2
φ(x0))+λu(x0)≤ 0, and

(b) for any x0 ∈ ∂Ω and any smooth φ such that u−φ has a local maximum
on Ω at x0, we have

min
{

f (x0,u(x0),Dφ(x0),D2
φ(x0))+λu(x0),u(x0)−g(x0)

}
≤ 0.

A viscosity solution of (2.27) is a continuous function u that is both a subsolution
and a supersolution.
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In stating these definitions, we have assumed that the final-time data h and the
boundary data g are continuous. In Definition 3.1, the pointwise inequality in part
(b) can be replaced by an apparently weaker condition analogous to part (b) of
Definition 3.2. The equivalence of such a definition with the one stated above is
standard; the argument uses barriers of the form φ(x, t) = |x− x0|2/δ +(T − t)/µ

with δ and µ sufficiently small, and is contained in our proof of Proposition 3.3
(ii) below.

We shall be focusing on the lower and upper semi-relaxed limits of vε and uε ,
defined by (2.23) in the time-dependent setting and (2.39) in the stationary case.

3.2 The parabolic case
We are ready to state our main convergence result in the time-dependent setting.

The proof seems at first to use only the monotonicity condition (1.3). However
it also relies on the consistency of the numerical scheme, Lemma 4.1, which is
proved in Section 4. So we also require that f (t,x,z, p,Γ) satisfy (1.5)-(1.6), and
that the parameters α,β ,γ satisfy (2.7) – (2.9). (Actually, since consistency is a
local matter, we need only local versions of (1.5)–(1.6), see Remark 3.4.)

Proposition 3.3. Suppose f and α,β ,γ satisfy the hypotheses just listed. Assume
furthermore that u and v are finite for all x near x0 and all t ≤ T near t0. Then

(i) if t0 < T , then u is a viscosity subsolution at x0 and v is a viscosity super-
solution at x0 (i.e. each satisfies part (a) of the relevant half of Definition
3.1 at x0).

(ii) if t0 = T , then u(x0) = h(x0) and v(x0) = h(x0). (In particular, each satis-
fies part (b) of the relevant half of Definition 3.1 at x0).

In particular, if u and v are finite for all x ∈ Rn and t∗ < t ≤ T then they are
respectively a viscosity subsolution and a viscosity supersolution of (2.15) on this
time interval.

Proof. We give the proof for u; the argument for v is entirely parallel. Focusing
first on (i), we fix t0 < T and x0 ∈ Rn, and consider a smooth function φ such that
u− φ has a local maximum at (x0, t0). Adding a constant, we can assume that
u(x0, t0) = φ(x0, t0). Replacing φ by φ +‖x− x0‖4 + |t− t0|2 if necessary, we can
assume that the local maximum is strict, i.e. that

(3.1) u(x, t) < φ(x, t) for 0 < ‖(x, t)− (x0, t0)‖ ≤ r

for some r > 0.
By the definition of u there exists a sequence εk, ỹk, t̃k = T − Ñkε2

k such that

ỹk → x0, t̃k → t0, uεk(ỹk, t̃k)→ u(x0, t0).

Let yk and tk = T −Nkε2
k satisfy

(uεk −φ)(yk, tk)≥ sup
‖(x,t)−(x0,t0)‖≤r

(uεk −φ)(x, t)− ε
3
k .
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(Since uεk is defined only at discrete times, the sup is taken only over such times.)
Evidently

(uεk −φ)(yk, tk)≥ (uεk −φ)(ỹk, t̃k)− ε
3
k

and the right hand side tends to 0 as k → ∞. It follows using (3.1) that

(yk, tk)→ (x0, t0) and uεk(yk, tk)→ u(x0, t0)

as k → ∞. Setting ξk = uεk(yk, tk)−φ(yk, tk), we also have by construction that

ξk → 0 and uεk(x, t)≤ φ(x, t)+ξk + ε3
k(3.2)

whenever t = T −nε2
k and ‖(x, t)− (x0, t0)‖ ≤ r.

Now we use the dynamic programming inequality (2.21) at (yk, tk), which can be
written concisely as

uε(yk, tk)≤ sup
p,Γ

inf
w

{
uε(yk +∆x, tk + ε

2
k )−∆z

}
with the conventions

∆x = εkw, ∆z = εk p ·w+ 1
2 ε

2
k 〈Γw,w〉+ ε

2
k f (t,x,uεk(yk, tk), p,Γ).

Using the definition of ξk, (3.2), and the fact that ∆x and ∆z are bounded by a
positive power of ε , we conclude that

(3.3) φ(yk, tk)+ξk ≤ sup
p,Γ

inf
w

{
φ(yk +∆x, tk + ε

2
k )+ξk + ε

3
k −∆z

}
when k is sufficiently large. Dropping ξk from both sides of (3.3), we apply Lemma
4.1 to evaluate the right hand side. Using the smoothness of φ and the Lipschitz
continuity of f with respect to p and Γ, this gives

φ(yk, tk)−φ(yk, tk + ε
2
k )≤−ε

2
k f (tk,yk,uεk(yk, tk),Dφ(yk, tk),D2

φ(yk, tk))+o(ε2
k ).

Taylor expanding φ with respect to time we conclude that

−ε
2
k ∂tφ(yk, tk)≤−ε

2
k f (tk,yk,uεk(yk, tk),Dφ(yk, tk),D2

φ(yk, tk))+o(ε2
k ).

It follows in the limit k → ∞ that

∂tφ(x0, t0)− f (t0,x0,u(x0, t0),Dφ(x0, t0),D2
φ(x0, t0))≥ 0.

Thus u is a viscosity subsolution at (x0, t0).
We turn now to (ii), i.e. the case t0 = T . The preceding argument can still be

used provided tk < T for all sufficiently large k. If on the other hand tk = T for a
sequence of k → ∞ then it follows (using the continuity of h and the fact that each
uε has final value h) that u(x0,T ) = h(x0). Thus for any smooth φ such that u−φ

has a local maximum at (x0,T ) we know that

(3.4) either u(x0,T ) = h(x0) or else

∂tφ(x0,T )− f (T,x0,u(x0,T ),Dφ(x0,T ),D2
φ(x0,T ))≥ 0.

Moreover this statement applies not only at the the given point x0, but also at any
point nearby.
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Now consider

ψ(x, t) = u(x, t)− |x− x0|2

δ
− T − t

µ

where the parameters δ and µ are small and positive. Suppose u is uniformly
bounded on the closed half-ball {‖(x, t)− (x0,T )‖ ≤ r, t ≤ T}, and let ψ assume
its maximum on this half-ball at (xδ ,µ , tδ ,µ). Clearly

(xδ ,µ , tδ ,µ)→ (x0,T ) as δ ,µ → 0

since u is bounded on the half-ball. Moreover it is obvious that

u(xδ ,µ , tδ ,µ)≥ ψ(xδ ,µ , tδ ,µ)≥ u(x0,T ).

Taken together, these relations yield

u(xδ ,µ , tδ ,µ)→ u(x0,T ) as δ ,µ → 0.

If tδ ,µ < T then part (i) of the Theorem assures us that

(3.5) − 1
µ
− f (tδ ,µ ,xδ ,µ ,u(xδ ,µ , tδ ,µ),

2(x− x0)
δ

,
2
δ

I)≥ 0.

If tδ ,µ = T then (3.4) gives either the same conclusion or else u(xδ ,µ ,T ) = h(xδ ,µ).
But since f is continuous, for any δ > 0 there exists a µ > 0 such that (3.5) cannot
happen. Restricting our attention to such choices of δ and µ we conclude that
tδ ,µ = T and u(xδ ,µ ,T ) = h(xδ ,µ). It follows in the limit δ ,µ → 0 that u(x0,T ) =
h(x0), as asserted. �

Remark 3.4. Since the preceding result is local, only the properties of f (t,x,z, p,Γ)
near t = t0, x = x0 and z = u or v are relevant. Therefore while (1.5)–(1.6) assert
inequalities whose constants are uniform in t,x,z, it would be enough for Theorem
3.3 that such inequalities hold locally in t, x, and z.

3.3 The elliptic case
We turn now to the stationary setting discussed in Section 2.4. As in the time-

dependent setting, our convergence result depends on the fundamental consistency
result Lemma 4.4. So we require that the parameters α,β ,γ satisfy (2.7) – (2.9),
and that f (x,z, p,Γ) satisfy not only the monotonicity condition (1.3) but also the
Lipschitz continuity and growth conditions (1.8)–(1.9). Our proof that Uε is well-
defined requires that the interest rate λ be large enough, condition (1.7), and that g
be uniformly bounded. Finally, concerning the parameters m and M associated with
the termination of the game, we assume that m = M−1 and M is sufficiently large.
This hypothesis (together with the results in Section 5.2) assures the availability of
the dynamic programming inequalities stated in Proposition 2.5.

