
Periodic sedimentation in a Stokesian fluid

Sunghwan Jung, S. E. Spagnolie, K. Parikh, M. Shelley,* and A-K. Tornberg
Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,

New York, New York 10012, USA
�Received 4 May 2006; published 8 September 2006�

We study the sedimentation of two identical but nonspherical particles sedimenting in a Stokesian fluid.
Experiments and numerical simulations reveal periodic orbits wherein the bodies mutually induce an in-phase
rotational motion accompanied by periodic modulations of sedimentation speed and separation distance. We
term these “tumbling orbits” and find that they appear over a broad range of body shapes.
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The dynamics of bodies settling through a Stokesian fluid
has a long and important history in fluid dynamics, and re-
mains relevant to natural and industrial phenomena of con-
temporary interest �1�. In 1851, Stokes determined the set-
tling speed U of a solid sphere of radius a and density �̄,
showing that U= 2

9
a2g
� ��̄−��, where � and � are the fluid

viscosity and density, respectively �2�. Stimson and Jeffery
�3� considered two sedimenting spheres of equal density and
radius, with one placed above the other, and showed that the
settling speed is increased by their interaction through the
fluid. Exact series solutions for two identical spheres arbi-
trarily situated have since been derived �4�.

The case of nonspherical bodies is much less studied ana-
lytically, and few exact solutions exist. Oberbeck �5� and
Jeffery �6� determined the settling dynamics of a single el-
lipsoid, indicating that a sedimenting ellipsoid of revolution
has no tendency to change its orientation, and that its speed
�an increasing function of ellipticity� increases monotically
as its major axis changes from the horizontal to the vertical.
Problems involving many bodies are less understood, and are
almost the exclusive domain of experiment, approximation,
or large-scale simulation. For example, it has been observed
numerically that three or more settling particles �treated ap-
proximately� in a viscous fluid can exhibit very complicated,
if not chaotic, dynamics �7� �see also the experiments in Ref.
�8��. The interaction of many slender bodies has been studied
in some detail �9–12�.

Here we study, by experiment and numerical simulation,
the sedimentation dynamics of two identical bodies of vari-
ous nonspherical shapes. Given appropriate initial configura-
tions, we find that each body can induce a mutual rotation
upon the other that leads to visually striking periodic dynam-
ics that we term “tumbling orbits.” In these orbits, each body
simultaneously rotates and separates from the other in a
mirror-symmetric fashion �the spreading and slowing re-
sembles visually the dynamics of an opening parachute�. Af-
ter achieving their greatest separation, the bodies continue to
rotate and accelerate as they fall towards each other; the
process then begins anew. These orbits appear to be stable,
and are reproduced over a wide range of body types includ-
ing disks, rods, hemispheres, and cubes. The stability of tum-
bling orbits with three or more bodies and the effects of

different initial placements are studied numerically. Our re-
sults are consistent with theoretical treatments for ellipsoids
�13–15�, which have predicted the existence of such orbits
when the bodies are well separated.

Experiments. The experimental setup is illustrated in Fig.
1. A tall transparent container is filled with silicone oil. Two
different oils are used, each with large viscosity ��=103 and
104 cS, �=0.98 g/cm3�. These oils behave as Newtonian
fluids in the regime of interest here. At the top free surface,
we introduce bodies of various shapes and sizes. The bodies
are made of a plastic slightly heavier than the fluids
��̄=1.12 g/cm3�. We focus primarily on the dynamics of
disk- and rod-shaped bodies. The rods are of fixed diameter
�d=0.32 cm� and of various lengths �L=0.5–2 cm�; the
disks are of fixed thickness �d=0.16 cm� and of various di-
ameters �L=0.5–2.6 cm�. The body pairs are constructed to
have the same volume by cutting and sanding to precise
dimensions. The body positions, orientations, and velocities
are measured from a 30 frame per second video stream.
Other experiments, not reported in detail here, studied the
dynamics of pairs of spheres, hemispheres, and cubes.

