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Abstract A theoretical analysis is presented of a
reverse-time correlation method used in experimen-
tally investigating orientation tuning dynamics of
neurons in the primary visual cortex. An exact math-
ematical characterization of the method is developed,
and its connection with the Volterra–Wiener nonlin-
ear systems theory is described. Various mathematical
consequences and possible physiological implications
of this analysis are illustrated using exactly solvable
idealized models of orientation tuning.
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1 Introduction

The precise mechanism responsible for the orientation
selectivity of neurons in the mammalian primary visual
cortex (V1) remains one of the central mysteries in
modern neuroscience. Experimentally, orientation tun-
ing curves are elicited from neurons most often by using
bar-like or grating-like stimuli. For example, drifting
or contrast-reversing gratings yield stationary tuning
curves and the corresponding orientation preference
of the probed neurons. To find the time-course of the
given neuron’s orientation tuning, more sophisticated
grating sequences are used, such as the quasi-random
sequences used in the experiments of Ringach et al.
(1997a, 2003), Ringach and Shapley (2004), Xing et al.
(2005), which are combined with the reverse-time cor-
relation (RTC) analysis of the measured neuronal spike
trains. In these works, correlating the spike train of
a neuron against a time series of randomly presented
stimulus angles constructs P(τ, θ), the probability that
τ milliseconds before a spike was produced, a grating
with angle θ was presented. This probability is closely
related to the typical tuning response of a cortical
neuron to a specific orientation embedded within a
long, arbitrary stimulus. In this second interpretation of
P(τ, θ), τ is simply the response time. Figure 1 shows a
series of time slices through experimentally measured
P(τ, θ) for a number of neurons in various V1 layers in
macaque. In the evolution of P(τ, θ) with τ is seen the
dynamics of tuning by the cortex, with time-scales for
the onset of selectivity, the development of sharpened
response, and, in some cases, suppression of certain
angle responses in the later stages of the tuning process.

RTC analysis is closely related to the Wiener series
representation of the input-output relation in nonlinear
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Fig. 1 Orientation tuning dynamics of neurons in various V1 lay-
ers measured experimentally in Ringach et al. (1997a) [reprinted
from Ringach et al. (1997a) by permission from Macmillan Pub-
lishers Ltd., Copyright 1997]. Suppression of later-time response
to the optimal orientation is visible in neurons (b) and (e).

Mexican-hat tuning curves are present in the neurons (c), (d), and
(e). This time evolution of the tuning curve shape is believed to be
a result of the dynamic competition between cortical excitation
and inhibition (Nelson and Frost 1978; Sillito et al. 1980; Shapley
et al. 2003; Ringach and Shapley 2004; Xing et al. 2005)

systems (Wiener 1958). The Wiener series is an orthog-
onalized counterpart of the Volterra series (Volterra
1930), a representation of the output signal in a given
nonlinear system as a series whose terms are convo-
lutions of time-delayed copies of the input signal with
multi-dimensional kernels. The Wiener representation
became a practical tool after the discovery by Lee and
Schetzen (1965) that the leading-order Wiener ker-
nels can be obtained by an appropriate reverse-time
correlation of the output signal against a product of
multiple time-delayed copies of the Gaussian white-
noise input signal. Comprehensive theoretical accounts
and reviews of the Volterra–Wiener theory are pre-
sented in Marmarelis and Marmarelis (1978), Schetzen
(1980), Rugh (1981), Victor (1992), Matthews and
Sicuranza (2000), with Marmarelis and Marmarelis
(1978), Victor (1992) concentrating on physiological
systems. An extensive bibliography of books and arti-
cles addressing and using the Volterra–Wiener theory
in both engineering and the biosciences is given in
Giannakis and Serpedin (2001).

The Wiener series representation and RTC analysis
have been used to study sensory systems in a range
of neurophysiological systems, including, for exam-
ple, cochlear resolution and encoding (de Boer 1967;
de Boer and de Jongh 1978), visual systems of in-
sects (Marmarelis and McCann 1973; McCaan 1974;
de Ruyter van Steveninck and Bialek 1988; Rieke
et al. 1996; Juusola and French 1997; van Kleef et al.
2005) and horseshoe crabs (Brodie et al. 1978a, b),
retinal neurons of catfish (Naka et al. 1975) and
cats (Victor and Shapley 1978), and contrast response
(Ohzawa et al. 1985) and directional selectivity (Citron

and Emerson 1983) of cat cortical cells. A collection
of papers on the use of RTC analysis in visual sys-
tems is provided in Pinter and Nabet (1992). Some
more recent works include using RTC to study the
dynamics of color tuning in macaque V1 (Cottaris and
DeValois 1998), velocity and direction selectivity in V1
and MT cortical areas of cats and macaques (Borghuis
et al. 2003; Pack et al. 2006; Vajda et al. 2006), spatio-
temporal and spectro-temporal receptive fields of neu-
rons in the primary auditory cortex (Brugge et al. 2001;
Rutkowski et al. 2002; Miller et al. 2002; Klein et al.
2006), tuning characteristics of auditory nerve fibers
and the ventral cochlear nuclei of frogs (Yamada and
Lewis 1999) and mammals (Lewis et al. 2002; Recio-
Spinoso et al. 2005; Recio-Spinoso and Van Dijk 2006),
the enhancing of detection of rapid and coincident
auditory stimuli in auditory neurons (Svirskis et al.
2003), temporal filter properties of neurons in the
zebrafish optic tectum (Ramdya et al. 2006), spike-
timing dependent receptive field plasticity of tadpole
tectal neurons (Vislay-Meltzer et al. 2006), the rela-
tionship between physiological receptive fields and fea-
ture selectivity on the one hand and psychophysical
perceptive fields and feature detection on the other
(Ringach 1998; Neri 2004a, b; Neri and Levi 2006),
the average relative dependence of neuronal spiking on
the injected currents and prior spiking history (Powers
et al. 2006), and the relationship between dimensional-
ity reduction in the stimulus space and feature selectiv-
ity (Aguera y Arcas et al. 2003).

RTC and Wiener kernel analysis have also been suc-
cessfully used to map out receptive fields of LGN (Reid
and Shapley 1992; Reid et al. 1997; Wolfe and Palmer
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1998; Reid and Shapley 2002; Alitto et al. 2005) and
V1 (Jones and Palmer 1987; DeAngelis et al. 1993;
Pei et al. 1994; DeAngelis et al. 1995; Ringach 2002;
Borghuis et al. 2003) neurons in cats and monkeys. Such
mappings have by now also become integral parts of
more general studies, including of the shrinking of V1
neuronal receptive field sizes during long stimuli (Suder
et al. 2002), overlap of “on” and “off” regions in V1
neuronal receptive fields (Mata and Ringach 2004), the
distinctions between the receptive fields of “bursting”
and “tonic” LGN spikes (Alitto et al. 2005), the effects
of GABA inhibition blocking on the receptive field
components in cat V1 neurons (Pernberg et al. 1998),
and the effect of drifting grating stimuli in the surround
on the classical receptive field properties of cat V1
neurons (Palmer and Nafziger 2002). Visual stimuli
used in the mapping procedure are usually white-noise-
like in space and time, however, using these if fine
spatial resolution is required becomes a very complex
task in practice. A simplified, approximate RTC pro-
cedure was devised in Ringach et al. (1997b), in which
the white-noise-in-space-and-time stimuli are replaced
by suitable spatially orthonormal systems of functions,
whose shapes are chosen so as to best capture the
salient features of the receptive fields in question. Using
random sequences of such functions as stimuli and
cross-correlating the resulting spike trains against them
reduces the complexity of the receptive field recon-
struction at the linear order via RTC without signif-
icantly affecting its accuracy. The results of Ringach
(2002) were obtained by the method of Ringach et al.
(1997b), and approximate methods similar to it were
also developed and used in Cottaris and DeValois
(1998), Borghuis et al. (2003).

The approximate RTC method of Ringach et al.
(1997b) was also used in Ringach et al. (1997a, 2003)
to study the dynamics of neuronal orientation tuning
in macaque primary visual cortex. Related works
(Celebrini et al. 1993; Pei et al. 1994; Volgushev et al.
1995; Gillespie et al. 2001; Müller et al. 2001; Ringach
et al. 2002; Bredfeldt and Ringach 2002; Mazer et al.
2002; Nishimoto et al. 2005) studied orientation and
also spatial-frequency tuning dynamics in the V1 of
cats and macaques by using similar methods. The RTC
method of Ringach et al. (1997b) was also used to probe
the dependence of the orientation tuning dynamics on
the stimulus size (Xing et al. 2005; Chen et al. 2005),
and the dependence of orientation selectivity on adap-
tation to the orientation of prior drifting-grating stimuli
(Dragoi et al. 2002; Felsen et al. 2002).

In this paper, we develop a precise mathematical
description related to the experimental protocol used
in Ringach et al. (1997a, 2003), which includes a general

interpretation of the stimuli used in Ringach et al.
(1997a, 2003) as a collection of correlated binary noise
stimuli. We find expressions for the measured probabil-
ity function P(τ, θ) in terms of both time-averaged and
ensemble-averaged firing rates. Our description allows
us to show how the experimentally measured quantities
relate to the corresponding first-order Wiener kernels.
(We note that in this paper, we reserve the term Wiener
kernel only for the kernels associated with the Gaussian
white nose input.) In particular, we use the probability
P(τ, θ) and (a correlated version of) the Gaussian white
noise limit of binary noise stimuli to compute the first-
order Wiener kernels exactly for a set of simple leaky
feed-forward and ring (Ben-Yishai et al. 1995; Pugh
et al. 2000) models of orientation tuning dynamics.
Surprisingly, we show that they vanish identically due
to the averaging over the spatial phase used in the
experiment. In this way we conclude that, in the models
we study, the variations of the measured P(τ, θ) in τ

and θ do not arise from the (vanishing) linear Wiener
kernels, but rather from the (nonlinear) effects of the
higher-order terms in the Wiener series. This important
observation leads, in the remainder of the paper, to the
discussion of how the natural interpretation of P(τ, θ),
as the average dynamical response of a neuron to a
finite-duration flash of a specific orientation embedded
in a long random stimulus, yields useful information
about the structure of cortico-cortical connnections.
Along the way we also show, in amplification of the
result in Pugh et al. (2000), that a class of purely feed-
forward V1 neuronal models with no leakage exhibits
no orientation tuning dynamics. This is consistent with
the view that V1 neuronal orientation tuning may not
be a purely feed-forward process (Nelson and Frost
1978; Sillito et al. 1980; Sompolinsky and Shapley 1997;
Shapley et al. 2003).

As mentioned in the first paragraph and demon-
strated in Fig. 1, the time evolution of the probabil-
ity P(τ, θ) reveals various temporal and spatial scales
involved in the V1 neuronal orientation tuning dy-
namics. Questions that experimentalists have been
addressing include what is the underlying mechanism
responsible for the dynamic change of the shape of
orientation tuning curves (Pei et al. 1994; Volgushev
et al. 1995; Ringach et al. 1997a, 2002; Bredfeldt and
Ringach 2002; Ringach et al. 2003; Sompolinsky and
Shapley 1997; Shapley et al. 2003; Ringach and Shapley
2004), and whether these curves are separable in space
and time and thus just scale in time (Celebrini et al.
1993; Gillespie et al. 2001; Müller et al. 2001; Mazer
et al. 2002; Sharon and Grinvald 2002). The idealized
models in this paper assume explicitly that the LGN
filter processing the stimulus and feeding it to a V1
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neuron is separable; in other words, the integration
kernel used in our LGN model is the product of a
spatial and a temporal function. Thus, in the absence
of any additional cortical processing, the tuning curves
of a V1 neuron should simply scale in time. This prop-
erty is clearly retained in our feedforward models in
the limit of short presentation times even though a
nonlinear operation, i.e., thresholding of the stimuli
arriving from the LGN, is used. On the other hand, we
present a simple, idealized, coupled, linear V1 firing-
rate model, which accounts for the interaction among
cortical neurons, and even this simple model already
imparts nontrivial dynamical shape changes to the V1
neuronal orientation tuning curves. A particularly strik-
ing case of such a shape change is the “Mexican-hat”
tuning curve, which likely emerges as a consequence of
the interaction between cortical excitation and inhibi-
tion in the real cortex (Nelson and Frost 1978; Sillito
et al. 1980; Shapley et al. 2003; Ringach and Shapley
2004; Xing et al. 2005). Our idealized coupled model
also exhibits Mexican-hat orientation tuning curves and
accounts for many of their expected properties. For
example, this model predicts the existence of Mexican-
hat tuning curves in some cases when the extent of the
local cortical inhibition is half of the extent of the local
cortical excitation, which is one possible interpretation
of physiological data in V1 and is used in the large
computational model of McLaughlin et al. (2000).

The paper is organized as follows. In Section 2, we
present a description of the probability function P(τ, θ)

in terms of time- and ensemble-averaged neuronal fir-
ing rates. In Section 3, we present the description of the
experimental stimuli as a collection of correlated binary
noise processes, and develop a Volterra–Wiener-type
description of the experimental procedure of Ringach
et al. (1997a, 2003). In Section 4, we present an ide-
alized mean-field model, derived from the mean-field
model of Shelley and McLaughlin (2002), with Gabor-
like LGN stimulus filtering, and discuss the orientation
tuning properties and the first-order Wiener kernel for
the leaky-feedforward version of the idealized model.
Finally, in Section 5, we use a linearized, coupled,
excitatory-inhibitory version of the idealized model to
discuss properties of Mexican-hat tuning curves. In
Appendix 1, we present a probabilistic lemma used
throughout the paper. In Appendix 2, we discuss the
errors introduced in the reconstruction of the Wiener
kernels by approximating Gaussian white noise stimuli
by a collection of binary noise processes with finite
presentation times. Detailed calculations used to ob-
tain the results presented in Sections 3, 4, and 5 are
rendered in Appendices 3, 4, and 7, respectively. In
Appendix 5, we present the calculation showing that

the pure feedforward version of the idealized model
with no leakage exhibits no orientation tuning at all.
Appendix 6 contains the description of a numerical
integrate-and-fire ring model, which we use to verify
some assertions of Section 4.

2 Mathematical description of the experimental
procedure

The experimental procedure employed in Ringach
et al. (1997a, 2003) uses as the stimulus a sequence
of randomly-flashed gratings with a single spatial fre-
quency but different orientations θi and spatial phases
φ j. In particular, in each such sequence, the grating ori-
entation angles θi and spatial phases φ j are chosen ran-
domly and independently from some sufficiently fine
uniform distributions. A new grating is presented every
ν milliseconds, with the presentation interval ν corre-
sponding to the screen refresh rates of 60 Hz in Ringach
et al. (1997a) and 50 Hz in the later works (Ringach
et al. 2002, 2003; Bredfeldt and Ringach 2002).

In the course of the experimental procedure, the
resulting spike train from the V1 neuron under inves-
tigation is recorded. For any given time τ , a histogram
of orientation angles θi and spatial phases φ j is assem-
bled as follows: If at the time t the neuron fired a
spike, one finds the angle θi0 and the phase φ j0 which
were presented at the time t − τ , and increments the
corresponding box in the histogram. After normaliz-
ing by the total number of spikes, one obtains the
function Q(τ, θi, φ j), which gives the probability that,
τ milliseconds before a spike, a grating with the angle-
phase pair (θi, φ j) was presented. Hence, τ is the reverse
correlation time.

Since the studies of Ringach et al. (1997a) were
only concerned with the dynamics of orientation tuning,
the histogram that resulted from the experiment was
further averaged over the spatial phases φ j. This was
also deemed necessary because minute random eye
movements during the experiment prevent accurate
measurement of the preferred neuronal spatial phase.
Through this averaging and again after the normal-
ization by the total number of spikes, the marginal
probability distribution function P(τ, θi) was generated.
This function gives the probability that, τ milliseconds
before a spike, a grating with the orientation θi was pre-
sented regardless of the spatial phase. A series of time-
slices through such probability density functions for
various V1 layers, obtained experimentally in Ringach
et al. (1997a), is reproduced in Fig. 1. These time-slices
are interpreted as dynamic tuning curves, a point to
which we will return later in this section.
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We now describe a number of mathematical quanti-
ties that may serve as continuous-time equivalents of
the experimental histograms. In the subsequent sec-
tions, we discuss the relationship of these quantities
to concepts in nonlinear systems theory as well as
to various neuronal network mechanisms and cortical
architectures.

We begin with a mathematical description of the
stimulus used in the experiments of Ringach et al.
(1997a). If X = (X, Y) is the location on the screen and
t is time, the light intensity I(X, t) of the stimulus on the
screen is described by the formula

I(X, t) = I0ν
−1/2

{
1 + ε sin[k(θ(n)) · X − φ(n)]},

nν < t < (n + 1)ν, (1)

with n = . . . , −2, −1, 0, 1, 2, . . .. Here I0ν
−1/2 and ε

are the intensity and the contrast of the stimulus,
respectively, k(θ(n)) = k(− sin θ(n), cos θ(n)), and k/2π is
the spatial frequency of the stimulus. The orientation
angles θ(n) are drawn randomly and independently
every ν milliseconds from the discrete uniform distri-
bution of angles θi = π i/I, i = 0, . . . , I − 1, on [0, π),
and the spatial phases φ(n) from the discrete uniform
distribution of phases φ j = 2π j/J, j = 0, . . . , J − 1 on
[0, 2π). Here, I and J are some sufficiently large inte-
gers. In the experiments of Ringach et al. (1997a), I
varied between 15 and 60, and J = 4; the majority of
the neurons investigated in the experiments of Ringach
et al. (2003) were probed by stimuli with I = 18 and
J = 8 (the experiments of Ringach et al. (2003) also
included occasional “blanks,” i.e. gratings with no con-
trast. These can easily be incorporated in the theory
developed here).

We view the orientations θ(n) and spatial phases φ(n)

as forming two random, bi-infinite sequences

�θ = (
. . . , θ (−2), θ (−1), θ (0), θ (1), θ (2), . . .

)
and

�φ = (
. . . , φ(−2), φ(−1), φ(0), φ(1), φ(2), . . .

)
, (2)

specific to each experimental run. We have scaled the
intensity of the stimulus with the factor ν−1/2 in Eq. (1)
to facilitate the discussion of the “white noise” limit,
ν → 0 (while this scaling does not reflect any real-
istic physiological case, it elucidates the relationship
between the particular RTC method discussed in this
paper and the general Volterra–Wiener theory in an
especially clear fashion). Note that we are using sub-
scripts, as in θi, to denote the values of the orientation
angles (and spatial phases), and superscripts in paren-
theses, as in θ(k), to denote the time slots in which they
are presented, that is, their positions in the sequence �θ
(and �φ).

