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Numerical simulations reveal the formation of singular structures in the polymer stress field of a
viscoelastic fluid modeled by the Oldroyd-B equations driven by a simple body force. These
singularities emerge exponentially in time at hyperbolic stagnation points in the flow and their
algebraic structure depends critically on the Weissenberg number. Beyond a first critical
Weissenberg number the stress field approaches a cusp singularity, and beyond a second critical
Weissenberg number the stress becomes unbounded exponentially in time. A local approximation to
the solution at the hyperbolic point is derived from a simple ansatz, and there is excellent agreement
between the local solution and the simulations. Although the stress field becomes unbounded for a
sufficiently large Weissenberg number, the resultant forces of stress grow subexponentially.
Enforcing finite polymer chain lengths via a FENE-P penalization appears to keep the stress
bounded, but a cusp singularity is still approached exponentially in time. © 2007 American Institute

of Physics. [DOL: 10.1063/1.2783426]

I. INTRODUCTION

Recent experimental work'™ on the mixing of viscoelas-
tic fluids at low Reynolds number has led us to consider the
Oldroyd-B model for viscoelastic fluids in the zero Reynolds
number limit for a standard curvilinear flow. We will report
on results for mixing in a future article, but while investigat-
ing this phenomenon we have observed the formation of sin-
gular structures in dynamical solutions of the Oldroyd-B
equations, which we report on here. The Oldroyd-B equa-
tions are a popular continuum model of a so-called “Boger”
fluid, having a simple and elegant structure but also some
well documented flaws; see, for example, Refs. 5-8 and also
Ref. 9. The Oldroyd-B equations can be derived from micro-
scopic principles by assuming a linear Hooke’s law for the
restoring force under distension of immersed polymer coils;
see Ref. 10. The Oldroyd-B model is often criticized for this
simplification because the linear Hooke’s law puts no restric-
tion on the length of polymer chains. Related to this, in an
extensional rheological flow the steady Oldroyd-B equations
can exhibit stress divergences.9 Here we consider low Rey-
nolds number flow with biperiodic boundary conditions us-
ing the Stokes—Oldroyd-B equations. This allows us to use a
spectral method to evolve the system that is helpful to de-
duce the analytic structure of the flow and monitor the nu-
merical accuracy of solutions. The geometry of the flow is
set up with a time-independent background force, which in
the pure Newtonian case yields the four-roll mill. In the full
nonlinear system, the polymer stress acts as an additional
force that drives the evolution of the fluid velocity.

The four-roll mill geometry of the flow creates a central
hyperbolic stagnation point. This type of flow geometry was
first used by Taylor11 and subsequently made popular by Leal
and others.'? The four-roll mill consists of four cylinders that
rotate to create a stagnation point between the rollers, and
with different rotation direction and speed one can create an
arbitrary linear flow field at this central point.13 We create a
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numerical idealization of this geometry for the case of a two-
dimensional extensional flow. At the extensional points in the
flow we find the emergence, exponentially in time, of singu-
lar structures in the stresses at every Weissenberg number.
These singular structures appear as “stress islands” in the
diagonal components of the stress tensor that lie along the
unstable manifold (or outgoing streamline) associated with
the stagnation point. The regularity of the singular structures
decreases as the Weissenberg number increases. For suffi-
ciently small Weissenberg number, these singularities appear
only in high derivatives of the stress tensor. There are two
significant transitions as the Weissenberg number is in-
creased. The first is characterized by the onset of a near cusp
in the stress field centered at the hyperbolic stagnation point.
This becomes sharper in time, and our simulations suggest
that a cusp is approached exponentially in time. As the Weis-
senberg number increases further, this cusp “breaks,” result-
ing in unbounded solutions. Again, it appears that the un-
bounded solutions are approached exponentially in time.
Furthermore, for a sufficiently large Weissenberg number the
rate at which the solution becomes singular decreases in the
Weissenberg number.

In these simulations, we find that the velocity rapidly
approaches a steady state that remains locally, about the cen-
tral hyperbolic point, a simple straining flow. This enables us
to posit a local solution that agrees remarkably well with our
computations. Solutions of this type have been observed pre-
viously for steady flows, and their structure is related directly
to an imposed background flow; see Refs. 5 and 14. Here we
study how these singular structures are selected and ap-
proached as well as their association with ancillary flow
structures. We also observe that the singularities appear to
remain integrable in accordance with the finiteness of the
system’s strain energy. We present a similar analysis of the
FENE-P penalization.

© 2007 American Institute of Physics
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Il. EQUATIONS OF MOTION

We study numerically the two-dimensional Oldroyd-B
equations of viscoelastic flow in the low Reynolds number
limit. Biperiodic boundary conditions are assumed and per-
sistent curvilinear flows are created by imposing a very
simple body force. The Stokes—Oldroyd-B equations are
given by

-Vp+Au=-8V -S+f and V -u=0, (1)

1
0,S+u-VS—(VuS+SVu7)+W(S—I)=O, (2)
i

where Wi:rp/ 7 is the Weissenberg number, with 7, the
polymer relaxation time and 7, the time scale of the fluid
flow. The dimensional scaling F of the forcing f is used to set
the flow time scale as 7,=u/pLF, where u is the solvent
viscosity, p is the fluid density, and L is the system size. This
sets the adimensional force, and the time scale of transport,
to be order 1. The parameter B=G 7,/ u measures the relative
contribution of the polymer stress to momentum balance,
where G is the isotropic stress in the polymer field in the
absence of flow. Note that Eq. (2) preserves symmetry and
positivity of S, as is expected given its microscopic
derivation.” The force used here is given by

f=(2sinxco.sy ) 3)

