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It is shown that a slender elastic fiber moving in a Stokesian fluid can be susceptible to a buckling
instability—termed the ‘‘stretch-coil’’ instability—when moving in the neighborhood of a hyperbolic
stagnation point of the flow. When the stagnation point is part of an extended cellular flow, it is found that
immersed fibers can move as random walkers across time-independent closed-streamline flow. It is also
found that the flow is segregated into transport regions around hyperbolic stagnation points and their
manifolds, and closed entrapment regions around elliptic points.
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Simple shearing and straining are often used to probe the
mechanical responses of deformable media [1]. For a
complex fluid even such simple forcing can induce non-
trivial dynamics in the fluid’s microstructure. Shearing a
suspension of microscopic fibers beyond a critical rate can
induce fiber buckling, leading to the appearance of normal
stress differences [2–4]. Straining a polymer suspension
can induce coil-stretch transitions [5,6], a process recently
visualized in strongly mixing elastic flows [7]. The relation
between microstructural dynamics and macroscopic me-
chanical properties of the fluid is essential to understanding
novel dynamics of elastic turbulence and mixing [8].

Buckling instabilities of fibers have also arisen as mod-
ulators of transport. Actin filaments (a biological polymer)
are observed to be propelled along myosin coated surfaces
[9], showing a meandering dynamics with apparent buck-
lings driving changes in direction. Conceived as a tech-
nique for assaying the mechanical properties of such
biopolymers, it was proposed that the consequent wander-
ing, perhaps random, motion resulted from spatial inho-
mogeneity of myosin density on the plate.

Inspired by such observations, we consider the dynamics
and transport of elastic fibers in simple time-independent,
incompressible, spatially periodic cellular flows. We focus
on a 2D cellular flow (see Fig. 1 inset) where each periodic
patch is a set of four vortices whose flow creates a hyper-
bolic stagnation point (at inset center) that is itself con-
nected to other such stagnation points by stagnation point
streamlines—its so-called stable or unstable manifolds.
Such a closed-streamline cellular flow is a poor mixer as
no global mixing between cells can occur in the absence of
molecular diffusion. We show that an elastic fiber can be
transported across such a flow as a random walker (Fig. 1),
with random choices of direction induced by the internal
filament dynamics in the neighborhood of hyperbolic stag-
nation points. This is unlike the translational diffusion due
to interaction of filaments in dilute or semidilute regimes
[10], or the self-diffusion of flexible filaments ([11] and
references therein).

Underlying this transport is a bifurcation, complemen-
tary to the coil-stretch transition. Above a critical compres-

sional strain rate, a straight filament (the rest state)
becomes unstable to buckling at a hyperbolic stagnation
point and can become folded, or ‘‘coiled.’’ This allows the
fiber to sample the flow spatially, exiting along one or the
other direction of the unstable manifold, and becoming
stretched again as it moves to the next stagnation point.

Consider a slender, inextensible and elastic filament of
radius r and length L (with � � r=L� 1), and rigidity B,
moving in a Stokesian flow of viscosity � and character-
istic strain rate _�. We neglect Brownian forces (� kT=L)
relative to drag and elasticity forces (�� _�L2 and Yr4=L2,
respectively; Y is the Young modulus). Predominance of
drag force requires L� L1 � �kT=� _��1=3, which for
water and _� � 1 s�1 gives L1 � 1 �m. Predominance of
elastic forces requires L� L2 � �kT=Y�

4�1=3, which for
� � 10�3 and Y � 1 GPa yields L2 � 1 �m.

The background fluid velocity field is taken to be
�W _��U�x=W� where W is the cell size and _� is a strain
rate at a hyperbolic point. Denote the fiber centerline by
X�s; t�, where s is arc length, and scale space on L, and
time on _��1. From slender-body theory [12] the leading
order dynamics is governed by a local balance of drag
forces with filament forces upon the fluid:

 �D�Xt � ��1U��X�� � ��Xssss � ���s�Xs�s� (1)

where D � I� �1=2�XsXs is an anisotropic drag tensor,
� � L=W is the ratio of filament length to cell size, and
� � 8�� _�L4=Bc is the effective viscosity [with c �
� log��2e�]. Filament forces are described by Euler-
Bernoulli elasticity: f � Xssss � ���s�Xs�s. The line ten-
sion � is determined by the constraint of inextensibility,
expressed as Xs 	Xts � 0, which yields a second-order
boundary value problem. Zero total force and torque on
the filament is satisfied by the ‘‘free-end’’ conditions � �
0 and Xss � Xsss � 0 at s � 
1=2. With our choice of
scaling, � drops out of the dynamics for any linear back-
ground flow (e.g., simple strain or linear shear). This
system can be posed variationally with Rayleigh dissipa-
tion function D � ��=2�

R
dsXtDXt, and (elastic) energy,

E � �1=2�
R
dsX2

ss (decaying in the absence of forcing).
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The Hasimoto transformation is utilized to convert
Eq. (1) to an equation for the complex curvature of the
filament centerline [13]. The resultant system is numeri-
cally integrated (second-order in space and time) to simu-
late the filament motion in a given background flow U.