For any given pair of sequences �θ and �φ, as in Eq. (2),
of the presented grating orientation angles and spatial
phases, the correlation functions

N (τ, θi, φ j) = lim
T→∞

1

2T

∫ T

−T
χθi,φ j(t) m

(
t + τ, �θ, �φ )

dt,

(3a)

M(τ, θi) = lim
T→∞

1

2T

∫ T

−T
χθi(t) m

(
t + τ, �θ, �φ )

dt, (3b)

are convenient theoretical counterparts to the his-
tograms used to compute the probability distributions
Q(τ, θi, φ j) and P(τ, θi) introduced at the beginning
of this section. In formulas (3), m(t, �θ, �φ) is the firing
rate generated by the neuron in question under the
stimulus (1), and χθi,φ j(t) and χθi(t) are the indicator
functions of the unions of the time intervals (of the
type nν < t < (n + 1)ν, where n is an integer), during
which the orientation-phase pair (θi, φ j) and the angle
θi were presented, respectively. In other words, the
correlation functions N (τ, θi, φ j) and M(τ, θi) are just
the respective raw (unnormalized) histograms with the
spike counts computed using the firing rate and normal-
ized by the duration of the experiment.

Let us remark that, for simplicity and definiteness,
we consider in what is to follow the continuous fir-
ing rate, m(t, �θ, �φ). In principle, this rate is computed
in some appropriately short time interval around the
time t as the ratio between the number of spikes the
neuron in question fires in this interval and the length
of this interval. However, we only use m(t, �θ, �φ) for
theoretical purposes, and the practical calculations of
the probability distributions Q(τ, θi, φ j) and P(τ, θi) in
an experiment should proceed as described in Ringach
et al. (1997a, 2003) and at the beginning of this section.

Clearly, the continuous counterparts of the two
probability distribution functions Q(τ, θi, φ j) and
P(τ, θi) are given by the expressions

Qcont(τ, θi, φ j) = N (τ, θi, φ j)
∑I

k=1

∑J
l=1 N (τ, θk, φl)

and

Pcont(τ, θi) = M(τ, θi)
∑I

k=1 M(τ, θk)
, (4)

respectively.
Two quantities closely related to the correlation

functions N (τ, θi, φ j) and M(τ, θi), given by Eq. (3), are
the “interval-specific firing rate averages”

N(τ, θi, φ j) = lim
K→∞

1

2K

K∑

k=−K

m
(
nk

i, jν + τ, �θ, �φ), (5a)

M(τ, θi) = lim
K→∞

1

2K

K∑

l=−K

m
(
nl

iν + τ, �θ, �φ), (5b)
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where the time t = nk
i, jν is the beginning of the k-th time

interval during which the grating with the orientation-
phase pair (θi, φ j) was flashed, and the time t = nl

iν is
the beginning of the l-th time interval during which the
grating with the orientation θi was flashed, respectively.
In other words, N(τ, θi, φ j) is the average, over all the
time intervals in which only the grating with the orien-
tation θi and spatial phase φ j was shown, of the firing
rate τ time units after the beginning of every such time
interval. Likewise, the corresponding phase-averaged
quantity, i.e., M(τ, θi) is the analogous average over
all time intervals in which only the gratings with the
orientation θi were flashed, regardless of their spatial
phases.

Equations (3) and (5) imply

N (τ, θi, φ j) = 1

I Jν

∫ ν

0
N(s + τ, θi, φ j) ds

= N(τ, θi, φ j)

I J
+ O(ν), (6a)

M(τ, θi) = 1

Iν

∫ ν

0
M(s + τ, θi) ds = M(τ, θi)

I
+ O(ν),

(6b)

where, as we recall, I is the total number of different
orientations and J is the total number of different
spatial phases contained in the collection of the gratings
presented in the experiment. This is because, on each
interval nk

i, jν < t <
(
nk

i, j + 1
)
ν in which the orientation-

phase pair (θi, φ j) is presented jointly, we have

∫ (
nk

i, j+1
)
ν

nk
i, jν

χθi,φ j(t) m
(
t + τ, �θ, �φ)dt

=
∫ ν

0
m
(
nk

i, jν + s + τ, �θ, �φ)ds.

The difference in normalization comes about as fol-
lows. The correlation functions in Eq. (3) and on the
left-hand side of Eq. (6) are normalized by the to-
tal duration of the stimulus. On the other hand, the
interval-specific firing rate averages in Eq. (5) and on
the right-hand side of Eq. (6) are normalized over
the total number of times the grating with the specific
orientation and phase (θi, φ j), or the specific phase θi is
presented. In the limit of an infinitely long stimulus, the
two sets of normalizations differ by factors of I J and I,
respectively.

As we show in the next paragraph, the interval-
specific firing rate average N(τ, θi, φ j) can be recast in
the form

N(τ, θi, φ j) = 〈m〉�θ, �φ,θ(0)=θi,φ(0)=φ j
(τ, θi, φ j), (7a)

which is the firing rate at the time τ , ensemble-averaged
(as defined by an appropriate limit and denoted by 〈·〉)
over all possible bi-infinite presentation sequences �θ
and �φ of grating orientation angles θk and spatial phases
φl such that the grating presented in the time interval
[0, ν] has the fixed orientation angle θ(0) = θi and spatial
phase φ(0) = φ j. Likewise, the interval-specific firing
rate average M(τ, θi) can be recast in the form

M(τ, θi) = 〈m〉�θ, �φ,θ(0)=θi
(τ, θi), (7b)

which is the firing rate at the time τ , ensemble-averaged
over all possible bi-infinite presentation sequences �θ
and �φ of angles θk and phases φl such that the grating
presented in the time interval [0, ν] has the fixed orien-
tation angle θ(0) = θi regardless of the spatial phase.

We here briefly outline the reason for the equal-
ity in Eq. (7b); the equality (7a) is true for almost
the same reason. First, each term m(nk

i ν + τ, �θ, �φ) in
Eq. (5b) can be time-shifted to become m(τ, Pnk

i �θ,

Pnk
i �φ), where Pnk

i �θ and Pnk
i �φ are the sequences �θ and

�φ with all their indices decreased by nk
i . In other words,

Pnk
i �θ and Pnk

i �φ are the presentation sequences that
maintain the exact order of �θ and �φ, but are shifted
nk

i ν time units into the past. Invoking the “ergodicity”
assumption, we treat (Pnk

i �θ, Pnk
i �φ), k = . . . , −2, −1,

0, 1, 2, . . ., as independent pairs of sequences with the
only common property of showing the angle θi in
the time interval 0 ≤ t < ν. In this way, we transform
the time averaging in Eq. (5b) into the ensemble aver-
aging in Eq. (7b).

The quantities (7a) and (7b) can be used to repre-
sent the experimental data from a somewhat dif-
ferent perspective. In particular, the interval-specific
firing rate average N(τ, θi, φ j) can be interpreted as the
typical tuning response of a neuron in a continuously
stimulated cortex to the presentation of a specific ori-
entation and phase of duration ν, embedded within a
much longer, arbitrary stimulus. The interval-specific
firing rate average M(τ, θi) represents the analogous
response without regard to the grating’s spatial phase.
In the forthcoming sections we will see why this partic-
ular point of view may be particularly fruitful in using
RTC as a tool for studying orientation tuning in V1.

Finally, let us remark that, comparing Eqs. (3)
and (5), we see that for finite presentation times ν,
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the correlation functions N (t, θi, φ j) and M(t, θi) ap-
pear to give a better approximation to the actual spike
count than the interval-specific firing rate averages
N(t, θi, φ j) and M(t, θi), respectively. This is because,
as Eq. (3) shows, N (t, θi, φ j) and M(t, θi) sample the
instantaneous firing rate continuously via an integral to
produce the spike count, while N(t, θi, φ j) and M(t, θi)

in Eq. (5) replace the integral by crude Riemann sums
over intervals of width ν, whose accuracy thus worsens
with increasing ν. This observation will be important in
Section 5. However, in the next few sections, we will be
interested in the limit of small ν, in which case Eqs. (3)
and (5) are equally accurate due to Eq. (6).

3 Binary noise characterization of the stimulus
and the Volterra–Wiener theory

The Volterra–Wiener theory of nonlinear systems
(Volterra 1930; Wiener 1958; Marmarelis and
Marmarelis 1978; Schetzen 1980; Victor 1992) concerns
the stimulus-response relation of a nonlinear system,
such as a network of neurons in V1. In particular, this
theory seeks an explicit representation of the system’s
output response, say r(t), in terms of its input stimulus,
say s(t), expressed as a Taylor-like functional series,
referred to by the name Volterra series. This Volterra
series has the form

r[s](t) = L0 +
∫ ∞

0
L1(τ1)s(t − τ1) dτ1 + 1

2!
∫ ∞

0

∫ ∞

0
L2(τ1, τ2)s(t − τ1)s(t − τ2) dτ1dτ2

+ . . . + 1

n!
∫ ∞

0
. . .

∫ ∞

0
Ln(τ1, . . . , τn)s(t − τ1) . . . s(t − τn) dτ1 . . . dτn + . . . , (8)

where the notation r[s](t) is used to emphasize the
functional dependence of the response on the entire
history of the particular input stimulus. The Volterra
kernels, Ln(τ1, . . . , τn), give the appropriate weights to
the contributions of all possible products of the stimulus
values at all possible times in the past to the current
response value. With no loss of generality, these ker-
nels are assumed to be symmetric functions of their
arguments. An orthogonalized version of the Volterra
series, due to Wiener (1958), can be used to represent
a broader set of systems, for which the Volterra series
may not converge. The relationship between the two
series, including the types of convergence, is analogous
to that between the ordinary Taylor series and a series
of orthogonal functions. Detailed expressions relating
Volterra and Wiener series can be found in Schetzen
(1980).

The first natural question that arises in the non-
linear systems theory is how to measure or compute
the Volterra or Wiener kernels. For the latter, the
answer is given by the surprisingly simple Lee-Schetzen
theory: to find its Wiener kernels, the system must be
“probed” by Gaussian white-noise stimuli (Lee and
Schetzen 1965; Schetzen 1980). In what is to follow we
only consider the first kernels, in which case the Wiener
kernel can be computed from the formula

W1(τ1) = 1

A2
〈r[s0](t)s0(t − τ1)〉s0

= lim
T→∞

1

2A2T

∫ T

−T
r[s0](t)s0(t − τ1) dt. (9)

Here, s0(t) is a zero-mean Gaussian white-noise stimu-
lus, A2 its power, and 〈·〉s0 denotes the ensemble aver-
aging over all realizations of s0(t). The last equality is
true provided we assume ergodicity.

The task of connecting the quantities related to ori-
entation tuning in V1 under the stimulus (1), used in
the experiments of Ringach et al. (1997a, 2003) and
discussed in the previous section, and the Volterra–
Wiener theory of nonlinear systems is complicated by
the fact that the experimental stimulus (1) depends
on both space and time. The standard Lee–Schetzen
method for kernel identification in such a case con-
sists of probing the system with (approximate) spatio-
temporal Gaussian white-noise stimuli. This method
was used, for example, to measure the receptive-field
shape and dynamics of LGN cells in Reid and Shapley
(1992), Reid et al. (1997), Wolfe and Palmer (1998),
Reid and Shapley (2002) and V1 cells in Jones and
Palmer (1987), DeAngelis et al. (1993, 1995). However,
as in experiments this method becomes increasingly
complex with increasing resolution, the alternative
stimulus (1) is used in Ringach et al. (1997a, 2003),
which is not Gaussian white noise in space, but reduces
the complexity of the subsequent data analysis. The use
of (1) as the stimulus is motivated by the conjecture
that the processing performed by a spiking LGN or
V1 neuron consists of a linear filter followed by a
static nonlinearity (Ringach et al. 1997b). The stimulus
(1) essentially consists of drawing at each time nν,
with uniform probability, an element of the spatially
orthogonal set of gratings sin[k(θi) · X − φ j] and their
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negatives (provided both I and J are even). In this case,
the results of Ringach et al. (1997b) show that RTC
reproduces, up to a factor, the projection of the linear
filter on this orthogonal set at the delay time τ . If all the
orientations θ and phases φ, as well as all the lengths of
the vector k(θ) were allowed in the orthogonal set, this
procedure would simply reconstitute the original linear
filter via the Fourier transform, and might possibly be
extended to a mixed time-domain/spatial-frequency-
domain version of the Volterra–Wiener theory (cf. the
works (Victor 1979; Victor and Knight 1979; Victor and
Shapley 1980) on the Volterra-Wiener theory in the
frequency domain). When probing a V1 neuron with
a string of gratings whose lengths of k(θ) are tightly
distributed around the neuron’s preferred spatial fre-
quency, the procedure of Ringach et al. (1997b) pro-
vides for a much quicker (approximate) reconstruction
of the linear filter, and thus the receptive field, than the
classical procedure using spatio-temporal white noise
stimuli. The results of Nykamp and Ringach (2002) ex-
tend the procedure of Ringach et al. (1997b) to include
the identification of the static nonlinearity.

We mention a novel polynomial kernel regres-
sion approach to discrete Volterra–Wiener expansions
(Franz and Schölkopf 2006) that may be relevant here.
This method assumes that the input is a finite, discrete
sample of signals. In this approach, the n-th order
partial sums of the Volterra and Wiener series are
computed directly via a regression procedure without
first explicitly evaluating the corresponding kernels. In
addition, one does not need to restrict the stimuli to
Gaussian white noise to identify these partial sums. The
approach of Franz and Schölkopf (2006) can easily be
generalized to space-and-time dependent setups such
as that addressed in Ringach et al. (1997a, b, 2003)
and its higher-order Volterra–Wiener counterparts. In
particular, a sufficiently large set of randomly-flashed
gratings (1) could be used as stimuli in conjunction
with the procedure of Franz and Schölkopf (2006) to
compute a discrete Volterra–Wiener approximation to
a neuronal receptive field to a high degree of preci-
sion without the costly cross-correlation with spatio-
temporal white-noise stimuli.

In this paper, we address the theoretical issue of
how to connect the interval-specific firing rate aver-
ages N(t, θi, φ j) and M(t, θi) in Eq. (5)—or equiva-
lently, the correlation functions N (t, θi, φ j) and M(t, θi)

in Eq. (3)—motivated by the experimental proce-
dure of Ringach et al. (1997a, 2003), to appropriate
Volterra–Wiener kernels associated with continuous,
Gaussian white noise, temporal inputs (in Appendix 2,
we discuss the errors in the Wiener kernel construc-
tion introduced by the binary white noise discretization

of the continuous-time Gaussian white noise). First,
we must determine the mathematical characterization
of the random experimental stimulus (1) in the limit
as ν → 0. Since, together with (Ringach et al. 1997a,
2003), we are not interested in the spatial shape of
the neuronal receptive field but only in the orienta-
tion (and spatial-phase) tuning dynamics, and since the
stimulus (1) only has noise-like characteristics in time,
we focus on this aspect of Eq. (1). We first observe
that both time series, (θ(t), φ(t)) and θ(t) in Eq. (3),
are discrete noise-like processes. However, in order
to find the corresponding Wiener kernels, one would
have to correlate the firing rate against θ(t) and/or
φ(t), which is not done in Ringach et al. (1997a, 2003),
and so also not in Eqs. (5) and (3). Alternatively, to
analyze the procedure of Ringach et al. (1997a, 2003),
we observe that the process of the orientation-phase
pair (θi, φ j) being presented versus not being presented
is a binary noise process, whose value can switch every
time nν. After proper scaling and normalization, let us
denote this process by sνij(t), i = 1, . . . , I, j = 1, . . . , J
(its precise properties are derived and described in
Appendix 3). Now, since precisely one grating, i.e., a
particular orientation-phase pair (θi, φ j), is presented
at any given time, the noises sνij(t), i=1, . . . , I, j=1,

. . . , J, must necessarily be correlated. In fact, we
show in Appendix 3 that we can take their sum over
i and j to vanish. In the limit as ν → 0, we show
that the noises sνij(t) tend, in the statistical sense, to a
collection of I J correlated Gaussian white noises sij(t).
We emphasize that, while these noises are correlated
with each other, each sij(t), with fixed i and j, is a
(temporal) Gaussian white noise process, since it has
no temporal autocorrelations, as shown in Appendix 3.
We emphasize that the Volterra–Wiener kernels we
obtain in this way are not the Volterra–Wiener kernels
corresponding to the Gaussian white noise in time and
space.

With the aid of the correlated noise sets

{
sνij(t) | i = 1, . . . , I, j = 1, . . . , J

}
and

{
sij(t) | i = 1, . . . , I, j = 1, . . . , J

}
,

we can extend the existing Volterra–Wiener approach
to cover the case of correlated Gaussian white noises
and use this extension for calculating the corresponding
first-order Wiener kernels in terms of the correlation
functions (3) and interval-specific firing rate averages
(5) defined in the previous section. This is done in
Appendix 3, and the results are presented below. A
brief comparison of our results with those of Ringach
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et al. (1997b), Nykamp and Ringach (2002) is also
presented there. In Appendix 2, we discuss the error
committed in the determination of the Wiener kernels
by the time-discretization we employ, that is, by using
a binary noise process whose steps are taken every ν

milliseconds. As expected, we show that this error is of
order O(ν1/2).

We write the firing rate m(t, 	, 
) of a given V1
neuron with the preferred orientation 	 and preferred
spatial phase 
 as the Volterra series in the form

m
[�S

]
(t, 	, 
) = L0(	, 
) +

I∑

i=1

J∑

j=1

∫ ∞

0
Li, j

1 (τ1, 	, 
)Sij(t − τ1) dτ1

+ 1

2!
I∑

i,k=1

J∑

j,l=1

∫ ∞

0

∫ ∞

0
Lik, jl

2 (τ1, τ2, 	, 
)Sij(t − τ1)Skl(t − τ2) dτ1dτ2 + . . . , (10)

where Sij(t) can be any of the binary noise stimuli sνij(t),
or, in the limit as ν → 0, the correlated Gaussian white
noise stimulus sij(t). In order for Eq. (10) to be a true
Volterra expansion, the corresponding kernels must be
independent of the particular choice of the stimulus
sνij(t), that is, of the presentation time ν. As usual, the
Wiener series associated with this Volterra expansion
is obtained via an orthogonalization involving the cor-
related Gaussian white noise stimuli sij(t), and approx-
imates the firing rate in the least-squares sense. This
orthogonalization is presented in Appendix 3.

In Appendix 3, we extend the Lee–Schetzen formula
(9) to our correlated-noise case. This extension gives
the first-order Wiener kernels as

Wi, j
1 (τ, 	, 
)

= I J
〈
m
[�s ] (t, 	, 
)sij(t − τ)

〉
�s (11a)

= I J lim
T→∞

1

2T

∫ T

−T
m
[�s ] (t, 	, 
)sij(t − τ) dt. (11b)

Here, in analogy with Eq. (9), 〈·〉�s denotes ensemble
averaging over all possible realizations of the random
noise collection �s. The second equality holds for any
given noise collection �s with the ij-th component sij, and
is true because of ergodicity.

