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Abstract

We continue the study of [AS] on the Chapman-Rubinstein-Schatzman-E evolu-
tion model for superconductivity, viewed as a gradient flow on the space of measures
equipped with the quadratic Wasserstein structure. In [AS] we considered the case
of positive (probability) measures, while here we consider general real measures, as
in the physical model. Understanding the evolution as a gradient flow in this con-
text gives rise to several new questions, in particular how to define a “Wasserstein”
distance for signed measures. We generalize the minimizing movement scheme of
[AGS] in this context, we show the entropy argument of [AS] still carries through,
and derive an evolution equation for the measure which contains an error term com-
pared to the Chapman-Rubinstein-Schatzman-E model. Moreover, we also show the
same applies to a very similar dissipative model on the whole plane.

1 Introduction

In [CRS], Chapman, Rubinstein and Schatzman (see also E [E]) derived formally the
following mean field model for the evolution of the density of vortices in a type-II super-
conductor under the effect of an external magnetic field, in the limit where the Ginzburg-
Landau parameter κ tends to +∞ and the number of vortices becomes large:

d

dt
µ(t)− div(∇hµ(t)|µ(t)|) = 0 in (0,+∞)× Ω

µ(0) = µ0 at t = 0
(1.1)

where hµ is given by {
−∆hµ + hµ = µ in Ω

hµ = 1 on ∂Ω.
(1.2)
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Type-II superconductors, submitted to an external field, have a very particular re-
sponse: they repel the applied field, which only penetrates through vortices. In the above,
Ω is the two-dimensional domain occupied by the superconducting sample, µ is a signed
measure representing the vortex density (vortices are punctual objects which carry a
quantized topological degree, which can be positive or negative) and hµ is the magnetic
field induced in the sample. The boundary condition hµ = 1 corresponds to the effect
of an external magnetic whose intensity is here normalized to 1. hµ can be viewed as a
potential generated by the vortices through the relation (1.2).

In [AS] we studied the problem in the case where µ is a positive measure, which one
can normalize to be a probability measure on Ω. Here we examine the signed measure
case. More precisely we look for a solution µ(t) to the continuity equation

d

dt
µ(t)− div(χΩ∇hµ(t)|µ(t)|) = 0 in D′((0,+∞)× R2) (1.3)

with the initial datum µ(0) = µ0 in M(Ω) ∩H−1(Ω), where M(Ω) denotes the space of
bounded Radon measures on Ω.

Let us recall the definition of the well-known quadratic Wasserstein distance between
two probability measures µ and ν on Rn:

W2(µ, ν) = inf
γ∈Γ(µ,ν)

(∫
Rn×Rn

|x− y|2 dγ(x, y)
) 1

2

(1.4)

where Γ(µ, ν) denote the set of probability measures on Rn ×Rn which have marginals µ
and ν. The key point in [AS], was to view (1.1)–(1.2) as the gradient flow of the energy
functional (related to the standard Ginzburg-Landau functional, see [SS1, SS2])

Φλ(µ) =
λ

2
|µ|(Ω) +

1

2

∫
Ω

|∇hµ|2 + |hµ − 1|2 λ ≥ 0, (1.5)

for the above quadratic Wasserstein W2 structure on the space of probability measures on
Ω, and then to apply the framework of [AGS] (inspired from the seminal papers [JKO, O])
for constructing gradient flows in the Wasserstein spaces, which consists in minimizing
recursively

ν 7→ Φλ(ν) +
W 2

2 (µk, ν)

2τ
, (1.6)

and then passing to the limit as τ → 0. This specific problem posed several difficulties:

• the natural energy space was P (Ω)∩H−1(Ω) (where P denotes probability measures)
and not the space of absolutely continuous measures;

• for no α ∈ R the energy functional (1.5) is α-displacement convex in that space;
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• the case of measures on a bounded domain with the possibility of mass entering or
exiting the domain is nonstandard.

The results of [AS] can be summarized as follows:

• if the initial datum is in L∞ then there is existence for a strong formulation of the
equation, and uniqueness until some mass reaches the boundary;

• for general finite energy initial data, there is existence (but in general no uniqueness)
of solutions to the equation in a weak sense, obtained as the limit of a time-discrete
“minimizing movement” scheme, and satisfying an energy-dissipation relation;

• there exists a family of “entropy” functionals which decrease along the flow, and
ensure that if the initial datum is in Lp, the solution remains in Lp for all time;

• in addition, in [M1] a global uniqueness result is proved in the case of a convex
domain Ω. The difficulty is the potential presence of mass on ∂Ω, and this result is
obtained through a very precise formulation of boundary conditions, an issue that
we are not going to address in this paper.

Here we would like to pursue the same strategy of viewing (1.1) as a gradient flow, but
on the space of signed measures. Note that while there have been numerous studies of
PDE’s viewed as gradient flows on the Wasserstein spaces of probability measures (most
of the time for absolutely continuous measures and α-displacement convex functionals),
see [AGS, Vi1, Vi2] and the references therein, there has been absolutely no such study
in the case of signed measures. This is an open field which we believe to be natural since
physical models, such as this one, sometimes also involve signed or charged densities. As
we shall see, our study raises as many open questions as it solves.

The first question that arises is to define an analogue of the Wasserstein distance on
signed measures (which have equal integrals). While this is obvious in the case of the
1-Wasserstein (or Kantorovich-Rubinstein) distance, it turns out to be really nontrivial
for exponents p > 1, as we shall see in Section 2. The first naive attempt one can make
is to define the distance between the signed measures µ and ν such that µ(Ω) = ν(Ω) by

W2(µ, ν) := W2(µ
+ + ν−, ν+ + µ−),

where µ+, ν+ (resp. µ−, ν−) are the positive (resp. negative) parts of the measures µ and
ν. (Here, by assumption, µ+ + ν− and µ− + ν+ are two positive measures of same mass,
one can easily extend the definition of the standard W2 distance to that case.) We will
study the properties of W2 in Section 2. It turns out that this definition has two major
flaws: the “distance” defined this way is not lower semi-continuous, and examples show
that the triangle inequality can be violated! One can then think of several ways to fix
these problems, obtained by relaxing the definition in various ways, which will make the
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“distance” lower semi-continuous. However, it is still not at all obvious that the triangle
inequality holds. So in the end, we postponed the definition of a “canonical” 2-Wasserstein
distance on signed measures, which we believe to be a problem of independent interest, to
future work. In the meantime, an expansion of this discussion including several possible
concurrent definitions is described in the proceedings paper [M2]. For our purposes of
applying the minimizing movement scheme (1.6), it suffices to build a “pseudo-distance”
which is lower semi-continuous and bounded from below by a distance.

One of the advantages of the Wasserstein variational approach is the possibility of
handling measure-valued solutions and nonsmooth velocity fields. Here, even thinking of
a mildly regular µ(t), we do not have regularity of the velocity in (1.3), which is always
multiplied by the sign of µ(t). This prevents the application of the DiPerna-Lions theory
[DPL] of flows associated to weakly differentiable vector fields.

We then proceed similarly as in [AS]. The weak formulation of [AS] cannot be used
for signed measures, since it uses Delort’s convergence theorem [De] which holds only for
positive measures. So we have to assume Lp (p ≥ 4) integrability of the initial data, and
it turns out that the entropy argument of [AS] still carries through (although in a not
completely obvious way), and ensures that Lp integrability is preserved along the discrete
flow. The Euler-Lagrange equation for discrete minimizers µτ can be derived as in [AS].
However, taking the limit as the timestep τ → 0, one is confronted with two difficulties:
first, there is no standard limiting velocity results as in the positive case for writing down
a continuity equation. However, we can still pass to the limit “by hand”, without using
the general theory of [AGS]. Second and more importantly, the positive and negative
parts µ+

τ and µ−τ of the discrete minimizer have weak limits µ+ and µ−, but these weak
limits are not necessarily mutually singular, so it is not clear that |µτ | converge weakly to
µ++µ−. This kind of strong convergence of the scheme is an open problem of independent
interest, that we hope to address in a future paper: at least in principle, one can hope that
strong compactness properties hold for the transport-cancellation mechanism, when good
bounds on the velocity (as in our case) are present, so that cancellation is encoded only in
the discrete scheme, and does not happen in the limit (see also the additional remarks at
the end of the introduction). We also emphasize that the role of the energy term λ|µ|/2
in (1.5) is not completely clear: while in [AS] it was a null-lagrangian, thought to have an
influence only on the rate of mass dissipation through the boundary, here it probably has
an influence also in cancellations in the discrete scheme. Because of potential cancellations
in the limit, we obtain an evolution equation with a limit term % which is really the limit
of µ+ + µ− above and could be thought as a kind of defect measure:

Theorem 1.1 Let µ0 ∈ L4(Ω). The minimizing movement scheme produces a signed
measure µ(t) ∈ L4(Ω) which satisfies µ(0) = µ0 and

d

dt
µ(t)− div (χΩ∇hµ(t)%(t)) = 0 in D′((0,+∞)× R2), (1.7)
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where %(t) is a suitable positive measure satisfying %(t) ≥ |µ(t)| in Ω.

We can check however that when µ(0) ≥ 0 the measure %(t) is equal to µ(t), so we
retrieve at least the result of [AS], and we conjecture for the reasons explained before that
the scheme can be improved to obtain %(t) = |µ(t)| for all t ≥ 0. Actually our methods
yield more, namely the system of PDE’s

d

dt
%+(t)− div (χΩ∇hµ(t)%

+(t)) = −σ(t)

d

dt
%−(t) + div (χΩ∇hµ(t)%

−(t)) = −σ(t).

(1.8)

This system, where %± need not be the positive and negative part of a signed measure %,
has an interesting structure in its own right, the coupling being due to the negative term
−σ(t) ≤ 0 and in the velocity field, since µ(t) = %+(t) − %−(t). At this level, it would
be nice to understand under which assumptions the system preserves orthogonality of %+

and %− in time.
Let us finally turn to the case of the whole plane and comment on related results

in the literature. Models very similar to (1.1) were previously studied (see references in
[AS], like [DZ, LZ, MZ]). In particular Lin-Zhang [LZ], Masmoudi-Zhang [MZ] studied
the equation

d

dt
µ(t) + div (∇∆−1µ(t)|µ(t)|) = 0 (1.9)

in the whole R2, which can be viewed as a dissipative version of the Euler equation in vor-
ticity formulation. Lin-Zhang focused on the positive measure case, and Masmoudi-Zhang
on the signed case. They do not use the gradient flow approach, but find solutions by
passing to the limit in some approximating PDEs. In [LZ] results analogous to those we
described from [AS] were proven. In [MZ] they construct solutions to the equation (1.9)
but assuming some W 1,p regularity of the initial measure which is used crucially and en-
sures good compactness properties (so, in this case the transport-cancellation mechanism
has good compactness properties). Thus existence of solutions in the general measure
case, or in the Lp case, is still open. In Section 6, we study (1.9) in the whole plane,
and extend our gradient-flow approach to that case. This poses a slight difficulty since
the obvious energy functional that should replace Φλ, which is 1

2

∫
R2 |∇hµ|2, is in general

infinite because of the logarithmic behavior of the Green’s kernel in dimension 2. To
remedy this, we introduce a “renormalized” way of computing the energy. We then show
that the entropy argument of [AS] can still adapted to that energy, so that all the results
of [AS] and those of the present paper are valid for that infinite-plane model as well. In
the case of positive measures, this retrieves solutions of (1.9).
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The paper is organized as follows: in Section 2 we investigate potential distances on
signed measures, give counter-examples for W2 and present several alternative costs that
we use later.

In Section 3 we present the time-stepping discrete minimization (or “minimizing move-
ment”) scheme and derive the Euler-Lagrange equation satisfied by discrete minimizers.

In Section 4 we prove the same entropy result as in [AS], in the signed case, ensuring
that Lp regularity is preserved along the discrete flow, and that the product µ∇hµ makes
sense.

In Section 5 we pass to the limit in the discrete minimizers, and obtain the limit
evolution equation.

In Section 6 we examine the model (1.9), introduce the renormalized formulation of
the energy, and discuss how to adapt our methods to that case.

Acknowledgments: L. Ambrosio and E. Mainini are supported by a MIUR PRIN2006
grant. S. Serfaty is supported by an EURYI award of the European Science Foundation.

2 Transport cost for signed measures

When trying to generalize the theory of Wasserstein gradient flows to signed measures, as
we mentioned a first difficulty arises at the theoretical point of view: there is no standard
definition of p-Wasserstein distance on signed measures. Moreover, we do not know how
to rephrase the characterization of absolutely continuous curves in the space of measures
by means of continuity equations given in [AGS].