Proposition 3.5. Suppose f , g, λ and α,β ,γ,m,M satisfy the hypotheses just listed
(from which it follows that v and u are bounded away from±M for all x∈Ω). Then
u is a viscosity subsolution and v is a viscosity supersolution of (2.27) in Ω. More
specifically:
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(i) if x0 ∈Ω, then each of u and v satisfies part (a) of relevant half of Definition
3.2 at x0, and

(ii) if x0 ∈ ∂Ω, then each of u and v satisfies part (b) of the relevant half of
Definition 3.2 at x0.

Proof. When x0 ∈ Ω, the proof is similar to that of Theorem 3.3 (moreover the
argument is more or less included in the discussion below concerning v.) Therefore
we shall focus on the case when x0 ∈ ∂Ω.

To show that u is a viscosity subsolution at x0 ∈ ∂Ω, it suffices to show that
u(x0)≤ g(x0). This is an easy consequency of the dynamic programming principle
(2.35). Indeed, if x ∈Ω with ‖x− x0‖< ε1−α then for any admissible p and Γ

inf
w

[
−ε p ·w− ε2

2
〈Γw,w〉− ε

2 f (x,uε(x), p,Γ)+ e−λε2
ûε(x+ εw)

]
≤ g(x0)+o(1)

since the optimal w does at least as well as a choice such that x + εw ∈ Rn\Ω.
Here the error term o(1) tends to 0 as ε → 0, uniformly as p and Γ range over the
admissible class ‖p‖ ≤ ε−β , ‖Γ‖ ≤ ε−γ . Maximizing over p and Γ, we conclude
from (2.35) that uε(x)≤ g(x0)+o(1) whenever ‖x− x0‖< ε1−α . It follows easily
that u(x0)≤ g(x0) for every x0 ∈ ∂Ω, as asserted.

It remains to show that v is a viscosity supersolution at any x0 ∈ ∂Ω. We may
assume that v(x0) < g(x0) since otherwise the assertion is trivial. Beginning as
usual, consider a smooth function φ such that that v−φ has a local minimum on Ω

at x0 ∈ ∂Ω. Adjusting φ if necessary, we can assume that v(x0) = φ(x0) and that
the local minimum is strict, i.e.

(3.6) v(x) > φ(x) for x ∈Ω∩{0 < ‖x− x0‖ ≤ r}
for some r > 0. By the definition of v there exists a sequence εk > 0 and ỹk ∈ Ω

such that
ỹk → x0, vεk(ỹk)→ v(x0)

We may choose yk ∈Ω such that

(vεk −φ)(yk)≤ inf
Ω∩{‖(x−x0‖≤r}

(vεk −φ)(x)+ ε
3
k .

Evidently
(vεk −φ)(yk)≤ (vεk −φ)(ỹk)+ ε

3
k

and the right hand side tends to 0 as k → ∞. It follows using (3.6) that

yk → x0 and vεk(yk)→ v(x0)

as k → ∞. Setting ξk = vεk(yk)−φ(yk), we also have by construction that

(3.7) ξk → 0 and vεk(x)≥ φ(x)+ξk− ε3
k whenever x ∈Ω with ‖x− x0‖ ≤ r.

We now use the dynamic programming inequality (2.36) at yk, which can be written
concisely as

vε(yk)≥ sup
p,Γ

inf
w

{
e−λε2

v̂ε(yk +∆x)−δk

}
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with the conventions

∆x = εkw, δk = εk p ·w+ 1
2 ε

2
k 〈Γw,w〉+ ε

2
k f (x,vεk(yk), p,Γ).

Recall that vεk(yk)→ v(x0) < g(x0) as εk → 0, and that for any admissible w, p,Γ,
|δk| has a uniform bound that tends to 0 with ε . Therefore a choice of w for which
yk + ∆x 6∈ Ω isn’t of interest (it does significantly worse than the choice w = 0).
Combining this observation with the definition of ξk and (3.7), we conclude that

φ(yk)+ξk ≥ sup
p,Γ

inf
x+εw∈Ω

(
e−λε2

[φ(yk +∆x)+ξk− ε
3
k ]−δk

)
when k is sufficiently large. We may replace e−λε2

by 1−λε2 and e−λε2
φ(yk +∆x)

by φ(yk + ∆x)−λε2φ(yk) while making an error which is only o(ε2). Moreover,
the inequality is preserved when we drop the constraint x + εw ∈ Ω. Dropping ξk
from both sides and using the fact that ξk → 0, we conclude that

φ(yk)≥ sup
p,Γ

inf
w

(
φ(yk +∆x)−δk−λε

2
k φ(yk)

)
+o(ε2

k ).

Evaluating the right hand side using Lemma 4.4, we get

0≥−ε
2
k f (yk,vε(yk),Dφ(yk),D2

φ(yk))− ε
2
k λφ(yk)+o(ε2

k ).

It follows in the limit that

f (x0,v(x0),Dφ(x0),D2
φ(x0))+λv(x0)≥ 0.

Thus v is a viscosity supersolution at x0. �

Remark 3.6. As noted in Remark 3.4, convergence is a local matter. Therefore it
is tempting to assert that only the properties of f (x,z, p,Γ) near x = x0 and z = u
or v are relevant to proving that u is a subsolution and v a supersolution at x0. But
to even get started we need to know that uε and vε are well-defined and satisfy the
dynamic programming inequalities (2.35)–(2.36). Since our proof of that assertion
is global in character (see Section 5.2), we cannot really discuss u or v without
global hypotheses on f .

4 Consistency

A numerical scheme is said to be consistent if every smooth solution of the
PDE satisfies it modulo an error that tends to zero with the step size. This was
the essence of our formal argument in Section 2.2 linking the game to the PDE.
The present section clarifies the connection between our formal argument and the
consistency of the game, by discussing consistency in more conventional terms.
The main point is Lemma 4.1, which simultaneously establishes the consistency of
our game as a numerical scheme and justifies the handling of the sup/inf (3.3) and
its stationary counterpart.
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4.1 The parabolic case
Consider the game discussed in Section 2.3 for solving−∂tu+ f (t,x,u,Du,D2u)=

0 in Rn with final-time data u(x,T ) = h(x). The dynamic programming principles
(2.21)–(2.22) can be written as

uε(x, t)≤ Sε [x, t,uε(x, t),uε(·, t + ε
2)] vε(x, t)≥ Sε [x, t,vε(x, t),vε(·, t + ε

2)]

where Sε [x, t,z,φ ] is defined for any x ∈ Rn, z ∈ R and t ≤ T and any continuous
function φ : Rn → R by
(4.1)

Sε [x, t,z,φ ] = max
p,Γ

min
w

[
φ(x+ εw)− ε p ·w− 1

2 ε
2〈Γw,w〉− ε

2 f (t,x,z, p,Γ)
]
.

subject to the usual constraints ‖p‖ ≤ ε−β , ‖Γ‖ ≤ ε−γ , and ‖w‖ ≤ ε−α . Recall
that the time-stepping scheme φ(x, t) = Sε [x, t,φ(x, t),φ(·, t + ε2)] is a consistent
scheme for solving our PDE if for any C∞ function φ : Rn → R and any x ∈ Rn,
z ∈ R, and t ≤ T , we have

(4.2) lim
ε→0

Sε [x, t,z,φ ]−φ

ε2 =− f (t,x,z,Dφ(x),D2
φ(x)).

Fixing x, t, z, and φ , Taylor expansion shows that for any ‖w‖ ≤ ε−α ,

φ(x+ εw) = φ(x)+ εDφ(x) ·w+ 1
2 ε

2〈D2
φ(x)w,w〉+Cε

3−3α .

Since α < 1/3 by hypothesis, ε3−3α = o(ε2); therefore (4.2) is implied by the
assertion that

(4.3)
max

‖p‖≤ε−β ,‖Γ‖≤ε−γ

min
‖w‖≤ε−α

[
ε(Dφ(x)− p) ·w+ 1

2 ε
2〈(D2

φ(x)−Γ)w,w〉− ε
2 f (t,x,z, p,Γ)

]
=−ε

2 f (t,x,z,Dφ(x),D2
φ(x))+o(ε2).

The following lemma proves that this relation is true, provided α , β , and γ

satisfy conditions (2.7)–(2.9). When we apply the lemma, the convenient choice
of φ varies with time; therefore it is natural to let φ be a function of both x and t
(though time enters the argument only as a parameter).

Lemma 4.1. Let f satisfy (1.3) and (1.5)–(1.6), and assume α,β ,γ satisfy (2.7)–
(2.9). Then for any x, t,z and any smooth function φ defined near (x, t), Sε being
defined by (4.1), we have

Sε [x, t,z,φ ]−φ =−ε
2 f (t,x,z,Dφ(x, t),D2

φ(x, t))+o(ε2).

