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Motivated by the intriguing motility of spirochetes �helically shaped bacteria that screw through
viscous fluids due to the action of internal periplasmic flagella�, we examine the fundamental fluid
dynamics of superhelices translating and rotating in a Stokes fluid. A superhelical structure may be
thought of as a helix whose axial centerline is not straight, but also a helix. We examine the
particular case in which these two superimposed helices have different handedness, and employ a
combination of experimental, analytic, and computational methods to determine the rotational
velocity of superhelical bodies being towed through a very viscous fluid. We find that the direction
and rate of the rotation of the body is a result of competition between the two superimposed helices;
for small axial helix amplitude, the body dynamics is controlled by the short-pitched helix, while
there is a crossover at larger amplitude to control by the axial helix. We find far better, and excellent,
agreement of our experimental results with numerical computations based upon the method of
Regularized Stokeslets than upon the predictions of classical resistive force theory.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2800287�

I. INTRODUCTION

The study of swimming micro-organisms, including bac-
teria, has long been of scientific interest.1–3 Bacteria swim by
the action of rotating, helical flagella driven by reversible
rotary motors embedded in the cell wall.2 Typically, these
flagella visibly emanate from the cell body. The external fla-
gella of rod-shaped bacteria, such as E. coli, form a coherent
helical bundle when rotating counterclockwise, causing for-
ward swimming. When these flagella rotate in the opposite
direction, the flagellar bundle unravels, causing the cell to
tumble. This run and tumble mechanism allows a bacterium
to swim up a chemoattractant gradient as it senses temporal
changes in concentration.4,5 Many studies have focused on
the fundamental fluid mechanics surrounding this locomo-
tion affected by a simple helical flagellum attached to and
extruded from the cell body.3,6 Recently, there have been
additional studies that investigate the hydrodynamics of
flagellar bundling.7,8

In contrast, swimming bacteria with more complicated
body-flagella arrangements are less studied. Spirochetes are
such a group of bacteria. They have a helically shaped cell
body,9,10 and although they also swim due to the action of
rotating flagella, these do not visibly project outward from
their cell body. Instead, the cell body is surrounded by an

outer sheath, and it is within this periplasmic space that ro-
tation of periplasmic flagella �PFs� occurs. These helical
periplasmic flagella emanate from each end of the cell body,
but rather than extend outwards, they wrap back around the
helical cell body. In the case of Leptospiracaeae, there are
two PFs, one emerging from each end of the cell body, which
do not overlap in the center of the cell. Rotation of each
flagellum is achieved by a rotary motor embedded in the cell
body. The shapes of both ends of the helical cell body are
then determined by the intrinsic helical structure of the peri-
plasmic flagella, as well as their direction of rotation. During
forward swimming, L. illini exhibit an anterior region that is
superhelical, due to this interplay of helical cell body and
helical flagellum.10 In fact, the handedness of these two he-
lical structures are opposite, with the flagellum �axial helix�
exhibiting a much larger pitch than the cell body helix. Fig-
ure 1 shows a photograph of the spirochete L. illini with an
anterior superhelical region at the left.

The overall swimming dynamics of spirochetes involves
nonsteady coupling of the complex geometry of the cell
body, the flexible outer sheath, and the counter-rotation of
the cell body with the internal flagella. However, a natural
question is how the effectiveness of spirochete locomotion
depends upon the detailed superhelical geometry of the an-
terior region of the bacterium. With this as motivation, we
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present here a careful study of the fundamental fluid mechan-
ics of superhelical bodies translating and rotating through
highly viscous fluids. We extend the classical analytic and
experimental results of Purcell6 and the numerical results of
Cortez et al.11 performed for regular helices. In addition, we
offer coordinated laboratory and computational experiments
as validation of the method of Regularized Stokeslets for
zero Reynolds number flow coupled with an immersed, geo-
metrically complex body. This method uses modified expres-
sions for the Stokeslet in which the singularity has been mol-
lified. The regularized expression is derived as the exact
solution to the Stokes equations consistent with forces given
by regularized delta functions.