On the other hand, we can take advantage of the flexibility of the minimizing move-
ments approach. Indeed, the minimization problem

min
ν∈X

φ(ν) +
1

2τ
d2(ν, µ), µ ∈ X (2.1)

makes sense in any metric space X, d being the corresponding distance, where φ : X → R.
On top of that, it is not strictly needed for the functional d appearing in (2.1) to be a
distance. In fact, often the important thing is its behavior on small scales, when ν ∼ µ.
As in the seminal paper [ATW], one could also use a non triangular or non symmetric
object. Actually, we are going to make use of a functional d which, though not a distance,
is bounded from below by a distance.

We begin with the definition of the ambient space. Let M(Ω) denote the set of
bounded Radon measures over Ω. We endow M(Ω) with the standard weak (or narrow)
convergence, given by the duality with continuous and bounded functions. Let us define
the following measure subset of M(Ω).

Mκ, M(Ω) := {µ ∈M(Ω) : µ(Ω) = κ, |µ|(Ω) ≤M}, (2.2)
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where κ ∈ R.
In the sequel we will often make use of the Hahn decomposition for a real measure

µ, identifying its positive and negative parts, so that µ = µ+ − µ−, where µ+ and µ−

are two positive measures. This decomposition is minimal in the sense that, for any
other pair of positive measures σ1, σ2 such that σ1 − σ2 = µ, there hold µ+ ≤ σ1 and
µ− ≤ σ2. Moreover, if µ is a positive measure, we will say that µ0 is a submeasure of µ if
µ0(A) ≤ µ(A) for any µ-measurable set A.

A way which seems at first glance natural for defining a 2-Wasserstein distance in
Mκ, M(Ω) is the following.

2.1 First cost

Let µ, ν ∈Mκ,M(Ω). Define

W2(µ, ν) := W2(µ
+ + ν−, ν+ + µ−), (2.3)

where W2 is as in (1.4) (but naturally extended from probability measures to nonnegative
measures with a fixed total mass, possibly different from 1). It is immediate to check
that, if µ and ν are nonnegative, W2 reduces to the Wasserstein distance between positive
measures of a given mass κ on Ω. The functional W2 accounts for the cost of transporting
signed measures, and some heuristics on its behavior are worthy. We notice that, when
transporting a signed measure µ, its positive and negative masses may change (only

∫
µ

is fixed, as in (2.2)). So, in order to connect µ to ν, it may be convenient to transport
some part of µ+ onto µ−, this correspond to auto-annihilation of mass. On the other
hand, if the total variation of ν is larger than that of µ, one expects that, in the transport
given by W2, a nonzero part will come from moving some part of ν− to ν+. From the
dynamic point of view, this corresponds to some fake zero charge mass which is created
and separated into positive and negative mass, while being transported at a certain cost.

Remark 2.1 This framework fits the physical problem we are investigating, since we
expect that vortices with opposite degrees can interact like dipoles and cancel each other.
Also it is in principle possible that dipoles be created ex-nihilo.

Although it is immediate to verify that W2 is symmetric and vanishes if and only
if µ = ν, W2 is not a distance. Indeed, the following example shows that the triangle
inequality fails. On the real line, let µ = δ0, ν = δ4 and η = δ1 − δ2 + δ3. Clearly
W2(µ, ν) = W2(µ, ν) = 4. But the optimal transport plan between µ+ + η− and η+ + µ−

is given by δ0 × δ1 + δ2 × δ3, so that

W2(µ, η) =

√∫
R
|x− y|2 d(δ0 × δ1) +

∫
R
|x− y|2 d(δ2 × δ3) =

√
2.
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Symmetrically, W2(ν, η) =
√

2, so that

W2(µ, ν) > W2(µ, η) + W2(ν, η).

On the other hand, we notice that if γ ∈ Γ0(µ
+ + ν−, ν+ + µ−) where Γ0 denotes the set

of optimal transport plans, by Hölder inequality we have(∫
Ω×Ω

|x− y|2 dγ
)1/2

≥
√

1

2M

∫
Ω×Ω

|x− y| dγ, (2.4)

but

W1(µ, ν) := W1(µ
+ + ν−, ν+ + µ−) = inf

γ∈Γ(µ++ν−, ν++µ−)

∫
Ω×Ω

|x− y| dγ (2.5)

is indeed a distance between signed measures. This can be seen by the well-known Kan-
torovich duality formula, that gives (see for example [Vi1])

W1(µ
+ + ν−, ν+ + µ−) = sup

ϕ∈Lip(Ω),‖ϕ‖Lip≤1

∫
Ω

ϕd(µ− ν). (2.6)

Clearly, by looking at the right hand side, we have a distance. Notice in addition that W1

is not sensitive to the addition of equal masses in the source and in the target (a feature
typical of 1-distances), since (2.6) readily gives

W1(µ, ν) = W1(µ+ σ, ν + σ), ∀σ ∈M(R2). (2.7)

It is worth analyzing some other features of W2. In the next proposition we see that
W2 “metrizes” the weak topology of Mκ, M(Ω).

Proposition 2.2 Let µn, µ belong to Mκ, M(Ω). Then µn ⇀ µ if and only if W2(µn, µ) →
0.

Proof. Assume that µn ⇀ µ. Since µ+
n (Ω) ≤ M and µ−n (Ω) ≤ M , by tightness there

exists a subsequence (nk) such that µ+
nk
⇀ σ+ and µ−nk

⇀ σ−, with σ+ − σ− = µ. By
continuity of the Wasserstein distance, for each limit point we have W2(µ

+
n + µ−, µ+ +

µ−n ) → W2(σ
+ + µ−, µ+ + σ−) = 0.

Assume that W2(µn, µ) → 0, that is W2(µ
+
n + µ−, µ+ + µ−n ) → 0. Since W2 metrizes

the weak convergence, there exists a positive measure ϑ such that µ+
n + µ− ⇀ ϑ and

µ−n + µ+ ⇀ ϑ, hence µ+
n − µ−n ⇀ µ+ − µ− = µ. �

We have seen that W2 is not a distance. With a similar simple construction, it is
possible to see that the map ν 7→ W2(ν, µ) is not weakly l.s.c. in Mκ, M(Ω). For instance,
let µ = δ−1−δ1 and νn = δ−1/n−δ1/n, so that νn ⇀ ν = 0. Clearly W2(ν

++µ−, µ++ν−) =

W2(µ
−, µ+) = 2. But, as n→∞, lim inf W2(ν

+
n + µ−, µ+ + ν−n ) = lim inf

√
2(n− 1)/n =
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√
2. The point is that if νn ⇀ ν in Mκ, M(Ω), then (ν+

n ) and (ν−n ) are tight, but the
limits are not in general ν+ and ν− (in the example above, they are not zero). In order
to overcome this problem, we can consider a kind of relaxation of W2. More details are
given in the proceedings paper [M2].

In order to deal with optimal transport plans between signed measures, consider par-
titions of the positive and negative parts of ν and µ of the form

µ+
0 + µ+

1 = µ+, µ−0 + µ−1 = µ−,

ν+
0 + ν+

1 = ν+, ν−0 + ν−1 = ν−,
(2.8)

where all the terms are positive measures. Some compatibility conditions have to be taken
into account, and precisely

ν+
0 (Ω) = µ+

0 (Ω), µ−0 (Ω) = ν−0 (Ω), µ−1 (Ω) = µ+
1 (Ω), ν+

1 (Ω) = ν−1 (Ω). (2.9)

µ+
0 and µ−0 correspond to the parts that will move to ν+

0 , ν−0 respectively and µ+
1 , µ−1

(resp. ν+
1 , ν

−
1 ) to the self-cancelling parts.

Of course there are many partitions of this kind. Moreover, we have the following

Lemma 2.3 (Splitting of the optimal plan) Let γ ∈ Γ0(ν
+ + µ−, µ+ + ν−). Then

there exists a partition of the form (2.8)-(2.9) such that γ can be written as the sum of
four plans γ+

+ , γ−− , γ+
− , γ−+ satisfying

γ+
+ ∈ Γ0(ν

+
0 , µ

+
0 ), γ−− ∈ Γ0(µ

−
0 , ν

−
0 ),

γ+
− ∈ Γ0(µ

−
1 , µ

+
1 ), γ−+ ∈ Γ0(ν

+
1 , ν

−
1 ).

(2.10)

Proof. Let ϑ1 = ν+ + µ− and ϑ2 = µ+ + ν−. It is clear that ν+ and µ− are both
absolutely continuous with respect to ϑ1. Let f1, g1 ∈ L1(R2, ϑ1) denote the respective
densities. Similarly, let f2, g2 be the densities of ν− and µ+ with respect to ϑ2, so that

ν+ = f1ϑ1, µ− = g1ϑ1, µ+ = g2ϑ2, ν− = f2ϑ2.

Clearly f1 + g1 = f2 + g2 = 1, so that we can write

γ = (f1 ◦π1)(g2 ◦π2)γ+(f1 ◦π1)(f2 ◦π2)γ+(g1 ◦π1)(g2 ◦π2)γ+(g1 ◦π1)(f2 ◦π2)γ. (2.11)

Notice that

π1
# ((f1 ◦ π1)(g2 ◦ π2)γ) = f1 π

1
# ((g2 ◦ π2)γ) ≤ f1 π

1
#γ = f1ϑ1 = ν+,

π2
# ((f1 ◦ π1)(g2 ◦ π2)γ) = g2 π

2
# ((f1 ◦ π1)γ) ≤ g2 π

2
#γ = g2ϑ2 = µ+.

Moreover,

π1
#((f1◦π1)(g2◦π2)γ)+π1

#((f1◦π1)(f2◦π2)γ) = f1 π
1
#((g2◦π2 +f2◦π2)γ) = f1 π

1
#γ = ν+.

With the analogous computations for the other terms in the right hand side of (2.11),
we see that the marginals of the four plans therein are submeasures of ν+, µ−, µ+, ν−

satisfying (2.8)-(2.9). Hence, in (2.11) γ is written as the sum of four plans on a partition
of the desired form. Moreover, each of these plans is optimal, since their sum is. �
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2.2 Second cost

In order to deal with a sequence of measures with decreasing total mass, we introduce the
following simplified version of W2. Let µ, ν ∈Mκ, M(Ω) with |ν|(Ω) ≤ |µ|(Ω). Define

W2
2 (ν, µ) = inf

νn → ν
ν+
n (Ω)=µ+(Ω)

ν−n (Ω)=µ−(Ω)

{
lim inf
n→∞

(
W 2

2 (ν+
n , µ

+) +W 2
2 (ν−n , µ

−)
)}

, (2.12)

This way, we see that we may cancel mass only between µ+ and µ−. This will correspond
to the fact that in the evolution we allow for mass cancellation, but not for mass creation.

By its very definition, the map ν 7→ W2
2 (ν, µ) is lower semicontinuous. Moreover, since

any weak limit point of ν+
n , ν−n is a couple σ+, σ− satisfying σ+ − σ− = ν, W2

2 (ν, µ) can
also be written as

inf
σ+ − σ− = ν

σ+(Ω)=µ+(Ω)

σ−(Ω)=µ−(Ω)

{
W 2

2 (σ+, µ+) +W 2
2 (σ−, µ−)

}
. (2.13)

Tightness and semicontinuity of the standard Wasserstein distance show that there exists
an optimal couple ϑ+, ϑ− such that

W2
2 (ν, µ) = W 2

2 (ϑ+, µ+) +W 2
2 (ϑ−, µ−), (2.14)

where ϑ+ − ϑ− = ν.
W2 is not symmetric. But symmetry is not a key point, since we are going to compute

the costs corresponding to subsequent timesteps: an evolution problem has a natural
time direction. To connect this definition with the previous ones, we can easily show the
following

Proposition 2.4 Let µ, ν ∈Mκ, M(Ω) and |ν|(Ω) ≤ |µ|(Ω). Then

W2(ν, µ) ≥
√

1

2M
W1(µ, ν). (2.15)

Proof. Let ϑ1, ϑ2 be the optimal couple for W2, so that the infimum in (2.13) is attained.
Let γ1 ∈ Γ0(µ

+, ϑ+), γ2 ∈ Γ0(µ
−, ϑ−). Then (γ2)−1 ∈ Γ0(ϑ

−, µ−) and γ1 + (γ2)−1 ∈
Γ(µ+ + ϑ−, ϑ+ + µ−). Hence

W2
2 (µ, ν) = W 2

2 (µ+, ϑ+) +W 2
2 (µ−, ϑ−) =

∫
Ω×Ω

|x− y|2 d(γ1 + γ2)(x, y)

=

∫
Ω×Ω

|x− y|2 d(γ1 + (γ2)−1)(x, y)

≥ W 2
2 (µ+ + ϑ−, ϑ+ + µ−).