We now discuss the relationship between the
Volterra–Wiener representations of the firing rate on
the one hand and the correlation functions (3) and
the “interval-specific firing rate averages” (7) on the
other. Since the expressions (3) and (7) involve the
stimulus in a linear fashion, we are indeed allowed to
focus on the first-order, that is linear, kernels, given by

formula (11a). After some algebra, presented in
Appendix 3, we find

Wi, j
1 (τ, 	, 
)= lim

ν→0

I J√
ν

[
N (τ, θi, φ j)−〈N 〉τ,θ(0),φ(0)

]

= lim
ν→0

1√
ν

[
N(τ, θi, φ j)−〈N〉τ,θ(0),φ(0)

]
, (12)

where N (τ, θi, φ j) is defined in Eq. (3a) and N(τ, θi, φ j)

in Eq. (5a) or (7a), and 〈·〉τ,θ(0),φ(0) denotes averaging
over all the arguments in the subscript.

Note that, since from Eq. (12),

N(τ, θi, φ j) = 〈N〉τ,θ(0),φ(0) + ν1/2Wi, j
1 (τ, 	, 
) + O (ν) ,

as ν → 0,

the term containing the first Wiener kernel,
ν1/2Wi, j

1 (τ,	,
), is small for short presentation
duration ν, and so it may not be easy to extract the
first kernel from the measurements in practice. In
particular, it may also be overshadowed by noise, as
will be discussed below.

The experimental results of Ringach et al. (1997a,
2003) take into account the fact that minute eye move-
ments of the experimental animal blurr the spatial
phase of the stimulus, or equivalently, the preferred
spatial phase of the V1 neuron in question. These
results can therefore be interpreted mathematically in
two ways. One is as the average of measurements
performed on an ensemble of neurons which are all
identical except in their preferred spatial phases. The
other is as the ensemble average over all the stimulus
phases φ j for a particular V1 neuron, which is what is
done in the experiment by averaging the histograms on
the phases φ j. Thus, from the definitions (3), and in
accordance with the second interpretation that in the
experiment the phases φ j are averaged out, we see that
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the correlation functions N (τ, θi, φ j) and M(τ, θi) are
simply related by the equation

M(τ, θi) =
J∑

j=1

N (τ, θi, φ j).

Moreover, the first Wiener kernel corresponding to
M(τ, θi) is

Wi
1(τ, 	) = 1

J

J∑

j=1

Wi, j
1 (τ, 	, 
)

= lim
ν→0

I√
ν

[
M(τ, θi) − 〈M〉τ,θ(0)

]

= lim
ν→0

1√
ν

[
M(τ, θi) − 〈M〉τ,θ(0)

]
, (13)

where M(τ, θi) is the correlation function (3b) and
M(τ, θi) is the interval-specific firing rate average (5b).

In the next section, we use the results obtained
here to analyze the relationships between the corre-
lation functions (3) and first-order Wiener kernels in
a series of neuronal models of increasing complexity.
We should note already here, however, the crucial
difference in the ways in which the first-order Wiener
kernels Wi, j

1 (τ, 	, 
) and Wi
1(τ, 	) and, say, the

interval-specific firing rate averages N(τ, θi, φ j) and
M(τ, θi), are defined. Namely, each Wi, j

1 (τ, 	, 
) or
Wi

1(τ, 	) is defined independently of any particular
presentation time ν. On the other hand, as seen from
Eq. (5) or (7), N(τ, θi, φ j) and M(τ, θi) are defined
as ensemble averages over certain presentations of a
particular binary noise sνij, and thus are functions of ν.

4 Orientation tuning and Wiener kernels in idealized
models

In this section we illustrate the concepts described in
the previous two sections by computing the interval-
specific firing rate averages N(t, θ (0), φ(0)) and M(t, θ (0))

in Eq. (5), and the corresponding first-order Wiener
kernels, for a leaky feed-forward model.

The model discussed in this section, as well as the
model discussed in Section 5, are simplifications of
the thresholded-linear, mean-field, simple-cell model
(Shelley and McLaughlin 2002),

mP(x, t, 
) =
{

flgn(t, 	, 
)

+
∑

P′
CPP′ KPP′ ∗ GP′ ∗ 〈mP′ 〉
(x, t)

}+
,

P, P′ = E, I, (14)

with

flgn(t, 	, 
) = −gL +
(

VE

VT
− 1

)
glgn(t, 	, 
) (15)

and

CPP′ = SPP′

(
VP′

VT
− 1

)
. (16)

Here, 	 and 
 denote the neuron’s preferred orien-
tation angle and phase, respectively, x is the position
of the neuron in the cortex which also determines the
neuron’s preferred orientation, 	 (see below), E and
I stand for excitatory and inhibitory, mP(x, t, 
), with
P = E, I, are the respective firing rates, VE, VI and VT

are the (non-dimensionalized) excitatory and inhibitory
reversal and threshold potentials, respectively, gL is the
leakage conductance, glgn(t, 	, 
) is the LGN drive (to
be described below), KPP′(x) and GP(t) are the spatial
and temporal cortical kernels, respectively, the asterisk
denotes convolution, the symbol 〈·〉
 denotes averaging
over the preferred spatial phase, and {·}+ = max{·, 0}
denotes “thresholding.” (In all our numerical compu-
tations we use VE = 14/3, VI = −2/3 and VT = 1.)
Recall that convergent feed-forward input from several
LGN neurons establishes the orientation preference of
a given V1 neuron (Reid and Alonso 1995). Across V1,
this preference is laid out in pinwheel patterns, each
pinwheel having an orientation preference singularity
at its center (Bonhoeffer and Grinvald 1991; Blasdel
1992a, b; Maldonado et al. 1997). In the local polar
coordinates on any given orientation pinwheel in V1,

x = r
(

cos(2	 + �), sin(2	 + �)
)

, that is, the angle of
the neuron position x around the pinwheel center cor-
responds to twice its preferred orientation angle on
the screen. Within the “pinwheel lattice” that tesselates
V1, we choose � = 0 and � = π/2, respectively, in
any pair of neighboring pinwheels, to provide for a
smooth transition in the orientation preference from
one pinwheeel to the next. The constants SPP′ are the
cortical coupling constants in the model. The form of
the factors VP/VT − 1 in the LGN drive flgn(t, 	, 
)

in Eq. (15) and in the coupling coefficients CPP′ in
Eq. (16) stems from the derivation of the Eq. (14)
from a logarithmic mean-field model in the linear limit.
Details are given in Shelley and McLaughlin (2002).

The most drastic simplification of the model (14),
which we will use in some of the discussion to follow,
is the leaky feed-forward model, obtained by setting all
the cortical coupling constants SPP′ = 0. In this case,
there is no more distinction between the forms of the
equations for the inhibitory and excitatory firing rates,
so we suppress the indices E and I (or P and P′),
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respectively. The thresholded linear model (14) now
becomes

m(t, 	, 
) =
{
−gL +

(
VE

VT
− 1

)
glgn(t, 	, 
)

}+
, (17)

with the firing rate depending on the position x in the
pinwheel only through the neuron’s preferred orienta-
tion 	, and also depending on the neuron’s preferred
phase 
. A yet more special case is represented by
the purely feed-forward model with no leakage, i.e.,
gL = 0. In this case, since the LGN drive must be non-
negative, thresholding can be dropped in Eq. (17).

It will be also advantageous to consider a modifica-
tion of the leaky feed-forward model (17) with added
uniform global cortical inhibition.

m(t, 	, 
)=
{
−gL +

(
VE

VT
− 1

)
glgn(t, 	, 
) − CPI gI

}+
.

(18)

Here, gI is the strength of the inhibition and CPI is the
strength of the coupling. Such global cortical inhibition

may arise, for example, near a pinwheel center, due to
the fact that the spatial convolution on the right-hand
side of Eq. (14) becomes equal to the averaging over
the preferred angle there (Shelley and McLaughlin
2002). Rather than pursuing the solution of Eq. (14) in
this case, we simplify the problem by assuming gI to
be approximately constant, which is sufficient for the
purposes of illustration aimed at in this section.

We use the simplest possible filter to model the
effective LGN input, a Gabor function (Marcelja 1980;
Daugman 1985). We should note that this choice of
the LGN model lacks any description of the LGN rec-
tification and saturation; a more realistic LGN model
that includes rectification is discussed in Appendix 5 (a
general LGN model, which includes both rectification
and saturation, can be found, for example, in Tao et al.
(2004)). For simplicity and with no loss of generality,
we restrict the display of the Gabor function to the case
in which 	 = 0 is the preferred orientation of the V1
neuron in question. The general case can be described
by using an appropriate rotation. The LGN input into
the V1 neuron is given by

glgn(t) = RB + 1

πλμ

∫

R2
dX dY

∫ t

−∞
ds e−

(
X2

λ2 + Y2

μ2

)

sin (K · X − 
) Glgn(t − s) I(X, s), (19)

where X = (X, Y) is the position on the screen, RB

is the background LGN firing rate, I(X, t) is the ran-
domly flashed stimulus (1), K = K(− sin 	, cos 	) =
K(0, 1), with K/2π being the preferred spatial fre-
quency, and 
 is both the preferred phase of the neuron
and also the phase that determines the shape of the on-
and off-regions in the neuron’s receptive field. In the
Gaussian kernel, λ and μ are the semi-axes of the neu-
ron’s elliptically-shaped receptive field. Customarily,
λ > μ, signifying that the receptive field is partitioned
into strip-shaped on- and off- regions, parallel to the
major axis of the ellipse. Also, Glgn(t) is the LGN time-
response kernel, which we choose to be (Benardete and
Kaplan 1999; Wielaard et al. 2001)

Glgn(t) =
⎧
⎨

⎩

0, t ≤ 0,
(

t
τlgn

)ζ (
αζ+1e

−α t
τlgn − βζ+1e

−β t
τlgn

)
, t > 0,

(20)

with integer ζ and α > β. This kernel produces a re-
sponse that has a finite rise time after t = 0. Note that
∫ ∞

−∞
Glgn(t) dt = 0, (21)

in agreement with Gielen et al. (1981), Bernadete and
Kaplan (1999).

After some straightforward algebra, using Eq. (21),
we compute the LGN input (19) for a fixed presentation
�θ and �φ of the stimulus (1) to be the series

glgn(t) = RB+ I0εν
−1/2

2
e− 1

4 K2μ2

×
∞∑

n=−∞
f (θ(n))G(t−nν) cos

[
φ(n)−�(θ(n))

]
,(22)

where,

f (θ(n))=e− 1
4 [k2λ2 sin2 θ(n)+k2μ2 cos2 θ(n)]

×
√

2
[
cosh

(
μ2 Kk cos θ(n)

)−cos 2

]
, (23)

and �(θ(n)) is the phase given by the formula

tan �(θ(n)) = tan 
 coth

(
1

2
μ2 Kk cos θ(n)

)
. (24)

Moreover,

G(t) =
∫ t

−∞
Glgn(t − s)χ[0,ν](s) ds = F(t) − F(t − ν),

F(t) =
∫ t

−∞
Glgn(s) ds, (25)

and χ[0,ν](t) is the indicator function of the interval
[0, ν]. We emphasize here that, in order to keep the
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LGN drive (22) positive, we should also scale the back-
ground firing rate RB in Eq. (22) as ν−1/2. We will
return to this issue below, but let us here remark that
this scaling is an artificial device to keep our model
valid in the ν → 0 limit rather than a reflection of the
experimentally measured background firing rate, which
is independent of ν.

For the leaky-feedforward model (17), the interval-
specific firing rate averages, N(t,θ (0), φ(0)) and M(t,θ (0)),
as well as the corresponding linear Volterra–Wiener
kernels, can be computed explicitly. To do this, we
treat the LGN input (22) as a sum of random variables,
which are themselves functions of the random orien-
tation angles θ(n) and spatial phases φ(n). To compute
N(t, θ (0), φ(0)), we take all θ(n) and φ(n) to be random,
except θ(0) and φ(0) presented in the time slot [0, ν],
which are fixed. Likewise, to compute M(t, θ (0)), we
take all the spatial phases φ(n) to be random, as well as
all the orientation angles θ(n) except θ(0), which is again
fixed.

When both the orientation θ(0) and the spatial phase
φ(0) are fixed, the random part of glgn(t) in Eq. (22) is
the composite random variable

R = ν−1/2
∞∑

n=−∞
n �=0

f
(
θ(n)

)
G(t − nν) cos φ(n), (26)

in which all the phases φ(n) and all the angles θ(n) are
random (note that we have omitted the phase �(θ(n)),
since we will be averaging over the spatial phases φ(n),
and adding an additional phase does not change the
outcome of this averaging due to the Lemma presented
in Appendix 1). From the probability density function,
pR(r, t), of the variable R in Eq. (26), which will be
computed below, via formulas (7a), (17), and (22), we
can compute the interval-specific firing rate average
(5a) as

N
(
t, θ (0), φ(0)

)=
∫ ∞

C
D −ν1/2�̃(t,θ (0),φ(0))

[−C+ν1/2D�̃(t, θ (0), φ(0))

+ Dr
]

pR(r, t) dr, (27)

where

C=−
(

VE

VT
− 1

)
RB + gL, D= I0ε

2

(
VE

VT
− 1

)
e− 1

4 K2μ2
,

(28)

and

�̃
(
t, θ (0), φ(0)

) = ν−1 f
(
θ(0)

)
G(t) cos

[
φ(0) − �

(
θ(0)

)]
,

(29)

with f (θ(0)), G(t) and �(θ(0)) given in Eqs. (23), (25),
and (24), respectively. Note that the expression
�̃(t, θ (0), φ(0)) in Eqs. (27) and (29) is deterministic
because both the orientation angle θ(0) and the spatial
phase φ(0) in the presentation time slot [0, ν] are as-
sumed to be fixed. Note also that in Eq. (27), the part of
the integrand in the square brackets is non-negative. In
fact, because of the thresholding in the model (17), the
lower limit of the integral in Eq. (27) is chosen to be
precisely where the expression in the square brackets
crosses from negative to positive. The same remark will
hold for the analogous formula (38) below. Finally, note
that �̃(t, θ (0), φ(0)) = �(t, θ (0), φ(0)) + O(ν), where

�
(
t, θ (0), φ(0)

) = f
(
θ(0)

)
Glgn(t) cos

[
φ(0) − �

(
θ(0)

)]
.

(30)

This is because G(t) = νGlgn(t) + O(ν2) by Eq. (25).
For small presentation times ν, using Eq. (26) and

asymptotics, we find for the probability density func-
tion pR(r, t) of the random variable R in Eq. (26) the
expression

pR(r, t) = 1√
2πV0

e− r2

2V0 + O(ν), (31)

with

V0 = f2

2

∫ ∞

0
G2

lgn(ξ) dξ, f2 = 1

π

∫ π

0
f 2(θ) dθ. (32)

Of course, the O(ν) term in Eq. (31) is integrable and
retains its order after integration. The details of the
calculation leading to formula (31) are similar to, but
simpler than, those given in Appendix 4 that lead to
formula (39). From formula (27) we thus compute, as
ν → 0,

N
(
t, θ (0), φ(0)

)

= −C
2

erfc
(

C

D
√

2V0

)
+ D

√
V0

2π
e−C2/2V0 D2

+ Dν1/2�(t, θ (0), φ(0))

2
erfc

(
C

D
√

2V0

)
+ O(ν),

(33)

where “erfc” denotes the complementary error
function,

erfc(z) = 2√
π

∫ ∞

z
e−u2

du,

and �(t, θ (0), φ(0)) is defined in formula (30). This cal-
culation can be carried out provided ζ ≥ 1 in the LGN
temporal kernel (20).
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We note that:

1. For a purely leaky feed-forward model with no
global inhibition, the constant C in formulas (33)
and (28) must be scaled as C = −Aν−1/2 − B, that
is, we must have RB = O(ν−1/2), so that the LGN
input (22) does not become negative, as empha-
sized after Eq. (25). In this case, formula (33) sim-
plifies to

N
(
t, θ (0), φ(0)

) = Aν−1/2+B

+Dν1/2�
(
t, θ (0), φ(0)

)+O(ν). (34)

2. The constant C in formula (33) may remain of order
O(1) if the neuron is strongly inhibited by uniform
global inhibition, such as described by the modified
model (18), in which case

C = −
(

VE

VT
− 1

)
RB + gL + CPI gI, (35)

where CPI is some appropriate cortical coupling
strength. If CPI gI is the O(ν−1/2)-size uniform
global cortical inhibition, this global inhibition may
compensate the O(ν−1/2)-size background firing
rate RB so that C = O(1). As mentioned before,
such global cortical inhibition may arise, for ex-
ample, near a pinwheel center, induced by the
O(ν−1/2)-size LGN drive and/or strong coupling
CPI .

From Eqs. (33) and (34) we note that, to O(ν1/2),
the only tuned part of the interval-specific firing rate
average N(t, θ (0), φ(0)) is the term containing the ex-
pression �(t, θ (0), φ(0)). Formulae (33) and (34) clearly
show that term becomes untuned as ν → 0. In this limit,
the convergence rate of N(t, θ (0), φ(0)) to the untuned
response is ν1/2. The signal-to-noise ratio scales as ν

for the purely leaky feed-forward case, and ν1/2 for
the strongly, globally inhibited case. We here remark
that these scaling results are only valid in the low-
contrast regime, since the Gabor representation (19) of
the LGN output is only appropriate in this regime. This
is because in the high-contrast regime, thresholding
and saturation dominate the LGN processing and, as
mentioned before, these effects are not included in our
LGN model.

Finally, from Eqs. (12) and (33), for the leaky feed-
forward case, we compute the first-order Wiener ker-
nels for this model to be

Wi, j
1 (t, 	, 
) = Df (θi)Glgn(t) cos

[
φ j − �(θi)

]
. (36)

(In contrast to the previous discussion, we here use
the subscripts in the orientation angle θi and phase
φ j because we emphasize their specific values, which
determine the choice of the kernel Wi, j

1 (t, 	, 
).) From
Eq. (36), it follows that the first Wiener kernel for
this model essentially reproduces the n = 0 term in the
LGN drive (22), with θ(0) = θi and φ(0) = φ j, in the limit
as ν → 0. This is because, in this limit, G(t) ≈ νGlgn(t),
as can be seen from formula (25) [an interpretation of
Wi, j

1 (t, 	, 
) as proportional to the projection of the
LGN filter in Eq. (19) on the particular grating in (1)
with orientation θi and spatial phase φ j is given at the
end of Appendix 3]. In the strongly, globally inhibited
case, the constant D in Eq. (36) must be replaced by
D erfc(C/D

√
2V0)/2.