We focus on a typical body that is a short-pitched helix
whose axis is itself shaped as a helix of larger pitch and
opposite handedness. In the following sections, we describe
the experimental setup as well as the construction of these
superhelical bodies. We experimentally measure the rota-
tional velocities of the bodies as they are towed with a con-
stant translational velocity through a very viscous fluid. Note
that rotational and translational velocities should be propor-
tional, with the constant of proportionality �ratio of resis-
tance coefficients� dependent upon the body geometry. The
rotational velocities corresponding to translational velocities
are also predicted analytically using resistive force theory, as
well as using the method of Regularized Stokeslets.11,12 We
find compatible behavior between experiments and the resis-

tive force theory, but excellent quantitative agreement be-
tween experiments and the method of Regularized Stokes-
lets.

II. SUPERHELIX CONSTRUCTION

A superhelix is formed from a copper wire chosen to be
sufficiently malleable to deform into a desired shape, but
rigid enough not to deform as it moves through the viscous
fluid. The superhelix is made in two steps �see Fig. 2�b��.
First, a copper wire of diameter 0.55 mm is wound tightly in
a clockwise direction up a rod of diameter 3.15 mm, forming
a tight coil. After removing the coil from the rod, we stretch
it out into a smaller radius, larger pitch helix, simply by
pulling the ends of the coil away from each other. The axial
helix is made in the same manner, but we use lead wire of a
thicker diameter �3.15 mm� and a larger rod �4.7 mm diam-
eter�. The most important difference between the two helices
is handedness; the axial helix is wound counterclockwise up
the rod, whereas the small helix is wound clockwise. Once
the parameters of the small and axial helices are measured,
the axial helix is threaded through the small helix, forming a
superhelix; i.e., the small helix is placed back on a rod that
has been distorted into a helical shape. The last step is to
remove the axial helix. This is done by simply rotating the
axial helix while keeping the superhelix fixed.

The defining geometric parameters of the superhelix are
the radius r and pitch p of the small helix, and the radius R
and pitch P of the axial helix �see Fig. 2�. At the extreme
values of pitch for the small helix �p=0 and p=��, the su-
perhelix reduces to a regular helix. Similarly, for R=0 or
P=�, the superhelix reduces to a regular helix. The super-
helix construction described above requires the removal of a
thin helical wire from the larger lead wire. This procedure
presents difficulties for large values of r and small values of
p. For this reason, we limit our experiments to two different
sets of small helices. The corresponding geometric param-
eters of these small helices are the pitch �5.58±0.25 mm
for set I and 5.04±0.36 mm for set II� and radius

FIG. 1. Photograph of L. illini. Note the superhelical anterior region at the
left. We thank Professor S. Goldstein, Dept. of Genetics, Cell Biology and
Development, University of Minnesota for providing this image.

FIG. 2. �a� Schematic of experimental setup. A motor
pulls a rigid body through silicon oil, a highly viscous
Stokes fluid ��=10 000 cSt�. �b� Procedure for making
superhelix.
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�1.91±0.14 mm for set I and 1.75±0.21 mm for set II�. The
small �less than 12%� variations of pitch and radius are pre-
sumably due to mechanical relaxation of material when it is
pulled off the axial helix. Seven different axial helices are
prepared from the same initial coil �see Fig. 3�.

We now construct a mathematical representation of
the superhelix. The coordinates of an axial helix are
X= �R cos�Kz� ,R sin�Kz� ,z�, where K=2� / P. The distance
measured along this helix is linearly proportional to the
axial distance z�=�s�. The unit vector tangential to the
axial helix is t̂A=�X /�s. The principal normal vector is

n̂A= �−cos�Kz� ,−sin�Kz� ,0� and the binormal is b̂A= t̂A� n̂A

=��sin�Kz� ,−cos�Kz� ,RK�. Since t̂A is a unit vector, we set
� as

�2�R2K2 + 1� = 1. �1�

The coordinates of the one-dimensional curve describing
the superhelix are

R�s� = �Rx,Ry,Rz� = X�s� + r cos�ks�n̂A + r sin�ks�b̂A. �2�

Recall that the actual superhelices have nonzero thickness
�the diameter of the copper wire�, and hence are true three-
dimensional structures.