Exploiting (2.4) and (2.7) we get the thesis. �
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Notation 2.5 We let ϑ1 denote the common part of ϑ+ and ϑ−, so that ϑ+ = ν+ + ϑ1

and ϑ− = ν− + ϑ1. Moreover, we let γ+ ∈ Γ0(ϑ
+, µ+) and γ− ∈ Γ0(ϑ

−, µ−) be the two
optimal transport plans corresponding to W2. Thanks to (a simplified version of) Lemma
2.3, we can write these plans as

γ+ = γ+
0 + γ+

1 and γ− = γ−0 + γ−1

where

γ+
0 ∈ Γ0(ν

+, µ+
0 ), γ+

1 ∈ Γ0(ϑ1, µ
+
1 ), γ−0 ∈ Γ0(ν

−, µ−0 ), γ−1 ∈ Γ0(ϑ1, µ
−
1 ), (2.16)

and µ+
0 + µ+

1 = µ+ and µ−0 + µ−1 = µ−.

3 Fine characterization of discrete minimizers

The functional we are going to analyze is (1.5), defined on signed measures. Notice that
Φ0 is weakly lower semicontinuous, as shown in [AS]. As a consequence, the full Φλ is
still lower semicontinuous, since µ 7→ |µ|(Ω) is. Moreover, Proposition 2.1 of [AS] works
in the same way also in this case, giving the representation formula

Φλ(µ) =
1

2
(λ|µ|(Ω) + |Ω|) + sup

h−1∈H1
0 (Ω)

{∫
Ω

(h− 1) dµ− 1

2

∫
Ω

|∇h|2 + |h|2
}
, (3.1)

the supremum being attained at h = hµ. By means of (3.1), we deduce some standard
inequalities, as discussed in [AS]: for any couple of real measures µ, ν there holds

Φλ(µ)− Φλ(ν) ≥
λ

2
|µ|(Ω)− λ

2
|ν|(Ω) +

∫
Ω

(hν − 1) d(µ− ν). (3.2)

On the other hand,

Φ0(µ)− Φ0(ν) = ν(Ω)− µ(Ω) +
1

2

∫
Ω

(hµ + hν) d(µ− ν). (3.3)

We are concerned with the discrete timestepping minimization problem: given µ ∈
Mκ, M(Ω), solve

min
ν∈Mκ, M (Ω), |ν|(Ω)≤|µ|(Ω)

Φλ(ν) +
1

2τ
W2

2 (ν, µ). (3.4)

In the sequel, given any signed measure µ ∈Mκ, M(Ω), we denote by µ̂ its restriction
to Ω (i.e. µ̂ = χΩµ) and by µ̃ its restriction to ∂Ω, so that we have the orthogonal
decomposition µ = µ̂+ µ̃.
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In order to derive an Euler-Lagrange equation, as in [AS], we introduce a perturbed,
regularized functional. Let

Φδ
λ(ν) = Φλ(ν̂) + δ

∫
Ω

|ν̂|4 (3.5)

if ν̂ � L2 and +∞ otherwise. We have the following result:

Lemma 3.1 The perturbed minimization problem

min
ν∈Mκ, M (Ω), |ν|(Ω)≤|µ|(Ω)

Φδ
λ(ν) +

1

2τ
W2

2 (ν, µ) (3.6)

has a solution µδ
τ , the family µδ

τ has limit points both for the strong H−1 topology and the
M(Ω) weak topology, δ

∫
Ω
(µ̂δ

τ )
4 → 0 as δ → 0, and any limit point µτ as δ → 0 solves

(3.4).

Proof. The existence of µδ
τ is given by the direct method, as for the existence of µτ ,

using the crucial fact that W2(·, µ) is lower semi-continuous. Let Mδ be the minimum in
(3.6) and let M be the minimum of the functional in (3.4). It is clear that Mδ ≥ M ; on
the other hand, Φδ

λ → Φλ as δ → 0 at any admissible point ν such that ν̂ ∈ L4(Ω). Thus

lim sup
δ↓0

Mδ ≤ Φλ(ν) +
1

2τ
W2

2 (ν, µ)

for all ν in Mκ, M(Ω) such that |ν|(Ω) ≤ |µ|(Ω) and ν̂ ∈ L4(Ω). By density we obtain
lim supδ Mδ ≤M , therefore Mδ →M as δ → 0.

If µτ is a weak limit point of µδ
τ along some sequence δi → 0, the lower semicontinuity

of Φλ gives, since Φδi
λ ≥ Φλ for any i,

Φλ(µτ ) +
1

2τ
W2

2 (µτ , µ) ≤ lim inf
i→∞

Φλ(µ
δi
τ ) +

1

2τ
W2

2 (µδi
τ , µ) ≤ lim inf

i→∞
Mδi

= M,

therefore µτ is a solution of (3.4). As a consequence

lim
i→∞

Φλ(µ
δi
τ ) + δi

∫
Ω

|µ̂δi
τ |4 +

1

2τ
W2

2 (µδi
τ , µ) = Φλ(µτ ) +

1

2τ
W2

2 (µτ , µ).

By the lower semicontinuity of Φλ and ν 7→ W2
2 (ν, µ) it follows that Φλ(µ

δi
τ ) → Φλ(µτ ),

W2
2 (µδi

τ , µ) → W2
2 (µτ , µ) and δi

∫
Ω
(µ̂δi

τ )4 → 0. Now, since Φλ(ν) is itself the sum of two
lower semicontinuous terms, namely Φ0(ν) and λ|ν|(Ω)/2, we obtain

lim
i→∞

λ|µδi
τ |(Ω) = λ|µτ |(Ω) and lim

i→∞

∫
Ω

|∇h
µ

δi
τ
|2 + (h

µ
δi
τ
− 1)2 =

∫
Ω

|∇hµτ |2 + (hµτ − 1)2.

In particular µ̂δi
τ → µ̂τ strongly in H−1(Ω). �
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Next we derive an Euler equation for problem (3.6), which will give a characterization
of the discrete velocity of the scheme. It is useful to begin with the analysis of the
corresponding minimization problem on the whole plane. This way, we can deal with
competitors of the form t#ν, which can have some mass outside Ω.

Lemma 3.2 Any minimizer ν of

min

{
Φδ

λ(ν) +
1

2τ
W2

2 (ν, µ) : ν ∈Mκ, M(R2), |ν|(R2) ≤ |µ|(Ω),

∫
R2

|x|2 d|ν| < +∞
}
(3.7)

satisfies

−3δ∇((ν̂)4)−∇hν ν̂ =
1

τ
π1

#(χΩ(x)(x− y)γ+
0 ) +

1

τ
π1

#(χΩ(x)(x− y)γ−0 ) in D′(R2), (3.8)

where γ+
0 and γ−0 are the optimal transport plans from ν to µ given by splitting, with the

notation of (2.16): γ+
0 ∈ Γ0(ν

+, µ+
0 ) and γ−0 ∈ Γ0(ν

−, µ−0 ), where µ+
0 and µ−0 are suitable

submeasures of µ+ and µ− respectively.

Proof.
We perform a variation of the internal part of the optimal measure ν along a smooth

vector field ξ : R2 → R2.
Let ϑ+, ϑ− be the optimal couple for W2(ν, µ), such that (2.14) holds. If γ+ ∈

Γ0(ϑ
+, µ+) and γ− ∈ Γ0(ϑ

−, µ−), we can consider a splitting as (2.16). Accordingly, ϑ1

denotes the common part of ϑ+ and ϑ− so ϑ+ = ν+ + ϑ1, ϑ
− = ν− + ϑ1 and

W2
2 (ν, µ) =

∫
Ω×Ω

|x− y|2 d(γ+
0 + γ−0 + γ+

1 + γ−1 )(x, y). (3.9)

Let
νε = ν̃ + (I + εξ)#ν̂ (3.10)

and
Ωε = {x ∈ Ω : x+ εξ(x) ∈ Ω}. (3.11)

For small ε, I+ εξ is injective, and it is clear that νε(R2) = ν(R2) and |νε|(R2) = |ν|(R2).
Let moreover

γ+
ε = (I + εξ, I)#(χΩ×Ωγ

+
0 ) + χ∂Ω×Ωγ

+
0 + γ+

1

γ−ε = (I + εξ, I)#(χΩ×Ωγ
−
0 ) + χ∂Ω×Ωγ

−
0 + γ−1 .

(3.12)

We have

W2
2 (νε, µ) ≤ W 2

2 (ϑ̃+ + ϑ̂1 + (I + εξ)#ν̂
+, µ+) +W 2

2 (ϑ̃− + ϑ̂1 + (I + εξ)#ν̂
−, µ−),

but it is clear from (3.12) that

γ+
ε ∈ Γ(ϑ̃+ + ϑ̂1 + (I + εξ)#ν̂

+, µ+) and γ−ε ∈ Γ(ϑ̃− + ϑ̂1 + (I + εξ)#ν̂
−, µ−),
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hence

W2
2 (νε, µ) ≤

∫
Ω×Ω

|x− y|2 d(γ+
ε + γ−ε ).

We write the last integral as∫
Ω×Ω

|x− y|2 d(γ+
ε + γ−ε ) =

∫
Ω×Ω

|x+ εξ(x)− y|2 dγ+
0 +

∫
∂Ω×Ω

|x− y|2 dγ+
0

+

∫
Ω×Ω

|x+ εξ(x)− y|2 dγ−0 +

∫
∂Ω×Ω

|x− y|2 dγ−0

+

∫
Ω×Ω

|x− y|2 d(γ+
1 + γ−1 )

=

∫
Ω×Ω

|x− y|2 dγ+
0 + 2ε

∫
Ω×Ω

ξ(x) · (x− y) dγ+
0

+

∫
Ω×Ω

|x− y|2 dγ−0 + 2ε

∫
Ω×Ω

ξ(x) · (x− y) dγ−0 + o(ε)

+

∫
Ω×Ω

|x− y|2 d(γ+
1 + γ−1 ).

Then, recalling also (3.9), we find

W2
2 (νε, µ)−W2

2 (ν, µ) ≤ 2ε

∫
Ω×Ω

ξ(x)·(x−y) dγ+
0 +2ε

∫
Ω×Ω

ξ(x)·(x−y) dγ−0 +o(ε). (3.13)

So we obtain

lim sup
ε→0

(W2
2 (νε, µ)−W2

2 (ν, µ))

2ε
≤
∫

Ω

ξ(z) · d
[
π1

#

(
χΩ(x)(x− y)(γ+

0 + γ−0 )
)]

(z). (3.14)

For the derivative of Φδ
λ(νε), we take advantage of the L4(Ω) convergence of ν̂ε to ν̂ as

ε → 0, which gives the W 2,4(Ω) convergence of hνε to hν and, by smoothness of ∂Ω,
the C1(Ω) convergence as well. We begin by making use of the equality (3.3) about the
functional Φ0:

Φ0(νε)− Φ0(ν)

=ν(Ω)− νε(Ω) +
1

2

∫
Ω

(hνε + hν)(νε − ν)

=ν(Ω)− νε(Ω) +
1

2

∫
Ωε

(hνε ◦ (I + εξ) + hν ◦ (I + εξ)) dν − 1

2

∫
Ω

(hνε + hν) dν

=ν(Ω)− νε(Ω) +
1

2

∫
Ω

(hνε ◦ (I + εξ)− hνε + hν ◦ (I + εξ)− hν) dν̂

− 1

2

∫
Ω\Ωε

(hνε ◦ (I + εξ) + hν ◦ (I + εξ)) dν.
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But the C1(Ω) regularity, the fact that hν = 1 on ∂Ω yields∫
Ω\Ωε

(hνε◦(I+εξ)+hν◦(I+εξ)) dν = 2ν(Ω\Ωε)+O(ε)ν̂(Ω\Ωε) = 2 (ν(Ω)− νε(Ω))+o(ε),

using ν̂ ∈ L4. As a consequence

Φ0(νε)− Φ0(ν) = ε

∫
Ω

∇hν · ξ dν̂ + o(ε).

