
Chapter 1: Stirling’s Formula

The voyage of discovery lies not in seeking new horizons, but in
seeking with new eyes.
– Marcel Proust

Surely the most beautiful asymptotic formula in all of mathematics is
Stirling’s Formula:

n! ∼ nne−n
√

2πn. (1)

How do the two most important fundamental constants of mathematics, e
and π, find their way into an asymptotic formula for the product of integers?
We give two very different arguments (one will not show the full formula)
that, between them, illustrate a good number of basic asymptotic methods.
The formal language of Asymptopia, such as o(n) and O(n), is deferred to
a later Chapter.

1 Asymptotic Estimation of an Integral

Consider the integral

In =

∫ ∞

0
xne−xdx (2)

A standard result1 of Freshman Calculus, done by Integration by Parts, is
that

In = n! (3)

Our problem now is to estimate the integral of (2).

• Asymptotically, integrals are often dominated by the largest value of the
function being integrated.

Let us set

y = yn(x) = xne−x and z = zn(x) = ln y = n lnx − x (4)

The graph of y(x) when n = 2 is unclear, but with n = 10 it is looking
somewhat like the bell shaped curve. What is going on?

Figures Omitted

1We shall assume first year calculus results throughout this work.
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Setting z′ = nx−1 − 1 = 0, we find that z(x) (and hence y(x)) has a
unique maximum at x = n and that z(x) (and hence y(x)) is increasing in
[0, n] and decreasing in [n,∞).

Let us compare y(n) = nne−n with values of y(x) when x is “near” n.
For example, take x = 1.1n.

y(1.1n) = (1.1n)ne−1.1n = y(n)(1.1e−0.1)n (5)

But 1.1e−0.1 = 0.9953 . . .. While this number is close to 1, it is a constant
less than 1 and so y(1.1n) is exponentially smaller than y(n). Values near
1.1n will make a negligible contribution to the integral. Let’s move closer
and try x = n + 1. Now

y(n + 1) = (n + 1)ne−n−1 = y(n)

(

1 +
1

n

)n

e−1. (6)

As (1+ 1
n)n ∼ e, y(n+1) ∼ y(n) and so values near x = n+1 do contribute

substantially to the integral.
Moving from x = n in the positive direction (the negative is similar) the

function y = y(x) decreases. If we move by 1 (to x = n + 1) we do not yet
“see” the decrease, while if we move by 0.1n (to x = 1.1n) the decrease is so
strong that the function has effectively disappeared. (Yes, y(1.1n) is large
in an absolute sense but it is small relative to y(n).) How do we move out
from x = n so that we can effectively see the decrease in y = y(x)? This is
a question of scaling.

• Scaling is the art of asymptotic integration

Let us look more carefully at z(x) near x = n. Note that an additive
change in z(x) means a multiplicative change in y(x) = ez(x). We have
z′(x) = nx−1 − 1 = 0 at x = n. The second derivative z′′(x) = −nx−2 so
that z′′(n) = −n−1. We can write the first terms of the Taylor Series for
z(x) about x = n:

z(n + ǫ) = z(n) − 1

n
ǫ2 + · · · (7)

This gives us a heuristic explanation for our earlier calculations. When
ǫ = 1 we have 1

nǫ2 ∼ 0 so z(n + ǫ) = z(n) + o(1) and thus y(n + ǫ) ∼ y(n).
When ǫ = 0.1n we have the opposite as 1

nǫ2 is large. The middle ground is
given when ǫ2 is on the order of n, or when ǫ is on the order of

√
n. We are

thus led to the scaling ǫ = λ
√

n, or

x = n + λ
√

n. (8)

We formally make this substitution in the integral (2). Further we take
the factor y(n) = nne−n outside the integral so that now the function has
maximum value 1. We have scaled both axes. The scaled function is

gn(λ) =
y(n + λ

√
n)

y(n)
= (1 + λn−1/2)ne−λ

√
n (9)

Figure Omitted

2



and we find (noting that dx =
√

ndλ)

In =

∫ ∞

0
xne−xdx = nne−n√n

∫ +∞

−
√

n
gn(λ)dλ. (10)

Note that while we have been guided by asymptotic considerations, our
calculations up to this point have been exact.

The Taylor Series with error term gives

ln(1 + ǫ) = ǫ − 1

2
ǫ2 + O(ǫ3) (11)

as ǫ → 0. Let λ be an arbitrary but fixed real number. Then λn−1/2 → 0
so that

n ln(1+ λn−1/2)−λn1/2 = λn1/2 − 1

2
λ2 + o(1)−λn1/2 = −1

2
λ2 + o(1) (12)

and
gn(λ) → e−λ2/2. (13)

That is, when properly scaled, the function y = xne−x looks like the bell
shaped curve.

Now we would like to say

lim
n→∞

∫ +∞

−
√

n
gn(λ)dλ =

∫ ∞

−∞
e−λ2/2dλ =

√
2π . (14)

Justification of the interchange of limits in the integration of a sequence
of functions is one of the most basic and most subtle problems discussed
in Analysis. Here is a sample theorem: If gn(λ) are continuous func-
tions on an interval [a, b] and limn→∞ gn(λ) = g(λ) for all λ ∈ [a, b] then
limn→∞

∫ b
a gn(λ)dλ =

∫ b
a g(λ)dλ.