Moreover the constant implicit in the error term is uniform as x, t, and z range over
a compact subset of Rn×R×R.

Proof. Clearly the max-min defining Sε [x, t,z,φ ] is at least φ(x, t)−ε2 f (t,x,z,Dφ(x, t),D2φ(x, t)),
since the choices p = Dφ(x, t), Γ = D2φ(x, t) make w irrelevant. Our task is there-
fore to demonstrate the opposite inequality, i.e. to show that for any ‖p‖ ≤ ε−β
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and ‖Γ‖ ≤ ε−γ , there exists w satisfying ‖w‖ ≤ ε−α and

(4.4) ε(Dφ(x, t)− p) ·w+ 1
2 ε

2〈(D2
φ −Γ)w,w〉− ε

2 f (t,x,z, p,Γ)

≤−ε
2 f (t,x,z,Dφ(x, t),D2

φ(x, t))+o(ε2)

with an error estimate o(ε2) that is independent of p and Γ and locally uniform in
x, t,z.

In view of the conditions (2.9) we can pick µ > 0 such that

(4.5) µ + γ < 1−α and µ + γr < α +1.

We will consider separately the three cases
(1) ‖Dφ(X)− p‖ ≤ εµ and λmin(D2φ(X)−Γ)≥−εα ,
(2) ‖Dφ(X)− p‖ ≤ εµ and λmin(D2φ(X)−Γ)≤−εα ,
(3) ‖Dφ(X)− p‖ ≥ εµ ,

where we write X = (x, t) for notational simplicity, and λmin(M) is the smallest
eigenvalue of the symmetric matrix M.

Case (1) is easy: we choose w = 0. Since λmin(D2φ(X)−Γ) ≥ −εα we have
D2φ(X)−Γ + εα I ≥ 0 and thus Γ ≤ D2φ(X)+ εα I. Using the monotonicity of f
with respect to its last entry, this gives

f (t,x,z, p,Γ)≥ f (t,x,z, p,D2
φ(X)+ ε

α I).

Since f is locally Lipschitz (1.5), we conclude that

(4.6) f (t,x,z, p,Γ)≥ f (t,x,z, p,D2
φ(X))+O(εα).

The constant in the error term is independent of p and Γ, since we are assuming
in Case (1) that ‖p−Dφ(X)‖ ≤ εµ . Moreover another application of the locally
Lipschitz character of f gives

(4.7) f (t,x,z, p,Γ)≥ f (t,x,z,Dφ(X),D2
φ(X))+O(εα + ε

µ).

Therefore the choice w = 0 in the left hand side of (4.4) gives

ε(Dφ(x, t)− p) ·w+ 1
2 ε

2〈(D2
φ −Γ)w,w〉− ε

2 f (t,x,z, p,Γ)

=−ε
2 f (t,x,z, p,Γ)≤−ε

2 f (t,x,z,Dφ(X),D2
φ(X))+o(ε2)

as desired.
For case (2), we choose w to be an eigenvector for the minimum eigenvalue

λ = λmin(D2φ(X)−Γ), of norm ε−α . Note that since f is monotone in its last
entry,

f (t,x,z, p,Γ)≥ f (t,x,z, p,D2
φ(X)−λ I).

Choosing w as announced, and changing the sign if necessary to make (Dφ(X)−
p) ·w≤ 0, the left hand side of (4.4) becomes

ε(Dφ(X)− p) ·w+ 1
2 ε

2〈(D2
φ −Γ)w,w〉− ε

2 f (t,x,z, p,Γ)

≤ 1
2 ε

2−2α
λ − ε

2 f (t,x,z, p,D2
φ(X)−λ I)



A DETERMINISTIC-CONTROL-BASED APPROACH 31

If−1≤ λ ≤−εα then ε2−2αλ ≤−ε2−α and f (t,x,z, p,D2φ(X)−λ I) is bounded.
So for such λ we have

(4.8) 1
2 ε

2−2α
λ − ε

2 f (t,x,z, p,D2
φ(X)−λ I)≤−1

2 ε
2−α +O(ε2).

In this case we are done, since the right hand side is≤−ε2 f (t,x,z,Dφ(X),D2φ(X))
when ε is sufficiently small.

To complete case (2), suppose λ ≤−1. Then using the growth hypothesis (1.6)
and remembering that p is near Dφ(X) we have

(4.9) 1
2 ε

2−2α
λ − ε

2 f (t,x,z, p,D2
φ(X)−λ I)≤−1

2 ε
2−2α |λ |+Cε

2(1+ |λ |r).

Now notice that |λ | ≤C(1+‖Γ‖)≤Cε−γ . Since γ(r−1)< 2α we have ε2−2α |λ |�
ε2|λ |r. Therefore

−1
2

ε
2−2α |λ |+Cε

2|λ |r ≤−1
4

ε
2−2α ≤−ε

2 f (t,x,z,Dφ(X),D2
φ(X))

when ε is sufficiently small. Case (2) is now complete.
Finally consider case (3), when ‖Dφ(X)− p‖ ≥ εµ . In this case we take w to

be parallel to Dφ(X)− p, with norm ε−α , and with the sign chosen so that

ε(Dφ(X)− p) ·w =−ε
1−α‖Dφ(X)− p‖ ≤ −ε

1−α+µ .

Estimating the other terms on the left hand side of (4.4), we have

|ε2〈(D2
φ −Γ)w,w〉| ≤ ε

2(C +‖Γ‖)‖w‖2 ≤Cε
−γ+2−2α

and

(4.10) ε
2| f (t,x,z, p,Γ)| ≤Cε

2 (1+‖p‖q +‖Γ‖r)≤C
(
ε

2 + ε
2‖p‖q + ε

2−γr) .
Thus

ε(Dφ(X)− p) ·w+ 1
2 ε

2〈(D2(X)φ −Γ)w,w〉− ε
2 f (t,x,z, p,Γ)

≤−ε
1−α‖Dφ(X)− p‖+Cε

2‖p‖q +O(ε−γ+2−2α + ε
2−γr).

Since ε1−α‖Dφ(X)− p‖ ≥ ε1−α+µ we have

ε
−γ+2−2α + ε

2−γr � ε
1−α‖Dφ(X)− p‖

using (4.5). Thus we conclude that

ε(Dφ(x, t)− p) ·w+ 1
2 ε

2〈(D2
φ −Γ)w,w〉− ε

2 f (t,x,z, p,Γ)

≤−1
2 ε

1−α‖Dφ(X)− p‖+Cε
2‖p‖q.

If ‖p‖≤ 2‖Dφ(X)‖ then ε2‖p‖q = O(ε2)� ε1−α+µ , using (4.5). If ‖p‖≥ 2‖Dφ(X)‖
then ε1−α‖Dφ(X)− p‖ ∼ ε1−α‖p‖ � ε2‖p‖q, using the condition on β in (2.9).
In either case the term ε1−α‖Dφ(X)− p‖ dominates and we get

ε(Dφ(x, t)− p) ·w+ 1
2 ε

2〈(D2
φ −Γ)w,w〉− ε

2 f (t,x,z, p,Γ)≤−Cε
1−α+µ .

When ε is small this is certainly ≤−ε2 f (t,x,z,Dφ(X),D2φ(X)). Case (3) is now
complete. �
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Remark 4.2. Since t, x, and z are held fixed in Proposition (4.1), the proof did not
need the full force of conditions (1.5) or (1.6). Rather, all we needed was that these
estimates hold locally in x, t,z, with constants that are uniform if t,x,z stay in a
compact set.

To prove stability in Section 5, will need the following more global variant of
Lemma 4.1. This is where we need the uniformity of the constants in (1.5)–(1.6)
in x and t, and the growth condition (1.6).

Lemma 4.3. Let f satisfy conditions (1.3)-(1.6), and assume as usual that α,β ,γ
satisfy (2.7)–(2.9). Then, for any x, t,z and any constant m1, we have

|Sε [x, t,z,m1]−m1| ≤C(1+ |z|)ε2,

with a constant C that is independent of x, t, z, and m1.

Proof. The overall argument is the same as used for Lemma 4.1, but we must now
pay attention to the uniformity of the constant. The lower bound

Sε [x, t,z,m1]−m1 ≥−ε
2 f (t,x,z,0,0)≥−C(1+ |z|)ε2

is obvious, by considering w = 0 and using (1.4). For the corresponding upper
bound we consider the same three cases as before. In case 1 the estimate (4.7) with
φ ≡ m1 gets replaced by

f (t,x,z, p,Γ)≥ f (t,x,z,0,0)+C(1+ |z|)(εα + ε
µ)

whence
−ε

2 f (t,x,z, p,Γ)≤−C(1+ |z|)ε2.