Since |νε|(Ω) ≤ |ν|(Ω) we also have

Φλ(νε)− Φλ(ν) ≤ ε

∫
Ω

∇hν · ξ dν̂ + o(ε). (3.15)

For the regularizing term, we make use of the change of variables formula for the push
forward (see for instance [AGS, Section 5.5]). Since det(J(I + εξ)) = 1 + ε∇ · ξ + o(ε),
we get

δ

ε

[∫
Ω

|ν̂ε|4 −
∫

Ω

|ν̂|4
]

=
δ

ε

[∫
Ωε

ν̂4

det3(J(I + εξ))
−
∫

Ω

ν̂4

]
≤ −3δ

∫
Ω

ν̂4∇ · ξ + o(1). (3.16)

As in the proof of [AS, Proposition 5.1], we combine (3.14), (3.15) and (3.16). By the
minimality of ν, and considering that we can change the sign of the arbitrary vector ξ,
we find the equality

−3δ

∫
Ω

ν̂4∇ · ξ +

∫
Ω

∇hν · ξ dν +
1

τ

∫
Ω

ξ · d
[
π1

#

(
χΩ(x)(x− y)(γ+

0 + γ−0 )
)]

=0,

for any ξ ∈ C∞
c (R2; R2). The result follows. �

Corollary 3.3 Let ν ∈Mκ, M(Ω) be a minimizer of (3.6). Then (3.8) holds.

Proof. Let νP be the minimizer of (3.7). Since any element of Mκ, M(Ω) is admissible
for this problem, there holds

Φδ
λ(νP ) +

1

2τ
W2

2 (νP , µ) ≤ Φδ
λ(σ) +

1

2τ
(σ, µ) ∀σ ∈Mκ, M(Ω). (3.17)

Let ϑ+
P and ϑ−P be the optimal couple corresponding to νP , such that the infimum in the

definition of W2 is attained and W2
2 (νP , µ) = W 2

2 (ϑ+
P , µ

+) + W 2
2 (ϑ−P , µ

−). Denote by γ+
P

and γ−P the corresponding optimal transport plans. Consider the map Ψ(x, y) = (x, y′),
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where y′ is equal to y if y ∈ Ω, and is equal to the first point on the segment from x to y
hitting ∂Ω otherwise; let θ+ and θ− be the first marginals of Ψ#γ

+
P and Ψ#γ

−
P respectively,

and let ν = θ+ − θ−. It is clear that ν ∈Mκ, M(Ω). We claim that ν is the minimum for
(3.6). For the proof, notice that ν̂ = ν̂P (so that Φδ

λ(νP ) = Φδ
λ(ν)). Moreover

W 2
2 (θ+, µ+) ≤ W 2

2 (θ+
P , µ

+) and W 2
2 (θ−, µ−) ≤ W 2

2 (θ−P , µ
−),

since µ is supported in Ω and the projection decreases distances. Since θ+ − θ− = ν, we
get

W2
2 (ν, µ) ≤ W2

2 (νP , µ).

Combining this information with (3.17), the claim is readily seen to follow. In order
to conclude, it is sufficient to notice that (3.8) depends only on the interior part of the
minimizer. �

4 The entropy argument

One of the key points in this paper consists in showing that the regularity of the initial
datum is kept by the discrete minimizers. This way, we will establish that the analogous
result for positive measures (in [AS]) actually extends to the general real measure frame-
work. For this, we need the regularity of the reference measure µ in (3.6). Hence, in this
section we will let µ = µ̂.

From now on, we will say that ϕ : [0,+∞) → R is an entropy function if it is
nondecreasing, C2 and there holds

xϕ′(x) = ϕ(x) in [0, 1],

2x2ϕ′′(x) ≥ xϕ′(x)− ϕ(x) (McCann [MC] displacement convexity).
(4.1)

Given an entropy ϕ, we let it be extended by oddness to (−∞, 0); we will also consider
an even convex function ψ on R such that ψ′(x) = xϕ′(x)− ϕ(x) for all x ≥ 0.

Lemma 4.1 Let ϕ be an entropy and let µ ∈Mκ, M(Ω) be such that µ = µ̂ ∈ L4(Ω) and∫
Ω
ϕ(|µ̂|) <∞. Then, for any minimizer µδ

τ of (3.6), we have∫
Ω

ϕ(|µ̂δ
τ |) ≤

∫
Ω

ϕ(|µ̂|).

Proof. We know that ν̂ := µ̂δ
τ has L4(Ω) regularity. But in view of the Euler equation

(3.8) we can find even more regularity. In fact, since ν̂ � L2, we know by Brenier’s
theorem that χΩ×Ωγ

+
0 and χΩ×Ωγ

−
0 are plans induced by optimal transport maps r1 and
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r2, which are bounded since Ω is. These maps correspond to the gradients of two convex
Lipschitz functions (defined on R2). Therefore we have r1, r2 ∈ BVloc(R2) ∩ L∞(R2) and

π1
#

(
χΩ(x)(x− y)γ+

0

)
= (I − r1)ν

+

π1
#

(
χΩ(x)(x− y)γ−0

)
= (I − r2)ν

−.

This way (3.8) becomes

−3δ∇((ν̂)4)−∇hν ν̂ =
1

τ
(I − r1)ν

+ +
1

τ
(I − r2)ν

− in D′(R2). (4.2)

Since r1, r2 ∈ L∞(Ω), the right hand side is in L4(Ω). But since ∇hν ∈ C0(Ω), we have
∇hν ν̂ ∈ L4(Ω), so that by comparison in (4.2) we find ν̂4 ∈ W 1,4(Ω), and by Sobolev
embedding ν̂ ∈ C0(Ω). Let us now define

r = r1χ{ν̂>0} + r2χ{ν̂<0}.

Dividing (4.2) by |ν̂|, we obtain that ν̂-a.e. in Ω

3δsgn(ν̂)
∇((ν̂)4)

ν̂
+∇hνsgn(ν̂) =

1

τ
(r1 − I)χ{ν̂>0} +

1

τ
(r2 − I)χ{ν̂<0},

which, by definition of r, corresponds to

3δsgn(ν̂)
∇((ν̂)4)

ν̂
+∇hνsgn(ν̂) =

1

τ
(r − I) ν̂-a.e. (4.3)

Mind that r1 transports ν̂+ to a submeasure of µ+ = µ̂+ ∈ L4(Ω) (and similarly for r2),
so r1#ν̂

+ ≤ µ̂+ and r2#ν̂
− ≤ µ̂−. Since ϕ is nondecreasing on (0,+∞), and since the

relations (4.1) hold, we have (see [AGS, Lemma 10.4.4])∫
R2

ϕ(µ̂+)− ϕ(ν̂+) ≥
∫

R2

ϕ(r1#ν̂
+)− ϕ(ν̂+) ≥ −

∫
R2

ψ′(ν̂+) tr(∇(r1 − I))

and ∫
R2

ϕ(µ̂−)− ϕ(ν̂−) ≥
∫

R2

ϕ(r2#ν̂
−)− ϕ(ν̂−) ≥ −

∫
R2

ψ′(ν̂−) tr(∇(r2 − I)).

We sum the last two inequalities using the fact that ϕ(0) = 0, and deduce∫
R2

ϕ(|µ̂|)− ϕ(|ν̂|) ≥ −
∫

R2

ψ′(ν̂+) tr(∇(r1 − I))−
∫

R2

ψ′(ν̂−) tr(∇(r2 − I)). (4.4)

But, r1 and r2 are gradients of convex functions, so that we have tr(∇(r1 − I)) ≤
div (r1−I) and tr(∇(r2−I)) ≤ div (r2−I) (these divergences are to be understood in the
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distributional sense, and are measures since r1, r2 are BV ). Now consider the quantity
div ((r1 − I)χ{ν̂>0}). Formally by the Volpert formula for BV functions (see [AFP]) we
have

div ((r1 − I)χ{ν̂>0}) = div (r1 − I)χ{ν̂>0} + 〈r1 − I, n{ν̂=0}〉 dH1x({ν̂ = 0}), (4.5)

where n denotes the normal. The computation is formal because the level set {ν̂ = 0}
need not be H1-rectifiable. But for almost any ε > 0 the boundaries of the sublevels
{|ν̂| < ε} are, by the BV regularity of ν̂. Since we are dealing with integrals of the form∫

∂{|ν̂|<ε}
ψ′(ν̂) dH1 = 0,

where ψ′ vanishes in a whole interval containing 0, we can take ε small enough and use
the formula above. As a consequence,∫

R2

ψ′(ν̂+)div ((r1 − I)χ{ν̂>0}) =

∫
R2

ψ′(ν̂+)div (r1 − I)χ{ν̂>0}.

The same holds for ν̂− on {ν̂ < 0}. This way, from (4.4) we deduce∫
R2

ϕ(|µ̂|)− ϕ(|ν̂|) ≥ −
∫

R2

ψ′(ν̂+) tr(∇(r1 − I))−
∫

R2

ψ′(ν̂−) tr(∇(r2 − I))

≥ −
∫
{ν̂>0}

ψ′(|ν̂|)div (r1 − I)−
∫
{ν̂<0}

ψ′(|ν̂|)div (r2 − I)

= −
∫

R2

ψ′(|ν̂|)div ((r1 − I)χ{ν̂>0})−
∫

R2

ψ′(|ν̂|)div ((r2 − I)χ{ν̂<0})

= −
∫

R2

ψ′(|ν̂|)div (r − I)

= −
∫

Ω

ψ′(|ν̂|)div (r − I).

We make use of (4.3) to estimate the last integral, that is, by means of (4.3) (valid ν̂-a.e.
and since ψ′ = 0 in a neighborhood of 0), from the latter inequality we have∫

R2

ϕ(|µ̂|)− ϕ(|ν̂|) ≥ −τ
∫

Ω

ψ′(|ν̂|)div

[
3δsgn(ν̂)

∇((ν̂)4)

ν̂
+ sgn(ν̂)∇hν

]
. (4.6)

Since ψ′ is odd and ν̂ vanishes on R2\Ω, arguing as above (using Volpert’s formula and
ψ′ = 0 in [−1, 1]), we find∫

Ω

ψ′(|ν̂|)div (sgn(ν̂)∇hν) =

∫
Ω

ψ′(ν̂)∆hν .
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Moreover, by convexity of ψ we obtain∫
Ω

ψ′(|ν̂|)div (sgn(ν̂)∇hν) =

∫
Ω

ψ′(ν̂)(hν − ν̂) ≤
∫

Ω

ψ(hν)− ψ(ν̂). (4.7)

Now consider the equation −∆hν +hν = ν in Ω. Multiplying it by ψ′(hν), and integrating
by parts yields ∫

Ω

ψ′′(hν)|∇hν |2 + ψ′(hν)(hν − ν̂) = 0,

where we used ψ′(hν) = ψ′(1) = 0 on ∂Ω by continuity of ψ′; so, with the convexity of ψ
on R, we obtain ∫

Ω

ψ′′(hν)|∇hν |2 ≤
∫

Ω

ψ(ν̂)− ψ(hν).

Inserting this inequality into (4.7) we get∫
Ω

ψ′(|ν̂|)div (sgn(ν̂)∇hν) ≤ −
∫

Ω

ψ′′(hν)|∇hν |2. (4.8)

On the other hand, the same type of argument also yields∫
Ω

ψ′(|ν̂|)div

(
sgn(ν̂)

∇ν̂4

ν̂

)
=

∫
Ω

ψ′(|ν̂|)div

(
∇ν̂4

|ν̂|

)
= −

∫
Ω

∇ψ′(|ν̂|) · ∇ν̂
4

|ν̂|

= −
∫

Ω

g′(ν̂4)
|∇ν̂4|2

|ν̂|
,

where g(x) = ψ′(x1/4) (hence g′ ≥ 0), and so∫
Ω

ψ′(|ν̂|)div

(
sgn(ν̂)

∇ν̂4

ν̂

)
≤ 0. (4.9)

Inserting (4.8) and (4.9) into (4.6), we find∫
Ω

ϕ(|µ̂|)− ϕ(|ν̂|) ≥ τ

∫
Ω

ψ′′(hν)|∇hν |2. (4.10)

Since ψ′′ ≥ 0 (by convexity of ψ) we conclude. �

Corollary 4.2 Let µ = µ̂ ∈ Lp(Ω), p ≥ 4. Then there exists a minimizer µτ of (3.4)
such that µ̂τ ∈ Lp(Ω). In particular there holds∫

Ω

ϕ(|µ̂τ |) ≤
∫

Ω

ϕ(|µ̂|) < +∞

for suitable entropies ϕ, enjoying a p-growth at infinity.
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Proof. Let us consider a p-growing entropy:

ϕ(x) :=

 x for 0 ≤ x ≤ 1,

xp + (p− 1)

(
1 + (p− 1)x− 1

2
p(1 + x2)

)
for x > 1,

(4.11)

extended by oddness to (−∞, 0) (one may check it is indeed C2). By Lemma 4.1, we have∫
Ω

ϕ(|µ̂δ
τ |) ≤

∫
Ω

ϕ(|µ̂|).

