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ABSTRACT. We prove that in a certain asymptotic regime, solutions of the
Gross-Pitaevskii equation converge to solutions of the incompressible Euler
equation, and solutions to the parabolic Ginzburg-Landau equations con-
verge to solutions of a limiting equation which we identify.

We work in the setting of the whole plane (and possibly the whole three-
dimensional space in the Gross-Pitaevskii case), in the asymptotic limit
where e, the characteristic lengthscale of the vortices, tends to 0, and in
a situation where the number of vortices N. blows up as ¢ — 0. The
requirements are that N. should blow up faster than |loge| in the Gross-
Pitaevskii case, and at most like |loge| in the parabolic case. Both results
assume a well-prepared initial condition and regularity of the limiting initial
data, and use the regularity of the solution to the limiting equations.

In the case of the parabolic Ginzburg-Landau equation, the limiting
mean-field dynamical law that we identify coincides with the one proposed
by Chapman-Rubinstein-Schatzman and E in the regime N. < [loge|, but
not if N. grows faster.
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1. INTRODUCTION

1.1. Problem and background. We are interested in the Gross-Pitaevskii
equation

. u .
(1.1) i = Au + 5—2(1 — |u)?) in R?
and the parabolic Ginzburg-Landau equation
U .
(1.2) 0w = Au + 8—2(1 — |u)?) in R?

in the plane, and also the three-dimensional version of the Gross-Pitaevskii
equation
u .
(1.3) i0u = Au + ;2(1 — |u|?) in R3,
all in the asymptotic limit € — 0.

These are famous equations of mathematical physics, which arise in the
modeling of superfluidity, superconductivity, nonlinear optics, etc. The Gross-
Pitaevskii equation is an important instance of a nonlinear Schrodinger equa-
tion. These equations also come in a version with gauge, more suitable for the
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modeling of superconductivity, but whose essential mathematical features are
similar to these, and which we will discuss briefly below. There is also interest
in the “mixed flow” case, sometimes called complex Ginzburg-Landau equation

(1.4) (a+ib)du = Au + 6i;(l —u)?) inR2
For further reference on these models, one can see e.g. [T, TT, AK, SS5].

In these equations, the unknown function u is complex-valued, and it can
exhibit vortices, which are zeroes of u with non-zero topological degree, and
a core size on the order of . In the plane, these vortices are points, whereas
in the three-dimensional space they are lines. We are interested in one of the
main open problems on Ginzburg-Landau dynamics, which is to understand
the dynamics of vortices in the regime in which their number N blows up as
e — 0. The only available results until now are due to Kurzke and Spirn [KS2]
in the case of (1.2) and Jerrard and Spirn [JS2] in the case of (1.1). The latter
concern a very dilute limit in which N, grows slower than a power of log |log ¢|
as € — 0 (more details are given below).

The dynamics of vortices in (1.1) and (1.2) was first studied in the case where
their number N is bounded as ¢ — 0 (hence can be assumed to be independent
of . It was proven, either in the setting of the whole plane or that of a bounded
domain, that, for “well-prepared” initial data, after suitable time rescaling, their
limiting positions obey the law

da;

dt
where J is the rotation by 7/2 in the plane, and W is in the setting of the plane
the so-called Kirchhoff-Onsager energy

(1.6) Wi(ai,...,an) = —deidj log |a; — ajl
i#j

(1.5) = (a+Jb)ViW(a1,...,aN)

where the d;’s are the degrees of the vortices and are assumed to be initially in
{1, —1}. In the setting of a bounded domain and prescribed Dirichlet boundary
data, W is (1.6) with some additional terms accounting for boundary effects. It
was introduced and derived in that context in the book of Bethuel-Brezis-Hélein
[BBH] where it was called the “renormalized energy”.

In other words, the vortices move according to the corresponding flow (gra-
dient, Hamiltonian, or mixed) of their limiting interaction energy W. After
some formal results based on matched asymptotics by Pismen-Rubinstein and
E in [PR, E1], these results were proven in the setting of a bounded domain
by Lin [Lil] and Jerrard-Soner [JS1] in the parabolic case, Colliander-Jerrard
[CJ1, CJ2] and Lin-Xin [LX2] with later improvements by Jerrard-Spirn [JSpl]
in the Schrodinger case, and Kurzke-Melcher-Moser-Spirn [KMMS] in the mixed
flow case. In the setting of the whole plane, the analogous results were ob-
tained by Lin-Xin [LX1] in the parabolic case, Bethuel-Jerrard-Smets [BJS] in
the Schrédinger case, and Miot [Mi] in the mixed flow case. A proof based on
the idea of relating gradient flows and I'-convergence was also given in [SS4], it
was the initial motivation for the abstract scheme of “I'-convergence of gradient
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flows” introduced there. Generalizations to the case with gauge, pinning terms
and applied electric field terms were also studied [Spl, Sp2, KS1, Ti, ST2].

All these results hold for well-prepared data and for as long as the points
evolving under the dynamical law (1.5) do not collide. In the parabolic case,
Bethuel-Orlandi-Smets showed in the series of papers [BOS1, BOS2, BOS3| how
to lift the well-prepared condition and handle the difficult issue of collisions and
extend the dynamical law (1.5) beyond them. Results of a similar nature were
also obtained in [Sel].

The expected limiting dynamics of three-dimensional vortex lines under (1.3)
is the binormal flow of a curve, but in contrast to the two-dimensional case there
are only partial results towards establishing this rigorously [J2].

When the number of points N, blows up as € — 0, then it is expected that
the limiting system of ODEs (1.5) should be replaced by a mean-field evolution
for the density of vortices, or vorticity. More precisely, for a family of functions
ue, one introduces the supercurrent j. and the vorticity (or Jacobian) pu. of the
map u. which are defined via

(1.7) Je = (iue, Vug) e := curl j.,

where (z,y) stands for the scalar product in C as identified with R? via (z,y) =
%(@y—i—@x). The vorticity ue plays the same role as the vorticity in classical fluids,
the only difference being that it is essentially quantized at the € level, as can
be seen from the asymptotic estimate p. ~ 27, d;d,, as € — 0, with {a;}
the vortices of u. and d; € Z their degrees (these are the so-called Jacobian
estimates, which we will recall in the course of the paper).

The mean-field evolution for p = lim._,o p/N: can be guessed to be the
mean-field limit of (1.5) as N — oo. Proving this essentially amounts to showing
that the limits ¢ — 0 and N — oo can be interchanged, which is a delicate
question.

In the case of the Gross-Pitaevskii equation (1.1)-(1.3), it is well-known that
the Madelung transform formally yields that the limiting evolution equation
should be the incompressible Euler equation (for this and related questions, see
for instance the survey [CDS]). In the case of the parabolic Ginzburg-Landau
equation, it was proposed, based on heuristic considerations by Chapman-
Rubinstein-Schatzman [CRS] and E [E2], that the limiting equation should
be

(1.8) O — div (uVh) =0  h=—-A"1p

where p is the limit of the vortex density, assumed to be nonnegative. In fact,
both papers really derived the equation for possibly signed densities, [CRS] did
it for the very similar model with gauge in a bounded domain, in which case
the coupling h = —A~1y is replaced by h = (—=A + I)~!u (see also Section
1.3.4 below), and [E2] treated both situations with and without gauge, also for
signed densities, without discussing the domain boundary.

After this model was proposed, existence, weak notions and properties of
solutions to (1.8) were studied in [LZ1, DZ, SV] (see also [MZ] for some related
models). They depend greatly on the regularity of the initial data u. For pu
a general probability measure, the product uVh does not make sense, and a
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weak formulation & la Delort [De| must be used; also uniqueness of solutions
can fail, although there is always existence of a unique solution which becomes
instantaneously L. It also turns out that (1.8) can be interpreted as the
gradient flow (as in [O, AGS]) in the space of probability measures equipped
with the 2-Wasserstein distance, of the energy functional

(1.9) o) = [IVhP h=-a"n

which is also the mean field limit of the usual Ginzburg-Landau energy. The
equation (1.8) was also studied with that point of view in [AS] in the bounded
domain setting (where the possible entrance and exit of mass creates difficul-
ties). This energy point of view allows one to envision a possible (and so far
unsuccessful) energetic proof of the convergence of (1.2) based on the scheme
of Gamma-convergence of gradient flows, as described in [Se2].

A proof of the convergence of (1.1), (1.2) or (1.3) to these limiting equations
(Euler or (1.8)) has remained elusive for a long time.

The time-independent analogue of this result, i.e. the convergence of solutions
to the static Ginzburg-Landau equations to the time-independent version of
(1.8) — a suitable weak formulation of yVh = 0 — in the regime N, > 1 (the
notation means N, — 400 as ¢ — 0), and without any assumption on the sign
of the vorticity, was obtained in [SS2]. As is standard, due to its translation-
invariance, the stationary Ginzburg-Landau equation can be rewritten as a
conservation law, namely that the so-called stress-energy tensor is divergence
free. The method of the proof then consists in passing to the limit in that
relation, taking advantage of a good control of the size of the set occupied by
vortices. This approach seems to fail to extend to the dynamical setting for
lack of extension of this good control.

On the other hand, the proof of convergence of the dynamic equations in the
case of bounded number of vortices is usually based on examining the expression
for the time-derivative of the energy density and identifying limits for each term
(for a quick description, one may refer to the introduction of [ST2]). This proof
also seems very hard to extend to the situation of N, > 1 for the following
reasons :

e It relies on estimates on the evolution of the “energy-excess” D, where
terms controlled in v/D instead of D arise (and these are not amenable
to the use of Gronwall’s lemma).

e Understanding the evolution of the energy density or excess seems to
require controlling the speed of each individual vortex, which is diffi-
cult when their number gets large while only averaged information is
available.

e The proof works until the first time of possible collision between vor-
tices, which can in principle occur in very short time once the number
of vortices blow up, so it seems that one needs good control and under-
standing of the vortices’ mutual distances.

Recently Spirn-Kurzke [KS2] and Jerrard-Spirn [JS1] were however able to
make the first breakthrough by accomplishing this program for (1.2) and (1.1)
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respectively, in the case where N, grows very slowly: N, < (loglog [loge|)!/*
in the parabolic Ginzburg-Landau case, and N, < (log|loge[)'/? in the two-
dimensional Gross-Pitaevskii case, assuming some specific well-preparedness
conditions on the initial data. Relying on their previous work [KS1, JSp1], they
showed that the method of proof for finite number of vortices can be made more
quantitative and pushed beyond bounded N, controlling the vortex distances
and proving that their positions remain close to those of the N, points solving
the ODE system (1.5), and then finally passing to the limit for that system
by applying classical “point vortex methods”, in the manner of, say, Schochet
[Sch]. There is however very little hope for extending such an approach to larger
values of N;.

By a different proof method based on the evolution of a “modulated energy”,
we will establish

e the mean-field limit evolution of (1.1)—(1.3) in the regime |loge| <
N. <« 1/e
e the mean-field limit evolution of (1.2) in the regime 1 < N, < O(|loge|)

both at the level of convergence of the supercurrents, and not just the vorticity.
We note that the condition N. < O(|loge|) allows to reach a physically very
relevant regime: in the case of the equation with gauge, |loge| is the order of
the number of vortices that are present just after one reached the so-called first
critical field H,,, itself of the order of |loge| (cf. [SSH]).

Our method relies on the assumed regularity of the solution to the limiting
equation, thus is restricted to limiting vorticities which are sufficiently regular.
In contrast, although they concern very dilute limits, the results of [KS2, JS1]
allow for general (possibly irregular) limiting vorticities.

1.2. Our setting and results.

1.2.1. Scaling of the equation. In order to obtain a nontrivial limiting evolution,
the appropriate scaling of the equation to consider is

Ns(uoaTs\ +if8)0u = Au + E%u(l — |ul?) in R?
u(-,0) = u°,

Here we have put both the 2D Gross-Pitaevskii and parabolic equations in the
same framework. To obtain Gross-Pitaevskii, one should set « =0 and 8 =1
and to obtain the parabolic Ginzburg-Landau equation, one should set o = 1
and f = 0. We will also comment later on the mixed case where one would have
a and (3 nonzero, and say, a® + 32 = 1, and we will describe the adaptation to
the 3D Gross-Pitaevskii case as we go. In all the paper, when we write R"™, we
mean the whole Euclidean space with n being either 2 or 3.

(1.10)

1.2.2. Limiting equation. Throughout the paper, for vector fields X in the
plane, we use the notation

Xt = (=X, X1) Vi=(-0,0)

and this way
curl X = 91 Xy — 9o Xy = —div X+,
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In the 2D Gross-Pitaevskii case, or in the parabolic case with N. < |log |, then
the limiting equation will be the incompressible equation

(1.11)

{ Oyv = 26v* curl v — 2av curl v + Vp in R?

divv =20 in R?,

with p the pressure associated to the divergence-free condition. In the parabolic
case with N. comparable to |loge|, then without loss of generality, we may
assume that

[log e

(1.12) A := lim

e—0 Ng

exists and is positive and finite. In that case, the limiting equation will be

(1.13) v = AVdivy — 2vcurlv in R?. ‘

This is a particular case of the mixed flow equation

A
(1.14) v = =V divv + 26v* curlv — 2avcurly  in R%
a

The incompressible Euler equation is typically written as

Ov+v-Vv+Vp=0 in R™
(1.15)
divv =0 in R™,

where p is the pressure. But when divv = 0 and n = 2, one has the identity
1
(1.16) v-Vv=div(vev)=vt curlv—|—§V]v|2,

so when a = 0, (1.11) is exactly the 2D incompressible Euler equation (up to
a time rescaling by a factor of 2), with the new pressure equal to the old one
plus |v|?. Existence, uniqueness, and regularity of its solutions are well-known
since Volibner and Yudovich (one can refer to textbooks such as [MB, Chl] and
references therein).

In the three-dimensional Gross-Pitaevskii case, our limiting equation will be
the time-rescaled incompressible Euler equation rewritten again as

Ov=2div (vav— Lv|2I) +V in R?
(1.17) { t ( 2|’ ) p

divv=0 in R3.

Taking the curl of (1.11), one obtains
dw = 2div ((avt + Bv)w) w = curlv, divv =0,

so in the case @ = 0, 8 = 1, we of course retrieve the vorticity form of the
Euler equation, and in the case a = 1, § = 0 and N; < |loge|, we see that we
retrieve the Chapman-Rubinstein-Schatzman-E equation (1.8). But in the case
0 < A < 400 the curl of (1.13) is not (1.8). In fact the divergence of v is not
zero, even if we assume it vanishes at initial time, and this affects the dynamics
of the vortices. This phenomenon can be seen as a drift on the vortices created
by the phase of u, a “phase-vortex interaction”, as was also observed in [BOS1].
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The existence and uniqueness of global regular solutions to (1.11) can be
obtained exactly as in the case of the Euler equation, see for example [Chl]. It
suffices to write the equation in vorticity form as w = A(w) - Vw where A(w)
is a Fourier operator of order —1 (we do not give details here). In contrast, the
equation (1.13) is new in the literature, and for the sake of completeness we
present in an appendix (cf. Theorem 3) a result of local existence and uniqueness
of C*7 solutions to the general equation (1.14), which suffices for our purposes.
More results, including global existence of such regular solutions are established
in [Du].

We note that the transition from one limiting equation to the other happens
in the parabolic case, in the regime where N. is proportional to |loge|. This
is a natural regime, which corresponds to the situation where the number of
points is of the same order as the “self-interaction” energy of each vortex.