Other sedimentation experiments have been initiated us-
ing various body-release mechanisms �8,16,17�. For our pur-
poses here, we found it difficult to place the bodies in the
precise desired initial configurations, but we chanced upon a
method of release. The plastic material of the bodies is not
wetted by the oil, allowing them to “float” on the supporting
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FIG. 1. Schematic of the experimental setup. Silicone oils fill
the transparent vessel. By pushing the bodies into the fluid with a
wire mesh, the initial condition is well controlled. A mirror is
placed at a 45° angle for the side view. Both front and side views
are imaged simultaneously through a video camera 1.5 m away.
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menisci if placed carefully on the top free-surface. This al-
lows us to lay out an initial, though restricted, set of precise
body configurations there. The bodies are then pushed verti-
cally into the fluid using a flat wire mesh. After the release,
terminal dynamics are typically approached within a sedi-
mentation distance of approximately 5L. During this stage
there is a decrease in the separation distance �the causes of
which will be discussed below�, and our experimental results
do not depend significantly upon the initial separation dis-
tance for this reason. Due to the small difference between
body and fluid densities, and the high viscosity of the fluids,
the Reynolds numbers �Re=�UL /�� in the experiments are
small, ranging from 10−4 to 10−1. Likewise, the Froude num-
bers �the ratio of inertial force to gravitational force Fr
=�U2 / ��̄−��gL� are small, ranging from 10−6 to 10−3.

Experimental results are shown in Fig. 2. Figure 2�a�
shows the rotational dynamics of a pair of identical rods over
an orbit well separated from the top free-surface. At the be-
ginning of this period, the two rods are aligned and descend-
ing at the maximal velocity of the orbit. Roughly speaking,
there is a mutually induced rotation as each body descends in
the shear field of the other. As the rods rotate out of the
vertical their descent velocities decrease, as suggested by the

single-body results for ellipsoids �see Refs. �5,6,13��. Figure
2�b� shows the qualitatively similar dynamics for a pair of
disks. We observe that two bodies sediment on average faster
than the maximum possible velocity of a single body ��1.5
times; see Fig. 4�. Finally, Fig. 2�c� shows a half period of
the tumbling orbit for two hemispheres.

A central feature of the tumbling orbits is the oscillation
of each body’s center of mass, shown in Fig. 3 for both disks
and rods. Here the motion is captured in a frame moving
with the mean velocity, and in this frame the orbit is in each
case approximately a 2:1 ellipse. The vertical extent of this
ellipse shows the departures from constant settling velocity
induced by the rotation. The horizontal distance shows to
what extent the two bodies alternately push each other away,
and pull each other together. That this orbit is closed when in
this constant velocity frame is indicative of its stability.

Figure 4 shows the average descent velocity as L is var-
ied. Given the low Reynolds numbers, scaling velocity by
viscosity should remove the viscosity dependency in the
data; hence, the separation of the data points for the largest
body size is likely due to finite Reynolds number effects. For
both disks and rods we find a velocity mostly increasing with
length, though for rods this increase is much weaker. For
disks the increase is linear at smaller lengths, with departures
that we attribute to interaction with the container walls
�see also Ref. �18��. The velocity scaling and dependencies
can be understood through very simple considerations. By
balancing drag forces and gravitational forces one finds the
estimate U��g � �̄−� �d3−n�Ln−1 /�, where n=2 for disks and
n=1 for rods. The period is estimated as T�L /U
��dn−3 /g � �̄−� � ��L2−n. This is in rough agreement with the
data in Fig. 4.