—2cosxsiny

In a purely Newtonian Stokes flow (8=0), this forcing yields
a four-vortex “mixer” in each [0,27]° cell, like that shown
in Fig. 1(a), with the velocity given by

u=(—sinxc.osy>. @)

cos x sin y

In our simulations, we fix the ratio of polymer viscosity
to solvent viscosity (which corresponds to B-Wi). For the
majority of our simulations, we will consider the case
B-Wi=1/2, however we will make some comments regard-
ing other values in Sec. V. The value 8- Wi=1/2 is consis-
tent with the fluids used in recent experiments of dilute poly-
mer solutions with highly viscous solvents, “Boger fluids”
(see, for example, Ref. 4). The solution viscosity is 1.2 Pas,
while the solvent (97% glycerol/water) is 0.8 Pa s, yielding
B-Wi=(1.2-0.8)/0.8=0.5).

The stress tensor S is a symmetric 2-tensor, with ele-
ments S;;, i< j=1,2, whose trace, trS, is an important physi-
cal quantity representing the amount of stretching of polymer
coils. With the force given in Eq. (3), and initial data S(0)
=I, many symmetries and relations are maintained in the
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FIG. 1. (Color) Contour plots of vor-
ticity in a periodic cell at t=6: (a)
Wi=0.3, (b) Wi=0.6, (c) Wi=5.0.

evolving solution, such as Sy(x,y)=S;,(y+,x+). These
symmetries together with the background force f create a
persistent hyperbolic stagnation point in the velocity field.
We will refer to the stagnation point at (7, 77), at which there
is extension in the x direction and compression in the y di-
rection, as the central hyperbolic point.

The system (1) and (2) has an energy, the “strain en-
ergy,” given by

1
EEifftr(S—I)dxdy,

which satisfies

E+ —5—— ff|Vu|2dxdy— JJu fdxdy. (5)

The second term on the right-hand side is the power input to
the system by the forcing. If it remains bounded, say by C,
then £+(1/Wi)E<C/B, which upon integration yields the
bound

&) <

CWi :
2 +Ce™, (6)

Perhaps surprisingly, Egs. (1) and (2) are not controlled
by a diffusion. To see this, consider a linearized version of
Eqgs. (1) and (2), where

f=€g, u=ev, p=er, and S=I1+¢€T

for e<1. The linearized equations are

-Vr+Av=-8V -T+g, V .v=0,

(7)
1
T —-(V \Y —T=0.
T - (Vv+ V7)+Wi

Using the Fourier transform to solve the linearized equations,
the evolution of T is given by

aT+L( )T+Pm@=o, (8)

where L is a linear tensorial operator on the normalized
wave vector. Thus, there is no scale-dependent dissipation in
the evolution equation for T. This lack of scale-dependent
dissipation is one source of difficulty in existence results for
these equations (and for numerical difficulties as well). In
two and three dimensions, the system is known to have glo-
bal solutions for small (perturbative) initial data, where the
size of the solution depends on the viscosity; however, there
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are no results for global existence if the initial data are large,
even for two dimensions; see Refs. 15-18.

With the constraint 8- Wi=C, one can examine the for-
mal limits, Wi— 0 and Wi— 0. For Wi<<1, let

u=Wiv+ho.t.,, and S=I+WIT +h.o.t.

Solving for the leading term in the evolution of S in Eq. (2)
gives

T=Wi(Vv+Vvl)= BV -T=CAv.

Hence, in the limit, v solves the Stokes equation with viscos-
ity (1+0).

Next consider Wi>1 and t~ O(1). In this formal limit
(namely Wi— o with +<Wi), the equations decouple, the
velocity v satisfies the Stokes equation with viscosity 1, and
the stress satisfies T=FT(0)F”, where F is the deformation
gradient and satisfies the equation

dF +v-VF=VvF.

Since v is steady, this is a linear equation for the deformation
gradient. Although both limits Wi— 0 and Wi — o give the
Stokes flow for the velocity, there is very interesting (non-
Stokesian) behavior for fixed finite Wi, and certainly as
Wi— oo, for t= O(Wi).

We solve the system (1) and (2) with a pseudospectral
method. The stress S is evolved using a second-order
Adams-Bashforth method. Given S, the Stokes equation is
easily inverted in Fourier space for u. Given u, the nonlin-
earities of the stress evolution, Eq. (2), are evaluated using a
smooth filter that is applied in Fourier space before the qua-
dratic terms are multiplied in real space; see Ref. 19 for
details. The standard pseudospectral method was marginally
unstable, but the introduction of the filter added stability. The
smooth filter we use gives marginally more accurate results
over a more standard 2/3 rule de-aliasing (see Ref. 20), and
it yields smoother spectra for analysis. Care must be taken to
maintain good spatial and temporal resolution as the evolv-
ing stress field becomes more singular. The spatial discreti-
zation is typically doubled as the active part of its spectrum
approaches the onset of the filter in phase space. Maximal
resolutions are 4096, and the simulations are stopped before
the high wave-number part of the spectrum exceeds 107>, We
find the positive definiteness is maintained in all of our simu-
lations and the time-stepping was verified to have second-
order accuracy.