1.2.3. Method of proof. Our method of proof bypasses issues such as taking
limits in the energy evolution or vorticity evolution relations and controlling
vortex distances. Instead, it takes advantage of the regularity and stability of
the solution to the limiting equation. More precisely, we introduce what can be
called a “modulated Ginzburg-Landau energy”

(1— Ju?)
2e?

where v(t) is a regular solution to the desired limiting equation, and

(1.18)  &(u,t) = ;/n |Vu — iuNv(t))? + + N2(1 — |u»¥(t),

t) — |v(t)|? in the Gross-Pitaevskii case
119) )= {p<> [v(1)

—|v(t)|? in the parabolic case.

This quantity is modelled on the Ginzburg-Landau energy, and controls the L?
distance between the supercurrent j. = (iu., Vu.) normalized by N. and the
limiting velocity field v, because in the regimes we consider, the term fRn N2(1—
|u|?)1(t) is a small perturbation (that term will however play a role in algebraic
cancellations).

One of the difficulties in the proof is that the convergence of j./N. to v is not
strong in L2, in general, but rather weak in L?, due to a concentration of an
amount 7|log €| of energy at each of the vortex points (this energy concentration
can be seen as a defect measure in the convergence of j. /N, to v). In order to
take that concentration into account, we need to subtract off of £ the constant
quantity wNc[loge|. In the regime where N. > |loge|, then 7w N.|loge| = o(N2)
and this quantity (or the concentration) happens to become negligible, which
is what will make the proof in the Gross-Pitaevskii case much simpler and
applicable to the three-dimensional setting as well, but of course restricted to
that regime.

The main point of the proof consists in differentiating & in time, and show-
ing that %&(us(t),t) < C(E(ue(t),t) — mNe|loge|), which allows us to apply
Gronwall’s lemma, and conclude that if & — wN:|loge| is initially small, it re-
mains so. The difficulty for this is to show that a control in C(E. — mN.|logel)
instead of C'v/&., is possible, even though the terms involved initially appear to
be of order \/&.. This is made possible by a series of algebraic simplifications
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in the computations that reveal only quadratic terms. An important insight
leading to these simplifications is that one should work, by analogy with the
gauged Ginzburg-Landau model, with gauged quantities, where N.v plays the
role of a space gauge vector-field, and N.¢ plays the role of a temporal gauge,
¢ being defined by

B(t) = {p(t) in cases leading to (1.11), (1.17)

1.20
(1.20) Adivv(t) in cases leading to (1.13).

The idea of proving convergence via a Gronwall argument on the modu-
lated energy, while assuming and using the regularity of the limiting solution
is similar to the relative entropy method for establishing (the stability of) hy-
drodynamic limits, first introduced in [Yau] and used for quantum many body
problems, mean-field theory and semiclassical limits, one example of the latter
arising precisely for the limit of the Gross-Pitaevskii equation in [LZ2]; or Bre-
nier’s modulated entropy method to establish kinetic to fluid limits such as the
derivation of the Euler equation from the Boltzmann or Vlasov equations (see
for instance [SR| and references therein).

In the point of view of that method, [5.|Vu — iuN.v|? is the modulated
energy, while fRn |Oyu — iuN:¢|? is the modulated energy-dissipation.

1.2.4. Well-posedness of the Cauchy problem. The equations (1.1) and (1.3) are
shown in [Ge, Ga] to be globally well-posed in the natural energy space

(1.21) E ={uc H. (R"),Vu € L*(R"), [u]* — 1 € L*(R")}.

This is the setting we will consider in dimension 3 and corresponds to solutions
which have zero total degree at infinity. But in general this is too restrictive
for our purposes: the problem is that, when working in the whole space, the
natural energy is infinite as soon as the total degree of u at infinity is not zero.
It thus needs to be renormalized by substracting off the energy of some fixed
map Up_ which behaves at infinity like wu,, i.e. typically like e'V? for example.
To be more specific, in the two-dimensional case we consider as in [BS, Mi], for
each integer D, a reference map Up, which is smooth in R? and such that

D
(1.22) Up = <|Z|> outside of B(0,1).
z

The well-posedness of the Cauchy problem in that context was established
in [BS] in the Gross-Pitaevskii case and [Mi] in the mixed flow (hence possibly
parabolic) case : they show that given u? € Up, + H'(R?) (in fact they even
consider a slightly wider class than this), there exists a unique global solution to
(1.10) such that u.(t) — Up. € C°(R, H'(R?)), and satisfying other properties
that will be listed in Section 2.1. This is the set-up that we will use, as is also
done in [JSp2]. Without loss of generality, we may assume that D, > 0. In
the Gross-Pitaevskii case, we will allow for D, (the total degree) to be possibly
different from V. (the total number of vortices), which corresponds to a vorticity
which does not have a distinguished sign. For simplicity, we will then assume
that D./N. = d < 1, a number independent of £. In the parabolic case, we
need to have a distinguished sign and we will take D, = N..
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Let us point out that the use of the modulated energy will simplify the proofs
in that respect, in the sense that it naturally provides a finite energy and thus
replaces having to “renormalize” the infinite energy as in [BJS, Mi, JSp2].

1.2.5. Main results. We may now state our main results, starting with the
Gross-Pitaevskii case. In all the paper, we denote by C7 the space of func-
tions which are bounded and Hélder continuous with exponent v, and by C7
the space of functions which are bounded and whose derivative is bounded and
C7. We use the standard notation a < b to mean lima/b = 0, and the standard
o notation, all asymptotics being taken as ¢ — 0.

Theorem 1 (Gross-Pitaevskii case). Assume N satisfies
1
(1.23) loge| < N: < o ase— 0.

Let {u:}e>0 be solutions to
iNOpue = Aue + %5 (1 — luc|?) in R"
u€('7 0) = Ug

If n = 2 we assume ug € Up. + H?(R?) where we take 0 < D. < N.
with D:/N. = d, Up_ is as in (1.22), and v is a solution to (1.11), such
that v(0) — d(VU,,iU;) € L*(R?), v(t) € L®(R4,C%(R?)), and curlv(t) €
LR, L' (R?)).

If n = 3 we assume ul € E as in (1.21) with Au® € L*(R3?), and v is
a solution to (1.17) such that v(t) € L>®([0,T],C%Y(R3) N L3(R3)), dv €
L>([0,T], L®(R3) N L%(R3)) and curlv(t) € L>=([0,T], L}(R?)).

Letting E. be defined from v(t) via (1.18), assume that

(1.25) E-(u2,0) < o(N?).

Then, for every t > 0 (resp. t < T), we have E-(uc(t),t) < o(N2), and in
particular we have

(1.24)

Je . (Vue,iug)
N."  N:

If we know in addition that u. is bounded in L7 (R4, L>(R™)) uniformly in e,
then the convergence is strong in L*(R™).

(1.26) — v strongly in L (R™).

The restriction N, > |log e[ is a technical obstruction caused by the difficulty
in controlling the velocity of the individual vortices because of the lack of control
of fRn |0suc|?. On the other hand, the restriction N, < % seems quite natural,
since when N is larger, the modulus of u should enter the limiting equation,
giving rise to compressible Euler equations. On that aspect we refer to the
survey [BDGSS] and results quoted therein.

In the parabolic case, we have the following result
Theorem 2 (Parabolic case). Assume N, satisfies
(1.27) 1< N: <O(|logel) ase— 0,

and let X\ be as in (1.12).
Let {us}es0 be solutions to (1.10) with 5 = 0 and a = 1, associated to initial
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conditions ul € Uy, +H'(R?) where Uy, is as in (1.22). Assume v is a solution
to (1.11) if N. < |loge|, and to (1.13) otherwise, such that v(0) — (VUy,iU;) €
L?*(R?), curlv(0) > 0, and belonging to L>=([0,T],C*(R?)) for some v > 0
and some T > 0 (possibly infinite). Letting E. be defined from v(t) via (1.18),
assume that

(1.28) E-(u2,0) < N |loge| + o(N?).

Then, for every t € [0,T], we have E-(uc(t),t) < nN:|loge| + o(N2) and

Vue — iueN,
(1.29) W — 0 strongly in LfOC(RQ) forp <2,
&g
and weakly in L*(R?) if in addition \ < oo,
. Vo i
(1.30) Je (Ve iue) — v strongly in L}, (R?).

N. N.

If we know in addition that u. is bounded in LSS (R, L°°(R?)) uniformly in €,

then the convergence of j./N¢ is in the same sense as in (1.29).

We note that in both theorems, we obtain the convergence of the solutions
of (1.10) at the level of their supercurrents j., which is obviously stronger than
the convergence of the vorticity p./Ne. = curl j./N¢ to curlv, which it implies.

The additional condition on the uniform boundedness of u. is easy to verify
in the parabolic case: for example if the initial data satisfies [u?| < 1, then this
is preserved along the flow of (1.2) by the maximum principle.

The conditions (1.25) and (1.28) are well-preparedness conditions. It is fairly
standard to check that one can build configurations ul that satisfy them, for
example proceeding as in [SS5, Section 7.3].

In the parabolic case, for u? € Uy, + H'(R?) and (1.28) to hold, the initial
configuration should have most of its vortices of degree 1, and thus curlv(0)
must be nonnegative (it is automatically of mass 27 by the condition v(0) —
(VUy,iUp) € L*(R?) so the assumption curlv(0) > 0 is redundant). We take
advantage of these well-preparedness conditions as well as of the regularity of the
solutions to the limiting equations in crucial ways. Since regularity propagates
in time in these limiting equations, then the regularity assumptions we have
placed really amount to just another assumption on the initial data. It is of
course significantly more challenging and an open problem to prove convergence
without such assumptions, in particular without knowing in the parabolic case
that the initial limiting vorticity has a sign.

The reason for the restriction N. < O(|loge|) will become clear in the course
of the proof: the factor of growth of the modulated energy in Gronwall’s lemma
is bounded by C'N./|loge| and thus becomes too large otherwise. We are not
even sure whether the formal analogue of (1.13), i.e. the equation with A =0
(shown to be locally well-posed in [Du]), is the correct limiting equation.

1.3. Other settings.
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1.3.1. The mized flow case. With our method of proof, we can prove that if
a> 0,3 >0, and o? + $? = 1, the same results as Theorem 2 hold, with
convergence to the limiting equation (1.11), respectively (1.14), under the ad-
ditional condition N. > log |loge|, cf. Remark 4.10. For a sketch of the proof
and quantities to use, one can refer to Appendix C, setting the gauge fields to 0.

1.3.2. The torus. We have chosen to work in the whole plane or space, but one
can easily check that the proof works with no change in the case of a torus. The
proof is of course easier since there is no need for controlling infinity, and there
are no boundary terms in integrations by parts. However, this gives rise to
a nontrivial situation only in the Gross-Pitaevskii case, since in the parabolic
case we have to assume that the vorticity has a distinguished sign, while at
the same time its integral over the torus vanishes. In the parabolic case, to
have a nontrivial situation one should instead consider the case with gauge as
described just below in Section 1.3.4, where the total vorticity over a period
does not have to vanish.

1.3.3. Bounded domains. On the contrary, working in a bounded domain en-
tails significant difficulty in the parabolic case : one basically needs to control
the change in energy due to the entrance and exit of vortices (one can see
the occurence of this difficulty at the limiting equation level in [AS]), and the
necessary tools are not yet available.

1.3.4. The case with gauge. Our proof adapts well to the cause with gauge,
which is the true physical model for superconductors, again in the setting of
the infinite plane or the torus. The corresponding evolution equations are then
the so-called Gorkov-Eliashberg equations

1) N. (ﬁ + w) (O — iu®) = (V.a)2u+ % (1 — [uf?) in R?
o(04A — V®) = Vtcurl A + (iu, V4u) in R2.

These were first derived by Schmid [Sch] and Gorkov-Eliashberg [GE], and the
mixed flow equation was also suggested as a good model for the classical Hall
effect by Dorsey [Do] and Kopnin et al. [KIK]. In this system the unknown
functions are u, the complex-valued order parameter, A the gauge of the mag-
netic field (a real-valued vector field), and ® the gauge of the electric field (a
real-valued function). The notation V 4 denotes the covariant derivative V—iA.
The magnetic field in the sample is deduced from A by h = curl A, and the
electric field by F = —0; A+ V®. Finally, ¢ > 0 is a real parameter, the charac-
teristic relaxation time of the magnetic field, which may be taken to be 0. The
dynamics of a finite number of vortices under such flows was established rigor-
ously in [Spl, Sp2, SS4, KS1, Ti, ST2], in a manner analogous to that described
in the case without gauge. A dynamical law for the limit of the vorticity was
formally proposed in [CRS, E2], the analogue of (1.8) mentioned above.

Natural physical quantities associated to this model are the gauge-invariant
supercurrent

jE - <iu€7 vA5u6>7
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the gauge-invariant vorticity

we = curl (4= + Az)
and the electric field

Eg = _atAg + v@s

In Appendix C we explain how to adapt the computations made in the planar
case without gauge to the case with gauge, in order to derive the following
limiting equations: if &« =0 or N; < |loge],

Ov — E = (—2av + 2Bv)(curl v+ h) + Vp

divv=0
(152 —0E=v+Vth

Osh = —curl E,
and if a # 0 and lim._,q % = ) is positive and finite,

Ov — B = (—2av + 28vt)(curlv +h) + %V divv
(1.33) —oE=v+Vth

Osh = — curl E.

The corresponding results to Theorems 1 and 2 are then the convergences
Je e curl A, E.
1.34 — = — = U= 1 h —+h, — —=E
( ) N v, N 1 curlv + h, N N

in the case @ = 0 and |loge| < N. < 1 to (1.32), and in the case 8 = 0 and
1 < N < O(|logel) to (1.32) or (1.33) according to the situation.

We note that if o # 0, (1.32), resp. (1.33), can be rewritten as a system of
equations on only two unknowns v and h :

v + (v + V+h) = (—2av + 28vH)(curlv +h) + Vp
(1.35) divv =10
ocOth = curlv + Ah,

respectively
(1.36) v + (v + Vth) = (—2av + 28vi)(curlv + h) + gV divv
' oc0sh = curlv + Ah.

We can also note that taking the curl of (1.32) or (1.33) gives (with p the
limiting vorticity as in (1.34))

O = div ((2av* + 26v) )
O'ath — Ah+h= Ju!
divv =0 or g divv = —Ldivv+ div(—2av +28v)pu) — %A divv.

This is a transport equation for u, coupled with a linear heat equation for h.
As before, when choosing 8 = 0, this equation coincides with the model of
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[CRS, E2] when N. < |loge|, but not if N. is larger and X is finite.

The rest of the paper is organized as follows: We start with some prelimi-
naries in which we recall some properties of the solutions and a priori bounds,
introduce the basic quantities like the stress-energy tensor, the velocity and the
modulated energy, and present explicit computations on them.

Then we present the proofs in increasing order of complexity: we start with
the proof of Theorem 1 which is remarkably short. We then present the proof of
Theorem 2, which requires using all the by now standard tools of vortex anal-
ysis techniques : vortex-balls constructions, Jacobian estimates, and product
estimate. An appendix is devoted to the proof of the short-time existence and
uniqueness of solutions to (1.13), and another one to the computations in the
gauge case.

Acknowledgments: 1 would like to warmly thank Jean-Yves Chemin for his
guidance with the proof of Theorem 3, and to thank Didier Smets for pointing
out that the proof for the Gross-Pitaevskii case should work in dimension 3. I
also thank Matthias Kurzke, Mitia Duerinckx, and the anonymous referees for
their careful reading and very useful comments.

2. PRELIMINARIES

In these preliminaries, we will work in the general setting of (1.10) (or its
three-dimensional version) with a, 3, nonnegative satisfying a? + 32 = 1, which
allows us to treat the Gross-Pitaevskii and parabolic (and mixed) cases at once.
We note that with the choice (1.20), the limiting equations (1.11), (1.13) can
always be rewritten

(2.1) v = V¢ + 268vtcurl v — 2av curl v.