III. EXPERIMENT

The classical experiments of Purcell, elaborated on in
Ref. 6, examined the relationship between angular and trans-
lational velocities of helical objects at very low Reynolds
numbers. Here we extend these experiments to the superhe-
lical objects described above. The experimental setup was
originally designed for sedimentation experiments13 �see Fig.
2�a��. A tall transparent container is filled with silicone oil
with large viscosity ��=104 cS, �=0.98 g/cm3�. The oil be-
haves as a Newtonian fluid in the regime of interest here.
Rather than allowing the superhelical object to descend by
gravity, our experiment is designed to measure its rotational
speed as it is towed up through the viscous column of fluid at

a specified translational speed. To drag the superhelix, a
small hook ��2 mm� is used to attach the superhelix to a
thread from a motor. Note that the dimensions of this hook
are quite small compared to the superhelix length ��4 cm�.
By experimentally testing with an axisymmetric body
�sphere�, we found that this towing system �the thread plus
the motor�, does not produce any torque on the body.

The superhelix is initially positioned near the bottom of
the container, and then is dragged upwards by the motor
�Clifton Precision-North� at constant speed. In the interme-
diate region in the container, steady state motion �constant
translational velocity, rotational velocity, and drag force� is
assumed. The superhelix positions, orientations, and veloci-
ties are measured from a 30 frames per second video stream
of the camcorder. The translational velocity in our experi-
ments varies by changing power input to the motor. We have
chosen a velocity range of 3–10 cm/s. Below 3 cm/s, the
step motor produces nonuniform pulsed axle rotations, which
lead to irregular translational velocity. The Reynolds number
based upon the towing velocity and radius of the superhelical
structure �1 cm� is at most

Re =
UR

�
� 0.1. �3�

We assume therefore that the steady Stokes equations govern
the fluid mechanics of the translating superhelix. Within this
translational velocity range, a linear relationship between ro-
tational velocity � and translational velocity U is observed
�see Fig. 4�.

A translating helix in a viscous solution rotates in the
direction in which it screws. Following this rule, the small
�straight� helix in our experiments would rotate clockwise
and the axial �straight� helix would rotate counterclockwise
when viewed from above. In Purcell’s work,6 the jointed
structure built by connecting two helices of opposite hand-
edness, otherwise identical, showed no rotation during its
sedimentation. The superhelix of interest here is the super-
position of two helices with opposite handedness. The inher-
ent rotational directions of these superimposed helices are in
competition. For very small values of the nondimensional
parameter RK of the axial helix, the superhelical structure

FIG. 3. Seven superhelices with increasing axial helix radius �from left to
right�. The upper panel is the side view and the lower panel is the axial view.
Radius �R� and wavenumber �K� of the axial helix. As the initial coil is
pulled apart, the radius and wavenumber of the axial helix increase. This
relation can be predicted by the simple scaling relation with inextensibility
of a wire.

FIG. 4. A linear relationship between the translational velocity and rota-
tional frequency of a superhelix �r=0.89 mm, R=4.62 mm, p=5.5 mm, and
P=19.4 mm�. Triangles are from experimental observations. Dashed line is
a least-squares fit of experimental data.
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reverts to the straight small helix, and would rotate clock-
wise. One expects that for larger values of the parameter RK,
the axial helix would be dominant, and the superhelical
structure would rotate counterclockwise. For some critical
value of RK, we would expect a transition in direction, and
hence, a structure that would show no rotation as it is towed
through the fluid. We performed experiments that systemati-
cally varied RK, and observed this expected change in rota-
tional direction. Figure 5 shows the ratio of angular velocity
to translational velocity as a function of RK, for the two
different sets of superhelices �sets I and II�. Positive rota-
tional rate is clockwise, and negative is counterclockwise. In
each set of experiments, the measured ratio is depicted by
triangles. Note that each of these data points is arrived at by
averaging the results of about ten realizations of the towing
experiment for each superhelix. The experimental error,
based upon the standard deviation, is at most five percent. In
the next sections, we describe mathematical formulations
that model these observations.