In case 2 the estimate (4.8) with φ ≡ m1 gets replaced by
1
2 ε

2−2α
λ − ε

2 f (t,x,z, p,−λ I)≤−1
2 ε

2−α +C(1+ |z|)ε2

and we get an estimate of the desired form by dropping the first term. In second
half of case 2 and the handling of case 3 we used the growth estimate (1.6); since z
enters linearly on the right hand side of (1.6), the previous calculations still apply
but we get an additional term of the form C|z|ε2. Thus, in all three cases we find
that when p and Γ are admissible,

min
w

[
−ε p ·w− 1

2 ε
2〈Γw,w〉− ε

2 f (t,x,z, p,Γ)
]
≤C(1+ |z|)ε2.

Maximizing over p and Γ gives the desired inequality Sε [x, t,z,m1]−m1 ≤C(1 +
|z|)ε2. �

Recently Caffarelli and Souganidis have shown how refined consistency results
can sometimes be used to prove convergence with a rate, though the viscosity solu-
tion may not be differentiable [12, 13]. Their method requires an improved estimate
for the consistency error when the test function φ is a quadratic polynomial in x.
We remark in passing that such an estimate is relatively easy in the present context.
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Indeed, if φ is a quadratic polynomial in x then for any x, t,z the arguments used to
prove Lemma 4.1 also show that

(4.11) 0≤ Sε [x, t,z,φ ]−φ(x)+ ε
2 f (t,x,z,Dφ(x),D2

φ)

≤ ε
2 sup
‖Γ−D2φ‖≤εα ,‖p−Dφ(x)‖≤εµ

| f (t,x,z, p,Γ)− f (t,x,z,Dφ(x),D2
φ)|.

when ε is sufficiently small. We omit the proof, since this assertion will not be
used in what follows. (It remains an open question whether the method of [12, 13]
can be used to prove convergence with a rate in our setting.)

4.2 The elliptic case
For the game corresponding to the stationary equation, we consider the operator

Sε defined, for any x ∈Ω, z ∈ R, and any continuous function φ : Ω→ R, by
(4.12)

Sε [x,z,φ ] = sup
p,Γ

inf
w

[
e−λε2

φ̂(x+ εw)− ε p ·w− 1
2 ε

2〈Γw,w〉− ε
2 f (x,z, p,Γ)

]
.

with the usual conventions that p,Γ are constrained by (2.10), w is constrained by
(2.11), and φ̂ is defined by (2.37). The dynamic programming principles (2.35)–
(2.36) can be written as

uε(x)≤ Sε [x,uε(x),uε ] and vε(x)≥ Sε [x,vε(x),vε ].

The analogue of Lemma 4.1 is:

Lemma 4.4. Let f satisfy conditions (1.3) and (1.8) – (1.9). Assume α,β ,γ satisfy
(2.7) – (2.9). Then for any x ∈Ω, z ∈ R and any smooth function φ defined near x,
Sε being defined by (4.12), we have

(4.13) Sε [x,z,φ ]−φ =−ε
2( f (x,z,Dφ(x),D2

φ(x))+λφ(x))+o(ε2).

Moreover the constants implicit in the error term are uniform as x and z range over
a compact subset of Ω×R.

Proof. The argument is entirely parallel to the proof of Lemma 4.1. (Note that
since x is an interior point, the extension of φ outside Ω is irrelevant: φ̂(x+ εw) =
φ(x+ εw) when ε is sufficiently small.) �

For stability, we will need a variant of the preceding lemma. This is where
we use the hypothesis (1.7) on the z-dependence of f , i.e. the condition that
| f (x,z,0,0)| ≤ (λ −η)|z|+C∗.

Lemma 4.5. Let f satisfy (1.3) and (1.7)–(1.9), and assume as always that α,β ,γ
satisfy (2.7)–(2.9). Fix M > 0, and let m ≤ M be a positive constant such that
m < ‖g‖L∞ . Then for any |z| ≤M and any x ∈Ω we have

Sε [x,z,m]≤ m+ ε
2(1+C∗+(λ −η)|z|)− ε

2
λm.

for all sufficiently small ε . (The smallness condition on ε depends on M, but not
on x.)
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Proof. The hypothesis |z| ≤ M assures that the constants in (1.8) and (1.9) are
uniform. There the constant implicit in the error term of (4.13) is uniform for ε

sufficiently small, and the smallness condition depends only on M. The hypothesis
m > ‖g‖L∞ (resp. m < ‖g‖L∞) assures that m̂≤m (resp. m̂≥m), so the appearance
of φ̂ rather than φ on the right hand side of (4.12) does not interfere with the
desired estimate. Therefore the usual argument applied to the constant function
φ = m gives

Sε [x,z,m]≤ e−λε2
m− ε

2 f (x,z,0,0)+o(ε2).

Estimating f (x,z,0,0) by (1.7) and noting that e−λε2
m = (1− λε2)m + O(ε4m),

we easily deduce the desired estimate. �

5 Stability

In the time-dependent setting, we showed in Section 3.2 that if vε and uε re-
main bounded as ε → 0 then v is a supersolution and u is a subsolution. The
argument was local, using mainly the consistency of the game as a numerical solu-
tion scheme. It remains to prove that vε and uε are indeed bounded; this is achieved
in Section 5.1.

For the stationary setting, we must do more. Even the existence of Uε(x,z)
remains to be proved. We also need to show that the associated functions uε and
vε are bounded away from M, so that (by Lemma 2.5) they satisfy the dynamic
programming inequalities at each x ∈ Ω. These goals will be achieved in Section
5.2, provided the parameters M and m associated with the termination of the game
satisfy (i) m = M− 1 and (ii) M is sufficiently large. We also show in Section
5.2 that if f is a non-decreasing function of z then Uε is strictly decreasing in z;
when it applies, this result assures that v ≤ u, permitting us to conclude that v = u
is the unique viscosity solution if the boundary value problem has a comparison
principle.

5.1 The parabolic case
Since f grows at most linearly in z, we expect u to grow at most exponentially

in T − t. The following result confirms this expectation.

Proposition 5.1. Assume the hypotheses of Lemma 4.3, and suppose furthermore
that the final-time data are uniformly bounded:

(5.1) |h(x)| ≤ N for all x ∈ Rn.

Then there exists a constant c > 0 (independent of ε) such that

(5.2) uε(x, t)≤ NcT−t and vε(x, t)≥−NcT−t for all x ∈ Rn

for every t < T .
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Proof. We shall demonstrate the upper bound on uε ; the proof of the lower bound
on vε is entirely parallel. The argument proceeds backward in time tk = T − kε2.
At k = 0 we have a uniform bound uε(x,T ) = h(x) ≤ N0 by hypothesis, and we
may assume without loss of generality that N0 ≥ 1.

Now suppose that for fixed k≥ 0 we already know a bound uε(x, tk)≤Nk, where
Nk ≥ 1. By (2.21) we have

uε(x, tk− ε
2)≤ Sε [x, tk− ε

2,uε(x, tk− ε
2),uε(·, tk)].

Since Sε is monotone in its last argument, we have

Sε [x, tk− ε
2,uε(x, tk− ε

2),uε(·, tk)]≤ Sε [x, tk− ε
2,uε(x, tk− ε

2),Nk].

But by Lemma 4.3 we have

Sε [x, tk− ε
2,uε(x, tk− ε

2),Nk]≤ Nk +C(1+ |uε(x, tk− ε
2)|)ε2.

If uε(x, tk − ε2) ≤ 0 then we are done (recall we are looking for an upper bound
Nk+1 ≥ 1); if not then we have

uε(x, tk− ε
2)≤ Nk +C(1+uε(x, tk− ε

2))ε2.

It follows that uε(x, tk− ε2) = uε(x,T − (k +1)ε2) is bounded by Nk+1 where

Nk+1(1−Cε
2) = Nk +Cε

2 ≤ Nk(1+Cε
2).

Combining these estimates, we easily deduce that uε(x,T −kε2)≤ Ñk for all k with

Ñk = N0

(
1+Cε2

1−Cε2

)k

.

Since k = (T − t)/ε2, we have shown that

uε(x, t)≤ N0cT−t
ε

with

cε =
(

1+Cε2

1−Cε2

)1/ε2

.