Here and in all the paper, C' will denote some positive constant independent of
€, but which may depend on the various bounds on v.
Also C~17(R") denotes functions that are a sum of derivatives of C7(R™)

functions and C*°(R™) bounded functions, and C**7(R") is the same as C17 (R"™),
i.e. functions which are bounded and whose derivative is bounded and C7.

2.1. A priori bounds.

2.1.1. A priori estimates on v. We first gather a few facts about the solutions
v to (1.11), (1.13) and (1.17) that we consider.

Lemma 2.1. Let v be a solution to (1.11) in L°°([0, cc], C%(R?)) such that
v(0) — d(VUy,iU;) € L*(R?) and curlv € L®°(Ry, L'(R?)). There erists a p
such that (1.11) holds and such that for any 0 < T < oo, v — d(VUy,ilU;) €

L>([0, T], L3(R?)), v € L>=([0,T], L*(R?)), d,v € L*>(]0, ],LQ(]R2 N L>®(R?)),
p € L>([0, T], C%Y(R?) N L%(R?)), and O;p, Vp € LOO([O T], L3(R?)).

Let v be a solution to (1.17) such that v € L*®([0,T],C%1(R3) N L?(R?)),
Ov € L*([0,T], L°°(R?) N L*(R?)) and curlv(t) € L*°([0,T], L*(R3)). There

exists a p such that (1.17) holds and such that for any 0 < T < oo, p €
L ([0, T], C%Y(R3) N L3(R3)) and d;p, Vp € L>=([0,T], L? (R3)).
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Let v be a solution to (1.13) in L>=([0, T],C*7(R?)), 0 < T < oo, such that
v(0) — (VUy,ilUy) € L3*(R?). We have v — (VUy,iUp) € L>¥([0,T], L*(R?)),
v € L*([0, T], L*(R?)), divv € L*([0, T], L*(R*) N L*°(R?)) and dyv,V divv €
L2([0, T], LA(R?*) N L>(R?)). Also for any t € [0,T], 5= curlv(t) is a probability

measure.

Proof. Let us start with the case of (1.11). We first observe that such a solution
exists, and that it corresponds to the solution belonging to the space Esrq
in the notation of [Chl, Definition 1.3.3]. It is also known (cf. [Chl]) that
the solution remains such that v(t) — d% € L>([0,T], L2(R?\B(0,1))) and
thus v(t) — (VUy,iUp) € L*(]0, T], L?(R?) (the case of general a and 3 works
similarly).

Since (VU1,iU;) decays like 1/|z|, by boundedness of v and the L? character
of v —d(VUy,iU;), we deduce that v € L>(R, L*(R?)).

The integrability of p is deduced from that of |v|? by using the formula

(2.2) Ap =20 <div div(vev) — ;AMZ) + 2adiv (div (v @ v))*t

which means that Ap is a second order derivative of v ® v. Since v € L*(R?) N
C%1(R?), this allows us to pick a pressure p such that p € L>° N L? (cf. [Chl,
p.13]) and it is also C%! by the assumed regularity of v. We also note that
veurlv € L2(R?) N L*°(R?) uniformly in time by boundedness of v, curl v, and
the fact that curlv is integrable uniformly in time. On the other hand, we may
write

Ov =VEATLY, curlv = VEA H div (—=2fvcurlv + 20vT curl v)

where A~! is the convolution with —% log, and with the above remark, we
may deduce that d;v remains in L?(R?) N L>°(R?) uniformly in time, and the
result for Vp follows by using the equation. The same result follows for 0;p by
applying ; A~ to (2.2).

The same arguments apply to prove the results stated for (1.17).

Let us now turn to (1.13). It is proved in Theorem 3 that v(¢) — v(0) €
L>=([0,T], L?(R?)), 9;v € L([0, T], L*(R?)), and divv € L>([0, T], L?(R?)). It
also follows immediately that v(t) — (VUi,iU;) € L>([0,T], L?(R?)) and the
uniform L* character of v follows just as in the Euler case above. The fact that
Vdivv € L*([0,T], L*(R?)) follows in view of (1.13). The fact that 5= curlv
remains a probability measure is standard by integrating the equation.

Next, differentiating (1.13) we find that

(2.3) 0 (Vdivv) = AA(Vdivv) — 2V div (v curlv).

It can be found in [Ch2, Proposition 2.1] that if u solves on R? the equation
Ou — Au = f on [0,T] with f € L*([0,T],C~27(R?)) and initial data uy €
C"7(R?) then

(2.4) llull oo (o, 77,07 (R2)) < C1 (lwollov@zy + 11| poe po,71,0-2+7 (R2)))

(it suffices to apply the result there with p = p = co and s = —2 4y and notice
that the Besov space BS, is the same as C® or C%*). Applying this to (2.3),
since the right-hand side is L ([0, T], C~277(R?)) we obtain that Vdivv €
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L>([0,T],C7(R?)) hence L*(]0,T], L>°(R?)). Inserting into (1.13) and using
that curlv € L' N L™ yields that 9;v € L>([0, T], L°(R?)).
O

2.1.2. Estimates on the solutions to (1.10).

Lemma 2.2. Assume u. and v(t) satisfy the assumptions of Theorem 1 or 2.
Let Up. =1 in the three-dimensional case of Theorem 1 and D. = N, in the
case of Theorem 2. Then for any T > 0 we have dyu. € L'([0,T], L*(R"™)) and
for any t € [0,T],

V(us(t) = Up.), 1 — |uc(t)|?, Vue(t) — dus(t) Nov(t)
all belong to L*(R™), & (u.(t),t) is finite, and
je(t) = Nev(t) € (L' + L*)(R™).

Proof. First let us justify that dyu.(t) € L'([0, T], L?(R™)). In the two-dimensional
Gross-Pitaevskii case, since we assume u! € Up_ + H?(R?), then studying the
equation for w, := u. —Up_, we find in [BS, Prop. 3, Lemma 3] that w. remains
in H*(R?) (by semi-group theory) and thus du. = dyw. € LS (R, L?(R?)) by
the equation.

For the two-dimensional parabolic (or mixed flow case), we assume u? €
Up. + H*(R?) and (by decay of the energy for w. := u. — Up,) it shown in [Mi,
Theorem 1] that dyu. € L([0, T], L?(R?)).

In the case of the three-dimensional solutions to (1.3), it is shown in [Ge,
Sec. 3.3] that when Aul € L?*(R3) then the solution belongs for all time to
X2 :={u € L*®(R3), D*>u € L?(R?®)} and thus in view of the equation dyu. €
Lz, (R, L2(R?)).

Let us turn to the two-dimensional cases. Following exactly [BS, Proposition
3] or [Mi, Lemma A.6], we get that

/ IV (us(t) = Up,)* + Jue(t) = Up. [ + (1 = Jus(t)[*)* < C(e, 1)

where C(g,t) is finite and depends on ¢, t and Up.. We thus obtain the L?
character of the first three items.

By Lemma 2.1 and D. = dN. (resp. D. = N.), we have that N.v(t) —
(VUp,,iUp.) € L*(R?). We may then write

|Vue —iueNev| < |V(ue — Up,)| + Ne|v||ue — Up.| + |VUp, — iUp_ N:v]|.

The first two expressions in the right-hand side are in L?(R?) by what pre-
cedes and the boundedness of v. For the third quantity, we have that |VUp_ —
iUp_Nzv| = |(VUp_,iUp_) — N:v| outside of B(0, 1) and is bounded in B(0,1),
by definition of Up, hence is in L? by Lemma 2.1. We conclude by Lemma, 2.1
that this term is also in L?(R?). The finiteness of &-(uc(t),t) is then an imme-
diate consequence of what precedes, the fact that v € L* from Lemma 2.1, and
the Cauchy-Schwarz inequality.

Lastly, for j. — N.v we write

|j5 - N€V| S |<VUD57ZUD5> - N5V‘ + ‘V(UDE - UE)HU"?’ + |VUD5HU‘5 - UD5|
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and we conclude by the previous observations, writing |us| = 1+ (Jus| — 1) and
using that (1 — |uz|)? < (1 — |uc|?)?, that j. — Nov € L' 4 L2(R™).
O

2.1.3. Coerciveness of the modulated energy. We check that the modulated en-
ergy & does control the quantities we are interested in. We have

Lemma 2.3. The functional & being as in (1.18) and 1 as in (1.19), we have
foranyus,, R>1,1<p< oo,
(1 — |ucl?)

422 < & (ue) + 62N§H1¢/}H%2a

1
(2.5) 2/ |Vue — iu.Nov|* +

(2.6) / |je — Nev| < CRrpl|Vue — iu5N5V||Lp(BR)
Br

+ Crp(EN2[[$ ]| 2 + Neel|V]| o) Ex(ue) + Cee(ue) + Cre? NE v e [ 2,

and
(2.7) /n e = Nevl? < O(|uellFoe +e2NZ||[V]|Foe) (Ec(ue) + 2NZ|9]172),
where C' is universal, Cr depends only on R and Cgy, on R and p.

In view of assumptions (1.23) and (1.27) and Lemma 2.1, the second term on
the right-hand sides of (2.5) and (2.7) will always be bounded by o(NZ2). Also,
if ||ue||Lee < C, the upper bound in (2.7) is by CE&(us) + o(1) and that in (2.6)
is by Crpée(ue)? + Ce€a(ue).

Proof. We observe that

1 — ul2)2 1 — |ue|? + £2N24)?
( 2|€25| ) ( ‘ 5‘ 252 £ ) _ 52N€4¢2 > —€2N4¢2.
Thus, using that ¢ € L? by Lemma 2.1, we have

1 , 1 — |uc|?)? 1
/R |Vue — duNov(t)|]? + (4‘826) < Ee(ue) + 2/ 2Ny,

+ NZY(1 = Juel?) =

2
For (2.7), we write that
(2.8)
|[Je—Nev| < ’js_’u6’2NEV’+NE‘1_‘U€‘2‘|V‘ = ](ius,Vug—iu5N5V>|+N5|1—]u5]2|]V|
< ue||[Vue — iue Nov| + Ne|1 — Juc]?||v]
= |Vue — iuNov| 4 (Jue| — 1)|Vue — iue Nov| + Ne|1 — |ue|?||v].

For (2.6) we integrate this relation over Br and use Holder’s inequality to get
that for any 1 < p < oo,

1
p
/ |je = Nev| < Cryp </ |Vue — quNgv]p)
Bgr Bgr
1 1
2\? , 2 2 212
+ (1= |uel|) |Vue — ius Nov| +CRrl|v| Lo Ne (1 —Juel|?)
Bgr Br Br

N
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and using that (1 — |u|)? < (1 — |u|?)? we are led to
| iz = Nevl < Gy Vute = iweNevl o
Br

1
+ Ce(&(ue) + Ne) (56(%) + 52N54H7/’H%2) ’
hence (2.6) follows. The proof of (2.7) is a straightforward consequence of

(2.8). O

2.2. Identities. In this section, we present important standard and less stan-
dard identities that will be used throughout the paper. In all that follows v is
a vector field, which implicitly depends on time and solves one of our limiting
equations.

2.2.1. Current and velocity. We recall that for a family {u.}., the supercurrent
and vorticity (or Jacobian) are defined as

Je = (Vue, iue) fe = curl j..
Following [SS3], we also define the velocity

(2.9) Ve := 2(i0yue, Vue)
and we have the identity
(2.10) Orje = V{iue, Oruc) + V.

Taking the curl of this relation yields that d;ue = curl V.. (In dimension 2, this
means that the vorticity is transported by VEL, hence the name velocity). We
also define the modulated vorticity

(2.11) fie := curl ((Vue —iusNev,ius) + Nev),
and the modulated velocity
(2‘12) Ve = 2<i(atua_anNa¢)u vua_anNaV> = Va_NaVat|ua|2+Na¢v’ua’2v

with ¢ as in (1.20).
We will use the fact that for u. solution of (1.10) (resp. (1.24)) we have the
relation

(2.13) div je = N(( + i) 0rue, iue),

«
[log <]

(resp. with « = 0 and 8 = 1) which is obtained by taking the inner product of
(1.10) or (1.24) with due.

2.2.2. Stress-energy tensor. We next introduce the stress-energy tensor associ-
ated to a function wu: it is the n x n tensor defined by

(2.14) (Sg(u))kl = <8ku,6lu) - % <|VU’2 + T;(l - |u]2)2> Okl

A direct computation shows that if u is sufficiently regular, we have

div 5. (u) = lz;al(sg(u))kl — (Vu, Au+ éuu ~ Juf?))
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so if u. solves (1.10) or (1.24), we have

(2.15) div S:(ue) = N:{( +i83)0pue, Vue).

e
log |
We next introduce the modulated stress-energy tensor :

(2.16)  (S-(u))r = (Ot — iuNvg, Ou — iuNvy) + N2(1 — |ul*)vivy
1 . 1
-5 (]Vu — wNeV’? +(1-— ]U‘Q)NEQ]VP = 2(1 — \u| ) > Okl

where dy; is 1 if kK = [ and 0 otherwise. One can observe that

i , 1
(2.17) |Se(u)] < [Vu — iuNev|* + 2 [ul?)? + N2[1 — Jul?||v[”
and thus with Lemma 2.3 and the Cauchy-Schwarz inequality, we may write
(2.18) /Rn |Se(u)] < 26 (u) + NZ[|1 = |uf*|| 2|V ][ 76 + 26° N2 [[ob]| 7.
For simplicity, we will also denote S, for S:(u.) and S. for S. (ue), as well as
1
(2.19) Sy i =vRv— §|V\QI.
Lemma 2.4. Let u; solve (1.10) or (1.24) and v and ¢ be as above. Then we
have
(2.20)
.5 Naa . . /B 2
div Sc(ue) = @(@ue —iusNe¢p, Vue —ius Nov) + §NEV6 — BNZ2v(Opue, ue)
N:a N:a
52|105 |”U,5’2V¢+ €j€(|1 |¢ leV)
+ N2div Sy — N (v V)je + (je - VIV = V(je - V),
which in dimension n = 2 can be rewritten
(2.21)
& _ Nsa . . B 2
div Se (ue) —m@tug — iusNep, Vue — iuNev) + §N5V5 — BNZv(Oue, ug)
+ N2t curlv — Ngjj‘ curlv — Novtp.
N«
—i—NfV( i

| | 6.]8(| |¢ leV)

Proof. First, a direct computation yields
Sc(ue) = Se(ue) + N2Sy — No(v ® je + je @ v — (jie - V)I).
Since we have the following relations for general vector fields v and j:
(2.22) div(v® j) =jdivv+ (v-V)j,
we deduce that
(2.23)  div S.(ue) = div S.(us) + N2 div S,
— N (e divv 4+ vdivje + (v- V)je + (G - V)V = V(e - V).
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On the other hand, writing Oju. = Jyue — iusN:¢ + iu.N:¢ and Vu. = Vu, —
tue Nov + tusNev yields
(Opue, Vue) = (Oyue — iug Negp, Vue — tueNev) + Nejeop
+ Nev{Opue, iue) — N2|uc|*ve
and combining with (2.9), (2.13) and (2.15), we find

N:a

div Se(ug) = @

((0uue — iueN.ot, Ve — iweNov) + Neje — N2Jue v

+ Novdiv j. — BN?V(&UE, Ue) + Nagva.

Inserting into (2.23) yields (2.20). In the two-dimensional case, we notice that
we have the identities

divS, = vdivv + vt curlv

and
(V-V)j+ (G- -V)v=V(j-v)=jtcurlv+ vt curlj,
so (2.21) follows.
([l

2.2.3. Time derivative of the energy. Given a Lipschitz compactly supported
function x(z), and a sufficiently regular function ¢ (z,t) let us define
(2.24)

. 1 1— 2\2
E(u,t) = 3 /]R" X <|Vu — quNv(t)]> + (= uf)”

4 VA= )G )

For simplicity we will most often write é’s(us) for ge(ue(t), t).