IV. NUMERICAL RESULTS

A. Regularized Stokeslets

We assume that the superhelix is a rigid body moving in
a Stokes fluid. The governing equations of motion are

− �p + ��2u = 0, � · u = 0. �4�

The total hydrodynamic force and torque exerted by the su-
perhelix �with surface �D� on the surrounding fluid is

F = �
x��D

f�x�dx , �5�

L = �
x��D

�x − x0� � f�x�dx , �6�

where f is the surface traction.
A solution to the Stokes equations in three dimensions

�3D� with a point force centered at x0 is the classical
Stokeslet.14 Due to the linearity of the Stokes equations, su-
perposition of these fundamental solutions allows the con-
struction of the velocity field induced by a distribution of
point forces. The method of Regularized Stokeslets eases the
evaluation of integrals with singular kernels by replacing the
delta distribution of forces by a smooth, localized
distribution.11,12 The force f= f�x0�	�x−x0� is replaced by
f= f�x0�
��x−x0�, where 
� is a cutoff, or blob, function with
integral 1. This blob function is an approximation to the 3D
Dirac delta function, with � a small parameter. Following
Ref. 11, we choose


��x − x0� =
15�4

8���x − x0�2 + �2�7/2 . �7�

For N regularized point forces distributed on the surface of a
body in rigid rotation and translation, the fluid velocity at
any point x is evaluated as

8��ui�x� = �
j

�
n=1

N

Sij
� �x,xn�f j�xn� . �8�

For the given cutoff function, the kernel S is

Sij
� �x,xn� = 	ij

r2 + 2�2

�r2 + �2�3/2 +
�xi − xn,i��xj − xn,j�

�r2 + �2�3/2 , �9�

where r= �x−xn�.
Note that evaluating Eq. �8� at each of the N points of

the superhelix surface gives us a linear relation between the
velocities and the forces exerted at these points. The matrix
Sij

� for a given cutoff parameter � depends only upon the
geometry of the superhelix.

For a rigid body moving in a Stokes flow, there is a
linear relationship between the total hydrodynamic force and
torque and the translational and rotational velocity of the
body.6 Following Refs. 6 and 11, we focus on the z compo-
nents of total hydrodynamic force F and torque L, along with
the z component of translational velocity U, and rotational
velocity about the z axis �. These are related by resistance
�or propulsion� coefficients

	F

L

 = �	A B

B D

	U

�

 . �10�

Here, A, B, and D depend only upon the geometry of the
object.

In order to compute these coefficients, we describe the
superhelix by a discrete set of points. The discrete points of
the superhelix lie on its surface, and not along the centerline.
The diameter of the superhelical wire is a free parameter of
this model. Here, each circular cross section of the copper
wire is approximated by a hexagon, with six azimuthal grid
points. We choose a cutoff parameter � on the order of the
distance between discrete points �see Ref. 11 for details�. At

FIG. 5. Ratio of angular velocity to translational towing velocity. Triangles
are values measured experimentally. Circles connected by lines are values
predicted using the method of Regularized Stokeslets. Squares are values
predicted using resistive force theory. �a� Superhelices of set I. Positive
rotational rate is clockwise and negative rate is counterclockwise. Rotational
direction changes around 0.7 for RK. �b� Superhelices for set II. Same tran-
sition also occurs around 0.7 for RK.
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each point on this discretized superhelix, we impose a unit
translational velocity and zero rotational velocity in the z
direction. We use the Regularized Stokeslet linear relation
�8� to solve for the forces on the superhelix that produced
this velocity. We then evaluate the integrals for total force F
and total torque L in Eqs. �5� and �6� above. Using the linear
equations �10�, we compute the resistance coefficients
A and B. Similarly, we can compute D by imposing a unit
rotational velocity and zero translational velocity.

These resistance coefficients allow us to predict the ratio
of rotational velocity to translational velocity in our torque-
free experiments described above, as

�

U
= −

B

D
. �11�

Figure 5 shows the Regularized Stokelet predictions �circles�
of these ratios for both sets of superhelices. The agreement
with experimental data is excellent. Indeed, the transition
from clockwise to counterclockwise rotation is captured very
precisely.

B. Resistive force theory

Resistive force theory15,16 is widely used to give an ap-
proximate description of a slender body moving in a viscous
fluid. However, the nonlocal interactions of stress along the
body are not taken into account. To see how important this
nonlocal interaction is, we estimate analytically the ratio of
angular to translational velocities in this section, and com-
pare the predictions with experiment and the numerical cal-
culations using Regularized Stokeslets.

The Stokes drag force is proportional to its velocity as
f=Ct�u · t̂�t̂+Cn�u · n̂�n̂, where t̂ and n̂ are tangential and nor-
mal directions, respectively, and Ct and Cn are drag coeffi-
cients. The normal direction is arbitrary, but is uniquely de-
termined if the motion is given.