lll. LOCAL SOLUTION

Before we turn fully to the results of the numerical simu-
lations, we discuss a solution to the system in Egs. (1) and
(2) that can be derived from a very simple ansatz. Assuming
that the fluid velocity is the steady extensional flow

u:a(x’_y)a (9)

then the partial differential equation for the stress S de-
couples and each component of the stress field can be solved
for independently. We first discuss the solution for S|, which
in the context of the local solution we refer to as y. Then
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from Eq. (2), y must satisfy the linear variable coefficient
partial differential equation,

1 1
ay+axy,— ayy,+ | — - 2a|y-—=0.
Y+ axy, - ayy, (Wl. a)v Wi

Scaling time as Wit and setting e=a- Wi gives
dy+exy,—eyy,+(1-2¢)y-1=0. (10)

This partial differential equation is solved by the method of
characteristics with its general solution given by

Y(x,y,1) = +e?<VH | (xe, ye) (11)

(1-2e¢)
for an arbitrary function H;;. We are interested in solutions
that yield a time-independent algebraically singular structure
on a collapsing length scale in y as t—oc, and which show
little dependence on x. Hence we consider H,;(a,b)=h(b),
where h(b)~ |b|? as b— o for an arbitrary exponent g. One
example would be

h(b) = ho(1 + Cy?e*)42,

We determine the exponent g by requiring loss of time de-
pendence of y for large times, yielding g=(1-2¢€)/€, and
large-time local solution

Vo= +Aly[(=2ere, (12)

1-2e
Note that for g<0 (e>1/2), these solutions have infinite
stress at the origin, and that for 0<g<1 (1/3<e<1/2),
these solutions are not differentiable at the origin. Solutions
of the form in Eq. (12) are not new. Rallison and Hinch®
observed that the stress field would support such singularities
in a steady extensional flow; see also Renardy.14 Both of
those works consider the steady problem with an uncon-
strained strain rate «, which is somewhat different from the
case we consider as we will ultimately let the system evolu-
tion select a.

The ansatz in Eq. (9) is not a solution to the Oldroyd-B
equations in the periodic case, as it is only a valid approxi-
mation locally for a steady velocity. Although our numerical
simulations are dynamic, we do observe that locally, near the
hyperbolic stagnation points in the flow, the velocity rapidly
approaches a steady state of the form given by Eq. (9), where
the local strain rate « depends on the Weissenberg number.
Figures 1(a)-1(c) show contour plots of the vorticity in a
periodic cell for three different Weissenberg numbers at a
fixed time r=6. Figures 2(a)-2(c) show contour plots of trS
at the same time, and we see that as the Weissenberg number
is increased, the stress concentrates on thinner sets along the
outgoing stagnation streamline. Slices of the velocity for
Wi=5.0 along the stable and unstable manifold of the central
hyperbolic point are shown in Figs. 3(a) and 3(b). (For Wi
< 5.0, the behavior is similar.) These show the effect of the
elastic stresses on the flow. The velocity on the outgoing and
incoming streamlines maintains the essentially sinusoidal
structure while the magnitude drops by more than a factor of
5. Plots of the local strain rate « as a function of time for
various Weissenberg number are given in Fig. 3(c). We ob-
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serve that a decreases in time to an apparently steady value.
Taking this steady value as our parameter «, we see that
decreases in Weissenberg number [Fig. 4(a)]. We observe
that as Wi—0, a—2/3. This is in agreement with the for-
mal limit YWi — 0 discussion from Sec. II, where u solves the
Stokes equation with viscosity (1+C), and C=1/2.

The solution vy involves a rescaled time, and an “effec-
tive” Weissenberg number € (“effective” because it scales the
actual Weissenberg number by the local rate of strain at the
hyperbolic point). Critical values of the exponent ¢ occur
when (1-2¢€)/e=1=¢=1/3 and (1-2¢)/e=0=¢6,=1/2.
The first critical value indicates that the solution is approach-
ing a cusp singularity and corresponds to Wi=0.5, the sec-
ond critical value indicates that the solution is approaching a

B
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FIG. 2. (Color) (a)—(c) Contour plots
of trS for Wi=0.3, 0.6, and 5.0, from
left to right, at t=6. S;; dominates at
the central hyperbolic point, and S,,
dominates at the hyperbolic point at
(0,77). (d)—(f) Contour plots of S, for
the same values of Wi and time. (g)—
(i) Contour plots of the first compo-
nent of the force due to the polymer
stress, V-(S);=d,8;,+0,S, for the
same values of Wi and time. Note the
difference in scale in each case as Wi
is increased.

divergent singularity and corresponds to Wi=0.9. If the so-
lution is to remain integrable, it must be that e<<1. Figure
4(b) shows the computed value of e=aWVi, with the value of
« coming from our simulations. It appears that e<<1, which
implies that the theoretical exponent g=(1—-2¢€)/e>-1, and
hence the solutions are integrable. The elastic stresses appear
to be modifying the flow to maintain this integrability as is
required by the energy bound [recall Eq. (6)]. This observa-
tion was also made in Ref. 21. The “effective” Weissenberg
number, €, also gives information about the exponential rates
of both decay and divergence, the maximum values of the
stresses (when bounded), and the inner scaling of the stress
field.