Lemma 2.5. Let u. solve (1.10) or (1.24) and v satisfy the results of Lemma
2.1. Then we have

(2.25)
d . NgOK 2 .
T, Ce\Ueg) = — € : e — iueNev, €
dtg (ue) /nx|log5| |Ovus|” + Vx - (Vue — iueNev, Opue)

+ / X (va <OV — Neje - Oyv + Ne(Opue, tue)y divv — N VL - V)

1
v /R N2, (1= ueP)(@ — V).

Proof. Since the solution u. is smooth and x is compactly supported, expanding
the square, we may first rewrite & as

(2:26) E-(uz) = ;/Rn X (’VUE‘Q * MW)

2e2?

1 .
5 [ XNEVE £ N2 = ) = ) = [ i
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We then differentiate in time and obtain

d s 1
) = = [ x((Orues M + el — ) + Vx- (Ve )

. o1
+/ X(vaﬁtV—Ng]g-8tV—N5v-8t]g)+2/ XN20 (1 — Juel®) (3 — [v]?)) -
n ]Rn

Inserting (1.10) and (2.10) and also writing Vu, = Vue — iue Nev + tue Nev, this
becomes

N N« . .
atgs(us) = - / X@Wﬂtsp + V- ((vue — U Nev, a1‘/Ue> =+ N€V<8tusa ZU€>)

+ / X (va - Opv — Neje - Opv — Nev - V{(Qyue, iug) — NV - v)
1
5 [ 20, (= Py = )

With an integration by parts, we find that two terms simplify and we obtain
the result. g

3. THE GROSS-PITAEVSKII CASE : PROOF OF THEOREM 1

In this section, we consider the Gross-Pitaevskii cases, in which v solves
(1.11) with o = 0 and 8 = 1 or (1.17), and for which divv = 0, ¢ = p and
¥ = p—|v|?. Below, we apply the result of Lemma 2.5 with these choices. First,
we insert the equation solved by v and the result of Lemma 2.4 to obtain the
crucial step in our proof, where all the algebra combines. We note that in view
of (1.16), (1.11) and (1.17) can both be written as

(3.1) Ov =2divSy + Vp
with the notation (2.19).

Lemma 3.1. Let u. solve (1.24) and v solve (1.11) or (1.17) according to the
dimension. Then we have

N

(3.2) 0&e(ue) = /n X(25-(ue) : Vv — No(1 — |ue|?)dy(Jv])? — g)

- / Vx - ((Vu8 — U Nev, Opue) + Ne(Nov — je)p — 2§5V>,

where for two 2 x 2 matrices A and B, A : B denotes ), Ay By

Proof. Starting from the result of Lemma 2.5, the first step is to insert (3.1),
which yields

(3.3) / X (NEZV - Opv — Neje - &gV) = / XNe(Nev — je) - (2div Sy + Vp).
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In order to transform the (first order in the error) term (N.v — j) - div Sy into
a quadratic term, we multiply the result of Lemma 2.4 by 2yv, which yields

(3.4) —/ XNaY/a~v:—2/ Xdivgg(ug)-v—FQ/ xN2div S, - v

— 2N, X ((V -V)je + (Ja : V)V - VUE : V)) V= / XNaz‘V’Qat’uap-
Rn R™

But by direct computation, one may check that for any vector fields v and j we
have

(3.5) (v-V)i+(G-V)v=V(j-v))-v=—divSy-j
and applying to v and v, we easily deduce that
div.s, -v=0.

Therefore, inserting (3.5) applied with v and j., (3.3) and (3.4) into the result
of Lemma 2.5, and noticing several cancellations, we obtain

d 4 )
d—é’e(us) =— Vx - (Vue — iueNov, Ogue)
t an

+ / X(Ne(Nev — je) - Vp — 2div gg(us) V)

201012 ol 1o P — vl
# [ (NP~ )+ 3820 (1= P = ) )

Integrating by parts and using (2.13), we have

/ XNe(Nev — je) - Vp = — NeVx - (Nev —je)p + / fo(@tue,u5>p.
Inserting into the previous relation and collecting terms, we are led to
d »
@Eg(ua) =— Vx - ((Vue — iue Nov, Oyus) + No(Nev — j2)p)

R

— 2/ xdiv Se(ug) - v

i /R N2 <8t(1 — Jue|?) (MQ - ;p) + %&t (1= fuel*) (¥ = W))) :

Since we have chosen 1) = p — |v|? we see that the terms involving 9;(1 — |u.|?)
cancel and we get the conclusion. O

We may check that all the terms in factor of y or Vy in (3.2) are in L([0,¢] x
R™), thanks to (2.17), Lemmas 2.1 and 2.2. Inserting for x in (3.2) a sequence
{Xx}& of functions bounded in C* (R™) such that x; — 1 and ||V x|l feo(rny — 0,
we may thus integrate (3.2) in time and, using the finiteness of & (u<(t),t) given
by Lemma 2.2, let ¥ — oo to obtain by dominated convergence,

t ~
Ex(ue(t), £) — E-(ul,0) = /0 [ 2800 - 9y = N2 = fuPyaudv? - ).
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Inserting (2.18), the bounds given by Lemma 2.1, and using the Cauchy-Schwarz
inequality to control (1 — |uc|?) by & in view of (2.5), we arrive at

E-(uc(t), t) — E(u,0)

t t
<C / E(uz) + CN? / (Nfez Fe/E(u) + 052N§>
0

0
t

< C’/ E-(us) + Cte? N2,
0

where C' depends only on the bounds on v. Applying Gronwall’s lemma and
using (1.23), we finally obtain that

E(us(t),t) < Cy (SE(US,O) + O(NEQ))

which is o(IN2) with the initial data assumption (1.25). The conclusions of the
theorem follow in view of either (2.6) or (2.7).

4. THE PARABOLIC CASE

In this section, we turn to the proof of Theorem 2, which only concerns the
dimension n = 2. Throughout we assume that o =1, 5 =0 and (1.27) holds.
In the rest of the paper, we let xr be

%forl%g |z| < R?
(4.1) Xr(z) = Xr(z) =1for || <R

xr(z) =0 for |z| > R2.
With this choice we have
(4.2) IVXRlLo@ey =0 [|[Vxrllr2@e) =0 as R — co.
4.1. A priori bound on the velocity. We define T, as the maximum time

t < min(1,T) (where T > 0 is the time of existence of the solution to the
limiting equation) such that

(4.3) E-(uc(t)) < mN.|loge| + N2 forall ¢t <T..

Our goal is to show that & (u-(t)) < wN:|loge| + o(N2) for all t < T, which
will imply that 7, = min(1,T).
Let us start with a crude a priori bound on the time derivative of u..

Lemma 4.1. Assume (1.27) and E-(u?) < wN:|loge| + o(N2). Assume v

£

satisfies the results of Lemma 2.1. Then

Te
| [ o < eNZoget

where C' depends only on the bounds on v.
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Proof. Let us return to the result of Lemma 2.5 with the choice ¢ = —|v|? and
X = xr as in (4.1). By (2.9), we have V. = 2(i0yu., Vus) = 2(i0sue, Vue —
1ueNev) + 2Nov(Opue, ue ), and inserting into the result of Lemma 2.5, we obtain

A N, .
8tg€(u€) = _/ XR : |8tu5’2 - / VXR - <vu€ - ZusNeVyatus>
R2 log €| R2

N / Xt (“N2(1 = ue)0uv]? + Ne(Byue, iuz) div v
R
+N(Nev — je) - Opv 4 2N (i0sue, Ve — tueNev) - v) .

We next observe that again all the terms in factor of xp or Vg are in L!(R?)
thanks to Lemmas 2.1 and 2.2. We may then integrate in time and let R — oo
to obtain

T
e N,
/ / g |8tu£|2
o Jrz |loge]

T:
— E.(u0) — £ (u(TL)) + /  Ne{Outie iue) divy + Ne(Nav = ) - O
0 R
+ 2N (i0ue, Vue — iusNev) - v + o(1),

where we also used (1.27) and (4.3) to control all the terms containing (1—]|u.|?).
Next we insert (2.8) to obtain

T
‘ Ne 2 0

<
§ o TogapmsP < &0

T
+/ / (Neloruel | div v] + 1~ Jue |Gy | div v| 4+ Ne Ve — e Nevl |2y
0 R2

4 NJL — Juel|[ Ve — iueNev][8pv] + N2[1 — ue ?||v]|8ev]
+ 2NL|Byue| | Ve — iugNgvHV\) +o(1).

Using |1 — |ue|| < |1 — |ue]?], the Cauchy-Schwarz inequality, (1.28), (4.3), the
L> N L? character of divv and dyv given by Lemma 2.1, the boundedness of v
and Lemma 2.3, we deduce that

T,
€ N,
[ i
0 g2 |log ]

T:
< wiNc|loge| + CN€/ (1 + |0 12) (1 + Ex(ue)) dt + o(N2).
0
Using (4.3), bounding 7% by 1 and using (1.27), we easily deduce the result. [

4.2. Preliminaries: ball construction and product estimate. The proof
in the parabolic case is more involved than in the Gross-Pitaevskii case, and
in particular it requires all the machinery to study vortices which has been
developed over the years. Indeed, as explained in the introduction, we will
need to subtract off the (now leading order) contribution of the vortices to
the energy. This will be done via the ball-construction method (introduced
in [Sa, J1]) coupled with the “Jacobian estimates” [JS1] (with precursors in
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[BR1, SS1]). Here we will need a lower bound with smaller errors, as in [SS5,
Theorems 4.1 and 6.1], coupled to an improvement due to [ST1].

4.2.1. Vorticity to modulated vorticity. Before doing so, we will need the fol-
lowing result which connects the vorticity to the modulated vorticity.

Lemma 4.2. Assume v satisfies the results of Lemma 2.1 and u. is such that
E(ue) < oo. Let pe = curl jo and fie = curl ((Vue — iu.Nev,ius) + Nov) as in
(2.11). We have that fi. € L*(R?) with

(4.4) |fie| < 2|Vue — iuaNev|* + |1 — [ue]?|| curl v
and
(4.5) / fic = 27 N..

R2

Moreover, for any & € H'(R?), we have

(4.6)

< C||VE| 12r2)Ne(eV/E-(ue) + C*N2).

Proof. First, a direct computation gives that (4.4) holds, and it follows imme-
diately with Lemmas 2.1 and 2.2 that ji. € L'(R?). We may then write, with
Xr as in (4.1)

[ = Jim [ e
R2 R—oo JRp2

=— lim [ Vixg - (Vuec—iuN.v,iu.)+ N.(v— (VU iU)+ (VUL iUy)).

R—oo JR2

Since Vu. — iucN.v and v — (VUy,iU;) are in L? by Lemmas 2.1 and 2.2, the
corresponding terms tend to 0 as R — co. There remains

[ o= Jim [ N9 (OO
R2 R2

= lim Noxrcurl (VUy,iUp) = 27N,

R—oo JRp2

by choice of U;. For (4.6) we observe that by a direct computation, we have
fie — pe = curl ((1 — |uc|?)N-v). Thus, for any ¢ € H'(R?) we have

13 ( Ns
R2

= [ vy

< ]\fanfoLQ(R?)(c8 Ee(ue) +e2NY),
where we used Lemma 2.3. O
4.2.2. Jacobian estimate for unbounded domains. The next lemma is an infinite

domain version of the estimate of [SS5, Theorem 6.1]. For this lemma, we
temporarily use the notation p. with a slightly different meaning.
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Lemma 4.3. Let Q2 be an open subset of R?, and let Q° = {x € Q, dist (x,0Q) >
e}. Letus : Q — C and A. : Q — R2. Assume that {B;}; is a finite collection
of disjoint closed balls of centers a; and radii r; covering {||u.| — 1| > 3} NQF,
and let d; = deg(ue, 0B;) if B; C Q° and d; = 0 otherwise. Then, setting

pe = curl ((Vue — iAcue,ius) + Ag),
we have, for any & € C’g’l(Q),

e — 27 Z d;iba,)

. (1 — Juel2)
< (X rere) ellcoscor [ 2Vt fue Pl A+ L

(4.7)

()

where C' is universal.

Proof. As in [SS5, Chap. 6], we set x : Ry — R to be defined by

x(x) =2z if x € [0, %]

x(@) =1 if o e (1 3]
x(x)=1+2(z—-3/2) ifzxe [‘g’ 2]
x(z) == if x > 2.

We then let v.(z) = X(‘"j D .. This is clearly well-defined, with |v.| = 1 outside
of U;B; and from [SS5, Chap. 6] or direct calculations, we know that

(4.8)  |{Vue — iAcue, ius) — (Vve — iAcve, ive) || 1)
<31 - ‘Ue‘HLQ(Q)HVUE - iAeue”B(Q)v

and
(4.9) 11— |ve|] <1 — Juel, |Vue —iAcve| < 2|Vue —iAzug|.
Letting fic = curl ((Vve — iAcve, ive) + Ac), we have

(4.10)

Ve (Ve — iuc A, ius) — (Voo — iAcve, ive))
Q

< 3HV€”L°°(Q)H1 - ’u6’2HL2(Q)HVU€ - ZAeus”L?(Q)

Next, we note that fi. vanishes wherever |v.| = 1, and thus as soon as ||us|—1| <
%. Thus, by property of the balls, we have Supp ic N Q¢ C U;B; (recall the
definition of Q° in the statement of the lemma). We also have that whenever
B; C QF, it holds that ‘[Bi fie = 27md; (see [SS5, Lemma 6.3]). Writing & as
&(a;) + O(r)||€||cor in each B;, we conclude, exactly as in the proof of [SS5,
Theorem 6.1]. The only point that is a bit different is we need an analogue of
[SS5, Lemma 6.4] to bound >, r; [ B, |He| which works on an unbounded domain.
For that, we may check by direct computation that

(4.11) pre = 2(Vue —iAcue,i(Vue —iAcue)) + (1 — |uel?) curl A,
SO

/ lpe| < 2/ 2|V, — iAcuc|? + |1 — |ue|?|| curl A
Q Q
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and the same holds for fi. with a factor 4 in front, in view of (4.9). We thus
obtain that

/Qf(ﬂs —2m Z diba;)

< C(Z ri +€)||€]| o / 2|V, — iAcue|? + |1 — |ue|?|| curl A
U; B;U(Q\Q¢)

%
+CllEllcon 1 — |ue || 22 [ Vute — iAcue]| 122y,
where C' is universal, and we easily deduce the result. O

4.2.3. Ball construction lower bound, sharp version. In the result below, we use
the Lorentz space L>™ as in [ST2], which can be defined by

(4.12) ey = sup j/ 5l

where |E| denotes the Lebesgue measure of E.

Proposition 4.4. Assume E-(u:) < nN:|loge|+ N2 where N satisfies (1.27),
and v € CY(R?) with curlv € L?(R?). Then there exists g9 such that for any
€ < &g, the following holds. There exists a finite collection of disjoint closed
balls {B; = B(a;,ri)}i such that, letting d; = deg(ue,0B;), the following holds

(1) Xy < e Ve

52; {w |luel =1 = 3} € UiB(ai,mi).

3

L W i+ L S S i ioge] - o(2)
5 B Us — WU N V[T + 222 _w; i|lloge| —o(IVS).

(4)
IVue = iueNev| 7200 @ey < C ( WZ |d;||log e| + Z |d; 12> + o(N?).

5) Letting fic be as in (2.11), for any & € CY (R2 , we have
i

/ f(%Zdiéai — fic)

Proof. The result of [SS5, Theorem 4.1] applied to u., Ac = N.v and oo = 3/4,
provides for € small enough, for any £'/4 < r < 1 a collection of disjoint closed
balls B(r) covering {z, |[uc| — 1| > £3/16}, such that the sum of the radii of the
balls in the collection is 7, and such that denoting D := " pcp(, [dp|, we have

(1 — Juc]?)?
2e2

(4.13) < o(D)[€llcor-

1
/ |Vue —z'ug.7\7gv|2—i—rQIN8 curlv|2+
UpeB(r)

> 27rD<logDL€—C>.

