
MATH-UA.0252

Numerical Analysis
Assignment 2 (due March 12, 2020)

1. [3pt] Given is a tridiagonal matrix, i.e., a matrix with nonzero entries only in the diagonal,
and the first upper and lower subdiagonals:

A =


a1 c1
b1 a2 c2

. . . . . . . . .

bn−2 an−1 cn−1
bn−1 an

 .

Assuming that A has an LU decomposition A = LU with

L =


1
d1 1

. . . . . .

dn−1 1

 , U =


e1 f1

. . . . . .

en−1 fn−1
en

 ,

derive recursive expressions for di, ei and fi.

2. [1+2pt] We study basic properties of the LU-factorization.

(a) Give an example of an invertible 3× 3 matrix that does not have any zero entries, for
which the LU decomposition without pivoting fails.

(b) Show that the LU factorization of an invertible matrix A ∈ Rn×n is unique. That is,
if

A = LU = L1U1

with upper triangular matrices U , U1 and unit lower triangular matrices L, L1, then
necessarily L = L1 and U = U1. You can use the results we discussed in class about
products of lower/upper triangular matrices, and their inverses.

3. [4pt] For a given dimension n, fix some k with 1 ≤ k ≤ n. Now let L ∈ Rn×n be a
non-singular lower triangular matrix and let the vector b ∈ Rn be such that bi = 0 for
i = 1, 2, . . . , k.

(a) Let the vector y ∈ Rn be the solution of Ly = b. Show, by partitioning L into
blocks, that yj = 0 for j = 1, 2, . . . , k.

(b) Use this to give an alternative proof of Theorem 2.1(iv), i.e., that the inverse of a
non-singular lower triangular matrix is itself lower triangular.

4. [4pt] Let n ≥ 2. Consider a matrix A ∈ Rn×n for which every leading principal submatrix
of order less than n is non-singular.

(a) Show that A can be factored in the form A = LDU , where L ∈ Rn×n is unit lower
triangular, D ∈ Rn×n is diagonal and U ∈ Rn×n is unit upper triangular.

1



(b) If the factorization A = LU is known, where L is unit lower triangular and U is
upper triangular, show how to find the LU-factors of the transpose AT . Note that our
requirement for an LU-factorization is that L is unit lower triangular, and U is upper
triangular.

5. [5pt] Implement backward substitution to solve systems Ux = b, i.e., write a function x

= backward(A,b), which expects as inputs an upper triangular matrix U ∈ Rn×n, and a
right hand side vector b ∈ Rn, which returns the solution vector x ∈ Rn. The function
should find the size n from the vector b and also check if the matrix and the vector sizes
are compatible before it starts to solve the system. Please hand in your code. Apply your
program for the computation of for x ∈ R4, with

U =


1 2 6 −1
0 3 1 0
0 0 4 −1
0 0 0 2

 , b =


−1
−3
−2
4

 .

6. [3+2pt] LU factorization without pivoting.

(a) Implement the LU factorization using (2.18), (2.19) from the textbook (hence assum-
ing no permutations are required), and apply it to the matrix

A =


6 2 1 −1
2 4 1 0
1 1 4 −1
−1 0 −1 3

 .

(b) Generalize your code to handle input matrices A of any size n ≥ 2. To avoid division
by very small numbers or zero, check at each step that the absolute value of ujj in
(2.18) is not smaller than 10−8. If it is, display an error message1 and stop the code.
Please also hand in your code.

7. [2+2+2pt] Let us use the LU -decomposition to compute the inverse of a matrix2.

(a) Describe an algorithm that uses the LU -decomposition of an n × n matrix A for
computing A−1 by solving n systems of equations (one for each unit vector).

(b) Calculate the floating point operation count of this algorithm.

(c) Improve the algorithm by taking advantage of the structure (i.e., the zero entries—
see question 5a) of the right-hand side. What is the new algorithm’s floating point
operation count?

8. [2+1+2pt+2pt (extra credit)] Let us explore matrix norms and condition numbers.

1MATLAB has the command error(’message’) for doing that.
2This also illustrates that computing a matrix inverse is significantly more expensive than solving a linear

system.

2



(a) For the following matrix given by

A =

[
1 −2
3 −1

]
,

calculate ‖A‖1, ‖A‖2, ‖A‖∞ as well as the condition numbers for each norm by hand.
Is A well or ill-conditioned?

(b) Recall the formulas from Theorems 2.7 and 2.8 in the text book. If you assume that
taking the absolute value and determining the maximum does not contribute to the
overall computational cost, how many flops (floating point operations) are needed to
calculate ‖A‖1 and ‖A‖∞ for A ∈ Rn×n? By what factor will the calculation time
increase when you double the size of matrix size?

(c) Now implement a simple code that calculates ‖A‖1 and ‖A‖∞ for a matrix of any
size n ≥ 1. Try to do this without using loops3! Using system sizes of n1 = 100,
nk+1 = 2nk, k = 1, . . . , 7, determine how long your code takes4 to calculate ‖A‖1
and ‖A‖∞ for a matrix A ∈ Rni×ni with random entries and report the results. Can
you confirm the estimate from (b)?

(d) (extra credit) MATLAB has the build-in function norm to calculate matrix norms.5

Calculate for the system sizes in (c) ‖A‖1 and ‖A‖∞ using both your implementation
and MATLAB’s norm function, determine for each ni how long each code takes and
plot the results in one graph. On average, by what factor is MATLAB’s implementation
faster than yours?

Please also hand in your code.

9. [3+3pt] Estimates for vector and matrix norms.

(a) Show that, for any v ∈ Rn, we have

‖v‖∞ ≤ ‖v‖2 and ‖v‖22 ≤ ‖v‖1 ‖v‖∞ .

In each case, give an example of a nonzero v for which equality is obtained.

(b) Let us generalize the definition of matrix norms to non-square matrices. We define
the ‖·‖p matrix norms (p ∈ {1, 2,∞}) for an m× n matrix A by

‖A‖p = sup
v∈Rn\{0}

‖Av‖p
‖v‖p

where the norm in the numerator is defined on Rm and the norm in the denominator
is defined on Rn.
Using the problem above, show that

‖A‖∞ ≤
√
n ‖A‖2 and ‖A‖2 ≤

√
m ‖A‖∞

In each case, give an example of a nonzero matrix A for which equality is obtained.

3The commands needed in MATLAB are abs and sum. Most commands can not only applied to numbers, but
also to vectors, where they apply to each component.

4In MATLAB use the stop watch commands tic and toc.
5Use help norm to find out how to obtain the matrix norm that is induced by either the 1,2 or ∞-vector

norm.

3