Likewise, when only the orientation θ(0) is fixed, the
random part of glgn(t) in Eq. (22) is the composite
random variable

S = ν−1/2
∞∑

n=−∞
f
(
θ(n)

)
G(t − nν) cos φ(n), (37)

in which all the phases φ(n) and all the angles θ(n) save
one, θ(0), are random. From the probability density
function, pS(s, t, θ (0)), for the random variable S, again
to be computed below, via formulas (7b), (17), (22), and
(37), we can compute the interval-specific firing rate
average (5b) as

M
(
t, θ (0)

) =
∫ ∞

C/D

[−C + Ds
]

pS
(
s, t, θ (0)

)
ds. (38)

For small presentation times ν, we compute the
probability density function pS(s, t, θ (0)) of the random
variable S in Eq. (37) as

pS
(
s, t, θ(0)

)= 1
√

2πV(t, θ(0))

(

e
− s2

2V(t,θ(0)) + νV1
∂4

∂s4
e
− s2

2V(t,θ(0))

)

+O
(
ν2), (39)

where

V(t, θ (0)) = V0 + ν

[
f 2(θ(0)) − f2

]
G2

lgn(t)

2
, (40)

V0 and f2 are defined as in Eq. (32), and

V1 = f4 − 2 f 2
2

64

∫ ∞

0
G4

lgn(ξ) dξ, f4 = 1

π

∫ π

0
f 4(θ) dθ.

(41)
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The details of the derivation leading to Eq. (39) are
given in Appendix 4. The interval-specific firing rate
average M(t, θ (0)) is then calculated from Eq. (38) to
be

M(t, θ(0)) = − C
2

erfc
(

C

D
√

2V0

)
+ D

√
V0

2π
e−C2/2V0 D2

+ ν
D
[

f 2
(
θ(0)

) − f2
]

G2
lgn(t)

4
√

2πV0
e−C2/2V0 D2

+ νV1

√
2V0

π
D
(

C2

2V0 D2
− 1

)
e−C2/2V0 D2 + O

(
ν2).

(42)

Again, we note that:

1. For the case of sufficient global inhibition, as ex-
plained above, the constant C in Eq. (42) may
remain of O(1). The interval-specific firing rate
average M(t, θ (0)) in Eq. (42) becomes untuned as
ν → 0 just as N(t, θ (0), φ(0)), except faster. In partic-
ular, for finite C, the convergence rate of M(t, θ (0))

to the untuned response in Eq. (42) is ν, and the
signal-to-noise ratio scales as ν for this strongly,
globally inhibited case.

2. For a purely leaky feed-forward model, in order for
the LGN input to remain positive, we must set C =
−Aν−1/2 − B. Together with Eq. (42), this implies

M
(
t, θ (0)

) = Aν−1/2 + B + O
(
ν2
)
. (43)

Equation (43) shows that the yet more subtle tun-
ing in the pure leaky feed-forward case, when C=
−Aν−1/2−B, cannot be captured by the present
calculation, and only occurs at the order O(ν2) or
later.

From Eqs. (36), (42), and (13), namely,

M(τ, θi) = 〈M〉τ,θ(0) + ν1/2 1

J

J∑

j=1

Wi, j
1 (τ, 	, 
) + O(ν),

(with 〈·〉τ,θ(0) denoting averaging on the indicated ar-
guments) since there is no O(ν1/2) contribution in Eq.
(42), we find for the corresponding Wiener kernel
Wi

1(τ, 	) in Eq. (13) that

Wi
1(τ, 	) = 1

J

J∑

j=1

Wi, j
1 (τ, 	, 
) = 0. (44)

In other words, the first-order Wiener kernel corre-
sponding to the phase-averaged firing rate 〈m(t, 	,


)〉
 vanishes identically. (Recall from the remark at
the end of Section 3 that the Wiener kernels Wi, j

1 (τ, 	,


) in Eqs. (12) and (36), and Wi
1(τ, 	) in Eqs. (13) and

(44), are independent of the presentation duration ν.)
At first, this result may appear paradoxical, however,
one needs to recall the statement made at the end of
Section 3 that 〈m(t, 	, 
)〉
 can be thought of as arising
from averaging over a set of V1 neurons subjected to
the same stimuli and with identical receptive fields in
all aspects except the preferred spatial phase. It thus
appears that the averaging over the spatial phase will
make the contributions of the receptive fields’ on- and
off-regions cancel each-other out, at least at the linear
order, and will thus also wipe out the orientation tuning
(cf. the end of Appendix 3).

In view of the vanishing of the first-order Wiener
kernel Wi

1(τ, 	) obtained in the previous paragraph,
it is thus important to observe that, in the globally
inhibited case in which C = O(1), the O(ν)-size
orientation-tuned term in Eq. (42) is a contribution
to the interval-specific firing rate average M(t, θi) of
the higher-order terms in the Wiener series computed
with, and correlated against, the binary noises sνij(t).
Likewise, since Eqs. (13) and (42) imply

0 = Wi
1(τ, 	)

= 1

J

J∑

j=1

Wi, j
1 (τ, 	, 
)

= ν−1/2
[
M(τ, θi) − 〈M〉τ,θ(0)

] + O
(
ν1/2

)

= ν1/2
D
[

f 2
(
θ(0)

) − f2
]

G2
lgn(τ )

4
√

2πV0
e−C2/2V0 D2 + O

(
ν1/2

)
,

this same O(ν)-size orientation-tuned term in Eq. (42)
gives the O(ν1/2)-size error in the computation of the
Wiener kernel Wi

1(τ, 	) in Eq. (44) by using cross cor-
relation with the binary noises sνij(t) for small but finite
ν instead of the limiting correlated Gaussian white
noises sij(t) (cf. Appendix 2). Moreover, we should
notice that the factors in this tuned term are quadratic
in the corresponding components f (θ) and Glgn(t) of
the LGN kernel (22) in contrast to the linear powers
of the same quantities present in the nonzero first-
order Wiener kernels Wi, j

1 (τ, 	, 
) in Eq. (36). Finally,
let us point out that the vanishing of the first-order
Wiener kernel Wi

1(τ, 	) forces the tuned portion of the
interval-specific firing rate average M(t, θi) to vanish at
a faster rate in ν, namely at O(ν), than it would vanish
otherwise. We will return to this issue below.

From Eqs. (33), (30), and (42) we can also conclude
that the leaky feed-forward model (17) produces “sep-
arable” tuning curves in the limit of vanishing presenta-
tion time, ν → 0. In other words, at the leading order in
ν, the non-constant terms in the interval-specific firing
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rate averages, N(τ, θi, φ j) in Eq. (33) and M(τ, θi) in
Eq. (42), are products of spatial and temporal functions.
This simply reflects the “separable” nature of the LGN
Gabor kernel in Eq. (19), built into our model and
preserved due to the model’s thresholded-linear nature.
In Section 5, we show how the addition of cortico-
cortical interactions even to a simplified linear model
may destroy this “separability” of the V1 neuronal
tuning curves even for a “separable” LGN kernel.

We further remark that formula (38) implies a com-
pletely untuned interval-specific firing rate average
M(t, θ (0)) in the case of a purely feed-forward model
with no leakage or global inhibition. In other words,
averaging over the spatial phase wipes out the orienta-
tion tuning of a purely feed-forward V1 neuron with no
leakage. The proof is given in Appendix 5, and general-
ized to more realistic models that include descriptions
of feed-forward convergence of inputs from individual
on- and off-center LGN neurons onto the given V1
neuron, as well as finite presentation times ν. This result
gives an indication that, for a purely feed-forward V1
neuron with no leakage, the reverse-time correlation
method of Ringach et al. (1997a, 2003) should yield
untuned histograms, amplifying the similar conclusion
reached analytically for a family of instantaneous LGN
time response kernels in Pugh et al. (2000).

Finally, we comment on the relevance of the
asymptotic formulas (42) and (43), expressing the
interval-specific firing rate average M(τ, θ (0)), for more

general models. In this regard, we show the results
of numerical simulations of an integrate-and-fire ring
model with a more realistic LGN input. The details
of this model are described in Appendix 6, and the
details of the corresponding LGN drive in Appendix 5.
In particular, in this model, neither the artificial O(ν1/2)

scaling of the background firing rate nor the added
global inhibition is used. The results are presented in
Fig. 2. The figure shows the dependence of the average
〈M〉τ,θ(0) and the difference M(τpeak, 0) − 〈M〉τ,θ(0) on
the presentation duration ν (here, τpeak is the value
of τ at the highest point of the interval-specific fir-
ing rate average M(τ, θ (0))). It can be seen that these
quantities exhibit the same scaling as formula (42).
In particular, the tuned portion of M(τ, θ (0)) scales
as O(ν). This scaling lets us conclude that the first-
order Wiener kernel Wi

1(τ, 	) of the phase-averaged
firing rate 〈m(t, 	, 
)〉
 must again vanish, or else the
tuned portion of M(τ, θ (0)) would appear at O

(
ν1/2

)
.

On the other hand, the absence of any tuning at O(ν)

in formula (43) appears to be related to the complete
absence of tuning in the case with no leakage described
in the previous paragraph and further elaborated in Ap-
pendix 5. Namely, for relatively weak leakage of O(1),
as compared to the intensity of the stimulus and the
background firing rate of O(ν−1/2), the relative strength
of the tuned versus the untuned portions of the interval-
specific firing rate average M(τ, θ (0)) should decrease,
to reach zero with no leakage present.
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Fig. 2 RTC for an integrate-and-fire ring model of orientation
tuning. Scaling of the background, 〈M〉τ,θ(0) in (a), and the peak
tuned, M(τpeak, 0) − 〈M〉τ,θ(0) in (b), portions of the interval-
specific firing rate average, M(τ, θ(0)), for decreasing presenta-
tion duration ν. The value M(τpeak, 0) is calculated at the peak

of M(τ, θ(0)). The presentation duration ν is given in seconds,
the interval-specific firing rate average in spikes per second.
The horizontal scales are logarithmic, as is the vertical scale in
(b). The dotted line in (b) indicates slope one. The preferred
orientation of the neuron under study is � = 0
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Fig. 3 Mexican-hat tuning curves generated by the linear ring
model (45). Left excitatory neuron. Right inhibitory neuron. The
time unit is ν = 10 ms, the orientation angle unit is radian. The
LGN parameters are ζ = 0, α = 4, β = 0.5, τLGN = 30 ms in Eqs.
(20) and (25), and σLGN = 0.15 rad in Eq. (110). The cortical

parameters are the time constants, τE = 2 ms and τI = 8 ms
in Eq. (115), the extents of the excitatory and inhibitory corti-
cal connections in radians, σE = 0.4 and σI = 0.2 in Eq. (114),
and the coupling constants SEE = 0.8, SEI = 7.6, SIE = 1.5, and
SII = 7.6 in Eqs. (45) and (16)

5 Mexican hat tuning curves

The shapes of the orientation tuning curves of V1
neurons, revealed by the reverse-time correlation pro-
cedure in the experiments of Ringach et al. (1997a),
appear to be closely related to the architecture of the
cortical synaptic connections impinging on the neuron
under investigation. Important properties that these
tuning curves may shed some light on are the extent
of, and relationship between, the cortico-cortical exci-
tation and inhibition. In particular, it is hypothesized
that tuned inhibition suppresses intermediate orienta-
tions between the optimal and orthogonal, resulting
in Mexican-hat tuning curves (Nelson and Frost 1978;
Sillito et al. 1980; Ringach et al. 2003; Ringach and
Shapley 2004; Xing et al. 2005). In this section, to gain
theoretical insight, we discuss some simple network
mechanisms that appear responsible for the emergence
of such Mexican hats in the context of a simple idealized
linear ring model.

First, we exhibit a simple idealized model of a cou-
pled linear network that produces Mexican-hat shaped
profiles. To this end, we again drastically simplify the
thresholded linear model (14). In particular, we drop
the thresholding, set the preferred phase of the neuron
in the LGN drive (19) to 
 = 0, fix all the phases in the
stimulus at φ(n) ≡ 0, and drop the phase averaging. [it
is important to comment here that if we retained phase
averaging in this linear model, the combination of lin-
earity and phase averaging would erase any orientation
tuning. This would be a linear version of the vanishing
of the first-order Wiener kernel Wi

1(τ, 	) in Eq. (44)].
Finally, we consider only the ring architecture (Ben-
Yishai et al. 1995; Pugh et al. 2000), that is, the position
x in the cortex is replaced by the preferred angle 	,
so that the spatial convolution in Eq. (14) becomes a

convolution in the angle variable only. After a rescaling
of variables and ensemble averaging over the presented
angles θ(n) with n �= 0, in Appendix 7, we derive the
equations for the (rescaled) interval-specific firing rate
average MP(t, θ (0)) to be

MP(t, θ)=[ f (θ) − 〈 f 〉θ ]G(t)

+
∑

P′
CPP′ KPP′ ∗GP′ ∗MP′(t, θ), P, P′= E, I.

(45)

In this equation, f (θ) is the spatial profile of the LGN
input described by (some simplified version of) for-
mula (23), G(t) is the LGN time course in Eq. (25),
CPP′ are the cortical coupling coefficients in Eq. (16),
and KPP′ and GP′ are some appropriate angular and
temporal cortical kernels, whose choice is described
in Appendix 7. Equations (45) form a pair of linear
convolution equations, which we solve in Appendix 7
by a combination of the Laplace transform in t and
Fourier series in θ . Here, we proceed directly to the
results.

Instead of the (rescaled) interval-specific firing rate
average MP(t, θ) in Eq. (5), we choose to present a
similarly rescaled correlation function, MP(t, θ) in Eq.
(3) (recall that the two are connected via the formula
(6b), and that for finite ν, MP(t, θ) is a better approx-
imation to the relevant spike count than MP(t, θ), as
explained at the end of Section 2). A pair of tuning
curves MP(t, θ), P = E, I, is plotted in Fig. 3. The time
scale is measured in units of the presentation time ν.
The values of the LGN and cortical time constants, the
cortical coupling constants, and the ratios between the
angular extents of the excitatory and inhibitory cortical
connections are displayed in the figure captions. The
neuron’s position within the corresponding orientation
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pinwheel is taken to be such that the θ -width σLGN of
the LGN input roughly equals the angular extent of the
inhibitory cortical connections σI , which are both half
the angular extent of the excitatory cortical connections
σE. (See also the explanation below.) The connection
between the sets of constants CPP′ in the text and SPP′

in the figures is given by formula (16).
From Fig. 3, we see that a typical tuning curve rises

from zero shortly after t = −ν, steepens into a bell-
shaped curve, acquires two minima at two symmetric
orientation angle values away from both the optimal
and orthogonal that give it the shape of a Mexican hat,
then develops an inversion at the preferred angle, and
finally levels off to zero at large time values. The (at
first rather confusing) property that the tuning curve
starts rising at t = −ν instead of the more expected
t = 0 is due to the averaging in Eq. (6b) and the finite
length of the presentation, ν. In particular, the firing
rate of the neuron in question near the beginning of
the time interval in which θ = θi is presented is clearly
correlated with the orientation angle presented up to
time ν in the future, since it is the same angle θi. This
apparent artifact of the method is not present in the
experiments because of the delay time that the stimulus
needs to reach V1 after illuminating the retina. Also,
the long inversion “trough” in Fig. 3 appears to be at
least partly an artifact of the linearity of the model,
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Fig. 4 Increasing the extent of the inhibitory cortico-cortical
connections increases the width of the Mexican hat. The values
of the orientation angles θP,min at the minima of the correlation
functions MP(t, θ) are plotted versus the extent σI of the in-
hibitory cortical connections. The orientation angle unit is radian.
The LGN parameters are ζ = 0, α = 4, β = 0.5, τLGN = 30 ms in
Eqs. (20) and (25), and σLGN = 0.15 rad in Eq. (110). The cortical
parameters are the time constants, τE = 2 ms and τI = 8 ms in
Eq. (115), the extent of the excitatory connections in radians,
σE = 0.4 in Eq. (114), and the coupling constants SEE = 0.8,
SEI = 7.6, SIE = 1.5, and SII = 7.6 in Eqs. (45) and (16)
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Fig. 5 Increasing the strengths of the inhibitory cortico-cortical
connections, SEI and SII , increases the depth of the Mexican hat.
The dependent variable is depth = �MP/MP,max, with �MP =
MP(tmin, θmin) − MP(tmin, π/2), where (tmin, θmin) is one of the
two the lowest points, and MP,max is the highest point of the
Mexican-hat tuning curve. The LGN parameters are ζ = 0, α = 4,
β = 0.5, τLGN = 30 ms in Eqs. (20) and (25), and σLGN = 0.15 rad
in Eq. (110). The cortical parameters are the time constants, τE =
2 ms and τI = 8 ms in Eq. (115), the extents of the excitatory and
inhibitory cortical connections in radians, σE = 0.4 and σI = 0.2
in Eq. (114), and the coupling constants SEE = 0.8 and SIE = 1.5
in Eqs. (45) and (16)

as neither formula (42) nor the experimental tuning
curves in Fig. 1 show any indication of its presence.