One notes that the fact that we are in an unbounded domain does not create
any problem. Indeed, since &:(u.) < oo, this implies (cf. e.g. [J1, Lemma 2.3]
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or [HL, Lemma 3.5])that there exists a radius R. such that |uc| > 3 outside of
B(0, R.) and

) 1—lu 2\2
/B(O . Ve — du.Nov|* + (2‘8;‘) + N2(1 — |u P < 1

i.e. the remaining energy is smaller than the desired error. This way the con-
struction can be applied in B(0, R, 4+ 1) only, yielding always a finite collection
of balls covering {|u.| < 3}.

We first apply this result with the choice r = 7/ = £1/4 to obtain a collection
of balls { B} with centers a}, radii r; and degrees d, covering {x, |Juc|[—1| > 1}
and satisfying >, 7 < /%, The estimates of [SS5] also yield that

1— - 2\2
Z |d| < C/ |Vue — iucNov|? + eV/2N2 | curl v]? + w
— 77 llogel Ju, 2¢2
Using that curlv is bounded, the fact that ) r, < g1/4, the upper bound on
&e(ue) and (1.27), we deduce from this relation that 3, [d}| < CN..

We next apply the above result with the choice r = e~VNe. This gives a

collection of balls {B;} = {B(a;,r;)} of degrees d;, satisfying items 1 and 2 of
the proposition and

1
2/ |V, — duNov|* + 6_2\/Nj|NE curl v|2 +
U;B;

(1 - |u€|2)2
2e2

—V/N:
e

It is part of the statements of [SS4, Theorem 4.1] that the family B(r) is in-
creasing in 7, i.e. here that the B;’s cover the B;-’S. By additivity of the degree,

we thus have >, |d;| < > .[dj| < CN., and using > ;r; < e VNe and the
boundedness of curlv, the desired estimate of item 3 follows.
For item 4, we use [ST1, Corollary 1.2] which yields that

(4.14) || Ve — iue Nev]|7 2,00 2y

<c (sama) x>l <lgz,d| - c) 5> W) T o(N2).

This is essentially a strengthened version of the result of item 3, in which the
difference between the two sides of the inequality is shown to bound from above
IVue — z'ugNgVHQLQW(RQ).

Let us now turn to item 5, which is an adaptation to an infinite setting of
the Jacobian estimates, for instance as in [SS5, Theorem 6.1]. The reason we
needed a two-step construction above is that the total radius of the second set
of balls, e*\/Nt, (which have to be chosen this large so that they contain enough
energy) is not very small compared to |loge| when N; is not very large, and
thus the Jacobian estimate applied directly on these large balls would give too
large of an error.
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Letting £ be a smooth test-function, we may write

/R2 (;diéai - ;d;‘sa;)f = Z <di§(ai) - Z d;&(a;)).

Since Zj,B;CBi d; = d; and ) |d;| < CN., we may write

(415) /1;2 (Zdzdal - Zd_lyda;)g < Hf”co,l Zr’?( Z ’d;‘)
i J i

<lelloon QoY Do 1l < Cllllcone™V NNz = o(1)[€] co.r-

1 % j,B;. CB;

Applying Lemma 4.3 with A, = N.v on R?, and it yields that

- £(2m Z d;'(sa; — fle)
J

(1= Jue)?

< Ce/*|¢]| o / |Vue — dusNev|* + No|1 — |ug|?|| curl v| + 522
R2

Using that curlv € L'(R?), the upper bound on &-(u.), and combining with
(4.15), we obtain the desired result for v = 1. The result for v < 1 follows by
interpolation as in [JS1], using that >, [d;| < C'N. and Jge 1] < CN.|loge|
hence [[27 3 d}&a; — flell(coys < CN.. O

4.2.4. Ball construction lower bound, localized version. We will also need a less
precise but localizable version of the ball construction. This can be borrowed
directly from [J1, Sa, SS1], and combined with the Jacobian estimate of Lemma
4.3, so we omit the proof.

Lemma 4.5. Under the assumptions of Proposition 4.4, there exists €9 such
that for all e < g, there exists a finite collection of disjoint closed balls {B;}; =
{B(a;,ri)}i such that, letting d; = deg(ue,0B;), the following holds
(1) s < e VIosel
(2)
1 1 — Juel?)?
Vi, 2/ |Vue — iuNov|? + (= Juel)”
B;

5e2 = Tldil[loge|(1 - o(1)).

(3) For any 0 <~ <1 and any & € CO7(R?), we have

/IR K; <2wzdi5ai - m)

We emphasize that these balls are not necessarily the same as those obtained
by Proposition 4.4.

< o(D[€llco-
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4.2.5. Consequences on the energy excess. We next show how the energy excess
E: — mN|log e| controls various quantities, including the energy outside of the
balls.

Corollary 4.6. For any t < T, (where T is as in (4.3)), letting {B;}; (de-
pending on €,t) be the collection of balls given by Proposition 4.4, we have

1 , 2, (1= uc’)?
(4.16) 5 /IRQ\UiBi |Vue — iusNov|® + B
< E.(uc(t),t) — nN[loge| + o(N?),
(4.17) for e small enough N < Z |di| < CNg,
i
(418) HVUE - quNE'V”LQ,OO(RZ) < ONE,

and for any nonnegative & € C%Y(R?),

1 1
4.19) = Vu. — iu-N.v|> — i
( ) 2/RZ£<|10g5’| UE ZuE €V| M&)

1
< ||§|!Loo@(55(us(t)7 t) — wNe[logel) 4 o(Ne) ||l co-

Proof. First, applying item 5 of Proposition 4.4 with £ = xr as in (4.1) and
letting R — oo, we must have [p,(27>", dida, — fic) = 0-(1). Comparing with
(4.5), we deduce that >, d; = N, for ¢ small enough. Subtracting the result
of item 3 of Proposition 4.4 from & (u.(t),t) and using Lemma 2.3, we then
obtain (4.16). The upper bound in (4.17) was proved in the course of the proof
of Proposition 4.4, the lower bound is an obvious consequence of ). d; = N..

The relation (4.18) is a direct consequence of item 4 of Proposition 4.4, (4.3)
and (4.17), writing >, |di|* < (3, |di])?.

Finally, for (4.19) we use instead the balls given by Lemma 4.5. From item 2
of Lemma 4.5 we may write

1 1— 2\2
/ ‘vua _Z'UENEV‘Q—F ( |U25| )
2 R2\U¢Bi 2e
1 , 1 — |uc|?)?
—i—ZQ/B |V, — iu. Nov|? + ( 2‘6;‘ ) — 7|d;||[loge|(1 — o(1))
i 1

< Ee(ue(t),t) — WZ |di|llog e|(1 + o(1)).

Moreover, from the same argument as before we have ) . d; = N, and ), |d;| <
C N, for these balls, hence since the terms of the above sum are all nonnegative,
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adding to both sides 7 ) _.(|d;| — d;)|log €|, we obtain

1 1— 2\2
/ |Vue — iuNov|* + (= Jue")” ]u;] )
2 R2\U'B' 2

+Z /|VuE Z’LLENV|2 ( |u€|)

< &-(uelt) >—7rNauogs\<1+o<1>>.

Next, separating the integral between U;B; and the complement, and using
item 1 of Lemma 4.5, we deduce that

(- |a|)

— wd;|loge|(1 — o(1))

(4.20) / €| Vue — iuNov|> + € < ﬂZdig(ai)\loge\(l—i—o(l))

o(D)[[Ellcor + HfHLoo ( E(ue(t),t) — mNe|loge[(1 + o(1))) -
Combining this with item 3 of Lemma 4.5, we deduce that (4.19) holds. O

4.2.6. Approzimation of v. We will need an approximation of v(t) based on the
balls constructed via Proposition 4.4.

Lemma 4.7. Let v satisfy the assumptions of Theorem 2 and u. satisfy (4.3).
For each t < T, letting {B;}; be the collection of balls constructed in Proposi-
tion 4.4, there exists a vector field v : R? — R? (depending on & and t) such
that

(1) v is constant in each Bj,

(2) for every v € [0,1], [|[¥ = v|lcon <C(X;mi) 7 < Ce~=NVNe yhere C
depends only on v and 7y,

(3) v — v has compact support.

Proof. 1t is an adaptation of Proposition 9.6 of [SS5], which we can apply to
each component of v. We note that since the collection of balls is finite, we may
replace v by v+ x(v — v) where x is a smooth positive cut-off function which
is equal to 1 on a large enough ball containing U; B; and vanishes outside of a
large enough ball. This makes ¥ — v compactly supported without affecting the
other properties. O

By continuity of u. (for fixed €) and of v, one may check that we may make
v(t) measurable in t. While we have a good control on Vv, we have no control
on 0;v, and this is what prevents us from applying this method in the regime
N: < O(|logel) in the Schrodinger case.

4.2.7. Product estimate. Finally, to control the velocity of the vortices, we also
need the following result, whose proof is postponed to Appendix A, and which
is an e-quantitative version of the “product estimate” of [SS3].

We let M. be a quantity such that
llog €| . log M,

=0, lim =
e—=0 |loge]

. q_ .
(4.21) Vg > 0, 21_13(1) M. =0, il_r}(lj BV

For example M. = eV/°2¢l will do. In the statement below we do not aim
at optimality, however we state the result in a way that would allow to go
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beyond the range N, < O(|loge|) that we are considering here (for example up
to arbitrary powers of |loge| or quantities that satisfy the properties (4.21)).

Proposition 4.8. Let u. : [0,7] X R? — C. Let v be a solution to (1.11) or
(1.13) and ¢ be as in (1.20). Let V. be as in (2.12). Let X € C%1([0, 7] xR?, R?)
be a spatial vector field. Set

F. = / ( |8tue - iUeN€¢|2 + 5s(t)> dt,
0 R2

and assume F. < M.. Then for any A > 1, we have, as ¢ — 0,
[ L
0 R2
1+ ClogME 1 T T
< loe] ( | [ oo = iweNeof +a [ [ (Ve = i) XF)
|log €| Ao Jre 0 JR2

+0Wﬂhw(@ﬁﬂ+ﬂXmﬂﬁMZ”&+d%)Q@+N@4—.Efgﬁ&@MQJB)’
€|0,7

where C' depends only on the bounds on ¢ and v.

(4.22)

The second line in the right-hand side is o(1), so is log M. /|loge|. One can
see that optimizing over A by taking

1
A= < fOT fRQ |Oue — iUEN€¢|2 > 2
Jo Jez [(Vue — iucNov) - X2

yields a right-hand side in the form of a product (plus error terms), hence the
name “product estimate”.

4.3. Proof of Theorem 2. We now present the main proof.

4.3.1. Ewvolution of the modulated energy. In the next result, we take as before
¥ = —|v|? in the definition (2.24), and insert the equation solved by v and
(2.21) into (2.25) to obtain the crucial computation.

Lemma 4.9. Let u. solve (1.10) and v solve (1.11) or (1.13). Assume that
(1.27) and (4.3) hold. Then, for any t <T., we have

(4.23)  E(uc(t),t) —E(ul,0) =Is+ Iy + Ip + Ip + Ig+ I, + I, + o(1)
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where
/ / 2N, ‘VPNE
—/ / N |Opue — iueNop|> — NeBpue — iue Neo, iug) (divv — ——¢)
o Jr2 [loge| loge|
N¢
(Opue — iuNep, Vue — iusNev) - vt
|log e
1. N
Iy = 2NV~ - (je — Nev)(——=¢ — divv)
0 JR? |log |
t N,
Iy = N2(1 - —&y|v|? E vyt
[ vzt (<o vy
v—// 2N( Nv) - (v—=v)curlv+ 2N (Vv — V) - V[ie.
R2
Proof. Again, we start from the result of Lemma 2.5 applied with ¢ = —|v|2.

The first step is to write

(4.24) —/ Ny ?

|log£|
Ne ; 2 20, (242 ,
=— ]loga| (|0¢ue — iusN-¢|* — NZ|uc[*¢* + 2N-¢(Oyue, iu.)) .

The second step is to use (2.1) to write
(4.25) / X (N2v - 0yv — Noje - Opv) = / YNZ(=2|v|* curlv 4 v - V¢)
R2 R?2

—/ XNeje - (—2vcurlv 4+ Vo).
R2

On the other hand, integrating by parts and using (2.13), we have

@26) [ NN ) Vo

R2

) ) 1 )
= — NV - (Nev — je)op —/ N€2X divv — ——(Que, tue) | ¢.
R2 |log |

Next, we would like to transform the linear term [po x(—2NZ|v|? curlv +
2N.je - veurlv) into a quadratic term plus error terms. For that, we would like
to multiply the result of Lemma 2.4 by 2v', which after integration by parts
leads to terms in [p, S. : Vvt. Using v rather than v leads instead to integrals
that live only outside of the balls since Vv = 0 there by item 1 of Lemma 4.7.
These terms will thus be controlled by the energy outside of the balls, i.e. the
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excess energy, as desired. This creates an additional set of error terms in v — v,
which we will control thanks to item 2 in Lemma 4.7.

So as explained, let us multiply the result of Lemma 2.4 by 2xv", where ¥
is given, for each time ¢, by the result of Lemma 4.7. This yields

/ vt - div S.(u.)
R2

N. _ _ .
= |l | <8tué‘ ZuaN5¢, vug — 'l’LLENaV> -V
+ /R2 X (2N3’V|2 curlv — 2N_j. - v) curl v — 2N€\V]2M5)

—{—/ X (2N62(\7 —v)-veurlv —2N.j. - (Vv —v)curlv
R2

—2N(V = V) - Vi)

N, N.
+/ X 2N2v -9 (divy — ——|uc|?¢) + 2N.j. - v(
R2 |log el

o ® v

Inserting (2.12), (4.24), (4.25) and (4.26) into the result of Lemma 2.5 applied
with ¢ = —|v|?, taking advantage of the cancellations and using one integration
by parts, we obtain

(4.27)

d N, )
%EE(UE) = _/ ’10g5| (|atue - ZUENEQS‘z - N31U5|2|¢|2)

_/ Vx - ((Vue — iue Nov, yue) + No(Nov — jo)op — 25.91)
R2
+/

+

N,
X | Ve 3tug,zu5 leV — ° qS) — Ng(j)divv
2 [log ¢|

=

>

(Ng V. — Novdyue|? + NedVucl?) - v+2§€:v#)

+

X |2

T

(Opue — iU Nep, Vue — iue Nev) - v L _ 9N, ]v\ fe
\10g€\

+
T

X (2N€2(\7 —v) -veurlv — 2N_j. - (¥ — v) curl v — 2N (V = v) - vpe)

2

+ /R X2Nev* - ((ja = Nev)(
- [ o= )

Let us make three transformations to this expression. First, let us single out
the terms

N, N,
e ? ~ AV + gL~ o)

| Ao + v Vucl = 3i((1 = fuc PP
R

=/ fo(l—|u€|2><—8t|v|2+V¢-v+<z>divv>+/ NZVx V(1= |u*)¢
R2 R2
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(where we have used an integration by parts).
Second, let us replace (Dyu., iu:) by (Oyue — iu-Ne¢, ius) + Ne|ue|?$ in (4.27),
this leads to a cancellation of the terms in (1 — |uc|?)¢ divv and in |u.|?¢?.
Third, owing to (4.6) let us replace —2 [go XNc|v|?pe by

=2 [ e+ 0 (19Xl + 9l 2) V(e Exlue) + 432

and the same for —2 [ No(V — v) - vju.. Both give rise to o(1) error terms by
(1.27) and (4.3).