On the other hand, by Lemma 3.1 we know we have a limit point µτ of µδ
τ , as δ → 0,

which minimizes (3.4). But the above inequality gives weak compactness in Lp(Ω) for the
sequence (µ̂δ

τ ). The weak lower semicontinuity in Lp(Ω) of ν 7→
∫

Ω
ϕ(|ν|) (which holds

because ϕ, being an entropy, is convex) allows to conclude. �

The limiting case as p ↑ ∞ of the previous corollary gives:

Corollary 4.3 Let µ = µ̂ ∈ L∞(Ω) and K = max{1, ‖µ̂‖∞}. There exists a minimizer
µτ of (3.4) such that

‖µ̂τ‖∞ ≤ K, |hµτ | ≤ K. (4.12)

Proof. Since K ≥ 1 we can construct a sequence (ϕn) of p-growing entropies converging
monotonically on R+ to

ϕ̃(x) :=

{
x for 0 ≤ x ≤ K
+∞ for x > K.

(4.13)

Let also ψn be such that ψ′n(x) = xϕ′n(x) − ϕn(x), with ψ′′n converging monotonically to
+∞ if |x| > K. By (4.10) we have∫

Ω

ϕn(|µ̂δ
τ |) + τ

∫
Ω

ψ′′n(hµδ
τ
)|∇hµδ

τ
|2 ≤

∫
Ω

ϕn(|µ̂|).

Now we apply Lemma 3.1 to obtain a limit point µτ of µδ
τ , as δ → 0, such that µτ is a

minimizer of (3.4). Then, the weak lower semicontinuity of |µ| 7→
∫

Ω
ϕn(|µ|) in Lp, the

continuity of ψ′′n and the convergence of hµδ
τ

yield∫
Ω

ϕn(|µ̂τ |) + τ

∫
Ω

ψ′′n(hµτ )|∇hµτ |2 ≤
∫

Ω

ϕn(|µ̂|) ≤
∫

Ω

ϕ̃(|µ̂|).

From the convergence properties of ϕn and ψn we get |µ̂τ | ≤ K a.e. in Ω and |hµτ | ≤ K.
�
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Finally, the Lp regularity of a minimizer enables us to use the first variation argument
used for the perturbed problem. We are led to:

Lemma 4.4 Let p ≥ 4 and µ = µ̂ ∈ Lp(Ω). There exists a minimizer µτ of (3.4)
satisfying

−∇hµτ µ̂τ =
1

τ
π1

#(χΩ(x)(x− y)γ+
0 ) +

1

τ
π1

#(χΩ(x)(x− y)γ−0 ) in D′(R2), (4.14)

where γ+
0 ∈ Γ0(µ

+
τ , µ

+
0 ) and γ−0 ∈ Γ0(µ

−
τ , µ

−
0 ), with respect to Notation 2.5.

Proof. By the previous corollaries we know that (3.4) possesses a minimizer with L4(Ω)
interior part. Then, we can perform the same variational argument in Lemma 3.2 (with
some simplifications, since the term δ

∫
µ̂4 dx is now absent) and Corollary 3.3 to deduce

(4.14). �

5 Back to the continuous model

Let us fix the initial datum µ0 ∈ Mκ, M(Ω) ∩ H−1(Ω) and let µ0
τ = µ0. We define a

sequence of discrete solutions µk
τ . At each step, we minimize starting from the interior

part of the previous point, and then we simply add its boundary part. This way, more
and more mass is accumulated on the boundary at each step, and never returns to the
interior of the domain. This is reminiscent of the analysis of [AS], in the framework of
probability measures. Indeed, in such context it is proven that no mass enters from the
boundary, by means of energy comparison. So, the recursive scheme will be the following.
Given a time step τ > 0 and µk

τ ∈ Mκ, M(Ω), define νk+1
τ as a minimizer of the discrete

problem

min
ν∈Mκ′, M (Ω), |ν|(Ω)≤|µ̂k

τ |(Ω)
Φλ(ν) +

1

2τ
W2

2 (ν, µ̂k
τ ), k ∈ N, (5.1)

where κ′ = µ̂k
τ (Ω). Since we minimize starting from the internal part of µk

τ , we can choose
νk+1

τ satisfying the regularity properties obtained by virtue of the entropy argument in
the previous section. Then we let

Mκ, M(Ω) 3 µk+1
τ = νk+1

τ + µ̃k
τ , k ∈ N. (5.2)

Also, we define the piecewise constant interpolation µτ (t) := µ
dt/τe
τ for any t ≥ 0. The

following result shows that a minimizing movement does exist, as the pointwise limit of
µτ (t).

Proposition 5.1 (Existence of a limit curve) There exists an infinitesimal sequence
(τn) such that µτn

(t) converge to some µ(t) ∈Mκ, M(Ω), weakly in the sense of measures,
for any t ≥ 0. Furthermore, |µ̂| is uniformly bounded in L4(Ω) if the internal part of µ0

belongs to L4(Ω).
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Proof. Since νk+1
τ is a minimizer of the one-step minimization starting from µ̂k

τ , we have,
for any k,

W2
2 (νk+1

τ , µ̂k
τ ) ≤ 2τΦλ(µ̂

k
τ )− 2τΦλ(ν

k+1
τ ).

Since µ̂k+1
τ = ν̂k+1

τ , and since Φλ depends only on the interior part of measures, we find

W2
2 (νk+1

τ , µ̂k
τ ) ≤ 2τΦλ(µ̂

k
τ )− 2τΦλ(µ̂

k+1
τ ). (5.3)

Let us insert (2.15) and take (2.7) into account, so

W2
1(µ

k+1
τ , µk

τ ) = W2
1(ν

k+1
τ , µ̂k

τ ) ≤ 4Mτ
(
Φλ(µ̂

k
τ )− Φλ(µ̂

k+1
τ )

)
. (5.4)

Of course this also implies

Φλ(µ
k
τ ) ≤ Φλ(µ

0), ∀k > 0. (5.5)

Let t ∈ (k1τ, (k1 + 1)τ ] and s ∈ (k2τ, (k2 + 1)τ ], for some k1, k2 > 0, with k2 > k1. Using
the interpolation of minimizers µτ (t), summing the relations (5.4) and making use of the
triangle inequality (mind that W1 is a distance), along with (5.5) and the positiveness of
Φλ, we have

W2
1(µ̄τ (t), µ̄τ (s)) = W2

1(µ
k1+1
τ , µk2+1

τ ) ≤ (k2 − k1)

k2∑
k=k1+1

W2
1(µ

k
τ , µ

k+1
τ )

≤ 2τ(k2 − k1)

k2∑
k=k1+1

(
Φλ(µ

k1+1
τ )− Φλ(µ

k2+1
τ )

)
≤ 2τ(k2 − k1)Φλ(µ

0).

Hence
W1(µ̄τ (t), µ̄τ (s)) ≤

√
2Φλ(µ0)

√
|t− s|+ τ ∀ s, t ∈ [0,+∞).

The discrete C0,1/2 estimate allows to find (for this see [AS], or also [AGS, Chapter 11]
for the precise argument) a subsequence τn → 0 such that in the sense of measures

lim
n→∞

µτn
(t) = µ(t) ∀t ≥ 0. (5.6)

This concludes the proof. �

Notation 5.2 The transportation is described by the cost W2(ν
k+1
τ , µ̂k

τ ), corresponding
to an optimal couple of measures (ϑ+)k+1

τ , (ϑ−)k+1
τ as in (2.14). That is,

W2
2 (νk+1

τ , µ̂k
τ ) = W 2

2 ((ϑ+)k+1
τ , (µ̂+)k

τ ) +W 2
2 ((ϑ−)k+1

τ , (µ̂−)k
τ ). (5.7)
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With reference to Notation 2.5, we let (ϑ1)
k+1
τ be the common part of (ϑ+)k+1

τ and (ϑ−)k+1
τ .

The two terms in the right hand side of (5.7) correspond to optimal plans (γ+)k+1
τ and

(γ−)k+1
τ and can be split as

(γ+)k+1
τ = (γ+

0 )k+1
τ + (γ+

1 )k+1
τ and (γ−)k+1

τ = (γ−0 )k+1
τ + (γ−1 )k+1

τ . (5.8)

Here
(γ+

0 )k+1
τ ∈ Γ0((ν

+)k+1
τ , (µ̂+

0 )k
τ ) and (γ+

1 )k+1
τ ∈ Γ0((ϑ1)

k+1
τ , (µ̂+

1 )k
τ ),

where (µ̂+
0 )k

τ and (µ̂+
1 )k

τ are suitable positive submeasures of (µ̂+)k
τ , which is their sum.

Similarly for the negative parts.

The discrete velocity of the scheme (3.4) (neglecting the common parts) could be
defined by (x− y)/τ with (x, y) ∈

(
supp(γ+

0 )k+1
τ

)
∪
(
supp(γ−0 )k+1

τ

)
. The characterization

of the discrete velocity is crucial to interpret our recursive scheme as the discrete version
of a differential equation. But we do not have a standard continuity equation for the
signed case, and therefore we can not proceed as in [AS] (see Section 6 therein). Instead,
we will see how to obtain a partial result by constructing the limiting differential equation
“by hand”.

In [MZ], the authors are able to produce solutions for a similar model (see Section 6
below) by means of an explicit, rather than implicit, discrete scheme. They take advantage
of strong regularity hypotheses on the initial datum, which are preserved during the
evolution, guaranteeing good compactness properties. Here we would like to address the
case of mere Lp initial data.

We start by introducing a basic estimate. With the notation above, we have shown
that

W2
2 (νk+1

τ , µ̂k
τ ) =

∫
Ω×Ω

|x− y|2 d
(
(γ+

0 )k+1
τ + (γ−0 )k+1

τ + (γ+
1 )k+1

τ + (γ−1 )k+1
τ

)
(x, y). (5.9)

From (5.3), summing the telescopic series, we immediately see that

∞∑
k=0

W2
2 (νk+1

τ , µ̂k
τ ) ≤ 2τΦλ(µ

0). (5.10)

Hence each of the four terms in the right hand side of (5.9) satisfies the same bound.
The next proposition shows that there is no contribution from the transport plans

γ+
1 and γ−1 , which can be thought as accounting for self-annihilation of mass, in the

subsequent limit process.

Proposition 5.3 Let φ ∈ C1
b (Ω). Then

lim
τ→0

∞∑
k=0

∫
Ω×Ω

|φ(y)− φ(x)| d(γ+
1 )k+1

τ (x, y) = 0,
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lim
τ→0

∞∑
k=0

∫
Ω×Ω

|φ(y)− φ(x)| d(γ−1 )k+1
τ (x, y) = 0.

Proof. By definition of W2, and taking into account the constraint in the discrete
minimization problem |νk+1

τ |(Ω) ≤ |µk
τ |(Ω), we see that for any k there holds (ϑ+)k+1

τ (Ω)+
(ϑ−)k+1

τ (Ω) = |µk
τ |(Ω). Then, recalling that (ϑ1)

k
τ is the common part of (ϑ+)k

τ and (ϑ−)k
τ ,

it is clear that
∑∞

k=0(ϑ1)
k
τ ≤ |µ0|(Ω) ≤M , hence

∞∑
k=0

(γ+
1 )k+1

τ (Ω× Ω) + (γ−1 )k+1
τ (Ω× Ω) ≤M. (5.11)

Now we compute

∞∑
k=0

∫
Ω×Ω

|φ(y)− φ(x)| d(γ+
1 )k+1

τ (x, y) ≤ ‖φ‖Lip

∞∑
k=0

∫
Ω×Ω

|x− y| d(γ+
1 )k+1

τ (x, y)

= ‖φ‖Lip

∫
Ω×Ω

|x− y| d
∞∑

k=0

(γ+
1 )k+1

τ (x, y).

With Hölder’s inequality we see that the last term is controlled by

‖φ‖Lip

(∫
Ω×Ω

|x− y|2 d
∞∑

k=0

(γ+
1 )k+1

τ (x, y)

)1/2(∫
Ω×Ω

d
∞∑

k=0

(γ+
1 )k+1

τ (x, y)

)1/2

.