The approximation u=a(x,—y) yields local solutions for

— Wi=10.3
——Wi=06||
== Wi= 5.0
€ E:
A £
g §
6 {‘ 10
(a) (b)
FIG. 3. (a) The velocity u,(x,,1) for Wi=5.0 for r=0,1, ..., 10. The initial data are u;(x,,0)=—sinx and u, decreases in time (from =0 to 10) to a nearly
steady solution. (b) wu,(m,y,r) for t=1,2,...,10 decreasing to a nearly steady solution. (c) The strain rate at the central hyperbolic point, «f(t)

=du/dx(m,m,1) for Wi=0.3 (solid line), 0.6 (dashed line), and 5.0 (dotted line).
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the other components of the stress tensor as well. For ex-
ample, the analogous solution for S,, is given by

+ e_(”zf)tsz(xe_E’,yeEt) ,
1+2e¢

and proceeding as was done for S;;, it suggests that

ly

!

?, (13)

Sppoe~ ——— +
2E (14 2e)

with ¢'=1/€+2. Finally, the local solution for S, has the
form

e"'H y(xe™, ye).

The purpose of the next section will be to summarize our
numerical results and in particular to compare the numerical
solutions to the approximate solution we have discussed. We
will demonstrate that the approximate solution does an ex-
cellent job of capturing the singular behavior of the solution,
particularly for Sy, at the central hyperbolic point.

IV. NUMERICAL RESULTS

The critical Weissenberg numbers obtained in Sec. III
were Wi; =~0.5 and Wi, =0.9. We first consider the dynam-
ics for three values of Wi (0.3, 0.6, and 5.0) at a fixed time
t=6, after evolving from initial data S(0)=I. These values
are chosen to sit between transitions in the singular structure
of the solution as Wi is increased. We note here that although
we scaled time as Wit for the local solution, everything that
follows will be in the unscaled time, and when we compare
the simulations with the local solution, we will make the
necessary adjustments. Figure 1 shows contour plots of the
vorticity w at t=6 for these three values of Wi. For the lower
Weissenberg numbers, the vorticity for the Stokes flow is not
changed qualitatively by the addition of the polymer stress
field, i.e., the four-vortex flow persists and no additional fea-
tures are created. Above a critical Weissenberg number this
begins to change, and we see for Wi=5.0 that additional
oppositely signed vortices are generated along the stable and
unstable manifolds of the hyperbolic point. Increasing the
Weissenberg number decreases the overall magnitude of vor-
tex strength.

Figures 2(a)-2(c) show contour plots of trS at r=6. At
the central hyperbolic point, trS is dominated by S;;. For
Wi=0.3 and 0.6, the solution has essentially relaxed to a
bounded steady state by this time. This is not so for Wi
=5.0, which appears to be diverging to an unbounded state.
The stress field grows rapidly near the hyperbolic points in
the flow and concentrates along the unstable manifold of the
hyperbolic point; see Fig. 2(c). The stress accumulates on
elliptical “stress islands” whose magnitude grows in Wi
while concentrating on thinner and thinner sets in the plane.
At this time, the high wave-number part of the spectrum
remains bounded above by 1078, The shear stress component
S1» likewise shows transitions in its spatial structure with
Wi, but remains much smaller in magnitude; see Figs.
2(d)-2(f). Figures 2(g)-2(i) show contour plots of the first
component of the force due to polymer stress at t=6: F,
=d,511+0,5|, (due to symmetries, the second component is a
/2 rotation of the first). The forces are of much smaller
magnitude than the stress components; the large gradients
that make up the stress islands in Fig. 2(c) (9,5}, and 4,5,,)
are not components of the force V-S. It is interesting to note
that the only appearance of 4, (d,S5,) in Eq. (2) is in the
advection term of S;; (S,,).

Figures 5(a)-5(c) show the stress S;;(7,y) at t=6, i.e.,
slices along the stable manifold about the hyperbolic point,
ranging in Wi from 0.1 to 0.5 (a), 0.6 to 0.9 (b), and 1.0 to
5.0 (c). By this time, the stress has begun to concentrate at
the central hyperbolic point, but for Wi=<0.5 these profiles
appear smooth. The first transition appears to occur at Wi,
~(.5, above which the stress remains bounded, but appears
to approach a cusp singularity in time. Above Wi, = 0.9, the
maximum of the stress appears to become unbounded in
time.

Our computations suggest the emergence of a singular
algebraic structure of the form Sy;(m,7—y)~|y|%, near the
central hyperbolic point, where ¢ is a function of Wi. In
order to make this more rigorous, we analyze the structure of

gll(w,k), the Fourier transform (in y) of S;;(r,y), shown for
Wi=0.6 and Wi=2.0 in Figs. 6(a) and 6(d). Consistent with
the emergence of a singular structure, S (7, k) decays less
rapidly (in k) as time progresses. To analyze the structure of
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FIG. 5. S,,(m.,y) at t=6 for (a) Wi=0.1-0.5, (b) Wi=0.6-0.9, and (c) Wi=1-5.

the singularity, we make the ansatz that |S,,(. k)|
~Ae~ %@ D(14+C/k) for |k|>1. This is motivated by
Laplace’s method for expressing the asymptotic decay of a
one-dimensional Fourier series (for an analytic function) in
terms of the distance and algebraic structure of the nearest
singularity to the real axis. This method has been used in
many numerical studies of singularity formation (see, e.g.,
Refs. 22-24). The value of & gives the distance of the singu-
larity to the real axis and g gives its algebraic order. Given
the consistency of the computed spectra with this ansatz, the

emergence of the singularity of the form |y|? is associated
with the approach of & to zero in time. We fit |S,,(,k)| to
this ansatz over successive quadruples (k,k+1,k+2,k+3)
and use Newton’s method to find pointwise estimates for A,
0, g, and C. These fits for YWi=0.6 and 2.0 are shown in Figs.
6(b), 6(c), 6(e), and 6(Ff). It is typical that the range in k over
which one finds smooth fits in & is limited by attempting to
pick out an asymptotic decay structure from a solution made
increasingly inaccurate by the oncoming singularity (see
Ref. 24).