After these substitutions, let us integrate in time and take xy = xr. We may
check via Lemmas 2.2 and 2.1, and the fact that v — v is compactly supported,
that all integrands in factor of Yz or Vxp are in L!. Letting R — oo, we then
get the conclusion. O

We next turn to studying these terms one by one. We will show that I, I, I,
are all negligible terms, while Iy, Ir and Ip recombine algebraically thanks to
the product estimate, to give a term bounded by the energy outside the balls,
as does Ig.

4.3.2. The negligible terms. Let us start with I;. In the case N, < [loge|, from
(1.20) we have ¢ = p and we also have divv = 0. Then, in view of (4.3) and
(2.7) we may bound

N, .
1| < 2/ Ne (3|14 — Nev]lp]
e Tlog 2

2

_ N,
< ¥z ol v/ rNeflog el + N = o(N2),

where we used the boundedness of v hence of ¥ and the L? character of p (see
Lemma 2.1). In the case % — A > 0 finite (see (1.12)), we have ¢ = Adivv
and

AN
[log e|

(4.28) —1)divv = o(1)|div v|.

We again conclude easily that |I;| < o(IN2) in that regime too.

The term I, is easily seen to be o(IN?), using the Cauchy-Schwarz inequality,
(4.3) and Lemma 2.3 and the integrability of d,v, p, Vp, divv and Vdivv
provided by Lemma 2.1.

To bound the first terms of I,, we first use (2.8) and the fact that v € C17
to get

(4.29)
/ (je = Nev) - (v — ¥) curlv
R2

1 = Juel|| Ve — dueNov| + N2[1 — |u€|2||curlv|)

< C|lv— 79| e (/ |Vue — due Novl| curl v
R2

Using the Cauchy-Schwarz inequality, (2.5), (4.3), (1.27), and the L? character
of curlv (by Lemma 2.1, curlv € L}(R?) N L>°(R?)), we find that the last two
terms in the right-hand side integral give o(1) terms. To bound the contribution
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of the first term, we split the integral over R? using the balls B; given by
Proposition 4.4 as follows :

/ |Vue —iu-N.v|| curl v|
R2

< / |Vue — iue Novl| curl v —I—/ |Vue — iue Nevl| curl v
U; B; RQ\UiBi

1
2

< Ol Vue—iusNevl| 12,00 |U; Bi|+ (/ |Vue — z‘usNEVP) | curl v|| 2 (r2),
R

2\U; B;

where we used (4.12) and the boundedness of curlv. In view of (4.16), (4.18),
(4.3) and item 1 of Proposition 4.4, we deduce that

/ |Vue — tusNevl|| curl v| < C'e_Q\/mN5 + CN,
R2
and inserting into (4.29) and using item 2 of Lemma 4.7, we deduce that

< o(1).

/RQ (je — Nov) - (v — ¥) curl v

For the second term of I, we apply item 3 of Lemma 4.5 with £ = v — ¥V to
obtain

=9 =27 Y il = 9)(as) + D) v = Tl

(]

<2m Y |di[[v = V|2 + o(D)[[v = Vllgon = o(1),
)

where we used item 2 of Lemma 4.7 and the fact that ), |d;| < C'N; for these
balls. We deduce that I, = o(1) and conclude that Iy + I,, + I, = o(N?2).

4.3.3. The dominant terms. The term Ig can easily be treated with the help of
(2.17). Using that from Lemma 4.7, Vv vanishes outside of the balls B; given
by Proposition 4.4 and is bounded otherwise by a constant depending on v, and
using (2.17), (4.16) and Lemma 2.3, we may write for each t < T,

/ 255 Vvt
R2

- . 1
<2Volie [ Ve Vo 0 R 4 NP
R2\U; B;

4e2

< C(&(ue(t)) — mNc|loge|) + O(NEQ)

We thus conclude that

(4.30) Is| < C (/O Ee(ue(s)) — 7rN5|10g€|> + o(N?).
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For the term Ip we replace ¥ by v+ (¥ —v)*, and using Young’s inequality,
we write

(4.31)
Ip < —// |Opue — iue Nog|* +2// (Ve — iuNov) - v ‘
\loge\ R2
+ ||V — V|| oo // |Oyue — iueNogp|? —|—// Ve — iue Nov)?
!10g€!

t
N,
+/ N, |Osue — iueNe@|| divv — ——¢|.
o JRr2 llog €|

We claim that

t
N
(4.32) / No|Oytte — iueNog|| divy — —_g|
0 JR2 |log |

N t .
<o < ) / / |8tua - ZUaNEQZ)’Q =+ O(Ng)'
llogel/ Jo Jre

Indeed, either N. < |loge|, in which case divv = 0 and ¢ = p and the result
follows from the Cauchy-Schwarz inequality after inserting a factor

1 ( N. >1/4\/ﬁ<|10g5|>1/4
VN. \|loge] “\ N

and the L? character of p; or |loge|/N. — X and we may use (4.28) and the
L? character of divv to conclude the same. On the other hand, by (4.3) and
item 2 of Lemma 4.7, we have

(4.33) H\?—VHLoo“ - (// |8yue — iueNog|? —l—// |Vu, — ZUENV|>
< g Ne / [ 1orie = 0P+ o)
lloge[ Jo Jre

We next distinguish two cases:
Case 1: the case where

¢ t
/ / |Opue — iuN-¢|* < 20/ / |(Vue — iu-N.v) - v|*
0 JRr2 0 JR2

By (4.3) this implies that

t
(4.34) / / Orte — iueNog|? < 20|[v|| = (xNofloge| + N?).
0 R2

It follows, together with (4.3) and (1.27) that F. < C'N.|loge| where F; is as
in Proposition 4.8. From Lemma 2.1 we have that 0;v is uniformly bounded
while v € C in space, hence v is Lipschitz in space-time, so we may apply
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Proposition 4.8 with M, = eV/°gel + = ¢ A =2 and X = v to obtain

N, /(1 [t .
/ / |8tu€ - ZU5N6¢’2
lloge| \2 Jo Jr2

t
+2/ |(Vue — iugNev) - V\2> + o(N?).
0 Jr2

(4.35) Iy <

Case 2: the case where

t t
/ / |Opue — iu5N5¢\2 > 20/ / |(Vue — iuesNev) -v|2.
0 JR2 0 JR2

We may rewrite that condition as

(4.36) / / |0sue — iueN-¢|? —1—4/ / (Ve — iucNev) - v[?
< (+) [ [ o —iweno +2 [ [ (e~ w2
4 10 0 JR2 0 JR?

We note that in that situation, thanks to Lemma 4.1 and the L? character
of ¢, we have F, < 2f0t Jge [0rue — iuNeg|* < CN2[logel?, where F. is as in
Proposition 4.8. Choosing M. = eV/°2¢l we may then apply that proposition
with M, = eVlogel 7 — ¢ A =4 and X = v, and combining the result with
(4.36), we are led to

N, 1
(4.37) IV_|log€8|(4 M // |Oyue — iusN.p|?

N .
+]10g€] / R2 [(VueiueNev)-v+o (logl]) (/0 /Rg [Orue — ZUEN€¢|2> +o(1).

This implies that

(4.38)

v < |10g6|< // |Bsue — iuN.p)? +2// |(Vue — iueNev) - V|2>

/ |Opue — tue N ¢| +o(1).

8 |loge|

Returning to the general situation, we may now combine in the first case
(4.31), (4.32), (4.33), (4.34) and (4.35), and in the second case (4.31), (4.32),
(4.33) and (4.38). Noticing an exact recombination of the terms

1 [t t
) [t i w2 [
0 R2 0 R2
1 [t ) t )
g [ ] o= iR 2 [ ] (T Vo) v,
0 R2 0 R2

2
(Vue — iusNgv) - VL‘
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we obtain in both cases that

(439) Ip+1Iy <

o ge\/ o |Vue — iuNov|*[v]? + o(N2).

On the other hand, from (4.19) applied with ¢ = |v|?, we have

2N, Vue — Z.UENEV|2|V‘2 - |V|2ﬁ€
R2 \logs\

< (Il 7o +1) (E-(us) — mN:[loge]) + o(NZ),

e
[log el
so using that N. < O(|loge|) and combining with (4.39), we obtain that

t
(4.40) Iy +Ip+1gp < C/ (E-(uc(s)) — mNL|logel|) ds + o(N?).
0

Let us point out that this is the only place in the proof where we really are
limited to the situation where N. < O(|logel).

4.3.4. The Gronwall argument. Combining (4.40) with (4.30) and the result on
the negligible terms, we are led to

E(us(t)) — ) < C/ ) — N |logel|) ds 4 o(N?)

and this holds for any ¢t < 7.
In view of the assumption on the initial data, Gronwall’s lemma immediately
yields that

(4.41) Ec(uc(t),t) < mN:[loge| + o(NZ)

for all t < T.. Thus we must have 7. = min(1,T) and we may extend the
argument up to time T to obtain that (4.41) holds until T. This proves the
first assertion of Theorem 2.

4.3.5. The convergence result. To conclude the proof of Theorem 2, there re-
mains to check that this implies that W“ﬁi’;%) — vin L (R?) for p < 2. In
view of (4.16), (4.41) implies that for every ¢ < T,

(4.42) / |Vue — iu.Nov|* < o(N?),
RQ\UZ .

hence for any ball B centered at the origin and any 1 < p < 2, by Holder’s
inequality,

(4.43) / |Vue — iueNovP < o(NP).
BR\U B

Meanwhile, by (4.18) and using the embedding of L?°°(Bg) into L(Bg) for
any q < 2, by Holder’s inequality and item 1 of Proposition 4.4, we deduce that
for any p < ¢ < 2,

/ |Vue —iu-N-v[P < o(1).

Combining this with (4.43), we conclude that (VuE iusN:v) — 0in L?

loc

(R2).
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In the case % — A, with (2.5) and the upper bound (4.41), we have in
addition that N%(Vus — iueN.v) is bounded in L?(R?). Tt thus has a weak
limit f, up to extraction of a subsequence e. As in [SS5, p. 151], letting .
denote U;B; for each given ¢, since ) ;r; < e_m, we may extract a further
subsequence such that A, := Up>,(), has Lebesgue measure tending to 0 as
n — oo. For any fixed n, by weak convergence we have

.. Vue — iu.N.v|? . Vue — iu.N.v|?
hmlnf/ Ve 26 & thlnf/ Ve 25 A 2/ |f|2,
k—o0 R2\ Qe Na k—oo JRr2\ 4, Na R2\ A,

but the left-hand side is equal to 0 by (4.42), so letting n — oo, we deduce
that f must be 0. Since this is true for any subsequence, we conclude that
N%(VuE — iuzN.v) converges weakly in L? to 0.

The appropriate convergence of j./N. is then deduced by (2.6) (2.7) and
(2.8), and this concludes the proof of Theorem 2.

Remark 4.10. In order to treat the mized flow or complex Ginzburg-Landau
case, the computations are very similar and shown in Appendiz C below in
the gauge case. One should multiply the result of Lemma 2.4 by 20v + 2av+
instead of v, and use ¢ = p or %divv (respectively), and ¢ = B — [v|[>. A
supplementary error term in O(B [ge V.-(v—%)) appears, which can be controlled
only by an estimate on [, V| and leads to the extra condition N. > log |loge].

APPENDIX A. PROOF OF PROPOSITION 4.8

As already mentioned, the result is a quantitative version of the “product
estimate” of [SS3]. It also needs to be adapted to the case of an infinite domain,
which we do by a localization procedure based on a partition of unity.

As in [SS3] we view things in three dimensions where the first dimension is
time and the last two are spatial dimensions. By analogy with a gauge, we
introduce the vector-field in three-space

(Al) Aa - NE(¢aV)7

whose first coordinate is N.¢ and whose last two coordinates are those of N.v.
Equivalently, we can identify A, with a 1-form. We also note that

1
(A.2) N curl A; = (curlv, Opvi — 016, Opve — D29).

£

We then define the 2-form
(A.3) Je = d ((dus — tuc Az, iue) + As)
where d corresponds to the differential in three-space.

Lemma A.1. Identifying a spatial vector-field X with the 2-form Xadt Adx1 +
Xidt A\ dzsy, we have

(A.4) Je = fiedzy Adws + Ve 4 (1 — |u|?)Ne(Opv — V),
where fie is as in (2.11) and V. as in (2.12).
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Proof. By definition, J. = Jgd:vl A dzxy + Jgdt Adzxy + Jsldt A dxo, where for
k=1,2,

{ Jl = curl ((Vue — tue Nov,iue) + Nov) = fie
sz = 8t(<akua - anNaVka iua) + Nsvk) - ak(<8tua - anNa(ba iue> + Na¢)

To obtain the expression of J., it thus suffices to compute

O (

(Vue — iusNov,iug) + Nev) — V((Opue — tue Negiug) + Neod)

(Ve — iueNev, i0gue) + NeOyv + (0p(Vue — tueNov), iue) — (VOpue, iug)

— (Brue, iVue) + V((Jue|* — 1)Nz9)

= 2(Vue — iucNov, idue) + Noviue, Osue) + (1 — |ue|*) NoOpv — Nov(Opue, u.)
+ NV((Juel® ~ 1)¢)

= Ve = 2Np(Vue, ue) + (1 = [ue*) Nedpv + NV ((|ue* — 1)¢)

where we used (2.12), and this yields the result. O

We work in the space-time slab [0,7] x R%2. We consider X (here a spatial
vector field, depending on time) and Y (here Y = e; the unit vector of the time
coordinate) two vector fields on [0, 7] x R2. In order to reduce ourselves to the
situation where X is locally constant, we use a partition of unity at a small
scale: let M. be as in (4.21) and let us consider a covering of [0,7] x R? by

balls of radius 2ME_1/4 centered at points of Mgl/4Z3, and let {Dy}ren be an
indexation of this sequence of balls and {xx }ren @ partition of unity associated
to this covering (which we observe has bounded overlap) such that » ;. xx = 1

and ||Vxgllre < MM*. For each k € N, let then X}, be the average of X in Dy.
Then, working only in Dy, without loss of generality, we can assume that Xj
is aligned with the first space coordinate vector ey, with (e, e1, e2) forming an
orthonormal frame and the coordinates in that frame being denoted by (¢, w, o).
We will assume first that X £ 0. Let us define for each k, o the set

Q’%U = {(t,w)\(t,w,a) € Dk}a

which is a slice of Dy, (hence a two-dimensional ball). Let us write J.  , for
Je(e1,e;) restricted to Q. In other words, by (A.3), if £ is a smooth test-
function on 2, 1, we have

(A.5) / ENTepo = —/ dé N ((due — iugAcyiug) + Ag)
Qk,a Qk,a

where d denotes the differential in the slice €y, .

We let g be the constant metric on €y, defined by gi(e1,e1) = A/| Xy,
gr(er,er) = 1/A and gi(er,e;) =0 with A > 1 given.

We then apply the ball construction method in each set € ,. Instead of
constructing balls for the flat metric, we construct geodesic balls for the metric
associated to gg, i.e. here, ellipses.
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Lemma A.2. Let Q. , C R? be as above and denote O, ={z € Y o|dist (x,00 ) >
e}. Assume that
1

. . 1
Fs,k,g = / (’atus - ZUEN8¢‘2 + ‘alua - ZUENEVI‘Q + 5 (1 - ’Us’2)2
2 Qk,o 2e

+ N2([Vo[2 + [0 ]?)) < M.

with M as in (4.21). Then if € is small enough, there exists a finite collection
of disjoint closed balls {B;} for the metric gi of centers a; and radii r; such
that
(1) Xy < AM
(2) U;iB; covers {||us(z)] — 1] > 1} N Qo
(3) Writing d; = deg(u.,dB;) if B; C Qi,a and d; = 0 otherwise, we have
for each 1,

1 1 . 1 .
(A.6) 3 /Bi m(A\Xkﬂ&lug — Z%NEVM2 + K|6’tu6 — ZU€N€¢‘2

_ 1
+ 2M N AP VP + <10 ]?))
> w|d;| (Jloge| — C'log M) .