Since cε has a finite limit as ε → 0 we obtain a bound on uε of the desired form
(5.2). �

5.2 The elliptic case
We shall assume throughout this section that the parameters M and m control-

ling the termination of the game are related by m = M− 1; in addition, we need
to assume that M is sufficiently large. Our plan is to show, using a fixed point
argument, the existence of a function Uε(x,z) (defined for all x ∈ Ω and |z| < M)
satisfying (2.31) and also

(5.3) −z−m≤Uε(x,z)≤−z+m.
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This implies that Uε(x,z) < 0 when z > m, and Uε(x,z) > 0 when z <−m. Recall-
ing the definitions (2.33)-(2.34) of uε and vε , it follows from (5.3) that

(5.4) |vε(x)| ≤ m, |uε(x)| ≤ m

for all x ∈Ω.
It is convenient to work with V ε(x,z) = Uε(x,z)+ z rather than Uε , since this

turns (5.3) into the statement that

|V ε(x,z)| ≤ m,

whose right-hand side is constant. The dynamic programming principle (2.31) for
Uε is equivalent (after a bit of manipulation) to the statement that for all x ∈Ω and
all |z|< M,

(5.5) V ε(x,z) = sup
p,Γ

inf
w


e−λε2

V ε(x′,z′)−δ if x′ ∈Ω and |z′|< M
e−λε2

g(x′)−δ if x′ 6∈Ω and |z′|< M
−m if z′ ≥M
+m if z′ ≤−M

where x′ = x+ εw and z′ = eλε2
(z+δ ), with δ defined as in (2.28):

δ = ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (x,z, p,Γ).

Here p,Γ, and w are constrained as usual by (2.10)–(2.11).
Preparing for our fixed point argument, consider for any L∞ function φ defined

on Ω× (−M,M), the function (x,z) 7→ Rε [x,z,φ ], defined by

(5.6) Rε [x,z,φ ] = sup
p,Γ

inf
w


e−λε2

φ(x′,z′)−δ if x′ ∈Ω and |z′|< M
e−λε2

g(x′)−δ if x′ 6∈Ω and |z′|< M
−m if z′ ≥M
+m if z′ ≤−M.

We shall identify V ε as the unique fixed point of the mapping φ(·, ·) 7→ Rε [·, ·,φ ].

Proposition 5.2. Assume the hypotheses of Lemma 4.5. Suppose further that m =
M− 1, with M chosen large enough to satisfy condition (5.9) below. Then for all
sufficiently small ε , the map φ(·, ·) 7→ Rε [·, ·,φ ] is a contraction in the L∞ norm,
which preserves the ball ‖φ‖L∞(Ω×(−M,M)) ≤ m. In particular it has a unique fixed
point, which solves (5.5) and has L∞ norm at most m.

Proof. First we show that the map is a contraction. (This part of the proof works
for any m and M). Let φi, i = 1,2 be two L∞ functions defined on Ω× (−M,M) to
R. If we hold p, Γ, and w fixed, it is clear that

e−λε2
φ1(x′,z′)−δ ≤ e−λε2

φ2(x′,z′)−δ + e−λε2‖φ1−φ2‖L∞ .
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Since the second, third, and fourth alternatives on the right hand side of (5.6) are
independent of φ , it follows (after minimizing over w and maximizing over p,Γ)
that

Rε [x,z,φ1]≤ Rε [x,z,φ2]+ e−λε2‖φ1−φ2‖L∞

for each x,z. Reversing the roles of φ1 and φ2, we conclude that

‖Rε [·, ·,φ1]−Rε [·, ·,φ2]‖L∞ ≤ e−λε2‖φ1−φ2‖L∞ .

Thus the map is a contraction for any ε .
Now we prove that if M is large enough and m = M− 1, the map preserves

the ball ‖φ‖L∞(Ω×(−M,M)) ≤ m. Since Rε [x,z,φ ] is monotone in its last argument it
suffices to show that

(5.7) Rε [x,z,m]≤ m and Rε [x,z,−m]≥−m.

For the first half of (5.7), let p and Γ be fixed, and consider

(5.8) inf
w


e−λε2

m−δ if x′ ∈Ω and |z′|< M
e−λε2

g(x′)−δ if x′ 6∈Ω and |z′|< M
−m if z′ ≥M
+m if z′ ≤−M.

If a minimizing sequence uses the second alternative then the inf is less than m,
since we have assumed that ‖g‖L∞ < m, and δ is bounded by a positive power of
ε . If a minimizing sequence uses the third or fourth alternatives then the inf is ±m.
In the remaining case, when all minimizing sequences use the first alternative, we
apply Lemma 4.5 to see that (5.8) is bounded above by

m+ ε
2(1+C∗+(λ −η)|z|)− ε

2
λm

Since m = M−1 and |z| ≤M, this is at most

m+ ε
2(1+C∗+(λ −η)M)− ε

2
λ (M−1) = m− ε

2
ηM + ε

2(1+C∗+λ ).

Thus, assuming

(5.9) M > (1+C∗+λ )/η

we deduce that (5.8) is bounded above by m. Taking the supremum over p and Γ,
it follows that Rε [x,z,m]≤ m, as asserted.

For the second half of (5.7), the argument is similar but a bit easier. Consider
the choice p = 0, Γ = 0. We claim that the analogue of (5.8) with m replaced by
−m is bounded below by −m. If a minimizing sequence uses the second, third, or
fourth alternative this is clear. If it uses the first alternative, then the value is

−e−λε2
m−δ =−e−λε2

m− ε
2 f (x,z,0,0)

(the value of w is irrelevant since p = Γ = 0). By (1.7) this is at most

−e−λε2
m− ε

2[(λ −η)|z|+C∗]≥−(1−λε
2)m− ε

2(1+C∗+(λ −η)M).
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Arguing as before, this is bounded below by −m when M satisfies (5.9). The
preceding calculation was for p = Γ = 0, but the sup over p and Γ can only be
larger. Thus it follows that Rε [x,z,−m]≥−m, completing the proof of (5.7).

We have shown that the map φ(·, ·) 7→ Rε [·, ·,φ ] preserves the ball

‖φ‖L∞(Ω×(−M,M)) ≤ m.

Since it is also a contraction, the map has a unique fixed point, which lies in this
ball. �

These results justify the discussion of the stationary case given in Section 2,
by showing that (i) the value functions uε and vε are well-defined, and bounded
independent of ε , and (ii) they satisfy the dynamic programming inequalities:

Proposition 5.3. Suppose f satisfies (1.3) and (1.7) – (1.9), and suppose the
boundary condition g is uniformly bounded. Assume the parameters α,β ,γ,m,M
determining the stationary version of the game satisfy (2.7) – (2.9) and m = M−1,
and assume M is large enough that (5.9) holds and m > ‖g‖L∞ . Let V ε be the solu-
tion of (5.5) obtained by Proposition 5.2, and let Uε(x,z) = V ε(x,z)− z. Then the
associated functions uε ,vε defined by (2.33) – (2.34) satisfy |uε | ≤ m and |vε | ≤ m
for all sufficiently small ε , and they satisfy the dynamic programming inequalities
(2.35) and (2.36) at all points x ∈Ω.

Proof. The bounds on uε and vε were demonstrated in (5.4). These bounds assure
that the dynamic programming inequalities hold for all x ∈Ω, as a consequence of
Proposition. 2.5). �

We close this section with the stationary analogue of Lemma 2.4.

Lemma 5.4. Under the hypotheses of Proposition 5.2, suppose in addition that

(5.10) f (x,z1, p,Γ)≥ f (x,z0, p,Γ) whenever z1 > z0.

Then Uε satisfies

(5.11) Uε(x,z1)≤Uε(x,z0)− (z1− z0) whenever z1 > z0.

In particular, Uε is strictly decreasing in z and vε = uε .

Proof. In terms of V ε , (5.11) asserts that

V ε(x,z1)≤V ε(x,z0) whenever z1 > z0.

Since V ε is a fixed point of the map taking φ(x,z) to φ̃(x,z) = Rε [x,z,φ ], it suffices
to show that if

φ(x,z1)≤ φ(x,z0) whenever z1 > z0

then
Rε [x,z1,φ ]≤ Rε [x,z0,φ ] whenever z1 > z0.
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Let z1 > z0 be fixed, and consider any p,Γ, w. For i = 0,1 let

δi = ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (x,zi, p,Γ) and z′i = eλε2
(zi +δi)

so that Rε [x,zi,φ ] is defined by (5.6) with z′ replaced by z′i. Note that our hypothesis
on f gives

(5.12) δ1 ≥ δ0 and z′1 > z′0 whenever z1 > z0.

Our goal is to show that
(5.13)

e−λε2
φ(x′,z′1)−δ1 if x′ ∈Ω and |z′1|< M

e−λε2
g(x′)−δ1 if x′ 6∈Ω and |z′1|< M

−m if z′1 ≥M
+m if z′1 ≤−M

 ≤


e−λε2

φ(x′,z′0)−δ0 if x′ ∈Ω and |z′0|< M
e−λε2

g(x′)−δ0 if x′ 6∈Ω and |z′0|< M
−m if z′0 ≥M
+m if z′0 ≤−M.