Wi = 0.6, n = 20482 i =06 Wi =06
0 ‘ . . 2 03 :
10 T
T —————
15 \\\\\\ T T 0.25
\\\ RN e T
AN e ~ 02
1r \ NN ~. .
LI \ 5, . N e T
- VNN . e 0.15
| b NN N . . Pt
Loos NN — :
= VAN N el T =
= NN ~ . 0.1
W ~ S
ol U e e —————
TN S ] 0.05 e 1
~ T Tl S
0.5 . e e ] ////’/_,:_—;/——
.5 \\_:\-:_ - :\—-\__ | o s ——
\M\MM
1 N .
0 00 400 600 800 1000 0 50 100 150 200 250 300 0.05 5 50 100 150 200 250 300
(a) X (b) ; () ;

Wi = 2.0,n = 20482

¢

) k

FIG. 6. (a) $,,(m.k) for Wi=0.6 and r=1,2, ..., 10. The spectrum decays less rapidly as time progresses. (b) For Wi=0.6 and at the same times, the fit for
q in the ansatz |.§‘“(k)|~Ae"$“k'(‘1+”(l+C/k). As time progresses, the value ¢=~0.7 is approached for a wide range of wave numbers. The dashed line
represents the value (1—2¢€)/e+1 corresponding to Wi=0.6. (c) The corresponding fit to & in the ansatz. As time progresses, the value =0 is approached for
a wide range of wave numbers. (d)—(f) Same as (a)-(c) for Wi=2.0; in this case ¢=~-0.65.
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Wi

FIG. 7. The solid points are estimates of g as obtained from the spectral
analysis. They correspond to the solution approximation of the form [y|d.
The solid curve is (1-2¢€)/€, as computed from the local solution of Sec. III.
The excellent agreement indicates that the local approximation matches the
simulations quite well.

For all Weissenberg numbers, our computations suggest
6—0 in time, and hence the algebraic structure of the solu-
tion becomes progressively more pronounced. The data
points in Fig. 7 show the fit exponent g versus the Weissen-
berg number. We find that ¢ and hence the smoothness of the
solution depends sensitively on the Weissenberg number. For
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Wi=Wi,, this exponent g is greater than 1, hence the solu-
tions have at least one continuous derivative. The first tran-
sition occurs at g=1. Between Wi, and Wi,, the solutions
are cusps, bounded but with a singularity in the first deriva-
tive, as 0<g<<1. At Wi=Wi,, this singularity becomes un-
bounded as g becomes negative. The exponent (1-2¢€)/ € in
the local solution v, from Eq. (12) is compared with the
computed exponents ¢ in this figure as well. The comparison
is quite good for the range of Weissenberg numbers. Note
that the exponent g appears to remain bounded below by —1,
implying that although the stress components are becoming
unbounded, they remain integrable. This is supported by Eq.
(5), which implies that trS remains integrable as long as the
input power is bounded. Our computations confirm that the
input power does indeed remain bounded as does the strain
energy, which the bound given in Eq. (6) implies.

We now turn to examining the temporal structure of the
stress field. Figures 8(a)-8(f) show slices of the stress S,
along both the stable and unstable directions around the hy-
perbolic point at (7, ) for t=1,2,...,10 for our three ex-
ample Weissenberg numbers. In the preceding section, we
derived a local solution about the hyperbolic point. Our
simulations and this local solution suggest the local form

Sl l(xsy - Wst) =~ §(Wl) + eP(Wi)fH(yeQ(Wi)t), (14)

where the exponential rate, P, is negative for Wi <Wi,, in-
dicating a bounded solution, and P is positive for Wi
>Wi,, where the solutions are diverging. The collapsing in-

FIG. 8. (a)-(c) Sy,(x, ) for t=1,2,...,10, increasing in time for Wi=0.3, 0.6, and 5.0, respectively. (d)—(f) S,,(7,y) for t=1,2,...,10, increasing in time

for Wi=0.3, 0.6, and 5.0, respectively.
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FIG. 9. (a) In(|S,,(m,7,1)—=S]): The solid curve is for Wi=0.3 (scale left
axis), the dotted curve is for Wi=0.6 (scale right axis), and the dashed curve
is for Wi=5.0 (scale right axis). The curves are approximately linear after
some time giving an exponential rate of convergence toward (negative

slope) or divergence from (positive slope) S. The slope for each Wi gives
the exponential rate P(Wi). (b) The exponential rate P plotted vs Wi. The
curve is (2e—1)/Wi, as computed from the local solution of Sec. III (all
figures are in unscaled time). (c) In(\(¢)) for Wi=0.3 (solid curve), Wi
=0.6 (dotted curve), and Wi=5.0 (dashed curve). For Wi=0.3<Wi,, the
second derivative at the hyperbolic point is not diverging and the curve
levels off as the peak value is approached. For Wi> Wi, the curves are
approximately linear after some time, indicating an exponentially collapsing
inner scale. The slope for each Wi gives the collapse rate Q(Wi). (d) The
inner scale Q is plotted vs the Weissenberg number. The solid curve is
—€/Wi, as computed from the local solution of Sec. III.