(4) Letting pic o = 21, dida;, we have for any 0 < v < 1, and any
£ € CM (o),

‘/f N Js,k,a - gﬂs,k,o < C”fHCOW (AMg2)7F€,k,a-

Proof. The first 3 items are a rewriting of [SS3, Proposition IV. 2], itself based
on the ball construction, that needs to be adapted to the case of the nonstandard
metric. As in [SS3, Proposition IV. 2] we start by noting, via the co-area
formula, that there exists m. with %Me_l < me < M! such that setting w :=
{|ue| < 1—m.} has perimeter for the g metric bounded by CeM32. We may then
apply [SS5, Proposition 4.3] outside that set to v.(t,w) Us (V/A| Xy |lwey +

= Tuel

ﬁtet) and A.(t,w) = A.(VA|X;|lwe, + ﬁtet) restricted to the slice, with

initial radius rg = CEMS and final radius r; = M2 1. This yields a collection of
disjoint closed balls B; with sum of radii bounded by M_:! and such that

1 ~
/ VP4 M7 curl AP > TI'Z |d;|(|loge| — Clog M,).
UiBi\w i

2

Making the change of variables z = v/A|Xj|w and s = ﬁ, we obtain balls B;,
the images of the B;’s by the change of variable, which are geodesic balls for
the metric g, and whose sum of the radii is bounded by AM:! (since A > 1);
and inserting (A.2) and using (4.21) we obtain (A.6). We note that the fact
that the domain size also depends on € does not create any problem in applying
that proof.

Item 4 is a consequence of Lemma 4.3 adapted to the present setting with

differential forms, replacing Vu. — iu. A: by du. —iu. A. and using again (A.2).
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O

We now proceed as in the proof of [SS3]. We set v, to be the p.j, of
Lemma A.2 (item 4) if the assumption F; j , < M, is verified, and 0 if not. We
note that

(A?) HJE,k,a - VEvk,UH(CS’l(QkJ))’ < CAM;1/2F€,I€,O'

is true in all cases. Indeed, either F  , < M. in which case the result is true
by item 4 of Lemma A.2 since M{1/2 > M2, or Ve ko = 0 in which case,
for any £ € C’S’I(kaa), starting from (A.5) and writing |[(Vue — iAzue, iug)| <
|Vue — iAcuc| + ||lue| — 1||Vue — iAcue|, we obtain with the Cauchy-Schwarz
inequality, using the boundedness of €1, ,,

Qk,a

'/5 A Ja,k,o
< C”v§‘|L°° V Fs,k,o + EFs,k,U < M;1/2F57k¢ﬁ

for € small enough. But since F.y, > M., we have \/F, + cF. s <
2]\4_1/2F€7k,(7 and thus we find that (A.7) holds as well. By (A.6), we also
have that
(A8) [ el < e ALXDE
. 1% ol > o-
S Jloge] ™ A|X TR

Next, we choose 7 a function depending only on time, vanishing at 0 and 7,
such that n =1 in [M;1/4, T— Mgl/ﬁ if that interval is not empty, and affine
otherwise. By construction

(A.9) Inllcon < CMY%, xallcor < CMY™.

We may now write that

<CIVelum [ Ve = iueAd] + |4+ 11~ P

. 1 .
(A.10) / ’T;)((ﬂ (A\Xk| |O1ue — iue Novy |* + K|5'tu€ — iu.N.¢|?

1
+ 2MANZ(AIXL 2 Vol + 1o )
> (|loge| — C'log Ma)/ (nxx — C'A2M€1/4*1)V€,k,a.
Qk,a

Indeed, if we are in a slice where v, , = 0, this is trivially true. If not, we
apply (A.6) and obtain

1 Xk ( : 2 1 . 2
— Al X710 N, —|Osue — iue N,
5 /QE B |X | | k’ | 1Us — TUg aV1| + A’ tUs — LUe 5¢|

— 1
+ 2MIENZ(AIX Vol + 1o )

> 27TZ il min(nxe)([loge| — Clog Mc)).
7
Inserting then ming, nxr > (nxx)(ai) — CAri|[nxkllcor and (A.9), and using
item 1 of Lemma A.2, yields (A.10).
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Next, we integrate (A.10) with respect to o, and combine with (A.7) and
(A.8) to obtain

. 1 .
/ 11Xk (A|Xk| |01ue — iue Novi > + ~|0ue — iuN.¢|?
Dy 1 Xkl A
1
+ 2M2N2(ALXR IV + 10 ]?))

> (|loge| — C'log M) / NXkJe o
R2x[0,7]

(A1) — Cmax(—— A|Xp)AZMYALE , + CMY 4 loge| AMZY2F, .,

AIX K

with = F.j := [ F »do. Moreover, by (A.4), (since we assumed X}, is along
the direction e;) we have

1
Teto = Jeler,e) = 1 (Ve X NellL— ue) (@0 — ¥0) - X

so we may bound

/ DN (1~ [uP) @y — Vo) - Xy

Dy,
< C|IX || oo Nell1 = [uel? | 2 19:v — VI 2(py)
< CO|| X|| oo NeeFy .

Inserting into (A.11) and multiplying by | X%|, we may write

[ o (AX Pl — iuNovf + (o — 0N
Dy
1
+ 2MI2N2(A Xk PV + 10 ]?))
> ([loge| —ClogMg)/ Xk Ve - X,

Dy

—max( A X P)AZM3 - (AMZ Y4 loge| + eN) || X || oo Fees

and we note that this holds as well if Xy = 0. We may next replace Xj by
X in the left-hand side and the [V - X} term, and using that | X — Xj| <

OME_I/4||X||CO,1 in Dy, the error thus created is bounded above by

M Alog el | X |z (1 + || X | o ) F e
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where we have used that by definition of V., we have i) Dy ]f/€| < F. ;. We may
thus absorb this error into the others and write (since A > 1)

1
/ NXk <A|X|2|8xu8 — quNEV|2 + — |Opue — iu5N€¢|2)
Dy A
1
+ 2MNZAIXPIVO + 1 10?)
> (|logel —Clong)/ nxeVe - X
Dy,
= OJ1X | (AL + X |0 )M E 4+ €N ) oy

Summing over k, using that Y, xx = 1 in [0, 7] x R?, the finite overlap of the
covering, the fact that ;v and V¢ € L2([0, 7], L?(R?)) by Lemma 2.1 and (2.3),
we are led to

T 1
/ / n (A|X’2‘axua - iUsNev‘Q + - ‘atua - ius¢|2>
0 RQ A
> (toge] ~ Clogar) [ [ i x
0 R2
—O||X e (A3(1 X || ot ) M8 & aNg) (F.+ N2).

Moreover, by choice of 1 and definition of V., we have

/OT/RQ(l—n)X'VE

< 2| X|| oo / » » |Ope — iue Ne@||Vue — iue Nev|
[0,M Y Uur— MY 1) JR2

< C||X ]| \/Fa< sup £:(t) + o(1) ) M7 V%.

te(0,7]

where we have used the Cauchy-Schwarz inequality and (2.5). Combining the
last two relations, we deduce the desired result.

APPENDIX B. EXISTENCE AND UNIQUENESS FOR (1.14)

We recall that the definitions of Holder spaces that we use are at the be-
ginning of Section 2. For the sake of generality we study (1.14) with arbitrary
a > 0 and B > 0 such that o> + 82 =1, and A > 0. We denote by w = curlv
and d = divv. We note that if v solves (1.13) then (w,d) solve

dyw = 2div (Bvw + avrw)

Opd = &Ad + 2div (v w — avw).

Theorem 3. Assume A > 0, a > 0 and o® + %2 = 1. Assume v(0) is such
that 5=w(0) is a probability measure which also belongs to C?(R?), and d(0) €
C7 N LP(R?), for some 0 < v < 1 and some 1 < p < 2. Then there exists a
unique local in time solution to (1.13) on some interval [0,T], T > 0, which is
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such that v € L®([0,T],C"") for any v’ < . Moreover, we have v(t)—v(0) €
1°([0, T, L2(R?)), v € L2([0,T), IA(R2)), d & L=([0, T), I*(R2)) and ()
is a probability measure for every t € [0,T].

We start with some preliminary results.

Lemma B.1. Let v be a vector field in L>([0,T], C17V(R?)), wp € C7, 0 < v <
1, f € L®(R,C7) then the equation

Ow = div (vw) + f
(B.2) { D=

has a unique solution, and it holds that for some C > 0,Cy > 1,

t ¢
B.3) [w®)lzr ey < lwollzr(re) + exp (C/O V()] Lee d8> /0 1 (s)llze~ ds
and for any —1 < o < v,

(B.4)

t t
[w(®)llee < Co <IIWOHCU +/0 1f(8)llce ds + IIa)oHLoo/0 I divv(s)llce dS)

t
X exp <c/ V0 (s)]| 1o ds> .
0
Proof. One may rewrite the equation as

Ow =v-Vw+wdive + f.

Then, by propagation along characteristics, we obtain first

t t
lw@ 1 < ol + (/0 1f ()l zos dS) exp/o [ divo(s)| Lo ds,

second,

t t
lw(®)]| e < (lIWOIILw +/O I1f ()]l £oe d8> exp/o I divv(s)][Lee ds,

and third (B.4) for o =+ follows by a Gronwall argument. For general o < 7,
one can proceed as in [BCD, Chap. 3].
O

The next lemma about the regularizing effect of the heat equation can be
found in [Ch2, Proposition 2.1] (applied with p = 0o, p = oo and noting that
B, is the same as C?).

Lemma B.2. If g € L*([0,T],C~ " N H71(R?)) and uy € C7(R?), then the

equation

(®5) ot

u(0) = ug
has a unique solution which is in L°°([0, T], CYNL%*(R?)) and L?([0, T], H'(R?))
and for any o <7,

T
(B.6) [l oo (j0,77,09) < Co (||U0||ca +1/ V||9||L°°([0,T},C—1+U)> :
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We note that the fact that u € L([0,T], H*(R?)) comes from the fact that
g € L*([0,T), H"'(R?)) and the regularizing effect of the heat equation.

Lemma B.3. Assume u solves in [0, T

{ Oyu = Au + div f

(B.7) 2(0) =

then, if ¢ < p and % — % —1—% > 0, we have for any t € [0,T],

11,1
lu(®)lloz) < luollze + Cpgt? o 2| £l oo (0,17, La(r2))-
Proof. We follow [Du, Lemma 2.3]. Using Duhamel’s formula, we may write

u(t,-) = G(t,-) x ug +w(t,-)

with
¢
= [ [T = dsay
el —lef?
where G(t,z) = ¢ and Ty(z) = —0,G(t,x) = gize 4 . By Young’s

inequality for convolutions, we have

w(®)ll Le@2y < lluollLe@2y IG ()l L1 w2y + 1w ()|l Lo (r2)
< luoll e w2y + [lw(#)[| Lr(®2)-

We turn to studying w. We may write with Holder’s inequality,

i)l < [ ([ra-nt dy);, (/ Pt—s(x—y)g\f(s,y)!qdy); ds

with ¢’ such that 1/¢+ 1/¢' = 1, and hence with Holder’s inequality again, if
q=p

1w ()]l Lr (r2)

< [([r2) (/ (/rt_s<x—y>%|f<s,y>qdy)gdxfds
< [frk.a? ([([ree-tissmr ] |f<s,y>|qdy>5‘1dx)’l’ds
LY (feors)” (o fncons)
L) (el (1)

where for the passage from the second to third line we used Young’s inequality
for convolutions. We may thus write

t
1/2
lw |l zpr2) < Hf”LOO([O,T},Lq(R?))/O HFS”L/q’/z(Rz ITs HLp/z (&2) 45
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But computing explicitly, we find [|T's||zrr2) = C,s~3/211/7 and so we deduce
that

3=

1 1
e

lw(®) e w2y < CpgllfllLoe 0,17, L0(r2)
and the result follows. OJ

Finally, we will need the following potential estimates:

Lemma B.4. Let u € C7 N LP(R?) with 0 < v < 1 and 1 < p < 2. Then
VA~ u, where A™1 is meant as the convolution with —%log, is well defined
and

(B.8) IVA™ ull g1 g2y < Cr(l[ullovey + llull Lo e2))-
Proof. Setting v = VA~lu we may write

1 r—y
“orn ) o=yl
and one may check that this integral is convergent with

(B.9)

1 1 1/p
fo(@)] < Cllull o g / dy + [[ull s / S
(&) y—aj<1 [T — Yl y—a|>1 1% — YIP

< C(llull oo r2y + llull Lrw2))

with 1/p+ 1/p’ = 1. Let then w be such that v = Vw, and thus Aw = u. For
any = € R?, by Schauder estimates for elliptic equations and (B.9), we have

v(x) = (y) dy

[Vwllcrv(B1)) < CIVw|[ Lo (B(z,2)) + lullev(B@,2)))
< C(Jullpr @2y + [[ullcv®2))-
Taking the sup over x yields the result. O

We now turn to the proof of Theorem 3 for which we set up an iterative
scheme.

Let vo = v(0) and wg = curlvyg, dy = div vg. Given v, and w,, = curlv,,d, =
div v,,, we want to solve

Orwnt1 = 2div ((Bvn + avih)wni1)

(B.10) Odps1 = 2 Adpy1 + 2div ((Bvr — avy)wn)
wn+1(0) = w(0)
dn+1(0) = d(0).
Let
tn = sup{t, Kn(t) < 26’100[(0}

where
Kn(t) = lwn@®llcr + w2 + l[dn@ller + [dn@llze + Ve llcrn

Ko = [[w(O)][pr(r2) + [[w(O)[lcv + [1d(0) ][ z» + [|d(0)]|c,
and Cy is the maximum of the constants in (B.4), (B.6), and C; the maximum
of the constant in (B.8) and 1.
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Let us show by induction that (B.10) is solvable and there exists Tp > 0
independent of n such that t, > T for all n.

For n = 0, this statement is true by assumption. Assume it is true for n.
Then in view of Lemma B.1, we have that the equation (B.10) for n + 1 has a
solution wy, 11 € L*([0,T],CY N LY), with, if T < Ty < t,,

(B.11)

lwnt1ll Loo ([0,77,07)

T T
< Go(lwOler + 1o@l= [ vl (6)ds) exp (€ [ Ivallen(s) as)
0 0
< Co (lw(0)[[cr + [|w(0)]| L2C1CoT Ko) exp (2C1 CoCTK)) -
Also it is straightforward to see by integrating the equation and since wy, 11 € L*
by (B.3) that s-w,41 remains a probability measure.
Similarly, Lemma B.2 yields the existence of a solution d,,+; € L>([0,T],C")
with, if T < Tp < tp,
(B12) |ldnt1llz(o.11.07) < Co([ld(0)llor + OVT|[vawnllcn)
< Co([ld(0)[lor + CVTCLCFKS),

where C depends only on o and \; and by Lemma B.3 applied with ¢ = 1,

11
(B.13) N dn+1llzooo,m,0) < [1A(O)|| e + CT? 2 [[vpwnia | poo 0,17, 01)
< [|d(0)|| e + CT# 2 CoC1 Ko,

We then let
(B.14) Va1 = VA i — VEA w4y
By Lemma B.4, this is well-defined and

(B.15)  varillers < Crlldnsallor + lldnsallze + llontaller + llwnsllzn) -

In view of (B.11), (B.12), (B.13), and (B.15) we then deduce that if Tj is chosen
small enough (depending on K and the various constants), then we will find
that t,11 > Tp. The desired result is thus proved by induction.