The model’s oversimplifications notwithstanding,
Fig. 3 clearly shows the presence of Mexican-hat tuning
curves in this model. Moreover, these tuning curves
exist when the angular extent of the cortical inhibi-
tion is one half the extent of the cortical excitation,
roughly mimicking some of the local properties of V1
networks (McLaughlin et al. 2000) (in fact, in realistic
V1 networks, this ratio is between the spatial extents
of cortical inhibition and excitation. The two ratios, in
angle and space, are almost identical for cells in iso-
orientation domains far from pinwheel centers, while
for cells near pinwheel centers the relationship between
the two ratios is more complicated). This modeling
detail stands in contrast to many other models, which
use longer (angular or spatial) extent of the inhibi-
tion rather than the excitation (Ben-Yishai et al. 1995;
Douglas et al. 1995; Somers et al. 1995; Ernst et al.
2001). In other respects, the tuning curves MP(t, θ)

exhibit the expected properties, as shown in Figs. 4, 5,
and 6. In particular, Fig. 4 shows that the width of
the Mexican hat is proportional to the extent of the
cortico-cortical inhibitory connections, Fig. 5 shows
that its depth is proportional to the strength of the in-
hibitory cortico-cortical synapses, and Fig. 6 shows that
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its onset time is proportional to the inhibitory cortical
time scale. Note that the we define the position of
the Mexican hat to be at one of the two symmetric
local minima of the tuning curve over all times, see
Fig. 3 (Fig. 6 shows that these minima tend to exists
for moderate values of the inhibitory time scale τI until
they merge with the inversion “trough” at θ = 0 for
larger values of τI). We define the depth of the Mexican
hat to be the difference between the local minimum
value of MP(t, θ) and MP(t, π/2) at the same value of
time, t, normalized by the maximal value of the tuning
curve MP(t, θ) over all times t and orientations θ , i.e.,
depth = �MP/MP,max, with �MP = MP(tmin, θmin) −
MP(tmin, π/2), where (tmin, θmin) is one of the two the
lowest points, and MP,max is the highest point of the
Mexican-hat tuning curve. Note from Figs. 4, 5, and 6
that the Mexican hats are more pronounced in the
tuning curves of excitatory than inhibitory neurons, and
that the Mexican hats of the inhibitory neurons appear
broader and have longer onset times. In addition, in
Fig. 7, we present the dependence of the Mexican hat
size on the position of the neuron in question within the
orientation pinwheel, modeled by the ratio between the
θ -width of the LGN input and the extent of the cortical
connections. The rationale for this modeling is that,
while the angular width of the LGN input stays largely
constant from one V1 neuron to the next, the effective
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Fig. 6 Increasing the inhibitory cortico-cortical decay time τI
increases the onset time tmin of the Mexican hat. The kinks at
tmin = ν in the graphs are artifacts of the insufficient smooth-
ness of the model at t = ν, as explained in Appendix 7 after
formula (129). The time unit is ν = 10 ms. The LGN parameters
are ζ = 0, α = 4, β = 0.5, τLGN = 30 ms in Eqs. (20) and (25),
and σLGN = 0.15 rad in Eq. (110). The cortical parameters are
the time constant τE = 2 ms in Eq. (115), the extents of the
excitatory and inhibitory cortical connections in radians, σE = 0.4
and σI = 0.2 in Eq. (114), and the coupling constants SEE = 0.8,
SEI = 7.6, SIE = 1.5, and SII = 7.6 in Eqs. (45) and (16)
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Fig. 7 The depth of the Mexican hat first increases and then
decreases with the distance from the pinwheel center. The rel-
ative θ -width of the LGN input, σlgn, is inversely proportional
to the distance of the neuron from the pinwheel center. The
dependent variable is depth = �MP/MP,max, with �MP =
MP(tmin, θmin) − MP(tmin, π/2), where (tmin, θmin) is one of the
two the lowest points, and MP,max is the highest point of the
Mexican-hat tuning curve. The orientation angle unit is radian.
The LGN parameters are ζ = 0, α = 4, β = 0.5, τLGN = 30 ms
in Eqs. (20) and (25). The cortical parameters are the time
constants, τE = 2 ms and τI = 8 ms in Eq. (115), the extents of the
excitatory and inhibitory cortical connections in radians, σE = 0.4
and σI = 0.2 in Eq. (114), and the coupling constants SEE = 0.8,
SEI = 7.6, SIE = 1.5, and SII = 7.6 in Eqs. (45) and (16)

radius of the ring model decreases with the proximity to
the pinwheel center, and thus the angular extents of the
cortical connections increase in inverse proportion to
it. In order to avoid periodicity artifacts, as an approx-
imation, we rather scale the angular width of the LGN
input instead as proportional to the neuron’s distance
from the pinwheel center. As can be seen from Fig. 7,
Mexican hats are the most pronounced at moderate
distances from the pinwheel center, where the angular
width of the LGN input is about half that of the in-
hibitory cortical connections, and vanish near the pin-
wheel center as well as in iso-orientation domains far
from it.

Finally, directly from Eq. (45), we see that the
feedforward version of the model produces separable
orientation tuning curves. In other words, when all
the cortico-cortical coupling constants CPP′ = 0, the
interval-specific firing rate averages MP(t, θ) [and the
correlation functions MP(t, θ)] are products of spatial
and temporal terms. Clearly, for nonzero coupling con-
stants CPP′ , the temporal onset of Mexican-hat tuning
curves introduces dynamic changes in the tuning-curve
shapes. In the cases when such a temporal onset occurs,
such as that shown in Fig. 3, this onset excludes tuning-
curve separability in space and time.
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Fig. 8 “Separability” of tuning curves generated by the linear
ring model (45) for a long presentation duration, ν = 100 ms. Left
tuning curves for an excitatory neuron. Right tuning curves from
the left scaled by their height at θ = 0. The near-overlap of the
scaled tuning curves indicates approximate “separability.” The
time unit is 10 ms, the orientation angle unit is radian. The LGN
parameters are ζ = 0, α = 4, β = 0.5, τLGN = 30 ms in Eqs. (20)

and (25), and σLGN = 0.15 rad in Eq. (110). The cortical parame-
ters are the time constants, τE = 2 ms and τI = 8 ms in Eq. (115),
the extents of the excitatory and inhibitory cortical connections
in radians, σE = 0.4 and σI = 0.2 in Eq. (114), and the coupling
constants SEE = 0.8, SEI = 7.6, SIE = 1.5, and SII = 7.6 in Eqs.
(45) and (16). The tuning curves for an inhibitory neuron behave
in an almost identical fashion

A remark concerning the loss of separability dis-
cussed in the previous paragraph, however, is appro-
priate here. In particular, one would intuitively expect
that the dynamic changes in the tuning-curve shapes
are produced by the interplay among the time scales of
the LGN, cortico-cortical interactions, and the stimulus
duration ν. Therefore, these dynamic shape changes
should be most readily observable when ν is of the
order comparable to the physiological time scales or
shorter. On the other hand, for sufficiently long ν,
one would expect the memory of the short time-scale
dynamics to be lost in the RTC procedure, and the
tuning curves to be separable on the long, O(ν), time
scale. Such a scenario clearly takes place in our model,
as can be seen in Fig. 8. This observation about the
approximate separability for long ν may also suggest a
possible explanation for why tuning-curve separability
was observed in Gillespie et al. (2001), where ν =
40-100 ms, which appears to be somewhat longer than
the typical time-scales involved in V1 dynamics.

6 Discussion

We have addressed theoretically the increasingly pop-
ular experimental method using RTC to study orien-
tation tuning dynamics of V1 neurons (Ringach et al.
1997a, 2002, 2003; Gillespie et al. 2001; Müller et al.
2001; Bredfeldt and Ringach 2002; Dragoi et al. 2002;

Felsen et al. 2002; Mazer et al. 2002; Chen et al. 2005;
Nishimoto et al. 2005; Xing et al. 2005). We have pro-
vided an exact mathematical description of this method,
both of the stimuli used as a collection of correlated
binary noise processes in Eqs. (66) and (67), and the
collected delay-time–orientation–spike histograms as
correlation functions and interval-specific firing rate
averages in Eqs. (3), (5), and (7). This description
complements the subspace projection interpretation
of Ringach et al. (1997a, b), where each flashed grating
within the stimulus is interpreted as lying in the par-
ticular subspace of the plane-wave Fourier basis of the
stimuli on the screen which has the given V1 neuron’s
preferred spatial frequency.

We have only considered flashed stimuli with ran-
domly varying orientation angles and spatial phases.
To bring out yet better the typical tuning response of
a cortical neuron to a specific orientation embedded
within a long, arbitrary stimulus, it appears reasonable
to also add random variations in the spatial frequency.
This was done in Ringach et al. (2003). As a result, the
flashed gratings run through the entire (discretization
of the) plane-wave Fourier basis, which makes the
subspace projection approximation of Ringach et al.
(1997a, b, 2003) more accurate. Adding random varia-
tions in the spatial frequency to the flashed gratings can
also easily be incorporated into our exact description,
but will not change any of our conclusions.

One advantage of our description appears to be
the purely temporal interpretation (10) of orientation
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tuning dynamics in terms of the nonlinear Volterra–
Wiener systems theory. As a result, it is straight
forward to extract the first-order Wiener kernels de-
scribing the tuning of a V1 neuron to the given orien-
tation angle θi and spatial phase φ j from the measured
spike histograms, as displayed in Eqs. (12) and (13). In
the experimentally most interesting case of orientation
tuning alone when the histograms are averaged over
the spatial phase, calculations on simple models (17)
and (18) as well as the results of the more sophisti-
cated integrate-and-fire ring model simulations shown
in Fig. 2 indicate that the V1 neuron’s corresponding
first-order Wiener kernel vanishes. This appears to
happen because the spatial phase averaging is equiva-
lent to adding firing rates from V1 neurons which are
identical in all their properties except spatial phase, so
that the contributions from the on- and off-regions of
their receptive fields add to a constant at the linear
order, which also erases the orientation tuning at that
order. Thus, the measured histograms instead consist
of contributions from the higher-order terms in the
Wiener series. This does not happen in the absence
of phase averaging: the first-order Wiener kernels (12)
corresponding to the orientation-spatial phase tuning
are definitely nonzero.

In practical calculations, such as estimations of re-
ceptive fields, one alternative to the Volterra–Wiener
approach is to assume explicitly that a V1 neuron acts as
a combination of a linear filter followed by a threshold
nonlinearity. RTC is only used to determine the charac-
teristics of the linear filter (Chichilnisky 2001; Nykamp
and Ringach 2002; Nykamp 2003). The characteristics
of the (assumed form of the) nonlinearity are computed
from these and the experimental data. Another alter-
native is the kernel regression approach of Franz and
Schölkopf (2006), discussed in Section 3.

The dynamic interplay between various types of cor-
tical excitation and inhibition is believed to be brought
out by the RTC, including in the form of Mexican-
hat tuning profiles (Shapley et al. 2003; Ringach and
Shapley 2004). Our explicitly solvable idealized model
appears consistent with this belief. Previous theoretical
works were divided on whether to model the (spa-
tial or angular) extent of the local cortical inhibition
in V1 as broader (Ben-Yishai et al. 1995; Douglas
et al. 1995; Somers et al. 1995; Ernst et al. 2001) or
narrower (McLaughlin et al. 2000; Kang et al. 2003)
than that of the local cortical excitation, with broader
inhibition thought of as being more likely to give rise
to Mexican-hat orientation tuning profiles. The present
work somewhat reconciles these two viewpoints. In our
model, on the one hand, we have found Mexican-hat
profiles when the angular extent of the cortical inhibi-

tion is twice that of the cortical excitation. On the other
hand, though, what we find more relevant than the ratio
of these two extents is the ratio of the effective angular
width of the LGN drive of a given V1 neuron to the
angular extent of its cortical inhibition. The Mexican-
hat profiles appear the most pronounced when this ratio
is about one half. This ratio may depend on the neu-
ron’s position within an orientation pinwheel. While
the angular width of the LGN drive can be reasonably
assumed to be independent of the neuron’s position in
the pinwheel, the effective angular extent of its inhibi-
tion appears to vary from covering all the angles near a
pinwheel singularity to just one angle in iso-orientation
domains far from it (Shelley and McLaughlin 2002).
On the other hand, recent experimental (Marino et al.
2005) and theoretical (Tao et al. 2006) evidence points
to the conclusion that, due to the sparsity of synapses,
V1 neuronal discharges behave as if these neurons felt
approximately the same angular extents of cortical ex-
citation and inhibition, respectively, regardless of their
position in the pinwheel.

Finally, in recent experiments (Xing et al. 2005; Chen
et al. 2005), the dependence of the tuning-curve shapes
on the size of the stimulus was studied. The appearance
of Mexican hats was observed for large-size stimuli
and linked to tuned inhibition evoked by long-range,
orientation-specific, excitatory cortical connections to
neurons outside of the give neuron’s orientation pin-
wheel. Deriving an idealized model to describe this
situation is beyond the scope of the current paper and
may be the topic of a future publication.

Acknowledgements The authors would like to thank J.
Biello, P. Kramer, D. McLaughlin, D. Nykamp, A. Rangan,
R. Shapley, and E. Vanden Eijnden for helpful discussions. G.K.
was supported by NSF grants IGMS-0308943 and DMS-0506287,
and gratefully acknowledges the hospitality of the Courant
Institute of Mathematical Sciences and Center for Neural Science
during his visits at New York University in 2000/01 and 2003/04.
L.T. was supported by the NSF grant DMS-0506257. D.C. and
M.J.S. were partly supported by the NSF grant DMS-0506396.

Appendix

1 Probabilistic lemma

Lemma Let x be drawn from the uniform distribution
on [0, 1), and y taken independently from another ar-
bitrary distribution. Consider the random variable z̃ =
x + y + k, where k is that unique integer for which 0 ≤
x + y + k < 1. Then, the distribution of z̃ is the uniform
distribution on [0, 1).
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(That is, z̃ is the random variable z = x + y shifted
into the unit interval. This shifting operation is how we
understand the equivalence of the random variables ψ

and ψ + 2π in studying sin ψ .)

Proof Let P(y) be the density of the random variable
y. The density of the random variable z = x + y is given
then by the relation

R(z) =
∫ 1

0
P(z − x)dx ,

and hence the distribution of z̃ is given by

R̃(z̃) =
∞∑

k=−∞
R(z̃ + k) =

∫ +∞

−∞
P(x)dx ≡ 1 ,

i.e., the uniform distribution. ��

2 Discretization effects in the Volterra–Wiener theory

In this appendix, we discuss the error introduced in
the reconstruction (58) of the Wiener kernels by using
approximate binary random noise with finite presen-
tation time ν instead of the Gaussian white noise as
the stimulus. For simplicity, we assume that the system
in question can be described by a convergent Volterra
series of the form (8). In particular, we show that the
error is of order O(ν1/2).

We do not address the related question of how to
represent the responses to bandwidth-limited stimuli,
such as orientation angles that can only change every
ν milliseconds, by a discrete version of the Volterra–
Wiener theory. This type of a discrete version is devel-
oped, for instance in Klein and Yatsui (1979).

Approximation of the Gaussian white-noise stimu-
lus by binary white noise As already discussed in
Section 3, in order to find the Wiener kernels of a
given nonlinear system, we “probe” this system with
Gaussian white-noise stimuli. Such stimuli, say s0(t),
have the correlation properties

〈s0(t1)s0(t2)〉 = A2δ(t1 − t2), (46a)

〈s0(t1) . . . s0(t2n+1)〉 = 0, (46b)

〈s0(t1) . . . s0(t2n)〉 =
∑∏〈

s0(ti)s0(t j)
〉
. (46c)

Here, 〈·〉 denotes the ensemble averaging over all real-
izations of the white noise s0(t), A2 is the power of the

stimulus, δ(t) is the Dirac function, and the sum in the
last equation runs over all distinct products of n two-
point correlations.

In practice, we can replace the probing Gaussian
white-noise stimulus s0(t) by the binary white noise
stimulus with finite presentation time

sν(t) = A√
ν

⎧
⎨

⎩

p, with probability q,

−q, with probability p,

kν < t < (k + 1)ν, k = . . . , −1, 0, 1, . . . ,

(47)

where p + q = 1. The values of sν(t) in different inter-
vals kν < t < (k + 1)ν are assumed to be independent.
The correlation properties of this binary white noise are
as follows: First,

〈sν(t)〉 = 0. (48a)

Second, if t1, . . . , tm all lie in the same interval kν < t <

(k + 1)ν, then

〈sν(t1) . . . sν(tm)〉 = Amν− m
2
[

pmq + p(−q)m] . (48b)

Finally,

〈sν(t1) . . . sν(tn)〉 =
∑∏

〈sν(ti) . . . sν(t j)〉, (48c)

where within each factor 〈sν(ti) . . . sν(t j)〉, all the times tl
lie in the same interval kν < t < (k + 1)ν, every sν(tl) is
represented in each term once and only once, and the
sum is performed over all distinct such terms.

Let us now show that the correlation function rela-
tions (48c) converge to the correlation function rela-
tions (46) of the Gaussian white noise s0(t) as ν → 0.
To this end, let us compute the integral

∫ ∞

−∞
. . .

∫ ∞

−∞
L(τ1, . . . , τn) 〈s(t − τ1) . . . s(t − τn)〉 dτ1 . . . dτn,

(49)

with an arbitrary function L(τ1, . . . , τn), which we can
assume to be symmetric in all its arguments. Formula
(48c) and the symmetry of the function L show that the
integral in Eq. (49) breaks up into a linear combination
of integrals of the form

∫ ∞

−∞
. . .

∫ ∞

−∞
L(τ1, . . . , τn)

l∏

j=1

〈
s
(
t−τp j−1+1

)
. . . s

(
t−τp j

)〉
dτ1 . . . dτn

(50)

where 0 = p0 < p1 < . . . < pl−1 < pl = n, and all the
indices in the product, regardless of the angle brack-
ets, are ordered as 1, . . . , n. In formula (50), all the
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times τk, with pj−1 < k < pj, are contained in the
same intervals m jν < t < (m j + 1)ν. Formula (48b)

shows that the integral in Eq. (50) is proportional to
the expression

Anν− n
2

∞∑

m1=−∞
. . .

∞∑

ml=−∞

∫ ν

0
. . .

∫ ν

0
L(t − m1ν − σ1, . . . , t − m1ν − σp1 ,

. . . , t − mlν − σpl−1+1, . . . , t − mlν − σpl ) dσ1 . . . dσn

= Anν− n
2 νn−l

[ ∞∑

m1=−∞
. . .

∞∑

ml=−∞
L(t − m1ν, . . . , t − m1ν, . . . , t − mlν, . . . , t − mlν)νl + O(ν)

]

= Anν
n
2 −l

[∫ ∞

−∞
. . .

∫ ∞

−∞
L(t1, . . . , t1, . . . , tl, . . . , tl) dt1 . . . dtl + O(ν)

]
. (51)

In the last two lines, m j and t j, respectively, appear as
arguments of the function L precisely pj − pj−1 times.
The estimate showing that the error inside the square
brackets is really O(ν) will be presented later.

First, however, let us discuss the scaling in the for-
mula (51). By Eq. (48a), it should be clear that the
smallest number of factors within any pair of angle
brackets in formula (50) can be two. Therefore, l ≤ n/2.
Moreover, l = n/2 precisely when n is even, and each
pair of angle brackets in Eq. (50) contains precisely two
factors. If n is odd, the largest terms are of the order ν

1
2 .

In other words, as ν → 0, in the sense of distributions,
the correlation function relation (48c) limits onto the
correlation function relations (46) with an error of
order ν

1
2 .

We now make the O(ν) estimate in formula (51)
precise. In fact, we only show that the expression on
the first two lines equals the expression on the last line.
The equality with the middle line is shown in a similar
fashion. We need to estimate the difference

νl−n
∞∑

m1=−∞
. . .

∞∑

ml=−∞

∫ ν

0
. . .

∫ ν

0
L(t−m1ν−σ1, . . . , t−m1ν − σp1 ,

. . . , t − mlν − σpl−1+1, . . . , t − mlν − σpl ) dσ1 . . . dσn

−
∫ ∞

−∞
. . .

∫ ∞

−∞
L(t1, . . . , t1, . . . , tl, . . . , tl) dt1 . . . dtl, (52)

in which t j appears in precisely those slots in L in which
m j appears. This difference can be rewritten as

νl−n
∞∑

m1=−∞
. . .

∞∑

ml=−∞

∫ ν

0
. . .