Simulations. We have been able to reproduce many of our
experimental observations in simulations of bodies settling in
a Stokesian fluid. The Stokes equations are

� · S = − �p + ��u = �gẑ, � · u = 0, �1�

where S=−pI+2�E is the stress tensor with p the pressure,
u the fluid velocity, and E the symmetric rate-of-strain ten-
sor. Consider N solid bodies immersed in a fluid, where the
kth body has center of mass at X�k��t� and surface labeled as
Bk, k=1, . . . ,N, with external normal n̂�k�. All bodies are
taken as geometrically identical, each having density �̄ and

FIG. 2. Snapshots of tumbling orbits for pairs of bodies of vari-
ous shapes: �a� Rods �L=1.3 cm�, �b� disks �L=1.3 cm�, �c� hemi-
spheres �L=1.3 cm�. The last row of hemispheres reproduces the
previous row in schematic form. We observe that the right �left�
body rotates in a counterclockwise �clockwise� direction. After ro-
tating 180° �rods and disks� or 360° �hemispheres�, they return to
their initial configuration. Rod and disk pairs fall nearly twice as
fast when aligned to gravity than when orthogonal �illustrated by
arrows�.

FIG. 3. Two falling disks �a� and rods �b�, each held in a uni-
formly moving frame. Disks are falling at approximately
0.045 cm/s and rods at 0.035 cm/s. Body locations are shown in
gray, and are measured every 20 s for disks and rods. Centers of
mass are indicated by points and are measured twice as frequently.

JUNG et al. PHYSICAL REVIEW E 74, 035302�R� �2006�

RAPID COMMUNICATIONS

035302-2



volume V. The no-slip condition is applied at each body
surface, and applied forces and torques acting on the kth
body must balance the force and torque exerted by the fluid
or

�
Bk

dAxS · n̂ = �̄gVẑ, �
Bk

dAx�x − X�k�� � S · n̂ = 0 �2�

as gravity exerts no torque. We neglect the presence of the
containing walls and surfaces, and consider the fluid as oc-
cupying all space.

A number of asymptotic approximation methods have
been used to study this class of problems �14,19,20�. We
instead solve the Stokes equations exactly, up to discretiza-
tion errors, using a boundary integral formulation �21�. A
representation formula is obtained by placing a Stresslet dis-
tribution of unknown vector density q on the body surfaces
�21�:

u�x� = �
k
�

Bk

dAx�K�x� − x�q�x�� +
1

8��
�

k

G�x − X�k��F�k�

+ Gc�x − X�k��T�k�, �3�

where

Kij�x� = − 6�x̂ix̂ jx̂k/�x�5�n̂k with x̂ = x/�x� , �4�

Gij�x� = ��ij + x̂ix̂ j�/�x�, Gij
c �x� = �ijkx̂k/�x�3. �5�

K�x� is the Stresslet kernel applied to the local normal vec-
tor. G�x−X�k�� and Gc�x−X�k�� are point Stokeslets and Rot-

lets internal to the kth body, and F and T are the external
forces and torques on the bodies. With the assumption of
rigid body motion u�k�=U�k�+	�k�� �x−X�k��, this represen-
tation generates a �well-conditioned� second-kind integral
equation with a unique solution �q ,U ,�� and solves Eqs.
�1�, �2�. Equation �3� is made nondimensional and free of
adjustable parameters by scaling x→Lx, u→Uu, q→Uq.
Here, F�k�=−ẑ and T�k�=0. The dynamics then depend only
upon the geometric shapes of the bodies and their initial
configurations.

Note the time reversal symmetry found by g→−g, of
which the left-right symmetry in Fig. 5 is a consequence. By
this symmetry it may also be shown that the distance be-
tween two spheres sedimenting one atop the other does not
change �this argument may be extended to ellipsoids�. More-
over, the symmetry ensures that after each period of a tum-
bling orbit, there is no change in the separation distance be-
tween the two bodies. In conjunction with the fact that body
positions are determined by a first order ODE �orbits do not
cross in phase space�, this shows that all tumbling orbits are
truly periodic.