We focus on a simple time-independent, 2D periodic
flow, U � �sinx cosy;� cosx siny; 0�, with hyperbolic stag-
nation points at (n�;m�; 0) for m; n integers [e.g., near
�0; 0; 0�, 1

�U��x� � ��x; y; 0�]. The basic periodic struc-
ture contains four cells, or vortices, of width �, and is
similar to a four-roll mill or cross-channel flow [14,15].
Hence � � L0=�, with L0 the relative filament length.

For � � 4000 and � � 1=�, Fig. 1(a) shows the ‘‘me-
andering’’ trajectory of an initially straight filament re-
leased near a stable manifold (x � n� or y � m�). Its
dynamics is roughly this: the filament aligns with the stable
manifold as it approaches a hyperbolic stagnation point.
The viscous stresses of the local straining flow compress

the filament along its axis, and if sufficiently high, the
filament buckles. The now coiled filament samples the
local velocity field around the hyperbolic point, and exits
along its unstable manifold, the direction chosen with
apparent randomness. The consequence is filament trans-
port across space as a random walker.

Figure 1(b) shows the histogram of elastic energy E
accumulated over long time. Persistent filament buckling
along the meandering trajectory appears as the high curva-
ture peak in the histogram. The temporal dynamics of E
illustrates these transitions. Its episodic rise and fall,
roughly over an order of 10 time units, corresponds to
the coiling and stretching of the filament.

The rapid temporal growth in elastic energy results from
a buckling instability near the stagnation point and can be
analyzed, as in the shearing case [2,16]. First, an initially
straight filament remains so while moving in any linear
background flow. Consider then a nearly straight filament
in the straining flow (x;�y) (dropping the third
dimension). The linearized dynamics for the perturbation
amplitude z from the straight filament is ��zt �
z cos�2��� � �zssss � 2�szs � �zss, where ��s� �
� cos�2��=4�s2 � 1=4�, and ��t� is the filament angle
with the x axis. If ��t� varies slowly, this linear equation
can be taken as a homogeneous, constant coefficient partial
differential equation and is amenable to standard eigen-
value analysis. A particularly simple and relevant case is
� � 0, where the filament is being compressed along the
stable manifold, results for which are shown in Fig. 2.

This analysis reveals that a filament can undergo a
compressive buckling instability if moving towards the
stagnation point in the quadrant��=4  �  �=4 around
the stable manifold (Fig. 2 inset). This instability occurs at
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FIG. 1. (a) For � � 4000 and � � 1=�, the center-of-mass
trajectory of a meandering filament (box is 100� 120 cells). The
inset shows the streamlines (light dashed curves) of four quarter-
cells of the periodic background flow, with (elliptic) vortical
centers at each corner, and a hyperbolic stagnation point at the
center. Also shown is a filament undergoing a stretch-coil
instability as its transits through the center stagnation point
(entering right, exiting down). The thick dashed curves separate
regions of transport from entrapment, the dynamics of the latter
shown by the filament shapes within. (b) The histogram of fiber
elastic energy 2E. The inset shows a sample evolution of 2E.
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FIG. 2. Growth rate for the two dominant bending modes
versus � for a filament aligned with the stable manifold (� �
0). The ‘‘E’’ and ‘‘O’’ label whether the dominant eigenfunction
is even or odd about the filament center. The onset of buckling
instabilities occurs for an even mode at �c � 328. The inset
shows the regions of compressive flow (potentially yielding a
buckling instability) and extensional flow around the hyperbolic
stagnation point for the straining flow U � ��x; y; 0�.
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a critical � � �c; for � � 4000, as in the simulation of
Fig. 1, �c � 328 (for � � 0). We refer to the instability
boundary as the stretch-coil transition boundary, and it is
plotted (bottom dashed line) in Fig. 5.

It is this instability that drives the meandering dynamics.
For this simulation Fig. 3 shows the residence time fre-
quency, where residence time is the time a fiber moves
within a particular cell. This plot is multiply peaked and
shows an overall exponential decay. A very simple model
of this dynamics is as a walker moving on the lattice of
hyperbolic points, as illustrated in the Fig. 3 inset. If we
assume that the choice of particle exit direction (up or
down at open circles, left or right at closed circles) is
made with equal probability of 1=2, and is independent
of the previous choice, then neglecting recurrences the
discrete probability distribution for residence time 	 is
given by P�	� � �ln2=�	��1=2�	=�	, where 	 � N�	
with �	 the transit time between lattice points. With no
a priori estimate available, the value of �	 in the expo-
nential distribution plotted in Fig. 3 is taken as the location
of the first and highest peak of the residence time fre-
quency. The discrete probability captures the successive
peaks in the frequency plot, each corresponding to succes-
sive direction choices that keep the filament within a single
cell.