∫ ν

0

[
L(t−m1ν−σ1, . . . , t−m1ν−σp1 ,

. . . , t − mlν − σpl−1+1, . . . , t − mlν − σpl )

− L(t − m1ν − σp1 , . . . , t − m1ν − σp1 ,

. . . , t − mlν − σpl , . . . , t − mlν − σpl )
]

dσ1 . . . dσn. (53)

The absolute value of the expression in the square
brackets can be estimated as smaller than

R
(
t − m1ν − σp1 , t − m2ν − σp2 , . . . , t − mlν − σpl

)

× (|σ1 − σp1 | + . . . + |σp1−1 − σp1 | + |σp1+1 − σp2 | +
. . . + |σp2−1 − σp2 | + . . . + |σpl−1+1 − σpl | +
. . . + |σpl−1 − σpl |

)
, (54)

where R is some non-negative integrable function of
l arguments. In particular, the suprema of the partial
derivatives of L in some fixed-size neighborhood of
the point

(t − m1ν − σp1 , . . . , t − m1ν − σp1 ,

. . . , t − mlν − σpl , . . . , t − mlν − σpl )

will be the ingredients of R. The integral
∫ ν

0 |σi − σ j| dσi

can easily be evaluated to be
∫ ν

0
|σi − σ j| dσi = ν2

4
+
(ν

2
− σ j

)2
, (55)

which is a parabola, whose maximal value in the in-
terval 0 ≤ σ j ≤ ν is ν2/2. Therefore, the difference in
Eq. (52) can be bounded in absolute value by the
expression

νl−n(n − l)
νn+1−l

2

∞∑

m1=−∞
. . .

∞∑

ml=−∞

∫ ν

0
. . .

∫ ν

0
R(t − m1ν − u1, . . . , t − mlν − ul) du1 . . . dul

= (n − l)ν
2

∫ ∞

−∞
. . .

∫ ∞

−∞
R(v1, . . . , vl) dv1 . . . dvl

= O(ν), (56)

as promised.
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Reconstruction of the Wiener kernels by using binary
white noise with finite presentation time We proceed
to study the error incurred by using only the binary
white noise sν(t) in Eq. (47) instead of all the realiza-
tions of the Gaussian white noise s0(t) to probe the sys-
tem (8). We first recall that the Wiener representation
of Eq. (8) consists of a series

r[s](t)= P0[s]+P1[s](t)+P2[s](t)+ · · · +Pn[s](t)+ · · · ,

(57)

in which the terms Pn[s](t) are called the n-th order
Wiener functionals. Each is an n-th order Volterra
polynomial in the stimulus s(t) with the leading-order
Volterra kernel Wn(T1, . . . , Tn), which we will call the
n-th leading-order Wiener kernel (cf. Schetzen 1980).
The functionals Pn[s](t) are pairwise orthogonal with
respect to the inner product 〈Pm[s0](t)Pn[s0](t)〉, with
〈·〉 denoting ensemble averaging over all possible re-
alizations of the Gaussian white noise stimulus, s0(t).
It is known that the n-th leading-order Wiener ker-
nel uniquely determines the entire Wiener functional
Pn[s](t), that is, all the lower-order Volterra kernels in
it, see Wiener (1958), Schetzen (1980), Victor (1992).

In practice, one probes for the Wiener kernels,
Wm(T1, . . . , Tm) by using the Lee–Schetzen cross cor-
relation algorithm (Schetzen 1980). In particular, for
pairwise distinct values T1, . . . , Tm, the m-th leading-
order Wiener kernel Wm(T1, . . . , Tm) can be computed
by cross correlation as

Wm(T1, . . . , Tm) = 1

A2mm! 〈r[s0](t)s0(t − T1) . . . s0(t − Tm)〉 ,

(58)

where s0(t) is zero-mean Gaussian white noise [it there-
fore has the correlation properties (46)]. Assuming
ergodicity, one can write Eq. (58) in the form

Wm(T1, . . . , Tm)

= 1

A2mm! lim
T→∞

1

2T

∫ T

−T
r[s0](t)s0(t − T1) . . . s0(t − Tm) ds

(59)

for any particular realization of the white noise s0(t).
For arbitrary T1, . . . , Tm, in order to avoid singularities
when some of the T j’s are equal, we must use the
formula

Wm(T1, . . . , Tm)

= 1

A2mm! 〈{r[s0](t)−rm−1[s0](t)} s0(t−T1) . . . s0(t−Tm)〉 ,

(60)

where rm−1[s0](t) is the (m − 1)-st order Wiener ap-
proximation of the response r[s0](t). We will not
use this last result here, but will instead handle the
singularities explicitly. In any given system, the leading-
order Weiner kernels completely determine the depen-
dence of the response r[s](t) on any stimulus s(t) via
the Wiener series (57). For the important case m = 1,
the corresponding Wiener functional contains just one
term and equals

P1[s](t) =
∫ ∞

0
W1(T1)s(t − T1) dT1, (61)

with the first-order Wiener kernel W1(T1) computed
from Eq. (9).

We now take a closer look at the expression (58).
Let us use the notation W̃m for the right-hand side of
Eq. (58) with s0(t) replaced by sν(t), regardless of the
mutual position of T1, . . . , Tm. Using Eq. (8), we have

W̃m(T1, . . . , Tm)

= 〈r[sν ](t)sν(t−T1) . . . sν(t−Tm)〉
= L0 〈sν(t−T1) . . . sν(t−Tm)〉

+
∫ ∞

0
L1(τ1) 〈sν(t−T1) . . . sν(t−Tm)sν(t−τ1)〉 dτ1

+ 1

2!
∫ ∞

0

∫ ∞

0
L2(τ1, τ2)

〈
sν(t−T1) . . . sν(t−Tm)

× sν(t−τ1)sν(t−τ2)
〉
dτ1dτ2 + . . .

+ 1

n!
∫ ∞

0
. . .

∫ ∞

0
Ln(τ1, . . . , τn) 〈sν(t−T1) . . . sν(t−Tm)

×sν(t−τ1) . . . sν(t−τn)〉 dτ1 . . . dτn + . . . .

(62)

(Here and from now on, we abuse the notation 〈·〉
to now denote ensemble averaging only over all the
realizations of the noise sν(t), with fixed ν.) Extending
all the integrals to the entire real axis by defining the
kernels to vanish if any of the arguments is negative
and using Eq. (48c), we find, as in showing Eq. (50),
that the general term in formula (62) is equal to a linear
combination of terms of the form
〈
sν(t − T1) . . . sν(t − Tq1)

〉
. . .

〈
sν(t − Tqi−1+1) . . . sν(t − Tqi )

〉

∫ ∞

−∞
. . .

∫ ∞

−∞
Ln(τ1, . . . , τn)

〈
sν(t − τ1) . . . sν(t − τp1)

〉
. . .

× 〈
sν(t−τp j−1+1) . . . sν(t−τp j)

〉 〈
sν(t−Tqi+1) . . .

× sν(t−Tqi+1)sν(t−τp j+1) . . . sν(t−τp j+1)
〉
. . .

× 〈
sν(t−Tqh−1+1) . . . sν(t − Tqh)sν(t − τpk−1+1) . . .

× sν(t − τpk)
〉
dτ1 . . . dτn. (63)
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Due to the symmetry of the kernels Ln and W̃m in all
their arguments, all the indices in Ti’s and τ j’s can be
considered ordered, so that qh = m and pk = n. Since,
again, the smallest number of factors inside a pair of
angle brackets is two, we must have i ≤ m/2, j ≤ n/2
and i + j + l ≤ (m + n)/2, where l is the number of
correlations in which both sν(t − Tα)’s and sν(t − τβ)’s
appear.

Let us define the functions B(t1, . . . , tp) as follows.
First, B(t) = 1. Second, for p > 1, B(t1, . . . , tp) = 1
if κν < t1, . . . , tp < (κ + 1)ν for some integer κ , and
B(t1, . . . , tp) = 0 otherwise.

Returning to Eq. (63), using Eq. (48b), we find that
Eq. (63) is proportional to

ν− n+m
2 B(T1, . . . , Tq1) . . . B(Tqi−1+1, . . . , Tqi)B(Tqi+1, . . . , Tqi+1) . . . B(Tqh−1+1, . . . , Tqh)

×
∞∑

m1=−∞
. . .

∞∑

mi=−∞

∫ ν

0
. . .

∫ ν

0
Ln(t − m1ν − σ1, . . . , t − m1ν − σp1 , . . . ,

t − miν − σpi−1+1, . . . , t − miν − σpi , t − k1ν − σpi+1, . . . , t − k1ν − σpi+1 , . . . ,

t − klν − σpk−1+1, . . . , t − klν − σpk) dσ1 . . . dσn

= ν− n+m
2 B(T1, . . . , Tq1) . . . B(Tqi−1+1, . . . , Tqi)B(Tqi+1, . . . , Tqi+1) . . . B(Tqh−1+1, . . . , Tqh)

× ν pj− jνn−pj

[∫ ∞

−∞
. . .

∫ ∞

−∞
Ln(u1, . . . , u1, . . . , u j, . . . u j, t−k1ν, . . . , t−k1ν, . . .

. . . , t−klν, . . . , t−klν) du1 . . . du j+O(ν)

]

= ν
n−m

2 − jB(T1, . . . , Tq1) . . . B(Tqi−1+1, . . . , Tqi)B(Tqi+1, . . . , Tqi+1) . . . B(Tqh−1+1, . . . , Tqh)

[∫ ∞

−∞
. . .

∫ ∞

−∞

×Ln(u1, . . . , u1, . . . , u j, . . . u j, t − k1ν, . . . , t − k1ν, . . . , t − klν, . . . , t − klν) du1 . . . du j + O(ν)

]
. (64)

Here,

k1ν < Tqi+1, . . . , Tqi+1 < (k1 + 1)ν.

. . .

klν < Tqh−1+1, . . . , Tqh < (kl + 1)ν.

Integrating expression (64) against a function of
T1, . . . , Tm, we see that the result scales as ν

n+m
2 −i− j−l.

This result can never become singular, and O(1) terms
arise precisely when i + j + l = (n + m)/2, that is, when
all the correlations are among pairs, which gives the
correct integral against the leading-order Wiener ker-
nel, Wm(T1, . . . , Tm), in the limit as ν → 0. The first-
order error is O(ν

1
2 ).

Expression (64) clearly can have singularities as ν →
0. Since j ≤ n/2, the worst possible singularity is of
order ν− m

2 . In this case, we must also have l = 0. As
explained in the previous paragraph, this singularity
may or may not contribute to an integral against a
function of T1, . . . , Tm, depending on the structure of
the product of the B’s. The singularities whose integrals

are nonzero must be eventually subtracted from the
stimulus in order to determine the n-th leading-order
Wiener kernel as described by formula (62). Lower-
order singularities pollute the discrete leading-order
Wiener kernel pointwise, but are harmless in the actual
Wiener representation of the systems, and can there-
fore simply be discarded.

Let us finally concentrate more specifically on the
first Wiener kernel, W̃(T1). For this kernel, m = 1, and
therefore necessarily also l = 1. Terms of O(1) arise for
odd n and j = (n − 1)/2. These sum up to the first-order
Wiener kernel W1(T1). The O(ν

1
2 ) terms arise for even

n, and comprise the lowest-order error. There are no
singular terms in this case.

3 Volterra–Wiener theory for correlated white
noise stimuli

In this section we present the detailed derivations of
the results presented in Section 3 that connect the
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quantities related to orientation tuning in V1 under
the stimulus (1), used in the experiments of Ringach
et al. (1997a, 2003), and the Volterra–Wiener theory of
nonlinear systems.

Experimental stimulus as a collection of correlated
binary noise and its Gaussian white noise limit First,
we establish in what manner the stimulus (1) can be
mapped into a set of I J binary random noise stimuli.
We begin by rewriting Eq. (1) in the form

I(X, t)

=I0ν
−1/2

⎧
⎨

⎩
1+ε

I∑

i=1

J∑

j=1

χθi,φ j(t) sin[k(θi) · X−φ j]
⎫
⎬

⎭
,

(65)

where each χθi,φ j(t) is the indicator function of the set
of intervals in which the grating with the orientation
angle θi and the spatial phase φ j was presented. In
other words, the value of χθi,φ j(t) equals 1 during those
time intervals in which the grating with the orientation-
phase pair (θi, φ j) was presented, and 0 during the time
intervals when any other grating was presented.

We now further rewrite Eq. (65) as
I(X, t)

=I0

⎧
⎨

⎩
ν−1/2+ε

I∑

i=1

J∑

j=1

[
sνij(t)+ 1√

ν I J

]
sin[k(θi) · X − φ j]

⎫
⎬

⎭
,

(66)

where

sνij(t)=ν−1/2

[
χθi,φ j(t)−

1

I J

]
, i=1, . . . , I, j=1, . . . , J,

is now indeed a collection of I J binary noise processes.
The process sνij corresponds to the flashing of the
grating with the orientation θi and spatial phase φ j.
Since, within any given time interval kν < t < (k + 1)ν,
a grating with the orientation-phase pair (θi, φ j) is pre-
sented with probability 1/I J and thus not presented
with probability 1 − 1/I J, each process sνij assumes
the values

sνij(t) = 1√
ν

{
p, with probability q,

−q, with probability p,

kν < t < (k + 1)ν, k = . . . , −1, 0, 1, . . . ,

(67)

where

q = 1

I J
, p = 1 − 1

I J
.

The binary noise processes sνij in Eqs. (66) and
(67) must necessarily be correlated because only one
grating is presented at any given time. In particular,
two processes, sνij(t) and sνmn(t), are correlated through
the following conditional probabilities: At any given
time t, if sνij(t) = p/

√
ν, then sνmn(t) = −q/

√
ν with

probability 1, that is, if the grating with the orientation
θi and spatial phase φ j is presented, no other grating can
be presented at the same time. If sνij(t) = −q/

√
ν, then

sνmn(t) = 1√
ν

⎧
⎪⎪⎨

⎪⎪⎩

p, with probability
1

I J − 1
,

−q, with probability 1 − 1

I J − 1
,

(68)

which means that if the grating with the orientation θi

and spatial phase φ j is not presented, any other grating
may be presented with probability 1 − 1/(I J − 1). The
values of sνij(t1) and sνmn(t2) in different intervals, k1ν <

t1 < (k1 + 1)ν, k2ν < t2 < (k2 + 1)ν, are independent,
as gratings in such intervals are presented randomly and
independently.

From the above, noting that sνij is scaled as 1/
√

ν,
in the limit as ν → 0, we can show that the binary
processes sνij(t) tend to correlated Gaussian white noise
signals sij(t), with
〈
sij(t)

〉
�s = 0, (69a)

and correlation properties

〈
sij(t1)sij(t2)

〉
�s = I J − 1

I2 J2
δ(t1 − t2), (69b)

〈
sij(t1)skl(t2)

〉
�s = − 1

I2 J2
δ(t1 − t2), i �= k or j �= l,

(69c)

〈
si1 j1(t1) . . . si2n+1 j2n+1(t2n+1)

〉
�s = 0, (69d)

〈
si1 j1(t1) . . . si2n j2n(t2n)

〉
�s =

∑∏〈
sil jl (tl)sim jm(tm)

〉
�s . (69e)

where δ(·) denotes the Dirac delta function, 〈·〉�s de-
notes ensemble averaging over all realizations of the
collection �s of the correlated noise stimuli, �s = {skl | k =
1, . . . , I, l = 1, . . . , J}, and the sum in the last equation
runs over all distinct products of n two-point correla-
tions. Observe that the correlated noise signals sij(t)
decorrelate if I → ∞ or J → ∞. We do not present
the derivation of Eq. (69) here, but only note that it is
similar to the derivation of formulas (48) in Appendix 2
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in the ν → 0 limit. We do notice, however, another
important property of the noises sij(t), namely

I∑

i=1

J∑

j=1

sij(t) = 0. (70)

Kernel orthogonalization for a collection of correlated
white noise stimuli We indicate the kernel orthogo-
nalization procedure with respect to the set of corre-
lated white noises, sij(t). This procedure leads to the
mutually-orthogonal Wiener functionals that can be
used for the Wiener-series analog of formula (10).

First, any zeroth-order Wiener functional p0[ �S](t) is
just a constant,

p0[ �S](t) = w0,

for any collection �S of stimuli sνij(t) or sij(t) Any first-
order Wiener functional

p1[ �S](t) =
I∑

i=1

J∑

j=1

∫ ∞

0
w

ij
1 (τ1)Sij(t − τ1) dτ1 + w1,0

must satisfy the orthogonality condition
〈
p1[�s](t)

p0[�s](t)
〉
�s = 0 for any zeroth-order Wiener functional

p0[ �S](t), with 〈·〉�s again denoting the ensemble averag-
ing over all realizations of the collection �s of the corre-
lated Gaussian white noise stimuli sij(t). Equation (69a)
immediately implies w1,0 = 0, and so p1[ �S](t) must have
the form

p1[ �S](t) =
I∑

i=1

J∑

j=1

∫ ∞

0
w

ij
1 (τ1)Sij(t − τ1) dτ1. (71)

Moreover, by Eq. (70), which holds for the binary
noises sνij(t) as well as for the Gaussian noises sij(t), and
so all stimuli �S under our consideration, we see that we
can subtract any function of t from all the kernels in
Eq. (71) without changing the result. Therefore, we can
assume with no loss of generality that

I∑

i=1

J∑

j=1

w
ij
1 (τ1) = 0. (72)

Likewise, any second-order Wiener functional
p2[ �S](t) must be orthogonal to all zeroth- and first-
order Wiener functionals and therefore must obey the
equations

〈
p2[�s](t)p0[�s](t)

〉
�s =0 and

〈
p2[�s](t)p1[�s](t)

〉
�s =0

for all the realizations of the correlated Gaussian white

noises �s(t) = {sij(t)}. The correlation properties (69)
and an argument similar to that leading to Eq. (72)
imply the form

p2[ �S](t) =
I∑

i,k=1

J∑

j,l=1

∫ ∞

0

∫ ∞

0
w

ik, jl
2 (τ1, τ2)Sij(t−τ1)Skl(t−τ2) dτ1dτ2

− 1

I J

I∑

i=1

J∑

j=1

∫ ∞

0
w

ii, jj
2 (τ1, τ1) dτ1

+ 1

I2 J2

I∑

i,k=1

J∑

j,l=1

∫ ∞

0
w

ik, jl
2 (τ1, τ1) dτ1.

Formula (70) now implies

I∑

i=1

J∑

j=1

w
ik, jl
2 (τ1, τ2) =

I∑

k=1

J∑

l=1

w
ik, jl
2 (τ1, τ2) = 0,

so that finally

p2[ �S](t) =
I∑

i,k=1

J∑

j,l=1

∫ ∞

0

∫ ∞

0
w

ik, jl
2 (τ1, τ2)Sij(t−τ1)Skl(t−τ2) dτ1dτ2

− 1

I J

I∑

i=1

J∑

j=1

∫ ∞

0
w

ii, jj
2 (τ1, τ1) dτ1.

We proceed in the same vein at higher orders.

First-order Lee–Schetzen formula for a collection of
correlated white noise stimuli Here, we develop an
analog of the Lee–Schetzen formula (9) for the firing
rate in our correlated-noise case. The orthogonalization
developed in the previous subsection is used to ensure
that terms of order two and higher become orthogonal
to the lower-order terms. Thus, the terms containing
higher-order Wiener kernels will vanish when we cor-
relate the firing rate m

[�s ] (t, 	, 
) against a single
copy of the binary noise, sij(t − τ). Using formulas (69),
we compute

〈m [�s ] (t, 	, 
)sij(t − τ)〉�s

=
I∑

k=1

J∑

l=1

∫ ∞

0
Wk,l

1 (τ1, 	, 
)skl(t − τ1)sij(t − τ) dτ1

= 1

I J
Wi, j

1 (τ, 	, 
) − 1

(I J)2

I∑

k=1

J∑

l=1

Wk,l
1 (τ, 	, 
).