In the numerical simulations, disks and rods are approxi-
mated by flat oblate ellipsoids and elongated prolate ellip-
soids, respectively. Each body is represented by a surface
grid, and applying a Nyström collocation method produces a
system of linear equations for the density q�x� at the grid
points, which is then solved iteratively. The �weakly singu-
lar� integrals are computed to second order in the surface
mesh element size. Body positions and orientations are up-
dated using a second-order Runge-Kutta method. Both con-
vergence tests and comparison with known exact solutions
�2–4,6� were used to validate the code.

We have used simulations to explore many aspects of this
system. Figure 5 shows numerical simulations of falling
pairs of oblate and prolate ellipsoids �i.e., “disks” and
“rods”�, reproducing the tumbling dynamics observed in ex-
periment. As indicated in Fig. 4, the general trends are re-
covered by our numerical efforts; possible discrepancies may
be attributable to wall effects or to the different body geom-
etries used in experiments and simulations. The one available
free parameter with which we are able to match simulations
with initial data is the initial separation distance; setting this
parameter to L /8 gives a reasonable account of the experi-
mental data. There is no numerical data for longer prolate
ellipsoids in Fig. 4, as the simulated bodies approach colli-
sion with this initial separation distance, rendering the fluid
dynamic model incomplete and our simulations inaccurate.

FIG. 4. Experimental and simulational mean velocities and pe-
riods as the length L is systematically changed; two disks and two
rods, in 1000 cS and 10 000 cS silicone oils. The dotted lines show
the exact solutions for a single disk; the solution follows the lower
curve if the body’s minor axis and gravity are parallel, and the
steeper curve if they are orthogonal.

FIG. 5. From simulation, the settling dynamics of two falling,
identical bodies; �a� two prolate ellipsoids, aspect ratio 8:1 and �b�
two oblate ellipsoids, aspect ratio 1:3.
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We find in simulation that slightly perturbing the initial
positions, for example by tilting one body relative to the
other, leads to periodic dynamics very close to those already
described. Large perturbations, however, can lead to very
different periodic dynamics. For example, by starting with
one body aligned orthogonally to the other, we have ob-
served the complicated and beautiful dynamics shown in Fig.
6�a�. This we hope to observe experimentally with a new
release mechanism.

We have also used simulations to understand a decrease in

separation distance seen in the early stages of the experi-
ments. To do so we studied a four body problem with mirror-
image symmetry about a free-surface: two bodies are placed
just below the surface, and two more bodies are placed sym-
metrically above and are acted upon by an external force of
opposite sign. By symmetry, the velocities normal to the sur-
face produced by both pairs must cancel on the free-surface,
and the velocity field created by one pair may be seen to
induce attracting velocities on the other set. That the side
walls act to slow the sedimenting velocities �18� likely in-
creases the amount of time the bodies spend in this initial
stage.

We find numerically that groups of three or more bodies,
placed symmetrically, will again achieve tumbling dynamics
but we find that if this arrangement is perturbed slightly �as
in Fig. 6�b��, the nearly periodic dynamics will disintegrate
towards a state with paired bodies descending quickly, and
solo laggards left behind. Tumbling orbits of multiple rods
and their instability have been observed in numerical studies
via slender body theory �22�.

In conclusion, we have studied bodies of various shapes
interacting while sedimenting in a viscous fluid, and have
observed through both experimental and numerical means
the existence of tumbling dynamics. We achieved good cor-
relation between the experimental and simulational results,
and made predictions about other types of orbits. Future
work will focus on the nature of such orbits when nonrevers-
ible forces are present, as in non-Newtonian fluid environ-
ments.

We thank N. Vandenberghe for helpful discussions and
acknowledge support by the DOE �Grant No. DE-FG02-
88ER25053� and NSF �Grant No. DMS-0412203�.
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FIG. 6. �a� Different initial orientations of two disks show re-
markable periodic orbits; the dotted and solid lines follow one
body’s edges. The vertical scale has been condensed to show an
entire half-period in one plot �the bodies have each rotated 180° in
this image�. �b� Three bodies reveal an unstable periodic orbit; im-
ages 1–3 show orientations at different times, suggesting the onset
of instability and the eventual dramatic consequences.
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