Given the average transit time �	, the effective filament
diffusivity is D � ��2=4�	. Taking �	� 6:5 and � �
1=� gives D� 0:38. The diffusivity can also be estimated
from the fiber dispersion d2�t� [10], which for a Brownian
walker satisfies d2 � 4Dt for large t. Figure 4 shows d2

estimated by an ensemble average of 80 simulations for
different initial filament placements (same location for the
filament center but different filament angle with the x axis),
for � � ��1 and various �. Each plot shows a roughly
linear increase in time, consistent with random walk sta-
tistics. The plot for � � 4000 (curve 2) is overlaid by a

dashed line of slope 4D with D � 0:38, showing consis-
tency with the estimate ofD found using the residence time
frequency distribution. The figure also suggests that the
diffusivity remains almost identical for 4000  �  7000
(curves 2, 3, and 4), but decreases for � � 527:4 (curve 1),
which is slightly above �c, the critical value for instability.
For increasing �, the implied diffusivity is nonmonotonic,
increasing towards � � 8000 (curve 5), then monotoni-
cally decreasing at yet higher values (curves 6 and 7). For
� � 15 708 the filament is curved and trapped inside the
cell, as shown in Fig. 5, and no diffusive transport is found.

Figure 5 depicts the numerically determined transitions
in filament dynamics in the �� � plane. Note that the
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FIG. 3. Residence time frequency for � � 4000 and � � 1=�.
The dashed line is P�	� with �	 � 6:5. The vertical lines
correspond to the frequency peaks. The inset shows an idealized
filament trajectory across the network of hyperbolic points.
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FIG. 4. Filament dispersion versus time for � � 1=� and
various �, each estimated by an ensemble average of 80 simu-
lations. The dashed line is the estimate for a random walker,
d2�t� � 4Dt, using the estimated diffusion D � 0:38 for � �
4000 (cf. curve 2).
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FIG. 5. Phase diagram of filament dynamics in cellular flow.
For a given �, there is a range of � for meandering. The dashed
line is the stretch-coil instability threshold. Inset at left shows the
probability for a filament to be trapped in the cell as a function of
initial distance to the manifold for � � 1=�. Inset at right is for
� � 1:5=� and � � 80 000. Animations of filament dynamics
can be found at [19].
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lower boundary of transport (solid line) from simulations
almost coincides with the stretch-coil boundary. Below this
lower boundary a filament either settles to a stagnation
point or stays trapped within a cell. For �c < � & 1:5�
104, diffusive filament transport (meandering) is found if
the filament is released not too far from the manifolds. The
inset graph shows the estimated probability of a filament
being trapped in the cell as a function of its initial distance
to a manifold. We define the size of the transport region by
the distance that corresponds to 50% for the trapping
probability. For � � 1=� this distance is �0:2 (i.e., the
dashed curves in Fig. 1(a) inset), and seems insensitive to
�. For yet larger � the region of transport collapses, and
the filament is trapped in the interior as in the inset.

Finally, to seek some comparison with experimental
observation, Fig. 6 shows the frequency distributions for
speed of meandering filaments for various �. These dis-
tributions are bimodal, as observed in the actin transport
experiments of Bourdieu et al. [9] at higher myosin den-
sities. The bimodality reflects the basic dynamics under-
lying filament transport. The sharp peak near unity for all
distributions is associated with transport between succes-
sive hyperbolic points. The secondary peak at lower veloc-
ities reflects the ‘‘loitering’’ of filaments near hyperbolic
points as the buckling instability develops, and which
seems to be influenced by its geometric details. For �c <
�< 2000 the buckling instability is dominated by an even
mode (Fig. 2), and the secondary peak moves to the right as
� increases in this range. For �> 2000, competition be-
tween even and odd modes leads to a more complex
distribution (e.g., � � 4000), and the more prominent the
odd mode the more the secondary peak moves towards
lower speeds. As the even mode takes over for � above
4250, the secondary peak shifts upwards.

Here we demonstrate a flexible-fiber analog to the coil-
stretch instability first predicted by de Gennes [5]. By
arguing for bistability of coiled and stretched states, he
also predicted that this transition was hysteretic, as was
later demonstrated experimentally [17]. The important in-
gredients—conformation dependent drag and nonlinear

elastic forces—are present here though the outcome is
much more difficult to analyze. Important forces neglected
here—Brownian forces and fiber-fiber hydrodynamic in-
teractions—need to be examined for their effect on the
transition we report here, as does whether complex flows
can be generated by semiflexible polymers suspension (see
[18] for preliminary simulations), as has been demon-
strated for dilute polymer-coil suspensions.
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FIG. 6. The probability of filament center-of-mass speed.
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