But making use of (5.10) we see that the first factor is bounded by
√

2τΦλ(µ0), while by

(5.11) the second is less than or equal to
√
M . Hence

lim sup
τ→0

∞∑
k=0

∫
Ω×Ω

|φ(y)− φ(x)| d(γ+
1 )k+1

τ (x, y) ≤ lim
τ→0

M‖φ‖Lip

√
2τΦλ(µ0) = 0.

Similarly one shows that

lim sup
τ→0

∞∑
k=0

∫
Ω×Ω

|φ(y)− φ(x)| d(γ−1 )k+1
τ (x, y) = 0,

obtaining the thesis. �

We will also need the following similar result.

Proposition 5.4 Let φ ∈ C1
b (Ω). There holds

lim
τ→0

∞∑
k=0

∫
∂Ω×Ω

|φ(x)− φ(y)| d(γ+
0 )k+1

τ (x, y) = 0,

and the same for the analogous sum involving (γ−0 )k
τ .
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Proof. Reasoning as in the previous proposition, one estimates the sum above by

‖φ‖Lip

(
∞∑

k=0

∫
∂Ω×Ω

|x− y|2 d(γ+
0 )k+1

τ (x, y)

)1/2( ∞∑
k=0

(γ+
0 )k+1

τ (∂Ω× Ω)

)1/2

. (5.12)

Since no mass on the boundary returns to the interior of the domain during the discrete
steps, we have

∞∑
k=1

(γ+
0 )k

τ (∂Ω× Ω) =
∞∑

k=1

(νk
τ )+(∂Ω) ≤

∞∑
k=1

|νk
τ |(∂Ω) ≤ |µ0|(Ω) ≤M.

This shows that the second factor in (5.12) is uniformly bounded. The first one is con-
trolled again by ‖φ‖Lip

√
2τΦλ(µ0), as a consequence of (5.9) and (5.10). The same argu-

ment gives the thesis if (γ+
0 )k

τ are replaced by (γ−0 )k
τ . �

Lemma 5.5 (Convergence of the total variations) Let (τn) be given by Proposition
5.1. Then there exist positive measures %+(t), %−(t) such that, possibly on a subsequence,
there holds

µ+
τn

(t) ⇀ %+(t), µ−τn
(t) ⇀ %−(t), |µτn

(t)|⇀ %+(t) + %−(t). (5.13)

Proof. We prove the convergence of the positive parts. By difference the result follows
for the negative parts. Let ϕ be a bounded Lipschitz function over Ω. Possibly adding a
constant, we can assume that ϕ is nonnegative. Let

ak
τ :=

∫
Ω

ϕd(ν+)k+1
τ −

∫
Ω

ϕd(µ̂+
0 )k

τ , bkτ :=

∫
Ω

ϕd(µ̂+
1 )k

τ .

We have, by (5.9),

ak
τ =

∫
Ω×Ω

(ϕ(x)− ϕ(y)) d(γ+
0 )k+1

τ (x, y)

≤ ‖ϕ‖Lip

(∫
Ω×Ω

d(γ+
0 )k+1

τ

)1/2(∫
Ω×Ω

|x− y|2 d(γ+
0 )k+1

τ (x, y)

)1/2

≤ ‖ϕ‖Lip

√
MW2(ν

k+1
τ , µ̂k

τ ),

which gives, making use of (5.10),

∞∑
k=0

(ak
τ )

2

τ
≤ M

τ
‖ϕ‖2

Lip

∞∑
k=0

W2
2 (µk+1

τ , µk
τ ) ≤ 2M‖ϕ‖2

LipΦλ(µ
0).
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As
∞∑

k=0

(ak
τ )

2

τ
=

∫ +∞

0

∣∣∣∣∣(adt/τe
τ )

τ

∣∣∣∣∣
2

dt,

we infer the L2(0,+∞) weak compactness of the sequence (a
dt/τe
τ /τ). We can assume,

possibly extracting from (τn) a subsequence, that (a
dt/τne
τn /τn) weakly converge to some

f ∈ L2(0,+∞). In particular we have

Aτn :=
∞∑

k=0

ak
τδ{kτn} ⇀ fL1.

Indeed, letting ζ ∈ Cc(0,+∞), we have∫ ∞

0

ζ(t) d

(
∞∑

k=0

ak
τn
δ{τnk}(t)

)
=

∞∑
k=0

ak
τn
ζ(τnk) =

∫ ∞

0

a
dt/τne
τn

τn
ζ(τndt/τne) dt→

∫ ∞

0

f(t)ζ(t) dt.

Hence, for any t there holds

lim
n→∞

∞∑
k=0

ak
τn
δ{kτn}([0, t]) →

∫ t

0

f(y) dy.

Next, notice that, by (5.2),

d

dt

∫
Ω

ϕdµ+
τn

(t) ≤
∞∑

k=0

(ak
τn
− bkτn

)δ{kτn}.

Since bkτn
≥ 0, we see that

d

dt

(∫
Ω

ϕdµ+
τn

(t)− Aτn([0, t])

)
≤ 0.

We have a family of monotone functions. We can apply Helly’s pointwise compactness
theorem (see for instance [AGS, Lemma 3.3.3]) to obtain that, possibly extracting one
more subsequence, the pointwise, nonincreasing limit of this family of functions exists.
The convergence of Aτn now yields∫

Ω

ϕdµ+
τ (t) → Lϕ(t), ∀t ≥ 0.

The convergence holds for any positive Lipschitz ϕ, hence for any Lipschitz ϕ. By a
diagonal argument we can find an infinitesimal sequence, that we still denote by τn, such
that ∫

Ω

ϕdµ+
τn

(t) → Lϕ(t), ∀t ≥ 0 and ∀ϕ ∈ D,
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where D is a countable dense subset of C0
b (Ω) made of Lipschitz functions. Then, for

any t, ϕ 7→ Lϕ(t) can be extended uniquely to a weakly continuous linear functional on
C0

b (Ω). By the Riesz representation theorem we conclude that Lϕ(t) =
∫

Ω
ϕd%+(t), for

some %+ ∈M+(Ω), and for any t there holds µ+
τ (t) ⇀ %+(t).

Letting %−(t) be the pointwise weak limit of µ−τ (t) obtained by the same reasoning,
we also infer the convergence of the total variations: |µτ (t)|⇀ %(t), where %(t) = %+(t) +
%−(t). �

Eventually, we are able to produce a limiting equation.

Theorem 5.6 (Equation in the limit) Let µ0 ∈ L4(Ω). The minimizing movement
µ(t) given by Proposition 5.1 satisfies

d

dt
µ(t)− div (χΩ∇hµ(t)%(t)) = 0 in D′((0,+∞)× R2), (5.14)

where %(t) is a suitable positive measure satisfying %̂(t) ≥ |µ̂(t)|.

Proof. Let (τn) be the sequence given by Proposition 5.1 and Lemma 5.5. Just for
simplicity of notation, in the sequel we shall write τ instead of τn.

Let φ ∈ C2(Ω). Let us compute the derivative of the time interpolated measure µτ (t).
We have, in the sense of distributions,

d

dt

∫
Ω

φ dµτ (t) =
∞∑

k=0

(∫
Ω

φ dµk+1
τ −

∫
Ω

φ dµk
τ

)
δ{kτ}.

But ∫
Ω

φ dµk+1
τ −

∫
Ω

φ dµk
τ =

∫
Ω

φ dνk+1
τ −

∫
Ω

φ dµ̂k
τ =

∫
Ω×Ω

(φ(y)− φ(x)) dγk+1
τ ,

where, using the notation introduced in (5.8),

γk+1
τ := (γ+

0 )k+1
τ − (γ−0 )k+1

τ + (γ+
1 )k+1

τ − (γ−1 )k+1
τ .

So we may write

d

dt

∫
Ω

φ dµτ (t) =
∞∑

k=0

δ{kτ}

∫
Ω×Ω

(φ(x)− φ(y)) dγk+1
τ (x, y)

=
∞∑

k=0

δ{kτ}

(∫
Ω×Ω

〈∇φ(x), x− y〉 dγk+1
τ (x, y) +Rk

τ

)
.

(5.15)
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Let us estimate the remainder Rk
τ by writing it in integral form. We have

Rk
τ =

1

2

∫ 1

0

∫
Ω×Ω

|〈∇2φ((1− θ)x+ θy)(y − x), y − x〉|dγk+1
τ (x, y)dθ

≤ 1

2
‖∇2φ‖∞

∫
Ω×Ω

|x− y|2 dγk+1
τ (x, y)

≤ 1

2
‖∇2φ‖∞W2

2 (νk+1
τ , µ̂k

τ )

(5.16)

By (5.10) we see that

lim
τ↓0

∞∑
k=0

Rk
τ = 0.

Together with Proposition 5.3 and Proposition 5.4, this shows that (5.15) can be written,
for τ → 0, as

d

dt

∫
Ω

φ dµτ (t) =
∞∑

k=0

δ{kτ}

(∫
Ω×Ω

〈∇φ(x), x− y〉χΩ(x) d
(
(γ+

0 )k+1
τ − (γ−0 )k+1

τ

)
(x, y)

)
+ o(1).

(5.17)
The Euler equation for discrete minimizers νk

τ of (3.4), since ν̂k
τ = µ̂k

τ , reads (see Lemma
4.4)

−∇hµk
τ

(
(µ̂k

τ )
+ − (µ̂k

τ )
−) =

1

τ

(
π1

#(χΩ(x)(x− y)(γ+
0 )k

τ ) + π1
#(χΩ(x)(x− y)(γ−0 )k

τ )
)
,

but notice that the first term in the right hand side can be different from zero only on
supp(µ̂k

τ )
+. Similarly for the second term. Hence we can split the equation in

−∇hµk
τ
(µ̂k

τ )
+ =

1

τ
π1

#(χΩ(x)(x− y)(γ+
0 )k

τ ),

∇hµk
τ
(µ̂k

τ )
− =

1

τ
π1

#(χΩ(x)(x− y)(γ−0 )k
τ ).

Substituting in (5.17), we find

d

dt

∫
Ω

φ dµτ (t) = −
∞∑

k=0

τδ{kτ}

∫
Ω

〈
∇φ(x),∇hµk

τ
(x)
〉
d|µ̂k

τ |(x) + o(1).

Passing to the limit as τ goes to zero (more precisely, along the sequence τn) we get

d

dt

∫
Ω

φ dµ(t) +

∫
Ω

〈∇φ,∇hµ(t)〉 d%(t) = 0,

where %(t) is given by Lemma 5.5, hence satisfying %̂(t) ≥ |µ̂(t)| and %(t)(Ω) ≤ |µ0|(Ω).
�
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Remark 5.7 (The positive case) In the case of positive (or negative) measures, it is
immediately seen that both (2.3) and (2.12) reduce to the standard 2-Wasserstein distance.
In particular, if µ is positive and ν is not, by (2.13) we get W2(ν, µ) = inf ∅ = +∞. Then,
it is clear that, if the initial datum µ0 is positive, the discrete minimizers are positive as
well. As a consequence, passing to the limit in the discrete scheme, as shown in [AS] (the
schemes coincide in the positive case), produces a positive solution of

d

dt
µ(t)− div(χΩ∇hµ(t)µ(t)) = 0 in D′((0,+∞)× R2).

If µ0 ∈ L∞(Ω) is compactly supported such solution is locally unique in time, and also
globally unique if suitable boundary conditions hold (see [M1]).

Remark 5.8 (System formulation) We could also derive separately the equations, in
the limit as τ → 0, for the positive and negative parts of µτ (t). Let φ ∈ C2(Ω). Re-
garding the positive part, we reason as in Theorem 5.6, taking advantage in particular of
Proposition 5.4, so that as τ → 0

d

dt

∫
Ω

φ dµ+
τ (t) =

∞∑
k=0

δ{kτ}

(∫
Ω

φ d(µ+)k+1
τ −

∫
Ω

φ d(µ+)k
τ

)

=
∞∑

k=0

δ{kτ}

(∫
Ω

φ d(ν+)k+1
τ −

∫
Ω

φ d(µ̂+
0 )k

τ −
∫

Ω

φ d(µ̂+
1 )k

τ

)
+ o(1)

=
∞∑

k=0

δ{kτ}

(∫
Ω×Ω

〈∇φ(x), x− y〉 d(γ0)
k+1
τ (x, y)−

∫
Ω

φ d(µ̂+
1 )k

τ

)
+ o(1),

(5.18)
where (µ̂+

0 )k
τ is the part of (µ̂+)k

τ that comes from (ν+)k+1
τ and (µ̂+

1 )k
τ is the part of (µ̂+)k

τ

which gets transported by (γ+
1 )k+1

τ , as in Notation 5.2. A term that was not present
in (5.17) appears. Let us analyze it. First, notice that, since (µ̂+

1 )k
τ accounts for mass

cancellation at every step, we have as usual

∞∑
k=0

(µ̂+
1 )k

τ (Ω) ≤ |µ0|(Ω) ≤M.