If z′0 ≥ M then we must also have z′1 ≥ M by (5.12), so both sides of (5.13) are
equal to −m. If z′0 ≤−M then the right hand side is m, whereas the left hand side
is less than or equal to m by the proof of Proposition 5.2. If |z′0|< M then by (5.12)
either the left hand side is in the corresponding regime or else z′0 < M < z′1. In
the former situation the desired inequality is immediate from (5.12); in the latter
situation the left hand side is −m whereas the right hand side is greater than or
equal to −m by the proof of Proposition 5.2. Since we have considered all the
possible cases, (5.13) has been verified and the Lemma is proved. �

6 Uniform continuity of Uε and uε

We have now achieved the main goals of this paper: the stability of the scheme,
and the convergence of the associated value functions to viscosity super and subso-
lutions of the associated PDE. If the PDE has a comparison principle (and if v≤ u,
which is always true in the time-dependent setting) it follows that limuε = limvε

exists and is the unique viscosity solution of the PDE.
It is natural to ask whether we can get some additional control on the value

functions directly from the game. The present section provides two results of this
type for the time-dependent version of our game. The first, presented in Section
6.1, is a uniform Lipschitz estimate. The proof assumes that uε = vε , and that f is
globally Lipschitz in t,x,z. When it applies, this result gives an alternative proof
that the functions {uε} have a limit, at least along a subsequence ε j → 0. (If the
PDE has a comparison principle then the limit is the viscosity solution and there is
no need for a subsequence; however our compactness result applies even when no
comparison principle is known.)

Our second result, presented in Section 6.2, concerns a sufficient condition for
knowing that uε = vε . We showed in Lemma 2.4 that this relation is always true if f
is a non-decreasing function of z. Lemma 6.4 complements that result by showing
that if f is merely Lipschitz continuous in z, then uε = vε when T − t < C (with C
independent of ε).
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6.1 Compactness of uε

The basic idea is familiar: for a translation-invariant equation such as −ut +
f (Du,D2u) = 0, a global-in-space Lipschitz bound propagates in time (see e.g.
[16] or [19] or Appendix B of [35]). When f depends on x, t, and u the argument
gets more complicated, but it is not fundamentally different.

We shall assume throughout this subsection that uε = vε . Indeed, our main tool
will be the dynamic programming equality

(6.1) uε(x, t) = Sε [x, t,uε(x, t),uε(·, t + ε
2)]

where Sε is defined by (4.1). The validity of (6.1) follows immediately from the
inequalities (2.21)–(2.22) and the assumption that uε = vε .

We shall also assume throughout this section certain conditions on the PDE and
its final-time data in addition to those introduced in the prior sections. First: f is
uniformly Lipschitz in t, x, and z; in other words, there is a constant C such that for
all t, t ′,x,x′,z,z′ and all p,Γ,

(6.2) | f (t,x,z, p,Γ)− f (t ′,x′,z′, p,Γ)| ≤C(|z− z′|+ |x− x′|+ |t− t ′|).
Second: we assume that h satisfies a uniform Lipschitz condition

(6.3) |h(x)−h(x′)| ≤C|x− x′|
for all x,x′ ∈ Rn (notice that this implies ‖Dh‖L∞ ≤C). Third: we assume that h is
a C2 function, with a uniform bound on its second derivatives:

(6.4) ‖D2h‖L∞(Rn) ≤C.

We begin with a lemma quantifying the stability of the process of stepping
backward in time.

Lemma 6.1. Assume f satisfies the assumptions (1.3)—(1.6) and in addition (6.2).
Let φi (i = 1,2) be two continuous functions on Rn and let φ̃i be functions which
satisfy for some ti,xi and for all x,

φ̃i(x) = max
p,Γ

min
w

[
φi(x+ εw)−

(
ε p ·w+

ε2

2
〈Γw,w〉+ ε

2 f (ti,x+ xi, φ̃i(x), p,Γ)
)]

where p,Γ and w are constrained respectively by (2.10), (2.11). Then there exists
a constant C (depending only on the constant in (6.2)) such that

‖φ̃1− φ̃2‖L∞(Rn) ≤Cε
2(|t1− t2|+ |x1− x2|)+(1+Cε

2)‖φ1−φ2‖L∞(Rn).

Proof. If we hold p,Γ,w fixed, it is clear that

φ1(x+ εw)−
[

ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t1,x+ x1, φ̃1(x), p,Γ)
]

≤ φ2(x+ εw)−
[

ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t2,x+ x2, φ̃2(x), p,Γ)
]

+‖φ1−φ2‖L∞ + ε
2 [ f (t2,x+ x2, φ̃2(x), p,Γ)− f (t1,x+ x1, φ̃1(x), p,Γ)

]
.
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But, by assumption (6.2), we have

f (t2,x+x2, φ̃2(x), p,Γ)− f (t1,x+x1, φ̃1(x), p,Γ)≤C(|φ̃1(x)− φ̃2(x)|+|x1−x2|+|t1−t2|).
It follows that

(6.5) φ1(x+ εw)−
[

ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t1,x+ x1, φ̃1(x), p,Γ)
]

≤ φ2(x+ εw)−
[

ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t2,x+ x2, φ̃2(x), p,Γ)
]

≤ ‖φ1−φ2‖L∞ +Cε
2(|φ̃1(x)− φ̃2(x)|+ |x1− x2|+ |t1− t2|).

Minimizing over w then maximizing over p,Γ we find

φ̃1(x)− φ̃2(x)≤ ‖φ1−φ2‖L∞ +Cε
2(|φ̃1(x)− φ̃2(x)|+ |x1− x2|+ |t1− t2|).

Reversing the roles of φ1 and φ2 and modifying the constant C we arrive at the
result. �

The next lemma demonstrates stability with respect to the final time objective.

Lemma 6.2. Assume the hypotheses of Lemma 4.1. Suppose in addition the final-
time data satisfy (5.1) and (6.4). Defining

h̃(x,z)= max
p,Γ

min
w

[
h(x+ εw)−

(
z+ ε p ·w+

ε2

2
〈Γw,w〉+ ε

2 f (T − ε
2,x,z, p,Γ)

)]
,

we have
‖max{z : h̃(x,z)≥ 0}−h(x)‖L∞(Rn) ≤Cε

2

where C depends on h only through the constants in (5.1), (6.3), and (6.4).

Proof. Clearly h̃(x,z) = Sε [x,T −ε2,z,h]− z. Using the Taylor expansion of h, we
have that

(6.6) |Sε [x,T − ε
2,z,h]−h(x)|

≤max
p,Γ

min
w

[
ε(Dh− p) ·w+

ε2

2
〈(D2h−Γ)w,w〉+ ε

2 f (T − ε
2,x,z, p,Γ)

]
+Cε

2

where C depends only on the constant in (6.4). Moreover, arguing as in the proof
of Lemma 4.3 we have

max
p,Γ

min
w

[
ε(Dh− p) ·w+

ε2

2
〈(D2h−Γ)w,w〉+ ε

2 f (T − ε
2,x,z, p,Γ)

]
≤Cε

2(1+|z|)

(the constant now depends on (6.3) as well as (6.4), since the optimal p and Γ are
formally Dh(x) and D2h(x) respectively). We conclude that

(6.7) |h̃(x,z)+ z−h(x)| ≤Cε
2(1+ |z|).

Since h̃ is continuous, there exists z0 such that

max{z : h̃(x,z)≥ 0}= z0 and h̃(x,z0) = 0.
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Taking z = z0 in (6.7) we get

|z0−h(x)| ≤Cε
2(1+ |z0|),

from which it follows easily that |z0− h(x)| ≤Cε2 (with a different value for C).
�

These Lemmas imply a uniform Lipschitz bound for uε :

Proposition 6.3. Assume the hypotheses of Lemma 4.1, and in addition that f
satisfies (6.2) and h satisfies (5.1), (6.3), and (6.4). Suppose furthermore that uε =
vε . Then for any t∗ < T , there exists a constant Ct∗ such that

|uε(x, t)−uε(x′, t ′)| ≤Ct∗(|x− x′|+ |t− t ′|)

for all t, t ′ ∈ [t∗,T ] and all x,x′ ∈ Rn.

Proof. First we prove equicontinuity in time. The main idea is that there are two
equivalent ways to think of Uε(x,z, t). The definition (2.18) can be encapsulated
as saying that Uε(x,z, t) is Helen’s optimal value if she starts at time t and position
x, her initial debt is z, the horizon time is T , and her objective is h(x)− z. It is also
Helen’s optimal value if she starts at the same time t, position x and debt z but the
horizon time is T − ε2 and the objective is h̃(x,z).

But we want to work with uε not Uε . By definition

uε(x, t) = sup{z : Uε(x,z, t)≥ 0}.