(73)

This is a consistent singular linear system, since sum-
ming both sides on i and j yields the identity 0 = 0,
which follows from Eq. (70) for the left-hand side of
the first line, and by simple algebra for the last line.
The system’s singular nature implies that the solution
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of Eq. (73) is not unique, and we can postulate a linear
equation connecting the kernels Wi, j

1 (τ, 	, 
). As in the
previous subsection, with no loss of generality, we can
use Eq. (72), that is,

I∑

k=1

J∑

l=1

Wk,l
1 (τ, 	, 
) = 0,

and we find for the first-order Wiener kernels the
formulas

Wi, j
1 (τ, 	, 
) = I J

〈
m
[�s ] (t, 	, 
)sij(t − τ)

〉
�s , (74)

which is the same as Eq. (11a). Here, as in Eq. (69),
〈·〉�s denotes ensemble averaging over all possible real-
izations of the random noise collection �s.

Relationship between the experimental data and
Wiener kernels We now discuss the relationship be-
tween the Volterra-Wiener representations of the firing
rate on the one hand and the correlation functions (3)
and the “interval-specific firing rate averages” (7) on
the other. Since the expressions (3) and (7) involve the
stimulus in a linear fashion, we are indeed allowed to
focus on the first-order, that is linear, kernels, given by
formula (74). By ergodicity, we have

Wi, j
1 (τ, 	, 
) = I J lim

T→∞
1

2T

∫ T

−T
m
[�s ] (t, 	, 
)

× sij(t − τ) dt (75)

for any given noise collection �s with the ij-th component
sij [this is Eq. (11b)]. We can rewrite this equation in
the form

Wi, j
1 (τ, 	, 
)= I J lim

T→∞
lim
ν→0

1

2T
√

ν

∫ T

−T
m
(

t, 	, 
, �θ, �φ
)

×
[
χθi,φ j(t−τ)− 1

I J

]
dt, (76)

where χθi,φ j(t) is the indicator function of the set of
intervals on which the angle θi and the phase φ j were
presented simultaneously. If we rewrite Eq. (3a) as

N (τ, θi, φ j)= lim
T→∞

1

2T

∫ T

−T
χθi,φ j(t−τ) m(t, 	, 
, �θ, �φ) dt,

we find

Wi, j
1 (τ, 	, 
) = lim

ν→0

1√
ν

[
I JN (τ, θi, φ j) − m̄(	, 
)

]

= lim
ν→0

1√
ν

[
N(τ, θi, φ j) − 〈N〉τ,θ(0),φ(0)

]
,

(77)

with the “interval-specific firing rate average,”N(τ,θi,φj),
defined in Eq. (7a). Formula (77) is the same as
Eq. (12). Here, m̄ denotes the time-averaged firing rate,
and 〈·〉τ,θ(0),φ(0) denotes averaging over all the arguments
of the function N(τ, θ (0), φ(0)). The last line in Eq. (77)
is true because, due to ergodicity, the time-averaged fir-
ing rate m̄ is independent of the presentation sequences
�θ and �φ. Therefore,

m̄ = 〈m〉�θ, �φ, (78)

where the overbar represents time averaging and 〈·〉�θ, �φ
ensemble averaging over all the components of �θ and �φ.
But, by Eq. (7a), the right-hand side of Eq. (78) clearly
equals 〈N〉τ,θ(0),φ(0) .

Likewise, we consider the correlation function
M(τ, θi) in Eq. (3b), corresponding to the process
of finding the “preferred-phase averaged” firing rate
〈m(t, 	, 
)〉
. As explained at the end of Section 3,
from the definitions (3), and in accordance with the fact
that in the experiment the phases φ j are averaged out,
we see that the correlation functions N (τ, θi, φ j) and
M(τ, θi) are simply related by the equation

M(τ, θi) =
J∑

j=1

N (τ, θi, φ j).

Therefore, the first Wiener kernel corresponding to
M(τ, θi) is

Wi
1(τ, 	) = 1

J

J∑

j=1

Wi, j
1 (τ, 	, 
)

= lim
ν→0

1√
ν

[
IM(τ, θi) − m̄(	, 
)

]

= lim
ν→0

1√
ν

[
M(τ, θi) − m̄(	, 
)

]

= lim
ν→0

1√
ν

[
M(τ, θi) − 〈M〉τ,θ(0)

]
, (79)

where M(τ, θi) is the interval-specific firing rate aver-
age (5b). This is Eq. (13).

Comparison with previous results We present a very
brief comparison with the results of Ringach et al.
(1997b), Nykamp and Ringach (2002), and restrict our-
selves to the limit as ν →0. The result of Ringach et al.
(1997b) holds for neuronal models which consist of
a linear filter followed by a static nonlinearity. This
is indeed the case for the leaky feed-forward models
(17) and (18). Since

∫∞
−∞ Glgn(t) dt = 0, the effect of the

linear filter in Eq. (19) on the stimulus (1) is the same as
if Eq. (1) consisted of the spatially mutually-orthogonal
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gratings I0εν
−1/2 sin[k(θi) · X − φ j]. These are drawn

at each time nν with uniform probability. The result
of Ringach et al. (1997b) states that RTC reproduces,
up to a factor, the (spatial) projection of the linear filter
in Eq. (19) on this orthogonal set at the time τ . We
have already computed this projection when we calcu-
lated formula (19), and the projection coefficients equal
(I0εν

−1/2/2)e− 1
4 K2μ2

f (θi)Glgn(τ ) cos
[
φ j − �(θi)

]
, which

is proportional to the first Wiener kernel (36). Thus,
the first Wiener kernels in the theory presented in this
paper are proportional to the projection coefficients
in Ringach et al. (1997b). Averaging these coefficients
over the phases φ j yields zero in agreement with the
result presented at the end of our Section 4. The phys-
iological interpretation is also the same as that at the
end of that Section: spatial-phase averaging of receptive
fields which are identical in every aspect except their
preferred spatial phase erases their sensitivity (at least
in the first approximation) due to the cancellations of
the on- and off-regions. Finally, our formula (27) is in
agreement with formulas (2) through (5) in Nykamp
and Ringach (2002).

4 Calculation of a probability density function

In this appendix, we compute the probability density
function pS(s, t, θ (0)) (in formula (39)) of the random
variable S in Eq. (37),

S = ν−1/2
∞∑

n=−∞
f (θ(n))G(t − nν) cos φ(n), (80)

in which all the phases φ(n) and all the angles θ(n)

save one, θ(0), are random. Here, f (θ(n)) is defined by
formula (23), and G(t) by Eq. (25). Clearly, S is an
infinite sum

S =
∞∑

n=−∞
S(n),

of independent individual random variables

S(n) = ν−1/2 f (θ(n))G(t − nν) cos φ(n), (81)

in which both θ(n) and φ(n) are independent random
variables distributed uniformly on the intervals [0, π ]
and [0, 2π ], respectively, if n �= 0. For n = 0, in S(0),
only φ(0) is an independent random variable distributed
uniformly on the interval [0, 2π ] while θ(0) is fixed.

An exact formula for pS(s, t, θ (0)) Let us first note that
the probability density of the random variable X(n) =
cos φ(n) is given by the formula

pX(n) (x) =

⎧
⎪⎪⎨

⎪⎪⎩

1

π
√

1 − x2
, x2 < 1,

0, x2 ≥ 1.

(82)

The probability density of the random variable
Y(n) = f (θ(n)) unfortunately cannot be computed ex-
plicitly, however, this does not matter here. Instead, we
use the formula

pAB(z) =
∫ ∞

0
pA

(
z
y

)
pB(y)

dy
y

, (83)

which is valid if the variable B is nonnegative, to
compute the probability density of the random variable
S(n) = ν−1/2 f (θ(n))G(t − nν) cos φ(n), for n �= 0, which is

pS(n) (z) = 1

π

∫ π

0
pX(n)

(
z

ν−1/2 f (θ(n))G(t − nν)

)

× dθ(n)

ν−1/2 f (θ(n))|G(t − nν)| . (84)

In this calculation, we also used the facts that

pθ(n) (θ) =

⎧
⎪⎨

⎪⎩

1

π
, 0 ≤ θ < π,

0, otherwise,

and that the probability density of S(n) is independent of
whether it contains G(t − nν) or |G(t − nν)| as a factor.

The characteristic function for the variable S(n) is
the Fourier transform of the probability density (84),
which, after a scaling of the integration variable and
interchanging of the order of integration, becomes


n(κ)= 1

π

∫ π

0
dθ(n)

∫ ∞

−∞
du eiκuν−1/2 f (θ(n))G(t−nν) pX(n) (u).

(85)

The inner integral can written in the form

2

π

∫ 1

0

cos αu du√
1 − u2

= J0(α),

with α = ν−1/2 f (θ(n))G(t − nν), and J0 being the Bessel
function of order zero, so that


n(κ)= 1

π

∫ π

0
J0

(
κν−1/2 f (θ(n))G(t−nν)

)
dθ(n), n �=0.

(86)
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In a similar fashion, since θ(0) is fixed, the character-
istic function of the zeroth term in the sum (37) can be
computed simply as


0(κ) = J0

(
κν−1/2 f (θ(0))G(t)

)
. (87)

The characteristic function for the variable S in for-
mula (37) is written as the infinite product


S(κ) = J0

(
κν−1/2 f (θ(0))G(t)

)

×
∞∏

n=−∞
n �=0

{
1

π

∫ π

0
J0

(
κν−1/2 f (θ(n))G(t − nν)

)
dθ(n)

}

.

(88)

Note that, since, for all large positive n, G(t − nν) = 0,
this product is only infinite and not bi-infinite. The
probability density function for the variable S in for-
mula (37) is given as

pS(s, t, θ (0))

= 1

2π

∫ ∞

−∞
dκ e−iκs J0

(
κν−1/2 f (θ(0))G(t)

)

×
∞∏

n=−∞
n �=0

{
1

π

∫ π

0
J0

(
κν−1/2 f (θ(n))G(t−nν)

)
dθ(n)

}
.

(89)

Some elementary properties of the probability density
pS(s, t, θ(0)) First, note that, since |J0(x)| ≤ 1 for all
values of x, every characteristic function 
n(κ), given
by Eq. (86), satisfies the same inequality, |
n(κ)| < 1.
This implies that the κ-integral in the probability den-
sity (89) converges no worse than the Fourier transform
of the Bessel function alone.

For the random variable

� = ν−1/2
∞∑

n=−∞
f (θ(n))G(t − nν) cos φ(n), (90)

in which now all the angles θ(n) and all the phases φ(n)

are random, the probability density function is

p�(s, t)= 1

2π

∫ ∞

−∞
dκ e−iκs

×
∞∏

n=−∞

{
1

π

∫ π

0
J0

(
κν−1/2 f (θ(n))G(t − nν)

)
dθ(n)

}

,

(91)

which is periodic in t with period ν. Therefore, by Eq.
(38), the average

〈
M(t, θ (0))

〉
θ(0) of the interval-specific

firing rate average M(t, θ (0)) in Eq. (7b) is also periodic

in t with the same period. (This can also be shown
directly.)

Also, for t < 0, we have G(t) = 0 so that J0

(
κν−1/2

f (θ(0))G(t)
)

= 1. If t is sufficiently negative, then other
terms around it also equal 1. Therefore, near such a
t, the probability density (89) and the interval-specific
firing rate average (7b) repeat themselves with the
period ν. The same is, approximately, true for large
t � 0.

The above two properties of Eq. (7b) stand in con-
trast to the analogous properties of the correlation
function M(t, θ (0)) in Eq. (3b). In particular, by Eq.
(6b), the average

〈
M(t, θ (0))

〉
θ(0) is constant in time,

as are M(t < 0, θ (0)) and M(t → ∞, θ (0)). Thus, even
though Eq. (6b) shows that the interval-specific firing
rate average M(t, θ (0)) and an integer multiple of the
correlation function M(t, θ (0)) differ by an O(ν) quan-
tity, the correlation function M(t, θ (0)) appears more
suitable to capture the average tuning dynamics of a V1
neuron. This is in agreement with a similar observation
at the end of Section 2.

The small-ν limit of the probability density pS(s, t, θ(0))

This limit can be derived in a manner reminiscent of the
proof of the central limit theorem and the related Edge-
worth expansion; see for instance Chapter 16 of Feller
(1966). We begin with the observation that ν−1/2G(t) ≈
ν1/2Glgn(t) for small ν, which follows from Eq. (25). We
then use the formula

J0(x) =
∞∑

l=0

(−1)l x2l

22l(l!)2

to expand

J0

(
κν−1/2 f (θ(0))G(t)

)

= 1 − κ2 f 2(θ(0))G2(t)
4ν

+ κ4 f 4(θ(0))G4(t)
64ν2

+ O(ν3)

and

1

π

∫ π

0
J0

(
κν−1/2 f (θ(n))G(t − nν)

)
dθ(n)

= 1 − κ2 f2 G2(t − nν)

4ν
+ κ4 f4 G4(t − nν)

64ν2
+ O(ν3),
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with f2 and f4 defined in Eqs. (32) and (41), respec-
tively. These two expansions, together with Eq. (88),
imply

log 
S(κ) = log

(
1 − κ2 f 2(θ(0))G2(t)

4ν

+ κ4 f 4(θ(0))G4(t)
64ν2

+ O(ν3)

)

+
∞∑

n=−∞
n �=0

log

(
1 − κ2 f2 G2(t − nν)

4ν

+ κ4 f4 G4(t − nν)

64ν2
+ O(ν3)

)

= −κ2 f 2(θ(0))G2(t)
4ν

− κ4 f 4(θ(0))G4(t)
64ν2

−κ2 f2

4ν

∞∑

n=−∞
n �=0

G2(t − nν) + κ4( f4 − 2 f 2
2 )

64ν2

×
∞∑

n=−∞
n �=0

G4(t−nν)+O(ν3). (92)

We now express the time-dependent coefficients in
Eq. (92) in terms of Glgn(·). First, using Eq. (25), we
approximate

G(t) = νGlgn(t) + O(ν2). (93)

This makes the first term in the fifth line of Eq. (92) of
O(ν), and the second of O(ν2), which we will neglect.
We then compute that the sum

G2(t) =
∞∑

n=−∞
G2(t − nν) (94)

satisfies the equation

G2(t) = 2
∞∑

n=0

F(t + nν)
[
F(t + nν) − F

(
t + (n + 1)ν

)]
,

(95)

for all t satisfying 0 ≤ t ≤ ν. Here, F(t) is defined as in
Eq. (25). The functional form of F(t), as it follows from
Eqs. (25) and (20), lets us Taylor expand Eq. (95) in the
form

G2(t)=−2ν

∞∑

n=0

F(t + nν)
[
F ′(t+nν)+ ν

2
F ′′(t+nν)

+ ν2

6
F ′′′(t+nν)+· · ·

]
. (96)

(This is because all the series involving the derivatives
of F converge and the formal O(νk) terms are indeed
of that order.) We assume ζ ≥ 1 in Eq. (20), or, more
generally, at worst Glgn(t) = O(t) and so F(t) = O(t2)

for small t. We use integration by parts and push the
lower integration limit from t to 0 to compute from Eq.
(96) that

G2(t) = ν

∫ ∞

0
G2

lgn(ξ) dξ + O(ν3). (97)

We conclude that this formula is true for all t since G2(t)
is periodic in t.

Using Eqs. (93) and (97), we thus derive the first
term in the sixth line of Eq. (92) to be

− κ2 f2

4ν

[
G2(t) − G2(t)

]

= −κ2 f2G2(t)
4ν

+ ν
κ2 f2G2

lgn(t)

4
+ O(ν2)

= −κ2 f2

4

∫ ∞

0
G2

lgn(ξ) dξ + ν
κ2 f2G2

lgn(t)

4
+ O(ν2)

= −κ2

2

(

V0 − ν
f2G2

lgn(t)

2

)

+ O(ν2),

where V0 is defined as in Eq. (32). Thus, the sum of the
fifth line and the first term in the sixth line of Eq. (92) is

− κ2

2

(

V0 + ν

[
f 2(θ(0)) − f2

]
G2

lgn(t)

2

)

+ O(ν2) = −κ2V(t, θ (0))

2
+ O(ν2), (98)

where V(t, θ (0)) is the expression in Eq. (40). Finally

∞∑

n=−∞
n �=0

G4(t − nν)

=
∞∑

n=−∞
G4(t − nν) − G4(t)

= ν3
∫ ∞

0
G4

lgn(ξ) dξ + O(ν4) − ν4G4
lgn(t) + O(ν5)

= ν3
∫ ∞

0
G4

lgn(ξ) dξ + O(ν4). (99)

Therefore, using Eqs. (92), (98), and (99), the charac-
teristic function 
S(κ) can be expressed as


S(κ) = exp

[
−κ2V(t, θ (0))

2
+ κ4νV1 + O(ν2)

]

= exp

[
−κ2V(t, θ (0))

2

] [
1+κ4νV1+O(ν2)

]
, (100)
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where V1 is defined as in Eq. (41), and the second line
is valid for all fixed finite κ .

Using the formula

1√
2π

∫ ∞

−∞
e−iαx−α2/2 dα = e−x2/2,

the differentiation rule for Fourier transforms, Eqs.
(100), (89), and the fact that large values of κ contribute
negligible amounts to the integration in Eq. (89), we
finally deduce Eq. (39).

5 Orientation tuning dynamics for a purely
feed-forward model with no leakage

In this appendix, we concentrate on purely feed-
forward models with no leakage, i.e., gL = 0 in Eq. (15),
and on finite presentation duration ν. We show that, in
a fairly large class of such models, averaging over the
spatial phase wipes out the orientation tuning of the
corresponding V1 neuron.

First, in the limit as ν → 0, we observe that formula
(38) yields a completely untuned interval-specific fir-
ing rate average M(t, θ (0)) for a purely feed-forward
model (17) with no leakage or global inhibition when
the LGN drive is modeled by the simple Gabor func-
tion (19). To show this fact, we first recall that in Eq.
(38), the part of the integrand in the square brackets
is non-negative. Furthermore, as discussed above, in
order for the LGN input not to become negative, if
there is no leakage, i.e. gL = 0, or inhibition, the mag-
nitude of the constant C must be chosen sufficiently
large so that the values of the variable s for which
the probability density function pS(s, t, θ (0)) is non-zero
must all be contained in the interval C/D ≤ s < ∞.
Therefore, we can extend the integral in Eq. (38) to∫∞
−∞. Replacing φ(n) by π − φ(n) in the random variable

S in Eq. (37) shows that this variable has a symmet-
ric range, and thus the function pS(s, t, θ (0)) is even
in s. The implication from Eq. (38) is then that in
the case of a purely feed-forward model without leak-
age, M(t, θ (0)) = −C, independent of the orientation
angle θ(0).