This entails ∫ ∞

0

∫
Ω

(µ̂+
1 )

dt/τe
τ

τ
dx dt ≤M,

so that the sequence (µ̂+
1 )

dt/τe
τ /τ is bounded in L1(Ω × (0,+∞)) and hence possesses a

subsequence converging weakly in measure. We denote by σ(x, t) a suitable space-time
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weak limit measure, which is of course positive. Notice that, if ζ(t) ∈ Cc(0,+∞),∫ ∞

0

∫
Ω

ζ(t)φ(x) d

(
∞∑

k=0

(µ̂+
1 )k

τδ{kτ}

)
=

∫ ∞

0

∫
Ω

ζ(τdt/τe)φ(x)
1

τ
(µ̂+

1 )k
τ (x, t),

so that this quantity converges to
∫∞

0

∫
Ω
ζ(t)φ(x) dσ(x, t) for τ → 0 on a suitable sequence.

This fact, together with the arguments of Theorem 5.6, shows that passing to the limit
in (5.18) we get, in the sense of distributions,

d

dt

∫
Ω

φ(x) d%+(t) = −
∫

Ω

〈∇φ,∇hµ(t)〉 d%+(t)−
∫

Ω

φ(x) dσ(x, t),

where %+(t) is a suitable limit of (µ+
τ )

dt/τe
τ as τ → 0 (given by Lemma 5.5). The similar

argument applies for negative parts, so that one ends up with the system (1.8). The system
is coupled because µ(t) = %+(t) − %−(t). This formulation is probably more meaningful,
since we can see the structure of two continuity equations with equal and opposite vector
fields, with a negative term in the right hand side (the same for the two equations) which
has the meaning of a mass sink. The actual solution is then recovered as the difference
of %+ and %−.

Remark 5.9 (L∞ bounds on the boundary part) We see from (5.1) and (5.2) that
some mass accumulated on the boundary at each step and then does not play a role in
the subsequent discrete minimizations. Of course there can also be cancellations on the
boundary. Hence, we can say that t 7→ |µ̂(t)|(Ω) and t 7→ |µ(t)|(Ω) are nonincreasing,
but not that t 7→ |µ̃(t)|(∂Ω) is nondecreasing. All these quantities, as well as ρ+

t (Ω) and
ρ−t (Ω), are uniformly bounded by the initial mass. Looking at the equation in the limit,
one can also obtain a mass dissipation estimate on the boundary. Let %+(0) = µ+(0)
and %−(0) = µ−(0) belong to L∞(Ω), so that (1.8) admits a solution (%+(t), %−(t)) with
(%̂+(t), %̂−(t)) ∈ L∞((0, T ), L∞(Ω)2). Let Ωε ⊂ Ω be the set of all points with distance
from ∂Ω greater than ε, and let C be such that ‖∇hµ(t)%̂(t)‖∞ ≤ C in [0, T ], where
%(t) = %+(t)+%−(t). Using the weak formulation of (5.14) with a test function φ ∈ C1

c (R2),
we find

d

dt

∫
Ω\Ωε

φ dµ(t) = −
∫

Ω\Ωε

∇hµ(t) · ∇φ d%(t)−
∫

∂Ωε

φ
∂hµ(t)

∂ν
%̂(t) dH1 (5.19)

for a.e. ε > 0. Now we can bound the last integral with C
∫

∂Ωε
|φ| dH1x∂Ωε, and passing

to the limit as ε ↓ 0 we see that the first term in the right hand side vanishes. We obtain∣∣∣∣ ddt
∫

∂Ω

φ dµ(t)

∣∣∣∣ ≤ C

∫
∂Ω

|φ| dH1x∂Ω.
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Integrating in time we get ∣∣∣∣∫
∂Ω

φ dµ(t)

∣∣∣∣ ≤ Ct

∫
∂Ω

|φ| dH1x∂Ω.

Since φ is arbitrary, this shows that µ̃(t) = f(t, ·)H1x∂Ω for a suitable density f satisfying
‖f(t, ·)‖∞ ≤ Ct.

6 The equation in the whole plane

In this section we are going to analyze a different model, where the constitutive coupling
density-velocity relation (1.2) is replaced by

−∆hµ = µ (6.1)

in the whole plane and µ ∈Mκ, M(R2). Hence, the evolution equation takes the form

d

dt
µ(t)− div(∇∆−1µ(t)|µ(t)|) = 0 in D′((0,+∞)× R2). (6.2)

This vortex model was investigated in [LZ, MZ]. In particular, in [MZ] the authors are
able to prove existence and uniqueness by means of an approximation scheme in the case
of Sobolev initial data, as already mentioned.

Rather, we would like again to obtain a Wasserstein gradient flow for the corresponding
energy functional. We have to pay attention to the definition of the energy. Indeed, since
the fundamental solution of the Laplace equation in two dimensions is − 1

2π
log |x|, the

solution to (6.1) we are considering is the one given by

hµ(x) = − 1

2π

∫
R2

log |x− y| dµ(y),

and then

∇hµ(x) = − 1

2π

∫
R2

x− y

|x− y|2
dµ(y).

We stress that hµ does not decay to zero at infinity and |∇hµ|2 is not integrable over
the whole plane, unless µ(R2) = 0. Therefore,

∫
R2 |∇hµ|2 is not in general a well defined

quantity. In order to overcome this problem, we introduce for the case κ 6= 0 an auxiliary
measure µ0, whose density can be any smooth compactly supported function, and such
that µ0(R2) = κ. Next we define h0 as (−∆−1)µ0. As a consequence, if we set wµ :=
hµ − h0, by linearity we see that

wµ = (−∆)−1(µ− µ0), (6.3)
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and this time µ − µ0 has zero integral over R2 so wµ and ∇wµ decay sufficiently fast at
infinity. We may then introduce the energy functional

Ψ(µ) =
1

2

∫
R2

|∇wµ|2 +

∫
R2

wµµ0, (6.4)

which is now well defined.

Remark 6.1 This procedure can be seen as a “renormalized” way of defining the energy,
and is inspired from a similar procedure for Ginzburg-Landau in the plane, see [OS, BS].
Indeed, an alternative way of dealing with the non integrability of |∇hµ|2 would be to
define the energy functional by

lim
R→∞

(
1

2

∫
BR

|∇hµ|2 −
κ2

4π
logR

)
, (6.5)

where BR is the ball of radius R, centered in the origin. The limit is finite because of
the logarithmic behavior at infinity of

∫
BR
|∇hµ|2, which comes from the structure of the

fundamental solution in two dimensions. Writing hµ as h0 + wµ, expanding, integrating
by parts, and taking the limit R → +∞, one can see (see [BS] for example) that the
definition (6.5) is equivalent, up to a constant depending on the choice of µ0, to that of
Ψ.

We proceed with the gradient flow of the functional (6.4). We give a brief discussion,
omitting some details of the proofs, since the arguments are similar to the ones in the
previous sections. Note that here we could also have added a λ|µ|(R2) term to the
energy functional, which would again probably influence the mass cancellation rate in the
(changing sign) solution. As a result, different λ’s could lead to different solutions.

Let us consider the perturbed discrete scheme associated to Ψ, in the space of measures
with finite second moment M2

κ,M(R2) := {µ ∈ Mκ, M(R2) :
∫

R2 |x|2 d|µ| < +∞}, that is,
for δ > 0,

min
ν∈M2

κ, M (R2), |ν|(R2)≤|µ|(R2)
Ψ(ν) + δ

∫
R2

|ν|4 +
1

2τ
W2

2 (ν, µ). (6.6)

Remark 6.2 Since Ψ is strictly convex, we can also infer that the solution to (6.6) is
unique (for any δ ≥ 0). Notice that we could not conclude the same in problems (3.4) and
(3.6), as the strictly convex part of the functional therein, namely Φδ

0(µ), depends only
on the interior part µ̂ of the measure. The absence of boundary mass for the problem on
the whole plane allows us to retrieve uniqueness.

We have again
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Proposition 6.3 Let ν be solution to (6.6). Then ν ∈ L4(R2) and

−3δ∇((ν)4)−∇hνν =
1

τ
π1

#

(
(x− y)(γ+

0 + γ+
1 ))
)

in D′(R2), (6.7)

where γ+
0 ∈ Γ0(ν

+, µ+
0 ) and γ−0 ∈ Γ0(ν

−, µ−0 ) are plans corresponding to an optimal split-
ting of the cost W2(ν, µ), as in Notation 2.5.

Proof. Let νε = (I + εξ)#ν, where ξ is a smooth, compactly supported vector field. Let
moreover

γ+
ε = (I + εξ, I)#γ

+
0 + γ+

1

γ−ε = (I + εξ, I)#γ
−
0 + γ−1 .

Then

W2
2 (νε, µ) ≤ W 2

2 ((I + εξ)#ν
+ + ϑ1, µ

+) +W 2
2 ((I + εξ)#ν

− + ϑ1 + µ−)

≤
∫

R2×R2

|x− y|2 d(γ+
ε + γ−ε ).

We find

W2
2 (νε, µ)−W2

2 (ν, µ) ≤ 2ε

∫
R2×R2

ξ(x)(x− y) d(γ+
0 + γ−0 )(x, y) + o(ε).

The differentiation of the term δ
∫

R2 |νε|4 is done exactly as in Lemma 3.2. Coming to the
term Ψ(νε), integrating by parts, we have

Ψ(νε)−Ψ(ν) =
1

2

∫
R2

|∇wνε|2 − |∇wν |2 +

∫
R2

(wνε − wν)µ0

=
1

2

∫
R2

(wνε + wν) d(νε − ν) +

∫
R2

h0 d(νε − ν)

=
1

2

∫
R2

(wνε ◦ (I + εξ)− wνε + wν ◦ (I + εξ)− wν) dν

+

∫
R2

(h0 ◦ (I + εξ)− h0) dν.

All the integrals above are well defined, since wν , wνε , h0 are continuous and νε − ν is
compactly supported. Since ξ is compactly supported, making use of the C1 convergence
of wνε to wν we find

Ψ(νε)−Ψ(ν) = ε

∫
R2

∇wν · ξ dν + ε

∫
R2

∇h0 · ξ dν + o(ε) = ε

∫
R2

∇hν · ξ dν + o(ε).

Then from the minimality of ν and the arbitrariness of ξ, one gets the thesis, the details
being as in the proof of Lemma 3.2. �
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In order to get regularity and pass to the limit as δ → 0, one has to establish the
corresponding entropy argument. We have the following.

Lemma 6.4 Let µ ∈M2
κ, M(R2) ∩ L4(R2). Then the minimizer ν of (6.6) satisfies∫

R2

ϕ(|ν|) ≤
∫

R2

ϕ(|µ|) < +∞, (6.8)

for any C2 entropy ϕ with the following properties: ϕ(x) = x for 0 ≤ x ≤ 1 and ϕ(x) ≤
C|x|4 for x > 1, for some constant C > 0.

Proof. Step 1. Assume first that µ has compact support. This step repeats the
argument of Lemma 4.1. Since ν � L2, again the plans γ+

0 and γ−0 are induced by
optimal transport maps r1 and r2 respectively. Notice that, since we are assuming that
the respective targets µ+

0 and µ−0 are compactly supported, these maps are bounded.
Therefore, the Euler Lagrange equation (6.7) can be written as

−3δ∇((ν)4)−∇hνν =
1

τ
(I − r1)ν

+ +
1

τ
(I − r2)ν

− in D′(R2),

and since ν ∈ L4(R2) the right hand side is in L4(R2) as well. Now we can repeat the
same argument of the proof of Lemma 4.1 to obtain the regularity of ν. Then we divide
again by |ν| to obtain

3δsgn(ν)
∇((ν)4)

ν
+∇hνsgn(ν) =

1

τ
(r − I) ν-a.e. (6.9)

where r = r1χ{ν>0} + r2χ{ν<0}. In order to use the displacement convexity inequality
[AGS, Lemma 10.4.4] we need the finiteness of the integrals

∫
R2 ϕ(|µ|) and

∫
R2 ϕ(|ν|).