First, we consider pure body-rotation about the z axis.
The body velocity is u=R���=��Ry ,−Rx ,0�=�R�û,

where R�= �Rx ,Ry ,0�, R�= �R��, û= R̂� ẑ, and �=�ẑ. The
angle � between the direction of motion and the tangential
of the body is expressed by the superhelix coordinates as
û · t̂=cos �= �Ry�sRx−Rx�sRy� /R�, where t̂=Rs. Similarly,
û · n̂=sin �.

Using the vector relation ��A�B� ·C=−�A�C� ·B�, the
z-component torques associated with forces are

Lz�s� = �R � f� · ẑ = Ct�u · t̂�

��R � t̂� · ẑ + Cn�u · n̂��R � n̂� · ẑ

= − Ct�u · t̂��R � ẑ� · t̂ − Cn�u · n̂��R � ẑ� · n̂

= − �R�
2 �Ct cos2 � + Cn sin2 �� , �12�

and the total torque due to its rotational motion is

Lz
�Rotation� =� Lz�s�ds

= − �� R�
2 �Ct cos2 � + Cn sin2 ��ds . �13�

Similarly, the total torque associated with the pure transla-
tion, i.e., u= �0,0 ,U�=Uẑ, is

Lz
�Translation� = U� �Cn − Ct���sRz�R� cos �ds . �14�

Decoupling the body motion into a pure rotation and a pure
translation, the z component of total torque on the body is
expressed as

Lz = Lz
�Translation� + Lz

�Rotation�. �15�

In our experiments, we do not apply any external torque.
Balancing two torques gives an expression for the ratio of
angular velocity to translational velocity as

Lz
�Translation� = − Lz

�Rotation� ⇒
�

U

=
� �Cn − Ct���sRz�R� cos �ds

� R�
2 �Ct cos2 � + Cn sin2 ��ds

. �16�

Note that this ratio of velocities depends only upon the ratio
of drag coefficients Cn /Ct. Evaluating these integrals nu-
merically, and using R and Cn=2Ct �the leading order result
of slender-body theory�, � /U is plotted as squares in Fig. 5.

The slope �−B /D� in relation �11� is measured in experi-
ments by using a least-squares fit of the data �see Fig. 4�.
Although the resistive force theory predictions of � /U show
the same general trend as the experimental measurements,
the quantitative agreement is quite poor, and the transition
from clockwise to counterclockwise rotation is not captured.
This discrepancy is likely due to the omission of nonlocal
interactions in the resistive force theory formulation. These
nonlocal interactions become more important for larger val-
ues of RK.

V. CONCLUSION

In conclusion, we have studied the rotational dynamics
of superhelices built out of superimposed helices of opposite
handedness in a viscous fluid. As the radius of the axial helix
increases, we have observed the transition of rotational di-
rection to the natural direction of rotation of the axial helix.
The rotational velocities corresponding to translational ve-
locities are also predicted semi-analytically using resistive
force theory, as well as numerically, using the method of
Regularized Stokeslets.11,12 We see that although there is
qualitative agreement between experiments and resistive
force theory, for larger radii of the axial helix, the predicted
ratios of rotation to translational velocities differ from ex-
perimental results by more than 100%, and show the incor-
rect direction of rotation. In contrast, the easily implemented
computational framework of Regularized Stokeslets demon-
strates excellent quantitative agreement with experiments.
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Our numerical results based upon Regularized Stokeslets
assumed that the superhelix was towed through an un-
bounded three-dimensional fluid. Since there is such close
agreement between our laboratory experiments and the com-
putations, the effects of the container walls seem to be neg-
ligible. In previous sedimenting experiments, in which the
ratio of body size to container width was also small, a similar
conclusion was reached.13 However, the motility of micro-
organisms in confined geometries is of biological interest,
and we plan to investigate wall effects by performing these
towing experiments in smaller containers.

While this study is motivated by the fascinating geom-
etry of spirochetes, we recognize that the rotation of the an-
terior superhelix of a spirochete is not due to an imposed
rotation about a vertical axis, but due to the counter-rotation
of the periplasmic flagellum �which determines the axial he-
lix�, against the cell body �the small helix�. The fluid me-
chanic implications of this counter-rotation that governs spi-
rochete motility will be the subject of future work.
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