ner scale Q is always positive. Hence, the exponential rate P
controls the rate of convergence (divergence) toward (from)

S, and ¢~?' defines a collapsing inner scale of the local solu-

tion. The local solution suggests that S=1/(1-2¢€), P(Wi)

=(2e-1)/Wi, and Q(Wi)=€/ Wi, and we will compare these

values with the values we obtain from the simulations.
When the solution appears to remain bounded (i.e., Wi

<Wi,), §=1/(1-2¢) is an excellent predictor for the long-
time value of S;,(7,,1). In fact, for Wi=0.1 the difference
is O(107'%). Therefore, to compute P from the simulations,

we consider |S,,(7,,7)—S|. This will give us the rate at
which the solution is approaching or diverging from this
value. The logarithm of this difference is plotted in Fig. 9(a).
These curves appear linear (after 1= 5 for Wi=5.0) suggest-

ing an exponential rate. For Wi <Wi,, the peak value, §, is
approached exponentially in time, and for Wi>Wi,, the

maximum of the stress is repelled from S exponentially in
time. Figure 9(b) shows this rate, P, versus Wi. When Wi
> Wi,, this approach rate becomes positive, and though it is
initially increasing in Wi, it eventually begins to decrease for
Wi=2.0. Previously we have seen that as Wi is increased,
the singular solution has an exponent approaching —1 (see
Fig. 7) making the solution more difficult to resolve near the
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hyperbolic point. However, the rate at which the singularity
is being approached is decreasing in Wi (for Wi=2.0). The
underlying smooth curve is the predicted exponential ap-
proach rate P(Wi)=(2€-1)/Wi. We see that the local solu-
tion does a good job predicting this approach rate.

The local solution Eq. (12) also predicts an inner scale,
or a collapsing length scale, which is so apparent in Fig. 8.
The local solution predicts that the scale looks like e=</"Vi
=™, To identify this scale in the simulations [referred to as
Q(Wi)], we construct the length scale

)\()_(|S11(7T»7T’t)_§|>1/2 (15)
= |&nyll(va’t)| '

N\ measures the ratio of the rate at which S,,(7,,f) ap-

proaches (or diverges from) S, over the rate at which the
second derivative is diverging at the central hyperbolic point
(at least for Wi > Wi, ). Figure 9(c) shows the logarithm of A
for Wi=0.3, 0.6, and 5.0. The slope of A\ is the exponential
rate of collapse Q(Wi). These curves appear linear (after 7
~5 for Wi=5.0) suggesting an exponential rate. Figure 9(d)
shows Q as a function of the Weissenberg number. The inner
scale is collapsing for all Wi> Wi, and the rate of collapse
is decreasing in the Weissenberg number. In Fig. 9(d), we
also plot the predicted scaling rate —«a, which compares well
with the computed rate for Wi>Wi,. We do not expect the
inner scale to have meaning for Wi <Vi,, because for these
solutions the singularities are higher order and the second
derivatives are not diverging.

We turn now to the comparison of the simulation with
the local solution for the other components of the stress ten-
sor. The local solution suggests that S,(x,y,r)
~e7'H y(xe ¥, ye) and indeed symmetry dictates that S,
=0 at the central hyperbolic point.

We now compare our numerically computed solution for
S,, with the predictions of the local model. Our simulations
suggest that S,, remains bounded, and indeed Eq. (13) pre-
dicts that S5, will go to a constant 1/(1+2¢), which is
bounded for all e. This comparison is excellent for S,,; see
Fig. 10(a). However, the local solution has a time asymptotic
structure |y|?’, with ¢’=2+1/€. When we make the spectral
ansatz |Syy (k)| ~A'e %@ +*V(1+C'/k) and fit ¢', it
compares well with an exponent of the form ¢'=1/€; see
Fig. 10(b). It is unclear what this discrepancy is stemming
from. It is possible that the less singular solutions for §,, are
harder to fit to the ansatz. Again the distance from the sin-
gularity to the real axis, &', goes to zero for all Weissenberg
numbers, and in fact, &' =4, i.e., the singularity for Sy, is
approached at the same rate as the singularity for S,,.

We finish this section by a further comment about the
forces due to the polymer stress. As we observed, the most
singular terms in the stress are d,S;; (and by symmetry
d,S»,). These components do not enter into the force in the
momentum balance equations. The polymer forces V-S re-
main relatively small near the central hyperbolic point, al-
though they do grow linearly, rather than exponentially,
along the incoming and outgoing streamlines. Following a
referee’s suggestion, we further analyzed the data for Sy,
beyond the second critical Weissenberg number and observe
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- FIG. 10. (a) For S,,, a comparison of
the constant term of the local solution,
1/(1+2€), with the “large time” con-
verged value of Sy,(,,t). (b) For
S,,, a comparison of a possible expo-
nent, 1/€, with the exponent ¢’ esti-
mated from the Fourier spectra.
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that the singular stress S, reaches an approximate steady
state outside a small region around the outgoing streamlines.
This is approximately when et>1In(1/|y|). There is a small
region near the stagnation streamline |y|<<e™¢ where the
stress is growing exponentially, S;;<e®€ V", The net force
from this unsteady region decreases in time, and hence the
unsteady region has a decreasing effect on the flow. In Fig.
11, we plot

f f IS11ldxdy, with R(t) =[0,27] X [0,e”*]
R(1)

over time and see that although the stress in the region R(z) is
initially increasing, it begins to decrease rapidly after r=5
This appears to explain how the extension rate at the stagna-
tion point approaches a steady value while the stress on the
stagnation streamline is still growing exponentially.