This property is ensured by the bound |ν|(R2) ≤ |µ|(R2) and by the choice of ϕ as an
entropy with at most quartic growth. Indeed, by assumption on ϕ we have∫

R2

ϕ(|ν|) ≤
∫
{|ν|≤1}

|ν|+ C

∫
{|ν|>1}

|ν|4 < +∞,

since ν ∈ L4(R2) ∩ L1(R2). Thus, we get the equivalent of (4.6), that is∫
R2

ϕ(|µ|)− ϕ(|ν|) ≥ −τ
∫

R2

ψ′(|ν|)div

[
3δsgn(ν)

∇((ν)4)

ν
+ sgn(ν)∇hν

]
. (6.10)

Here ψ is again an even convex function on R such that ψ′(x) = xϕ′(x)−ϕ(x). We saw the
left hand side in (6.10) is finite, the right hand side is also finite because it is nonnegative.
Indeed, since ψ′ is odd and increasing and vanishes at 0, we have in particular∫

R2

ψ′(|ν|)div (sgn(ν)∇hν) =

∫
R2

ψ′(ν)∆hν = −
∫

R2

ψ′(ν)ν ≤ 0.
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On the other hand, ∫
R2

ψ′(|ν|) div

(
sgn(ν)

∇((ν)4)

ν

)
≤ 0.

This is found as in the last part of the proof of Lemma 4.1. The estimate (6.8) follows.
Step 2. We establish the result for the generic initial measure µ ∈ L4(R2), by approx-

imation with compactly supported measures. Let us introduce the following truncation
of a measure σ ∈M2

κ, M(R2):

σ̆+
R := σ+

R(R2)
χBR

σ+

σ+(BR)
, σ̆−R := σ−(R2)

χBR
σ−

σ−(BR)
, R > 0.

This way σ̆+
R and σ̆−R have the same integral as σ+ and σ− (the positive and negative

parts of σ) respectively. Letting σ̆R := σ̆+
R − σ̆−R , we see that σ̆R is still in M2

κ, M(R2) and
|σ̆R|(R2) = |σ|(R2). Moreover, if R→∞ we clearly have the weak convergence σ̆+

R ⇀ σ+,
and the convergence of second moments, and the same for negative parts. If σ is also in
Lp(R2), then σ̆R → σ in the strong Lp(R2) topology.

We would like to show that, if νn is solution to (6.6) starting from µ̆n, n ∈ N, then
weak limits of the sequence (νn) are solutions to the same problem starting from µ. For
this, we need a Γ-convergence argument.

First notice that the minimality of νn for problem (6.6) implies

W2
2 (νn, µ̆n) ≤ τ

(
Ψ(µ̆n) + δ

∫
R2

|µ̆n|4
)
→ τ

(
Ψ(µ) + δ

∫
R2

|µ|4
)

where the convergence follows by elliptic regularity. Therefore the second moments of
(νn) are uniformly bounded, giving the tightness of the sequence. On the other hand, by
the estimate found in Step 1 in the compactly supported case, for a 4-growing entropy we
have ∫

R2

ϕ(|νn|) ≤
∫

R2

ϕ(|µ̆n|)

where the right hand side is uniformly bounded in n, by the definition of µ̆n. By appro-
priate choice of ϕ, we can deduce that (νn) is also bounded in L4(R2). In particular, (νn)
has limits, up to subsequences, both in the weak topology of measures and in the weak
L4(R2) topology.

For a general sequence (νn) converging to ν weakly in measures and in L4(R2), let
us make use of the following notation. Let ϑ1

n(µ̆n), ϑ2
n(µ̆n), with ϑ1

n(µ̆n) − ϑ2
n(µ̆n) = νn,

be a couple realizing the infimum in the definition of W2(νn, µ̆n) (as seen in (2.14), the
infimum is indeed attained), so that

W2
2 (νn, µ̆n) = W 2

2 (ϑ1
n(µ̆n), µ̆+

n ) +W 2
2 (ϑ2

n(µ̆n), µ̆−n ). (6.11)
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Notice that ϑ1
n(µ̆n) and µ̆+

n have the same integral over R2 (the same as µ+ of course),
and similarly for negative parts. As a consequence we have for any n

W2
2 (νn, µ) ≤ W 2

2 (ϑ1
n(µ̆n), µ+) +W 2

2 (ϑ2
n(µ̆n), µ−).

Then, by the weak lower semicontinuity of ν 7→ W2(ν, µ), (6.11) and the triangle inequal-
ity, we get

W2
2 (ν, µ) ≤ lim inf

n→∞
W2

2 (νn, µ)

≤ lim inf
n→∞

W 2
2 (ϑ1

n(µ̆n), µ+) +W 2
2 (ϑ2

n(µ̆n), µ−)

≤ lim inf
n→∞

(
W2(ϑ

1
n(µ̆n), µ̆+

n ) +W2(µ̆
+
n , µ

+)
)2

+
(
W2(ϑ

2
n(µ̆n), µ̆−n ) +W2(µ̆

−
n , µ

−)
)2

= lim inf
n→∞

W 2
2 (ϑ1

n(µ̆n), µ̆+
n ) +W 2

2 (ϑ2
n(µ̆n), µ̆−n ) = lim inf

n→∞
W2

2 (νn, µ̆n),

(6.12)
where we have used the weak convergence, plus convergence of second moments, of µ̆+

n and
µ̆−n . On the other hand, let ϑ1(µ), ϑ2(µ) be an optimal couple corresponding to W2(ν, µ).
As before,

W2
2 (ν, µ̆n) ≤ W 2

2 (ϑ1(µ), µ̆+
n ) +W 2

2 (ϑ2(µ), µ̆−n ),

hence again the weak convergence plus convergence of second moments of µ̆+
n and µ̆−n

entails

lim sup
n→∞

W2
2 (ν, µ̆n) ≤ lim sup

n→∞
W 2

2 (ϑ1(µ), µ̆+
n ) +W 2

2 (ϑ2(µ), µ̆−n )

= lim sup
n→∞

W 2
2 (ϑ1(µ), µ+) +W 2

2 (ϑ2(µ), µ−) = W2
2 (µ, ν).

(6.13)

Since Ψ(·) + δ
∫

R2 | · |4 is weakly lower semicontinuous, these two inequalities, concerning
generic sequences (νn), prove by definition the Γ-convergence of

ν 7→ Ψ(ν) + δ

∫
R2

|ν|4 +
1

2τ
W2

2 (ν, µ̆n) + 1{|ν|(R2)≤|µ|(R2)}(ν)

to

ν 7→ Ψ(ν) + δ

∫
R2

|ν|4 +
1

2τ
W2

2 (ν, µ) + 1{|ν|(R2)≤|µ|(R2)}(ν),

as n → ∞, where 1A(ν) is the function with value 0 if ν ∈ A and +∞ if ν /∈ A. The
Γ-convergence implies, as usual, that a weak limit ν of a sequence (νn) of minimizers for
the first functional is a minimizer for the second functional above. Since that functional
is strictly convex, it has a unique minimizer, and thus the whole sequence of minimizers
(νn) converges to the solution ν of (6.6).
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Eventually, the proof is concluded invoking the weak L4(R2) lower semicontinuity of
ν 7→

∫
R2 ϕ(|ν|) (since any entropy ϕ is convex) and the inequality proved in Step 1 for

compactly supported initial measures:∫
R2

ϕ(|ν|) ≤ lim inf
n→∞

∫
R2

ϕ(|νn|) ≤ lim inf
n→∞

∫
R2

ϕ(|µ̆n|) ≤
∫

R2

ϕ(|µ|),

as desired. �

Corollary 6.5 Let µ ∈ Mκ, M(R2) ∩ Lp(R2), p ≥ 4. Then the unique solution µτ of the
unperturbed problem

min
ν∈M2

κ, M (R2), |ν|(R2)≤|µ|(R2)
Ψ(ν) +

1

2τ
W2

2 (ν, µ) (6.14)

belongs to Lp(R2) and ∫
R2

ϕ(|µτ |) ≤
∫

R2

ϕ(|µ|),

where ϕ is the entropy defined in (4.11), if p < +∞. On the other hand, ‖µτ‖p ≤
max{1, ‖µ‖p} if p = +∞. Moreover, µτ satisfies

−∇hµτµτ =
1

τ
π1

#

(
(x− y)(γ+

0 + γ−0 )
)
. (6.15)

Proof. Of course Lemma 3.1 applies also to the functional Ψ. Then there exists a
sequence δi such that µδi

τ , minimizers of (6.6), converge narrowly to µτ , where µτ is the
minimizer of (6.14). Let ϕ be the entropy defined by (4.11) for p = 4. In this case Lemma
6.4 directly applies, giving ∫

R2

ϕ(|µδi
τ |) ≤

∫
R2

ϕ(|µ|),

hence we deduce weak L4(R2) compactness, and the weak lower semicontinuity of θ 7→∫
R2 ϕ(|θ|) in L4(R2) yields the desired L4(R2) bound.

Next we take advantage of the following fact: any entropy can be approximated mono-
tonically from below on [0,+∞) by a sequence of entropies with at most quadratic growth
at infinity. To see this, it is enough, given the generic entropy ϕ, to construct the sequence
ϕn in the following way:

ϕn(x) =

{
ϕ(x) for 0 ≤ x ≤ n

ax2 + bx+ c for x > n
,

where the coefficients a, b, c have to be suitably chosen in order to make ϕn enjoy a C2

regularity. It is straightforward to check that indeed the functions ϕn are displacement
convex, for any n.
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Now let ϕ be defined by (4.11) if 4 < p < +∞. Otherwise, if p = +∞ we let ϕ be
given by (4.13) (which is itself an entropy), with K := max{1, ‖µ‖∞}. For both cases,
using Lemma 6.4, for any n we have∫

R2

ϕn(|µδi
τ |) ≤

∫
R2

ϕn(|µ|) ≤
∫

R2

ϕ(|µ|) < +∞.

By monotone convergence we get∫
R2

ϕ(|µδi
τ |) ≤

∫
R2

ϕ(|µ|). (6.16)

If p <∞ we find weak Lp(R2) compactness, and again we conclude by weak lower semi-
continuity of θ 7→

∫
R2 ϕ(|θ|) in Lp(R2). If p = +∞, (6.16) shows that |µδi

τ | ≤ K, then
|µτ | ≤ K.

Finally, (6.15) is proven as in Lemma 4.4. �

The construction of the minimizing movement is done in the usual way: given µk
τ ∈

M2
κ, M(R2), µk+1

τ is the minimizer of (6.14), satisfying the properties of Corollary 6.5.
Moreover, we don’t need to split the minimizers as in (5.2). Then, starting from the basic
inequality

W2
2 (µk+1

τ , µk
τ ) ≤ 2τΨ(µk

τ )− 2τΨ(µk+1
τ ),

the argument of Proposition 5.1 repeats, giving the limiting curve t 7→ µ(t) ∈M2
κ, M(R2).

Finally one reasons as in Lemma 5.5, Theorem 5.6 and Remark 5.8 (the proofs being
simplified by the absence of boundary) and gets the limiting equation. Note that for the
particular case of positive measures, the analogue of Remark 5.7 holds, i.e. we produce a
true solution of (6.2). We summarize these results in the following

Theorem 6.6 Let µ0 ∈M2
κ,M(R2) ∩ L4(R2). There exists an infinitesimal sequence (τn)

such that µτn
(t) converge to some µ(t) ∈M2

κ, M(R2) weakly in the sense of measures, for
any t ≥ 0, with µ(0) = µ0. Also, for any t ≥ 0, µ+

τn
(t) and µ−τn

(t) converge weakly to some
positive measures %+(t) and %−(t) with finite second moment and total mass bounded by
M . %+(t) and %−(t) are uniformly bounded in L4(R2) and satisfy %+(t) − %−(t) = µ(t).
Moreover, letting %(t) = %+(t) + %−(t), there holds

d

dt
µ(t)− div ((∇∆−1µ(t))%(t)) = 0 in D′((0,+∞)× R2).

Finally, there exists a positive space-time measure σ ∈ M
(
(0,+∞) × R2) such that, in

D′((0,+∞)× R2), 
d

dt
%+(t)− div (∇∆−1µ(t)%+(t)) = −σ(t),

d

dt
%−(t) + div (∇∆−1µ(t)%−(t)) = −σ(t).
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