We will compare it to two related functions, uε(x, t) and wε(x, t), defined as fol-
lows:

• The function uε(x, t) is equal to uε(x, t + ε2), but we prefer to think of it
differently. This is the analogue of uε for a modified game in which the
objective is h(x)− z, the horizon time is T − ε2, and the z increments are
given by

ε p ·w+
ε2

2
〈Γw,w〉+ ε

2 f (t + ε
2,x,z, p,Γ),

(thus: the function f is replaced by f (·+ ε2, ·, ·, ·)).
• The function wε(x, t) is the analogue of uε for the usual game with horizon

time T −ε2. (The objective is still h(x)−z and the z increments are defined
using f (t,x,z, p,Γ).) It satisfies the same dynamic programming principle
as uε ,

wε(x, t) = Sε [x, t,wε(x, t),wε(·, t + ε
2)],

but the two functions have different values at the horizon time:

wε(x,T − ε
2) = h(x) whereas uε(x,T − ε

2) = sup{z : h̃(x,z)≥ 0}.
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By a simple induction on time, we deduce from Lemmas 6.2 and 6.1 that

‖wε(·, t)−uε(·, t)‖L∞(Rn)≤ (1+Cε
2)

T−t
ε2 ‖sup{z : h̃(x,z)≥ 0}−h(x)‖L∞(Rn)≤Cε

2(1+Cε
2)

T−t
ε2 .

Since (1+Cε2)
T−t
ε2 → eC(T−t) as ε → 0, it follows that

(6.8) ‖wε(·, t)−uε(·, t)‖L∞(Rn) ≤C1+T−t
ε

2.

On the other hand, using Lemma 6.1, an easy induction gives

|uε(x, t)−wε(x, t)| ≤Mk

where k = T−ε2−t
ε2 and Mk satisfies

Mk+1 ≤ (1+Cε
2)Mk +Cε

4.

One can easily calculate that

(6.9) Mk ≤ (1+Cε
2)kM0 +Cε

2((1+Cε
2)k−1).

Since M0 = 0 it follows as above that

(6.10) |uε(x, t)−wε(x, t)| ≤C(eC(T−t)−1)ε2.

Combining (6.10) with (6.8) we deduce that

|uε(x, t + ε
2)−uε(x, t)| ≤ eC(T−t+1)

ε
2

where C is independent of t (in a finite interval). Since this is valid for all t, we
may add up such relations for t + kε2 and find that for t, t ′ ∈ [t∗,T ],

|uε(x, t ′)−uε(x, t)| ≤Ct∗ |t ′− t|.

This establishes the desired Lipschitz bound in time.
For equicontinuity in space, we apply Lemma 6.1 to φ1(x)= uε(x, t) and φ2(x)=

uε(x+a, t), with x1 = a and x2 = 0. It follows that

‖uε(·, t +ε
2)−uε(·+a, t +ε

2)‖L∞(Rn)≤ (1+Cε
2)‖uε(·, t)−uε(·+a, t)‖L∞(Rn)+Cε

2|a|.

Then by induction, for any a ∈ Rn,

(6.11)

‖uε(·, t)−uε(·+a, t)‖L∞(Rn)≤ (1+Cε
2)

T−t
ε2 ‖uε(·,T )−uε(·+a,T )‖L∞ +C(T−t)|a|

≤ eC(T−t)‖h(·)−h(·+a)‖L∞(Rn) +C(T − t)|a| ≤
(

eC(T−t+1) +C(T − t)
)
|a|

using assumption (6.3). This establishes the desired Lipschitz bound in space. �

If the PDE has a comparison principle, then we easily conclude from the pre-
ceding result (when it applies) that limuε(x, t) exists and is the unique viscosity
solution of (2.15). Moreover, we also conclude that the viscosity solution is Lips-
chitz continuous.
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6.2 The uniform Lipschitz character of Uε

We assumed in Section 6.1 that uε = vε . This is true when f is non-decreasing
in z, by Lemma 2.4. For more general f we can prove it only locally in time, when
T − t is sufficiently small. The proof is elementary, using only the assumption that
f is globally Lipschitz in z.

Lemma 6.4. Assume f satisfies

(6.12) | f (t,x,z′, p,Γ)− f (t,x,z, p,Γ)| ≤C|z− z′|

where C is independent of t,x, p, and Γ. Then for all x,z,z′, t, we have∣∣Uε(x,z, t)−Uε(x,z′, t)− (z′− z)
∣∣≤ (eC(T−t)−1)|z− z′|.

In particular, there is a constant c (independent of ε) such that Uε(x,z, t) is a
monotone function of z when T − t < c. For such t we have uε = vε .

Proof. Arguing by induction on k = T−t
ε2 , assume that

(6.13)
∣∣Uε(x,z,T − kε

2)−Uε(x,z′,T − kε
2)− (z′− z)

∣∣≤Mk|z− z′|.

When k = 0 we may take M0 = 0, since Uε(x,z,T )−Uε(x,z′,T ) = z′− z. We shall
find the form of Mk+1 as we do the inductive step. Let t = T − (k + 1)ε2, and let
p,Γ,w be fixed. Assuming the result is true for k, we may write

Uε

(
x+ εw,z+(ε p ·w+

ε2

2
〈Γw,w〉+ ε

2 f (t,x,z, p,Γ)), t + ε
2
)

−Uε

(
x+ εw,z′+(ε p ·w+

ε2

2
〈Γw,w〉+ ε

2 f (t,x,z′, p,Γ)), t + ε
2
)

≤ z′−z+ε
2 ( f (t,x,z′, p,Γ)− f (t,x,z, p,Γ)

)
+Mk|z−z′+ε

2 ( f (t,x,z′, p,Γ)− f (t,x,z, p,Γ)
)
|

≤ z′− z+Cε
2|z− z′|+Mk(|z− z′|+Cε

2|z− z′|),

where we have used (6.12). Minimizing over w then maximizing over p,Γ and
using the dynamic programming principle (2.18), we deduce that

Uε(x,z, t)≤Uε(x,z′, t)+ z′− z+(Cε
2(1+Mk)+Mk)|z− z′|.

Reversing the roles of z and z′ it follows that

Mk+1 ≤Mk(1+Cε
2)+Cε

2.

We deduce (as in the proof of (6.9)) that Mk ≤ eC(T−t)−1, whence

|Uε(x,z′, t)−Uε(x,z, t)− (z′− z)| ≤ (eC(T−t)−1)|z− z′|.

The remaining assertions of the Lemma follow trivially. �
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7 Additional remarks

This paper began with a long, informal discussion motivating and describing
our games. Then it got more technical, providing bounds on the resulting value
functions and demonstrating their convergence to viscosity sub and supersolutions
of the underlying PDE. Now we return to the more informal style of Section 2.
Section 7.1 offers some comments on the interpretation of the game as a numerical
scheme, and Section 7.2 discusses how the approach of Section 2.1 can be extended
to a broad class of semilinear parabolic equations.

7.1 Comments on the timestep problem
The central result about numerical methods for viscosity solutions of second-

order equations is the theorem of Barles-Souganidis [7], which says that every
monotone, stable, and consistent scheme is convergent.

That result is important, but it does not provide us with any particular schemes.
There is of course a large body of literature in that direction, most of it aimed
at specific classes of equations; examples include [19] (for equations of the form
ut−Tr(θ(x,Du)θ(x,Du)T D2u) = 0 ), [37] (for motion by curvature), and [38] (for
the infinity-Laplacian).

For equations of the form−ut + f (t,x,Du,D2u) = 0, the dynamic programming
principle (2.12) amounts to a semidiscrete scheme for stepping the PDE backward
in time. It seems natural to ask: what kind of numerical method is this?

The answer is simple when u is smooth. Then our dynamic programming prin-
ciple amounts more or less to the explicit Euler scheme

(7.1) u(x, t j) = u(x, t j+1)− ε
2 f
(
Du(x, t j+1),D2u(x, t j+1)

)
.

Indeed, consider the minimization over w j on the right hand side of (2.12). Writing
∆x = εw and expanding u(x+∆x, t j+1) as a Taylor series, it becomes

min
‖∆x‖≤ε1−α

[
(Du(x, t j+1)− p)·∆x+ 1

2〈(D
2u(x, t j+1)−Γ)∆x,∆x〉+u(x, t j+1)−ε

2 f (p,Γ)

+O(‖∆x‖3)
]
.

The assumption (2.7) ensures that ‖∆x‖3 � ε2 so the remainder is negligible. We
explained after (2.14) (and established rigorously in Lemma 4.1) that Mark’s min-
imization forces Helen to choose p = Du(x, t j+1) and Γ ≤ D2u(x, t j+1) (or at least
nearly so), since otherwise Mark can take advantage of her mistake. With these
choices, using the monotonicity of f and ignoring the error term, the dynamic pro-
gramming principle reduces to (7.1).