We have thus far focused our attention exclusively on
the central hyperbolic point, but it is important to note that
the singularity we observed in the stress field actually ap-
pears to occur as a line singularity along the outgoing
streamline. We analyzed the structure of the solution at
points along this line and observe that the singular structure
persists in an interval about the hyperbolic point.
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FIG. 11. The integral [ [z|S|(x,y) dx dy with R(t)=[0,27] X [0,e~*] for
Wi=5.0.

V. OTHER CONSIDERATIONS

The observed singularities depend sensitively on many
aspects of the problem besides the bare Weissenberg number.
For example, we have found that adding a higher-order har-
monic to the background force will change a(Wi) and hence
the order of the singularity. The choice of 8- Wi also affects
a. We also ran simulations for the case 8- Wi=1. For a fixed
Wi, increasing the constant C, with 8- Wi=C, increases B,
and this yields a further decrease in the strain rate «. This
leads to a reduction in the order of the singularity (both pre-
dicted and observed in simulations); for example, if Wi
=0.6, the exponent predicted by the local solution and com-
puted in the simulation for C=1/2 is ¢~0.7, whereas for
C=1,g~1.6.

We have also investigated the robustness of the singular-
ity to dynamical changes in the Weissenberg number. For
example, we took our initial data from a well-resolved but
near-cusp solution with Wi=0.6, and proceeded to run a
simulation with this data but using instead Wi=0.2. Figure
12(a) shows that the solution rapidly relaxes to what appears
to be the typical solution for Wi=0.2. The maximum de-
creases in time and the solution reaches near steady state. As
time proceeds, the spectrum [say S,,(7,k)] shows an evolu-
tion toward more rapid decay, indicating that the solution is
becoming less singular in time. Recall that the algebraic

4 :
3 /\\
2 A :
E A =
1
0 L L n
0 2 4 6 20 40 60 80 100 120

(a) ] (b} P

FIG. 12. (a) For Wi=02, the stress component S (m,y) for
=0,1,...,10 (amplitude decreases in time). Initial data come from near-
cusp solutions with Wi=0.6. (b) Fit to ¢ in the spectral ansatz. Time
progresses from the heavy dotted line to the heavy solid line. Initially the fit
¢~0.7 (indicating a cusp) is dominant, but as time progresses the line ¢
~5.5 becomes dominant (indicating an increase in smoothness of the
solution).
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FIG. 13. (a) Plots of S;,(,y,), with FENE-P penalization, increasing in time to cusplike solution for Wi=0.6. (b) Comparison of trS(, m,t) with FENE-P
penalization (dotted line) and without the FENE-P penalization (solid line) for Wi=0.6. (c) Plots of S,,(,y,?), with FENE-P penalization, increasing in time
to cusplike solution for Wi=2.0. (d) Comparison of trS(,r,r) with FENE-P penalization (dotted line) and without FENE-P penalization (solid line) for

Wi=2.0.

structure is approximated as |y|%, where g=(1-2¢€)/e. For
Wi=0.2, g=5.5, and for Wi=0.6, ¢=0.7. We use the same
method as in Sec. IV to fit the exponent with these data, and
q(k)+1 is plotted in Fig. 12(b). Initially the fit gives g(k)
~0.7, which indicates a cusp. As time progresses, the fit
appears to give g~ 0.7 for lower wave numbers and g~5.7
for higher wave numbers. By 7=10, the fit appears to give
q~5.7 for all wave numbers (where convergence is seen).
This seems to suggest that initially the more dominant sin-
gularity has ¢g=0.7, which agrees well with Wi=0.6, and
then as time progresses this singularity diminishes and the
singularity with g=5.7, corresponding to Wi=0.2, becomes
more dominant.

The Oldroyd-B equations are often criticized for allow-
ing infinite extensibility of polymer chains. Indeed, those
singular solutions with Wi> Wi, correspond to arbitrarily
large extension. Still, we have also found a whole spectrum
of solutions with finite extension that are singular nonethe-
less. To understand whether the singularities we have ob-
served are due to this infinite extensibility, we add a FENE-P
cutoff to our model.”” The Stokes—Oldroyd-B equations with
the FENE-P penalization are given by

-Vp+Au=-8V -S+f and V -u=0,

1
(?tC+u~VC—(VuC+CVuT)+W(S—I):O,
i

N
1= (e

where € represents the ratio of the maximum polymer length
to the length of the polymer when coiled. In what follows,
we use £2=50. We consider two cases, Wi; < Wi <Wi, and
Wi > Wi,.

First we consider Wi=0.6. Figure 13(a) shows slices of
S (a,y) for t=0,1,...,10. The solution appears to be ap-
proaching a cusp singularity quite similar to that of Wi
=0.6 without the FENE-P penalization; see Fig. 8(e). Figure
13(c) shows the value of trS(r,7,1) for Wi=0.6 both with
and without the FENE-P penalization. We see that the penal-
ization reduces the maximum value of the stress, but in this
range of Wi, the maximum value is bounded even without
the penalization, and the differences are minimal. The strain
rate « is decreased by the polymer stress field, but is about
3% larger than for the case without the FENE-P penalization.