Let us now show that {w,} and {d,} are Cauchy sequences in C~1*7. By

subtracting the equations for n and n + 1 we have
(B.16)

Ot(wWpy1 — wp) = 2div ((an + avi) (Wns1 — wn)
+(ﬁ(vn - Vn—l) + a(Vn - Vn—l)L)Wn>

at(dn—l—l - dn) = %A(dn—i-l - dn)
+2div ((ﬁv# —avp)(wWn — wn1) + (B(Vn — V1)t — alvy — vn,l))wn) .
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Since wy(0) = w(0) for all n, applying (B.4) with 0 = —1 4+, and the result of
the previous step, we have

|wnt1 — wnHLOO([O,T],CU)

T
< 6Cf0T INAZIFAS dS/ || div ((,B(Vn o anl) + Oé(Vn - anl)Lwn)HCU ds
0

< CeCTTH(Vn - Vn—l)wnHLOO([O,T],CHU)
< CeMT (J|lwn = wntll = (o,11,07) + ldn = dn-1llLoe(or1.07)) -

Similarly, in view of (B.6),

ldn+1 — dnllLoo(0,17,00) < Cﬁ(llvn(wn — wn—1) Lo (j0,77,07)

+ [1(vn — Vn—l)wnHLoo([o,T],Cfr))
< CVT (|lwn = w1l Lo (o.11,00) + lldn — dnall(o,17.07)) -

if o < =1+ 7. We deduce by standard arguments that {w,} and {d,} form
a Cauchy sequence in L>°([0,7],C7) if T is taken small enough. By inter-
polation {v,} is a Cauchy sequence in C17', for 4/ < + (resp. {w,} in C7'
and {d,} in C7"). The limits v, w,d will obviously solve (B.1), w will be in
L>([0,T), L*(R?)), d in L>([0,T], LP(R?)) N L3([0, T], H'(R?)) by Lemmas B.2
and B.3, and (from (B.14))

(B.17) v=VAld-ViATlw,

with v € L®([0,T], C*"). Taking the time derivative of (B.17) and using (B.1),
it is standard to deduce that v must solve (1.14). By integrating the equation,
using that v is bounded and w € L'(R?), we also have that %w remains a
probability density.

Next, we prove that v—v(0) remains in L?(R?). Using (1.14) and integration
by parts, for ¢(z) = e "*l with 0 < 1 < 1 we compute

4 Clv(t)—v(0)]* =2 (v—v(0))- (AV div v + 26v* curl v — 2av curl v>
dt R2 R2 «
— ¢(divv)? + 2A ¢(divv)(divv(0)) — 2A V(- (v—v(0))divv
o Jr2 a Jpr2 a JRr2

— 4o /R2 ClvPw + ¢v - v(0)w — 48 /R2 vt v(0)w

and using Young’s inequality, the fact that |V¢| < |¢| and that divv € L2, we
find

& Lav—vor=c ( Lclawv@P+ [ v+ [ o v<0>l2)

with a constant C depending on «, 8 and A. Using Gronwall’s lemma, since
Jg2 |w] is uniformly bounded and v(0) is bounded, we deduce that [g, ¢[v(t) —
v(0)]? < C, with C; independent from 7. Letting then 7 — 0, the desired claim
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follows.

To prove uniqueness, it suffices to apply the same idea of weak-strong unique-
ness as used in the proof of the main results: if v; and vy are two solutions of
(1.14), we introduce the “relative” energy E(t) = 3 [p2 [v1(t) — v2(t)[?, and the
relative stress-energy tensor

1
T=(vi—vy) ® (Vi —vy) — §|V1 —vo|2I.

By direct computation we have

(B.18)
d A . . 1 1
—FE= [ (vi—v3) (—V(dw vi — divve) 4+ 28(vy curl vy — v3 curl vg)
dt R2 (6%
— 2a(vy curl vi — va curl V2)>
AL
= / ——|div (v — Vg)]2 +268(vy — va) - Vé‘ curl (vi — va)
R2 «
+ / —204’V1 — V2‘2 curlv1 - 20[(V1 — VQ) Vo curl (Vl — Vg).
R2
and
(B.19) divT = (vi — vo) divvy + (vi — vo) T curl (vi — va).

Multiplying (B.19) by 28vs + 2avy and rearranging terms, we find

/ (2Bva + 2avy ) - divT = / (2Bva + 2avy) - (vi — va) div (vi — vo)
R2 R2

+/ (2avy — 26vy) - (vi — va) curl (v — va),
R2

and inserting into (B.18) and using one integration by parts, we obtain
d AL 9 n
—E<— [ =|div(vi—va)|°+ [ T:V(2Bva+2avy)
dt RQ (6] RQ

+/ (26va + 2avy ) - (v — vo) div (vy — va).
R2

We may next use the boundedness of vo and Vvg, bound |T'| by 2E, and use the
Cauchy-Schwarz inequality to absorb the last term into the first negative term
plus a constant times FE, to finally obtain a differential inequality of the form
%E < CFE. The integrations by parts can easily be justified by using cut-off
functions like xr and taking the limit, using the fact that v; — v(0) € L?(R?)
and div (v; — v2) € L*(R?). We then conclude to uniqueness by Gronwall’s
lemma.

APPENDIX C. THE GAUGE CASE

In this appendix, we present in a formal manner the quantities that should
be introduced and the computations which need to be followed to obtain the
limiting dynamical laws in the two-dimensional case with gauge mentioned in
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Section 1.3.4 of the introduction. We use the notation of that section, in par-
ticular the starting point is (1.31). In the rest of this appendix, we will not
write down negligible terms, such as terms involving 1 — |u.|?. We will however
present the computations in the general case of the mixed flow (1.31), which
can thus be used as a model for studying the mixed flow in the case without
gauge.

We start by introducing some notation: we set

Op := Oy — 1D,
and
(1) = {1; ‘ %n cases lead%ng to (1.32)
2 divv in cases leading to (1.33).

We will also denote &' = &, 4+ N.¢ and dgpr = 9y — i(P. — N.¢), A’ = A. + Nv
(dropping the €) and h. = curl A.. We define the velocity as in (2.43) and
Lemma 2.12 in [Ti]:

(C.2) V::=—V(iug, 0p_ue) + O{iue, Va ue) — E;
= 2(i0p_ue, VA, ue) + (!u€]2 —1)E;

thus
(C.3) Oje = V{iug, 0p_ us) + Ve + E..
The modulated velocity is then defined as
(C.4) Ve = 2(i0prue, V arue) + (Jue|® — 1) Ee.
The modulated energy is defined as
(C.5)
_1 : 2 2, (1= Jue?)? 2
E(usy Ag) = 5/, |V A, us—iusNov|“+| curl A.— N | —i—T—i-(l—]us] )
R
with
(C.6) =B — v
We will also use the fact that for u. solution of (1.10) we have the relation
(C.7) div ji = M«@ +iB) D e, iue).

The stress energy tensor is now
(C.8) (Se(u,A))p =
. . 1 1
((Oku — 1Agu, Ou — i Aju) — 3 <|VAu|2 + 752(1 — |ul?)? - ]curlAP) Oki-
A direct computation shows that if u is sufficiently regular, we have

div S:(u, A) := Z O (Se(u, A))r
1

1
= (Vqu, Viu + 5—2u(1 — |ul?) — curl A(V* curl A + (iu, V qu))*
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so if u. solves (1.10), we have

«

(C.9) div S (ue, Ac) = Na<(|log5|

+i8)0pus, Va us) + O'EEJ‘ curl A..

For simplicity, we will denote it by S.. The modulated stress tensor is now
defined by

(C.10)
(S&*(u, A))kl = (8ku - zuAk - iuNgvk, 8lu— iuAlu— iuNng> +N52(1 - ‘u|2)VkV1
1

. 1
—3 <\VAu — iuNv2 4+ (1 — [u)N2|v|* + 2—222(1 — |ul?)? = |curl A — N5h|2) Skis

and by direct computation

(C.11) divS. = divS. + N2vdivv 4+ N2vt curlv — Noj. divv

1
— N.jt curlv — N.vdiv j. — Novt curl j. + V(§N3h2 — N.hh,).
Combining (C.9) and (C.11) and we obtain

(C.12)
div S. = N.((

% +i8)Bpue, Vaus) + oheEX + N2vdivy + N2vt curlv
oge

1
— jeN.divv — N.jt curlv — Novdiv j. — Novt curl j. + V(§N52h2 — N.hh,).

Writing Opu. = Oprtue + tuNegp and V que = V grue + tu.Nev, and inserting
(C.2) and (C.7) into (C.12), we are led to

~ N.«
C.13) divS. = ——
(C13) div e = 1]

+ gNEVE — §N3v8t|u5|2 + NgvL curlv — NgjgL curlv — N.v* curl j. + o(1).

1
(O, V arue) + ohe B + V(§N3h2 — N.hh,)

Multiplying relation (C.13) by 28v + 2av" yields

/ (26v + 2avt) - div S.
R2

Nea B p
- , )+ ENv - 2
/]R? <|10g5‘<a¢ Ue, VArte) + giveVe T g

va&g[%]?) - (26v + 2av7t)
+ / 2aN2[v|? curl v + N.j. - (26v* — 2av) curl v — 2aN. |v|? curl j.
R2

1
+ V(§N€2h2 — N:hhe) - (28v + QQVL) — o'hEEE(QﬁVl —2av) 4 o(1).
R2
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This allows to express f]R2 N.B%V. -v so that splitting V. -v as a?V. - v+ B?V.-v
(since a? + 3% = 1) and inserting the previous relation we may obtain

(C.14)

— | NV.-v=[| N.V. (—a*v+apvt) — N2B*v|[*0|u.?
R2 R2
N:«

+ / (2B8v + 2avT) - <— div S’E(UE) + ——(Oprue, VA/uE>>
R? log |
+ / 2aN2|v|? curl v + Noj. - (26v+ — 2av) curl v — 2aN,|v|? curl j.
R2
1
- V(§N€2h2 — N.heurl A) - (28v 4 2avt) — oho E-(26v* — 2av) + o(1).
R2

The analogue of Lemma 2.5 combined with (1.32) or (1.33) is

d N.« ) .
aga(ua) = _/R2 “0;5’ \&pug\z —l—U]Ea\Z + /}R2 N.(iug, Opue) divv

+ [ N2v-0v — N.j.-0v + No(=V. — E.) - v+ N.9;h(N:h — h.) — N.hdyhe
RQ

+ [ 5V (= Py = )

Using (1.32) or (1.33), we may write

/2 NEQV - 0pv — Neje - Opv
R

= [ N(Nev—je)- (E + (=2av + 28vY)(curl v 4+ h) + V(;ﬁ) .
R2

Next, we insert again Jgu. = Op/ue + tu:N:¢p and write that
(C.15) N.v —j. = —=VY(N.h — h.) — o(N.E — E.)

which holds by subtracting the equations (1.31) and (1.32)—(1.33), and we insert
(C.14) and use an integration by parts to obtain

d s
%SE = S. 1 V(26v + 2avt) + N.V. - (—a?v + afvt) — N262|v |20 |u.|*
R2

—/ 2aN|v|? curl j. + N.p div (Nov — j.)
RQ

N, N,
‘/ = dpru]? — (Do, V) - (267 + 2av°)
r2 |loge| llog ¢|

+ / N.(=VH(N.h — he) — o(N.E - E.)) - ((—2av + 26v)h + E)
]R2

+ / —0|E.|> = N.E. -v — N.curl E(N.h — h.) + N.hcurl E.
R2
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1
+ V(§th2 — N.hh,) - (28v + 2avt) — oh E.(28v — 2av)
2

R
* /R2 %Nﬁ@t (1= Juel?) (@ = [v]*)) + (D).

Next, we replace Vi by Vi + Novoi|ue|? — N.¢V|ue|? obtained by comparing
(C.2) and (C.4), and use (C.7) to reexpress div j.. By choice (C.6), the terms
in factor of y(1—|ue|?) cancel, and the terms in factor of ¢, divv and (Opu., fu.)
formally cancel (up to small errors) as in the parabolic case. Then, we insert

oheE. - (2Bv — 2av)
= oho(E. — N.E) - (28v+ — 2av) + N.ho(—v — V*h) - (28vE — 2av)
= oh.(E- — N.E) - (26v* — 2av) + 2aN.|v|*h. — N.h.V+h - (28vE — 2av).

The term 2aN.|v|?h. gets grouped with 2aN:|v|? curlj. to form —2a|v|?p..
Combining all these elements, there remains

Ce= [ 598y +20vh) + NV (~aPv + apv) — 20Nelv e
R2
Ne N,
/ - - |8<I>’u’2 + i(@qyu, VAIU> . (Qﬁv =+ 204VJ‘)
rz [loge] log e

+ [ —=N.VH(N.h—h.) - ((—2av +28vH)h + E)
]RQ

v / o(2av — 2BvE)(N.E — E.)(N:h — he) — N. curl E(Nh — he)
RZ

+ / —0N.(N.E — E.)N.E — o|E.|>+ N.hcurl E. — N.E, - v
R2

1
+ V(§N§h2 — N.hhe) - (2Bv + 2avt) + NohoVh - (26v + 2avt) + o(1).
R2

Keeping only the last three lines, after some simplifications using again (1.32),
and some integration by parts, these three lines can be rewritten as

—N.hV(N.h — he) - (20v* +26v) 4+ 0(N.E — E.)(2av — 28v1)(N:h — he)
R2

/ —0|E.|?> = N.E. - v+ N.hcurl E,
R2

+ [ N.hV(N:h — h.) - (28v + 2avt) — oN.(N.E — E.)E + o(1)
R2

= / o(N.E — E.)(2av — 26v1)(N.h — he) + /
R2

—0|E. — N.E> 4+ o(1).
R2
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We thus finally obtain

(C.16)
155 = S.:V(©2Bv+2avt)+ [ NV.-(—av+afvt) — / 20N, |v|? e
dt R2 R2 R2
N, N
/ — a |8q>/ug|2 + a <aq>/u5, Vaue) - (28v + 2OAVJ‘)
we Toge] foge

/ o(N.E — E.)(2av — 28v1)(N.h — he) + / —0|E. — N.EJ* 4+ o(1).

R2 R2

For the terms involving F we write with Young’s inequality

/ o(N.E—E.)(2av—28vY)(N.h—h,) < a/ \EE—NgE\Q—i—C’/ |N.h—he|?
R2 R2 R2

and we deduce that the last line in (C.16) is bounded above by C' [, |[N:h —

h|?, which we claim it itself bounded by a constant time the energy excess

& — mNc|loge|. Indeed, in writing down the analogue of Proposition 4.4 and

4.16, one may replace [po |curl A — N:h|? in (C.5) by half of itself and still

obtain the same optimal lower bounds for the energy in the balls, so we deduce

that [o. |curl A, — N:h|? must be bounded by the order of the energy excess.
To finish, we use Young’s inequality again to bound

N,
/ e i, Varis) - (267 + 2av)
R

> |loge|
Nea (1 9 1 N
< — 8 ’ — ’ .
< oo <2/R2| e +2/R2|vAu€ (Bv+ avb)|

and the product estimate to formally bound

N.V. - (—a®v 4 afvt)

R2

N, 1

< oo (5 0wl 2 [ Ve (zav-+ P
[loge| \ 2 Jg2 R?2

and using that av — Bvt = (Bv + avt)t and |Bv + avt|? = |v|?, we see that
these two relations add up to a left-hand side bounded by

N.a
|10;6| (/]RQ |a¢"u€|2 + 2/R2 |VA’UE|2|V|2>

which will recombine with — fR2 %

by C(E — mNc|loge|). Inserting into (C.16) and replacing the use of v by
that of v in the case with dissipation, we may then obtain a Gronwall relation
4&. < C(E — nN:|loge|) + o(N2) as in the case without gauge, and conclude
in the same way.

|01 |? +2a N [v|? e into a term bounded
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