Since the result of the previous paragraph could be
a consequence of the very specific and simple LGN
drive model and the ν → 0 limit, we now briefly show
that it is instead a much more general phenomenon. In
particular, we here assume a much more realistic LGN
drive in the feed-forward model (17), namely, a feed-

forward convergence of inputs from individual LGN
neurons as used in our integrate-and-fire simulations
described above, as well as the large-scale V1 network
computations of McLaughlin et al. (2000), Tao (2004).
Such an LGN drive is given by the formula

glgn(t)=
Q∑

q=1

gq
lgn(t)

=
Q∑

q=1

{
RB ±

∫

R2
dX dY

∫ t

−∞
ds

×Klgn(|X−Xq|)Glgn(t−s) I(X, s)
}+

, (101)

where X = (X, Y), RB is the LGN neurons’ back-
ground firing rate, Glgn(t) is the LGN time-response
kernel [for instance, as given by Eq. (20)], I(X, s) is
the stimulus (1), Klgn is the isotropic spatial kernel
for the LGN neurons, Xq is the receptive field cen-
ter of the q-th LGN neuron that feeds into the V1
neuron in question, and {a}+ = max{a, 0}. The sign ±
corresponds to neurons with “on” and “off” receptive
fields, whose firing is triggered by either the presence
or absence of a bright stimulus in their receptive field
center, respectively. Each term in the sum on the right-
hand side of Eq. (101) represents the output of a single
LGN neuron. Note that the number Q of LGN neurons
feeding into it generally varies from one V1 neuron to
the next (Tanaka 1985; Reid and Alonso 1995; Alonso
et al. 2001; Ringach 2002; Tao et al. 2004). Moreover,
the argument to be presented here will not change if
we assume that the shapes and strengths of the LGN
kernels, or the background firing rates, vary from one
LGN neuron to the next, i.e., we can assume RB, Klgn,
and Glgn are q-dependent.

Since glgn(t) ≥ 0 and gL = 0 in the case at hand, we
can omit the thresholding in Eq. (17) and write

m(t)=
(

VE

VT
− 1

)
glgn(t)=

(
VE

VT
− 1

) Q∑

q=1

gq
lgn(t), (102)

where gq
lgn(t) are the individual bracketed terms in the

sum (101). Using Eq. (7b), we compute the interval-
specific firing rate average M(t, θi) to be

M(t, θi) =
(

VE

VT
− 1

) Q∑

q=1

〈
gq

lgn

〉

�θ, �φ,θ(0)=θi

(t, θi), (103)

where the averaging is as in Eq. (7b).



J Comput Neurosci

Let us now consider any individual term on the right-
hand side of Eq. (103). First, for any arbitrary radially-
symmetric kernel Klgn, we compute

gq
lgn(t)=

{

RB ± I0εν
− 1

2

∞∑

n=−∞
G(t − nν)

×
∫

R2
dXdY Klgn(|X−Xq|) sin

[
k(θ(n)) · X−φ(n)

]}+

=
{

RB± I0εν
− 1

2

∞∑

n=−∞
G(t−nν) sin

[
k(θ(n)) · Xq−φ(n)

]

×
∫

R2
dU dV Klgn(|Y|) cos

[
k(θ(n)) · Y

]}+

=
{

RB ± I0εν
− 1

2 κlgn(k)

∞∑

n=−∞
G(t − nν)

× sin
[
k(θ(n)) · Xq − φ(n)

]}+
. (104)

Here, (U, V) = Y = X − Xq, G(t) is as in Eq. (25), and

κlgn(k) =
∫

R2
dξ dη Klgn

(√
ξ 2 + η2

)
cos kξ (105a)

=
∫

R2
dU dV Klgn(|Y|) cos

[
k(θ(n)) · Y

]
(105b)

is seen to be independent of the orientation angle θ(n)

by rotating the coordinate system in Eq. (105a) so that
the ξ -axis is parallel to the vector k(θ(n)).

To find
〈
gq

lgn

〉

�θ, �φ,θ(0)=θi

, we must average the last line

in the expression (104) over all phases φ(n) and over
all orientations θ(n) except θ(0). However, due to the
Lemma in Appendix 1, the distribution of the vari-
able k(θ(0)) · Xq − φ(0), shifted into the interval [0, 2π),
is the same as the distribution of φ(0), i.e., uniform.
Thus, the averaging over the phase φ(0) alone erases

the dependence of
〈
gq

lgn

〉

�θ, �φ,θ(0)=θi

on the value of the

orientation θ(0). By Eq. (103), the interval-specific firing
rate average M(t, θ (0)) is therefore also untuned in this
case, and by Eq. (6b), so is the correlation function
M(t, θ (0)).

6 Integrate-and-fire ring model

For the simulations presented in Fig. 2, we use a net-
work model of n = 1024 conductance-based, integrate-
and-fire, point neurons, laid out on a ring with 32 dif-
ferent preferred orientations 	i and 8 preferred spatial

phases 
 j. These are conferred by convergent LGN
inputs, which are modeled by Poisson spike trains, with
each train modulated by a firing-rate function of the
form (101). There are three excitatory neurons and one
inhibitory neuron for each combination of a preferred
orientation and spatial phase. The lateral, cortico-
cortical connections are all-to-all, with the strengths of
the connections depending on the difference 	i − 	 j

between the preferred orientations, and independent of
the preferred spatial phases of the neurons. The details
of the model are as follows.

The membrane potential of the i-th model neuron
follows the time evolution

d
dt

v
(i)
P = −gL

(
v

(i)
P − Vr

)
− g(i)

PE(t)
(
v

(i)
P − VE

)

−g(i)
PI(t)

(
v

(i)
P − VI

)
, (106)

where, as in the rest of this paper, P = E, I indicates
whether the neuron is excitatory or inhibitory. The
voltages VE > Vr > VI are the excitatory, rest, and
inhibitory reversal potentials, and as in the main text,
their values are set to VE = 14/3, Vr = 0, and VI =
−2/3, respectively. The firing threshold is set to VT = 1.
The time scale of the leakage conductance gL is g−1

L =
20 ms.

The time-dependent conductances g(i)
PP′(t) in the

model (106) arise from the convergent LGN input and
from network activity and have the form

g(i)
PE(t)= SPE

n∑

j=1

KPE
(
	i−	 j

)∑

k

GE

(
t−t j

k

)
+g(i)

lgn(t),

(107a)

g(i)
PI(t)= SPI

n∑

j=1

KPI
(
	i−	 j

)∑

k

GI

(
t−T j

k

)
+ ginh(t).

(107b)

Here, the coupling coefficients SPP′ have the same
meaning as in Eq. (16). In Fig. 2, they are set to SEE =
1.0, SEI = 2.0, SIE = 6.0, and SII = 2.0. The spatial
coupling kernels KPE(θ) and KPI(θ) are taken to be
Gaussians of the form (114) with both σP = π/8. The
temporal kernels GP have the form

GP(t)= 1

τPd−τPr

[
exp

(
− t

τPd

)
−exp

(
− t

τPr

)]
for t≥0,

and vanish for t < 0. Here, τEd = 5 ms, τId = 10 ms, and
both τPr = 1 ms. The symbol t j

k (T j
k) indicates the

time of the k-th spike of the j-th excitatory (inhibitory)
neuron.

The LGN driving term in Eq. (107a), glgn(t), is a
Poisson spike train with spike strengths 0.01 and the



J Comput Neurosci

spiking rate modulated as the sum (101) of convergent
inputs from a distribution of 30 identical “on” and “off”
LGN cells, described in Appendix 5. The forms of the
spatial and temporal kernels, Klgn and Glgn, in Eq. (101)
are the same as those used in McLaughlin et al. (2000),
Wielaard et al. (2001). In particular,

Klgn(x) = a
πσ 2

a
exp

(
− x2

σ 2
a

)
− b

πσ 2
b

exp

(
− x2

σ 2
b

)
,

with σa = 0.066◦, σb = 0.093◦, a = 1, and b = 0.74. The
temporal kernel Glgn(t) is given by a constant multiple
of formula (20) with ζ = 5, τlgn = 3 ms, α = 1, and β =
5/3. The overall constant in Glgn(t) is determined so
that the peak firing rate for each LGN cell driven with
a full-contrast drifting grating stimulus equals 100 Hz.
The term ginh(t) in Eq. (107b) models global random
inhibitory inputs, which are taken to be Poisson trains
with rate 500 Hz and spike strengths 0.1. The input
stimulus used in the simulation is the sequence of grat-
ings (1) with randomly selected orientation angles and
spatial phases. The integrate-and-fire system governed
by Eqs. (106) and (107) is integrated numerically by the
method of Shelley and Tao (2001).

In our simulations with this spiking integrate-and-
fire model, the spike histograms M(τ, θi) of delay times
τ and orientations θi, and the corresponding probability
density functions P(τ, θi), are constructed in the same
way as from the experimental data, which is described
at the beginning of Section 2.

7 Solution of the model of Mexican-hat tuning curves

In this appendix, we present the details of the calcula-
tions outlined in Section 5. As described there, we first
drastically simplify the thresholded linear model (14)
by dropping the thresholding, setting the preferred
phase of the neuron in the LGN drive (19) to 
 = 0,
fixing all the phases in the stimulus at φ(n) ≡ 0, and
dropping the phase averaging. By considering only the
ring architecture, that is, replacing the position x in the
cortex by the preferred angle 	, the spatial convolution
in Eq. (14) becomes a convolution in the angle variable
only,

K ∗ F(θ) = 1

π

∫ π/2

−π/2
K(θ − θ ′)F(θ ′) dθ ′.

Thus, the model (14) reduces to the coupled linear ring
model

mP(t, 	) = flgn(t, 	) +
∑

P′
CPP′ KPP′ ∗ GP′ ∗ mP′(t, 	),

P, P′ = E, I. (108)

The simplified LGN drive (22) becomes

flgn(t, 	) = A + B
∞∑

n=−∞
f (θ(n) − 	)G(t − nν). (109)

Here, A = −gL + (VE/VT − 1)RB, B = (VE/VT − 1)

I0εν
−1/2e−K2μ2/4/2, with K and μ described after for-

mula (19). (Since we are about to scale A and B out of
the model, we do not specify the values of any constants
involved in them.) The orientation-angle profile f (θ) ≡
f (θ, 0) is given by Eq. (23), and the time course G(t)
by Eq. (25). We choose ζ = 0 in Eqs. (20) and (25) for
the simplest form of G(t). With no loss of generality,
we can take the preferred angle 	 of the neuron under
study to be 	 = 0. Moreover, in this idealized model,
f (θ) can be simplified even further without affecting
the qualitative nature of the results; we choose it to be
the periodic version of the Gaussian of the form

f (θ) = 1√
πσlgn

exp

(

− θ2

σ 2
lgn

)

. (110)

After ensemble averaging Eqs. (108) over the ori-
entation angles θ(n)’s, except θ(0), using formula (7b),
we find the equations for the excitatory and inhibitory
interval-specific firing rate averages MP(t, θ (0)), P =
E, I, [see Eqs. (7b) and (5b)] to be

MP(t, θ (0)) = A + B[ f (θ(0)) − 〈 f 〉θ ]G(t)

+
∑

P′
CPP′ KPP′ ∗ GP′ ∗ MP′(t, θ (0)). (111)

Normalizing so that KPP′ ∗ GP′ ∗ 1 = 1 and dropping
the superscript 0 from θ(0), we linearly shift and rescale
MP(t, θ) = αP + βP M̃P(t, θ). Choosing

αP = A(1 − CPP + CPQ)

(1 − CEE)(1 − CII) − CEICIE
,

βP = B, P, Q = E, I, P �= Q, (112)

and dropping the tilde in M̃P(t, θ), we derive the equa-
tions for the (rescaled) interval-specific firing rate aver-
age MP(t, θ (0)) to be

MP(t, θ) = [ f (θ) − 〈 f 〉θ ]G(t)

+
∑

P′
CPP′ KPP′ ∗ GP′ ∗ MP′(t, θ),

P, P′ = E, I, (113)

which is exactly Eq. (45).
For this model, we choose the angular cortical kernel

to be a periodic version of the Gaussian of the form

KPP′(θ) = 1√
πσP′

exp

(
− θ2

σ 2
P′

)
, (114)
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where σP, P = E, I, denotes the angular extents of the
excitatory and inhibitory cortical connections, respec-
tively. For the temporal cortical kernel we choose the
function

GP(t) =

⎧
⎪⎨

⎪⎩

0, t ≤ 0,

1

τP
exp

(
− t

τP

)
, t > 0.

(115)

Equations (113) form a pair of linear convolution
equations, which we solve by a combination of the
Laplace transform in t and Fourier series in θ . In
particular, for the n-th Fourier coefficient of the
Laplace-transformed (rescaled) interval-specific firing
rate averages, M̂P,n(λ), we find a simple set of two
equations

M̂P,n(λ) = fnĜ(λ) +
∑

P′
CPP′ KPP′,n ĜP′(λ) M̂P′,n(λ),

P, P′ = E, I, (116)

where KPP′,n and fn are the n-th Fourier coefficients of
the spatial cortical kernel KPP′(θ) and the spatial pro-
file f (θ) − 〈 f 〉θ , and ĜP′(λ) and Ĝ(λ) are the Laplace
transforms of the temporal cortical kernel GP′(t) and
the LGN time course G(t), respectively (note that
f0 = 0).

For the spatial kernel KPP′(θ), the periodic version
of the Gaussian of the form (114), we find that its n-th
Fourier coefficient is given by

KPP′,n = 1

π
exp

(
−n2σ 2

P′

4

)
. (117)

For the temporal cortical kernel GP(t) in Eq. (115)
we find

ĜP(λ) = 1

λ + 1/τP
. (118)

As mentioned in Section 5, the temporal LGN kernel is
(20) with ζ = 0. This implies

Ĝ(λ) = τlgn(1 − e−νλ)

(
1

λ + β/τlgn
− 1

λ + α/τlgn

)
.

(119)

Finally, for the spatial profile f (θ) in Eq. (110), we
compute

fn = exp

(

−n2σ 2
lgn

4

)

, n �= 0. (120)

The solution of Eq. (116) is

M̂P,n(λ)

= (λ+1/τQ)
[
λ+(

1+CPQ KPQ,n−CQQ KQQ,n
)
/τP

]

(λ − λ1,n)(λ − λ2,n)
fnĜ(λ),

Q �= P (121)

where λ1,n and λ2,n are given by

λ1,n, λ2,n = λE,n + λI,n

2

±
√(

λE,n − λI,n
)2

4
+ CIE KIE,nCEI KEI,n

τEτI

(122)

with

λP,n = CPP KPP,n − 1

τP
, P = E, I. (123)

Note that CEE, CIE ≥ 0 and CII, CEI ≤ 0, so that
CIE KIE,nCEI KEI,n/τEτI ≤ 0. Note also that M̂P,0(λ) =
0 because f0 = 0.

The roots λ j,n, j = 1, 2, are either real and equidis-
tant from their average

(
λE,n + λI,n

)
/2, or complex

with the real part
(
λE,n + λI,n

)
/2. In the former

case, the farthest λ1,n and λ2,n can be away from(
λE,n + λI,n

)
/2 is

(
λI,n − λE,n

)
/2. In the latter case,

there is an additional frequency in the system. If one of
the roots λ j,n, j = 1, 2, has a positive real part, there will
be an instability in the solutions MP(t, θ). This happens
for both real and complex λ j,n if

(
λE,n + λI,n

)
/2 > 0,

and, additionally for real ones, if
(
λE,n + λI,n

)
/2<0

but λE,nλI,n < CIE KIE,nCEI KEI,n/τEτI . This exhausts
the possible bifurcation structure of the solutions that
is due to the values of the cortical coupling constants,
spatial kernels, and time scales.

The n-th Fourier coefficient, MP,n(t), of the tun-
ing function MP(t, θ) can now be evaluated by using
residue calculus. In order to do so, we define the
function

�̂P,n(λ) = fnτlgn
(λ+1/τQ)

[
λ+(

1+CPQ KPQ,n−CQQ KQQ,n
)
/τP

]

(λ − λ1,n)(λ − λ2,n)

×
(

1

λ + β/τlgn
− 1

λ + α/τlgn

)
(124)

from the appropriate parts of formulas (121) and
(119). Then,

MP,n(t) = �P,n(t) − �P,n(t − ν), (125)

where �P,n(t) is the inverse Laplace transform of
the function �̂P,n(λ). This is due to the well known
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property of Laplace transforms, ̂F(t − ν)(λ) = eλν F̂(λ).
Moreover

�P,n(t) =
{

0, t < 0,

sum of the residues of �̂P,n(λ)eλt, t ≥ 0.

(126)

For t ≥ 0, we compute

�P,n(t) = fnτlgn

τEτI

⎧
⎪⎨

⎪⎩

2∑

j=1
i �= j

τlgn(α − β)(1 + τPλ j)
(
1 + CPQ KPQ,n − CQQ KQQ,n + τQλ j

)

(λ j − λi)(α + τlgnλ j)(β + τlgnλ j)
eλ jt

− (τlgn − τPα)
[
τlgn(1 + CPQ KPQ,n − CQQ KQQ,n) − τQα

]

(α + λ1τlgn)(α + λ2τlgn)
e−αt/τlgn

+ (τlgn − τPβ)
[
τlgn(1 + CPQ KPQ,n − CQQ KQQ,n) − τQβ

]

(β + λ1τlgn)(β + λ2τlgn)
e−βt/τlgn

⎫
⎪⎬

⎪⎭
, (127)

with P, Q = E, I and Q �= P. The interval-specific fir-
ing rate average MP(t, θ) can now be computed from
formulas (125) and (127) as

MP(t, θ) =
∞∑

n=−∞
MP,n(t)e2inθ . (128)

From Eq. (128), we can easily calculate the corre-
lation function MP(t, θ) via the formula (6b). After
first rescaling MP(t, θ) → αP + βP IM̃P(t, θ), with the
constants αP and βP as in Eq. (112), this calculation
replaces all the exponential factors of the form eγ t in
Eq. (127) by the functions

�(t, γ, ν) =
⎧
⎨

⎩

0, t < −ν,

(eγ (t+ν) − 1)/γ, − ν ≤ t < 0,

eγ t(eγ ν − 1)/γ, t ≥ 0.

(129)

After dropping the tilde, the rescaled, orientation-
tuned part of the correlation function, MP(t, θ), is then
described by a Fourier series analogous to Eq. (128).

Note that formula (129) yields only a continuous so-
lution MP(t, θ), not a continuously differentiable one.
This can be traced back to the choice of ζ = 0 in the
temporal LGN kernel given by Eqs. (20) and (25),
which also makes this kernel only continuous. This lack
of smoothness appears to be the source of the kinks at
tmin = ν in Fig. 6.
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