Figure 13(b) show the Fourier spectrum, $,,(m,k) for ¢
=1,...,10. The early time spectrum (¢<<6) shows an oscil-
lation that eventually moves out to higher and higher wave
numbers. We will comment more on this for Wi=5.0, but
this likely indicates that the singularity is changing form. An
oscillation of this form is consistent with having two, rather
than one, singularities propagating toward the real axis, and
the loss of the oscillation suggests their merger into a single
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singularity as the axis is approached. If we fit the spectrum to
the original ansatz, we obtain an exponent ¢ = 1.0 indicating
that it may still have a cusplike nature, although the FENE-P
penalization has increased the exponent. In summary, the
FENE-P penalization does not appear to smooth out the cusp
and hence any difficulties in numerical simulations related to
the large gradients in the stress field at the central hyperbolic
point will still be apparent.

For Wi>Wi,, the FENE-P penalization does keep trS
bounded. For Wi=5.0, Fig. 13(d) shows slices of S;,(,y)
for t=0,1,...,10, and Fig. 13(f) shows trS(,m,t) for Wi
=5.0 with and without the FENE-P penalization. Again, the
FENE-P penalization appears to cause a different type of
approaching singularity to form in this case. Instead of a
single cusp or an infinite singularity, the solution appears to
have bifurcated at the tip. This can be seen on the Fourier
transform side as well. Figure 13(e) shows an oscillatory
spectrum. This indicates a pair of singularities. The distance
between these oscillations (Ak) is related to the distance be-
tween the singularities (Ay). In this case we have Ay
=1/ Ak= w/45~0.07. This compares well with the separa-
tion between the two apparent singularities in Sy;.

Although these results are not conclusive, it does appear
that at least a simple FENE-P penalization will not resolve
all of the difficulties associated with the Oldroyd-B equa-
tions, and that allowing infinite extensibility in polymer
chain lengths is not at the root of all difficulties with these
equations. We suspect that FENE may suffer from similar
difficulties.

VI. CONCLUSION

The behavior and smoothness of solutions to the Stokes—
Oldroyd-B equations is very sensitive to the Weissenberg
number. Nearly singular structures in the stress field arise at
every Weissenberg number. We observe two dramatic transi-
tions that for our simulations occur for Wi;=0.5 and Wi,
~(.9. The first, at Wi; = 0.5, is distinguished by the appear-
ance of a cusp singularity in the stress field that is ap-
proached exponentially in time at the central hyperbolic
point in the flow. Below this critical Weissenberg number,
although one or more derivatives of the stress may be
bounded, the solutions are still approaching a singular solu-
tion. At higher Weissenberg number (beyond Wi, = 0.9), the
singular structures that are approached are unbounded at the
central hyperbolic point.

The constructed local solution agrees quite well with the
numerical results giving similar dependence on Wi for regu-
larity of solutions, exponential rates, and inner scaling. The
constructed local solution also introduces the parameter e,
the “effective” Weissenberg number. The nature of the sin-
gularity depends critically on €, which includes of course the
Weissenberg number but also the local strain rate of the flow
at the hyperbolic point, «. Currently, we determine « with
our simulations, however it should be possible to solve for «
in general by matching the inner and outer flow conditions.
This is a complicated problem but well worth studying. One
way to attempt this might be to consider wave-number lim-
ited velocities (see Fig. 3). As our method involves a spectral
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code, we were able to check this to some degree. We solved
the system keeping only the first few modes of u (k<4). In
these simulations, we observed that the convergence of «
was similar to that of the full solution. The flow rate goes to
a steady state rapidly (and on a time scale similar to that for
the full solution) but the converged value of « in the wave-
number limited case was slightly higher than for the full
solution. We have not pursued this idea further, but believe
that it might be one way to consistently solve for the flow
rate.

An interesting point to reiterate is the fact that although
there is significant evidence that for Wi> Wi, first deriva-
tives of the stress are growing exponentially fast, these very
large derivatives are not components of the polymer stress,
and hence do not directly feed back into the Stokes equation.
One might be able to use this fact to obtain bounds on the
stress that in turn yield bounds on u to show that the solu-
tions (although exponentially large) remain bounded for all
time.

It may be that these emerging singularities lie at the root
of many difficulties in numerical simulations of viscoelastic
fluids using the Oldroyd-B model. There is a vast literature
regarding the “high Weissenberg” number problem; see Ref.
26, Chap. 7 for a careful exposition of many relevant results.
It appears that the solution to the Oldroyd-B equations in any
flow that contains a hyperbolic stagnation point will develop
large stress gradients at an exponential rate, even for a Weis-
senberg number much lower than those related to the infinite
extension of polymer chains. However, we only observe this
singular behavior for a pure extensional flow; more general
flows may not demonstrate these properties. These large
stress gradients (due to the cusp singularity) will be present
even with a restriction on the length of the polymer chains.
We have added a simple FENE-P penalization to our numeri-
cal simulation and observe that for Wi <Wi, there is still an
exponential approach to a cusp singularity, and for Wi
>Wi,, although trS is bounded, there remains an approach
to a singularity, although the type is not quite as clear. Many
of these difficulties would be alleviated if not eliminated by
incorporating a scale-dependent dissipation (e.g., diffusion)
into the stress advection, see for example Refs. 27 and 28.
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