The answer is almost as simple when u is not smooth: then our scheme reduces
(in the same somewhat formal sense as above) to

(7.2) u(x, t j) = max
(p,Γ)∈J−2 u(x,t j+1)

[
u(x, t j+1)− ε

2 f (p,Γ))
]
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where J−2 u(x, t j+1) is the second-order lower semijet of u, viewed as a function of
the spatial variable only, at time t j+1 and position x. To be clear about the definition:
(7.3)
(p,Γ)∈ J−2 u(x, t j+1)⇐⇒ u(x+∆x, t j+1)≥ u(x, t j+1)+ p·∆x+ 1

2〈Γ∆x,∆x〉+o(‖∆x‖2)

as ∆x → 0. Loosely speaking, the semijet J−2 u identifies the quadratic functions
that touch the graph of u at x but stay locally below it.

To see why our scheme amounts roughly to (7.2), consider again Mark’s mini-
mization on the right hand side of (2.12): writing ∆x = εw j as before but not doing
any Taylor expansion, we get

(7.4) min
‖∆x‖≤ε1−α

[
uε(x+∆x, t j+1)− p ·∆x− 1

2〈Γ∆x,∆x〉− ε
2 f (p,Γ)

]
.

Again Helen should choose (p,Γ) ∈ J−2 u(x, t j+1); then Mark observes that

uε(x+∆x, t j+1)− p ·∆x− 1
2〈Γ∆x,∆x〉 ≥ u(x, t j+1)+o(‖∆x‖2)

and (ignoring the error term) he concludes that his best choice is ∆x = 0. The
minimum in (7.4) is then uε(x, t j+1)− ε2 f (p,Γ) and the outcome of the max/min
is (7.2).

The timestepping scheme (7.2) seems quite natural, but to the best of our knowl-
edge nothing like it has previously been proposed for second-order equations. A
similar idea (using first-order semijets) was however considered by Taras’ev for a
class of Hamilton-Jacobi equations [44]. His work includes a discussion of spa-
tial discretization and a proof of convergence as ε → 0 (the error is of order ε).
He also identifies a relationship between this approach and the more conventional
Lax-Wendroff and Godunov schemes.

Equation (7.2) amounts to a semidiscrete numerical scheme

(7.5)
u(x, t j+1)−u(x, t j)

ε2 = min
(p,Γ)∈J−2 u(x,t j+1)

f (p,Γ) .

When u is defined on a grid, the obvious discretization of the right hand side is to
minimize f over all p and Γ such that

p ·∆x+ 1
2〈Γ∆x,∆x〉 ≤ u(x+∆x, t j+1)−u(x, t j+1)

with ∆x restricted to a stencil. We wonder how well this fully discrete numerical
scheme would work in practice.

7.2 An alternative game for some nonlinear heat equations
The games discussed in this paper are naturally related to the form of the PDE.

However there can be multiple “two-person game” approaches to the same PDE.
In this section we discuss an alternative “two-person game” approach to solving

semilinear parabolic equations of the form

(7.6)
{

∂tu+∆u+ f (x, t,u,Du) = 0 for x ∈ Rn and t < T
u(x,T ) = h(x) at t = T.
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This discussion generalizes the game of Section 2.1 to higher spatial dimensions
and to nonlinear equations. There are still two opposing players, Helen and Mark.
The game begins at an arbitrary position x0 ∈Rn, and Helen’s debt is set to z0 ∈R.
The rules are as follows: if at time t j = t0 + jε2, the position is x j and Helen’s debt
is z j, then

(i) Helen chooses an orthonormal frame (v( j)
1 , · · · ,v( j)

n ), and a vector p j ∈ Rn.
(ii) After seeing Helen’s choice, Mark chooses numbers b( j)

1 , · · · ,b( j)
n ∈{1,−1}.

(iii) Denoting w j =
√

2∑
n
i=1 b( j)

i v( j)
i , the position changes to

x j+1 = x j + εw j

and Helen’s debt gets changed to

z j+1 = z j + ε p ·w j− ε
2 f (x j, t j,z j, p j).

(iv) The clock steps forward to t j+1 = t j + ε2 and the process repeats, stopping
when tN = T .

(v) At the final time tN , Helen collects h(xN), where xN is the final-time posi-
tion.

Helen’s final wealth is h(xN)− zN . Her goal is to maximize her final time wealth,
while Mark’s is to obstruct her. Helen’s value function, starting from x0 with score
z0 at time t0, is defined by

Uε(x0,z0, t0) = max
Helen’s choices

[h(xN)− zN ]

using our usual convention (2.13) about the meaning of this expression.
We then define (as in Section 2.3)

uε(x0, t0) = sup{z0 : Uε(x0,z0, t0)≥ 0}, vε(x0, t0) = inf{z0 : Uε(x0,z0, t0)≤ 0}.
Arguing as for Proposition 2.1, one finds that uε and vε satisfy the dynamic pro-
gramming inequalities

(7.7) uε(x, t)≤ sup
{vi},p

inf
bi=±1

[
uε(x+ εw, t + ε

2)− (ε p ·w− ε
2 f (x, t,uε(x, t), p))

]
,

(7.8) vε(x, t)≥ sup
{vi},p

inf
bi=±1

[
vε(x+ εw, t + ε

2)− (ε p ·w− ε
2 f (x, t,vε(x, t), p))

]
,

where w =
√

2∑
n
i=1 bivi.

We believe that, after placing appropriate constraints on p and f , an analysis
based on these dynamic programming relations (analogous to the one in this paper)
would prove the convergence of uε and vε as ε → 0 to the unique viscosity solution
of (7.6). (Note that an equation of this form has a comparison principle, under very
mild conditions on f [20].)

To support this conjecture, let us present the heuristic argument explaining why
the PDE (7.6) is the formal Hamilton-Jacobi-Bellman equation associated with this
game. We restrict our attention to the case where Uε is monotone in z (guaranteed
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if for example f is) which ensures that uε = vε , and the dynamic programming
inequalities (7.7)–(7.8) reduce to the equality

(7.9) uε = max
{vi},p

min
bi=±1

[
uε(x+ εw, t + ε

2)− (ε p ·w− ε
2 f (x, t,uε(x, t), p))

]
.

Suppressing the dependence of uε on ε , assuming it is smooth enough, and noting
that εw is small, we have by Taylor expansion

0≈ max
{vi},p

min
bi=±1

[
ε(Du− p) ·w+ ε

2(∂tu+ 1
2〈D

2uw,w〉+ f (x, t,u, p))
]
.

Keeping first only the leading order ε term in this relation, we have to compute

max
{vi},p

min
bi=±1

[
√

2ε

n

∑
i=1

bi(Du− p) · vi

]
= max

{vi},p

[
−
√

2ε

n

∑
i=1
|(Du− p) · vi|

]
.

The term to be maximized is always ≤ 0, and since the vi’s form an orthonormal
frame, it is 0 if and only if p = Du. This imposes Helen’s choice of p as p = Du.
The first order term then vanishes and (substituting Du for p) there remains

0≈max
{vi}

min
bi=±1

[
∂tu+ 1

2〈D
2uw,w〉+ f (x, t,u,Du))

]
.

Using the fact that {vi} form an orthonormal frame, we have

1
2〈D

2uw,w〉=
n

∑
i=1
〈D2uvi,vi〉+ ∑

i6= j
bib j〈D2uvi,v j〉= ∆u+ ∑

i6= j
bib j〈D2uvi,v j〉.

We are thus led to the relation

(7.10) 0≈ ∂tu+ f (x, t,u,Du)+∆u+max
{vi}

min
bi=±1

(
∑
i6= j

bib j〈D2uvi,v j〉

)
.

We claim that

(7.11) max
{vi}

min
bi=±1

∑
i6= j

bib j〈D2uvi,v j〉= 0,

with equality achieved when {vi} is chosen to be an orthonormal frame which
diagonalizes D2u. Once this is observed (7.10) and thus (7.9) reduce formally to
the equation (7.6).

We conclude by proving the claim: first it is easy to see that the max in (7.11) is
always ≥ 0, by choosing {vi} to be an orthonormal frame which diagonalizes D2u.
Then to show that it is always ≤ 0, we show that given any numbers ai j we may
always choose bi = ±1 such that ∑i6= j ai jbib j ≤ 0. This can be done by induction
on the dimension n: it is clearly true for n = 1,2. Assuming it is true up to n−1,
we write

∑
i6= j

ai jbib j = ∑
i6= j≤n−1

ai jbib j +2bn(
n−1

∑
i=1

ainbi).

The first term on the right-hand side can be made nonpositive by the induction hy-
pothesis, and the second one can be made nonpositive by choosing bn =−sgn(∑n−1

i=1 ainbi).
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In fact, the whole sum can be made negative unless ai j = 0 for all i 6= j. Setting
ai j = 〈D2uvi,v j〉, this proves the claim (and equality is achieved if and only if (vi)
diagonalizes D2u).
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