19. We solve $C = \frac{5}{9}(F - 32)$ for $F: \frac{9}{5}C = F - 32 \implies F = \frac{9}{5}C + 32$. This gives us a formula for the inverse function, that is, the Fahrenheit temperature F as a function of the Celsius temperature C.

 $F \ge -459.67 \quad \Rightarrow \quad \frac{9}{5}C + 32 \ge -459.67 \quad \Rightarrow \quad \frac{9}{5}C \ge -491.67 \quad \Rightarrow \quad C \ge -273.15, \text{ the domain of the inverse function.}$ **23.** $y = f(x) = e^{x^3} \quad \Rightarrow \quad \ln y = x^3 \quad \Rightarrow \quad x = \sqrt[3]{\ln y}.$ Interchange x and y: $y = \sqrt[3]{\ln x}.$ So $f^{-1}(x) = \sqrt[3]{\ln x}.$

26. $y = f(x) = \frac{1 + e^x}{1 - e^x} \Rightarrow y - ye^x = 1 + e^x \Rightarrow y - 1 = ye^x + e^x \Rightarrow y - 1 = e^x(y + 1) \Rightarrow$

$$e^x = \frac{y-1}{y+1} \Rightarrow x = \ln\left(\frac{y-1}{y+1}\right)$$
. Interchange x and y: $y = \ln\left(\frac{x-1}{x+1}\right)$. So $f^{-1}(x) = \ln\left(\frac{x-1}{x+1}\right)$.

Note that the domain of f^{-1} is |x| > 1.

28. y = f(x) = 2 - e^x ⇒ e^x = 2 - y ⇒ x = ln(2 - y). Interchange x and y: y = ln(2 - x). So f⁻¹(x) = ln(2 - x). From the graph, we see that f and f⁻¹ are reflections about the line y = x.

35. $f(0) = 1 \Rightarrow f^{-1}(1) = 0$, and $f(x) = x^3 + x + 1 \Rightarrow f'(x) = 3x^2 + 1$ and f'(0) = 1. Thus, $(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{f'(0)} = \frac{1}{1} = 1.$

53. $\ln(1+x^2) + \frac{1}{2}\ln x - \ln\sin x = \ln(1+x^2) + \ln x^{1/2} - \ln\sin x = \ln[(1+x^2)\sqrt{x}] - \ln\sin x = \ln\frac{(1+x^2)\sqrt{x}}{\sin x}$

- 68. (a) For $f(x) = \ln(2 + \ln x)$, we must have $2 + \ln x > 0 \implies \ln x > -2 \implies x > e^{-2}$. Thus, the domain of f is (e^{-2}, ∞) .
 - (b) $y = f(x) = \ln(2 + \ln x) \Rightarrow e^y = 2 + \ln x \Rightarrow \ln x = e^y 2 \Rightarrow x = e^{e^y 2}$. Interchange x and y: $y = e^{e^x 2}$. So $f^{-1}(x) = e^{e^x 2}$. The domain of f^{-1} , as well as the range of f, is \mathbb{R} .

73.
$$\lim_{x \to \infty} \left[\ln(1+x^2) - \ln(1+x) \right] = \lim_{x \to \infty} \ln \frac{1+x^2}{1+x} = \ln \left(\lim_{x \to \infty} \frac{1+x^2}{1+x} \right) = \ln \left(\lim_{x \to \infty} \frac{\frac{1}{x} + x}{\frac{1}{x} + 1} \right) = \infty, \text{ since the limit in the limit in the limit in the limit in the limit.}$$

parentheses is ∞ .