In our example the gn(λ) are indeed continuous and limn→∞ gn(λ) is
given by (13). But there are three difficulties:

1. The left side of the integral in (14) is −√
n

2. The right side of the integral in (14) is ∞

3. We will not be assumming results from Analysis in this book

A natural approach is to approximate gn(λ) by e−λ2/2. The difficulty
is that this approximation is not valid throughout the limits of integration.
For example, with λ =

√
n, gn(λ) = (2/e)n is not close to e−λ2/2 = e−n/2.

Let us reexamine (12) with the error term from the Taylor Series (11). Thus
if λn−1/2 → 0 then

n ln(1+λn−1/2)−λn1/2 = λn1/2−1

2
λ2+O(λ3n−1/2)−λn1/2 = −1

2
λ2+O(λ2n−1/2).

(15)
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We now see that the approximation of gn(λ) by e−λ2/2 is good as long
as λ2n−1/2 → 0, that is, for λ = o(n1/4). With this in mind let us split the
range [−√

n,∞) into a middle range

MIDDLE = [−L(n),+L(n)],

and the two sides
LEFT = [−

√
n,−L(n)]

and
RIGHT = [L(n),∞).

How should we choose L(n)? The middle range should be big enough that
most of the integral lies under it but small enough so that the approximation
with the bell shaped curve remains valid. The first condition will require
that L(n) → ∞ and the second that L(n) = o(n1/4). This leaves a lot of
room and, indeed, any reasonable L(n) satisfying these criteria would work
for our purposes. For definiteness let us set

L(n) = n1/8. (16)

1.1 MID

Let us take the most important region, MIDDLE, first. Guided by the
notion that gn(λ) and e−λ2/2 will be close we define an error 2 function

En(λ) = gn(λ)/e−λ2/2 (17)

so that we have the exact expression

ln En(λ) = n ln(1 + λn−1/2) − λ
√

n +
λ2

2
. (18)

As λn−1/2 → 0 in MIDDLE, we can apply the Taylor Series to ln(1 + ǫ)
with ǫ = λn−1/2. The first two terms cancel the λ

√
n and λ2/2 terms, which

is not so surprising as we designed the error to be close to one. We employ
the Taylor Series to two terms with an error term.

n ln(1 + λn−1/2) = λ
√

n − λ2

2
+ n

x3

3
. (19)

Here x lies somewhere between 0 and λn−1/2. As |λn−1/2| ≤ n−3/8 we can
bound

|nx3

3
| ≤ 1

3
n−1/8. (20)

Thus | ln En(λ)| ≤ 1
3n−1/8 throughout λ. Critically, this is a uniform bound,

that holds for all λ in MIDDLE simultaneously. As ln(En(λ)) is small,
En(λ) − 1 will also be small. Thinking of y = ln(En(λ)), with y small
ey − 1 ∼ y. But to get a rigorous upper bound let us use a rougher bound

2error does not mean mistake!
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|ey − 1| ≤ 2y, valid when |y| is sufficiently small. For n large, 1
3n−1/8 will be

small and so

|En(λ) − 1| ≤ 2

3
n−1/8 (21)

so that

|gn(λ) − e−λ2/2| = e−λ2/2|En(λ) − 1| ≤ 2

3
n−1/8e−λ2/2 (22)

and
∣

∣

∣

∣

∫

MIDDLE
gn(λ) − e−λ2/2dλ

∣

∣

∣

∣

≤
∫

MIDDLE
|pn(λ) − e−λ2/2|dλ (23)

≤ 2

3
n−1/8

∫

MIDDLE
e−λ2/2dλ. (24)

The final integral is less than
√

2π, the integral over all λ. The constants
are not important, we have bounded the difference in the integrals of gn(λ)
and e−λ2/2 over MIDDLE by a constant times n−1/8 which in the limit
approaches zero.

1.2 LEFT

It remains to show that LEFT and RIGHT give negligible contributions
to
∫

gn(λ)dλ. Note that we do not need asymptotic values of
∫

gn(λ)dλ over
LEFT or RIGHT , only that they approach zero. Thus we can employ
a rough (but true) upper bound to gn(λ). The left side is easier. The
function gn(λ) is increasing from −√

n to −L(n) = −n1/8. At −n1/8,

gn(λ) ∼ e−λ2/2 ∼ e−n1/4/2. Since the length of range LEFT is less than√
n, the integral is at most

√
ne−n1/4/2. The exponential decay dominates

the square root growth and this function goes to zero with n. As this was
an upper bound,

∫

LEFT gn(λ)dλ → 0.

1.3 RIGHT

The interval RIGHT is more difficult for two reasons. The interval has
infinite length so that bounding a single value will not be sufficient. More
worrisome, the estimate of ln(1 + ǫ) by ǫ − 1

2ǫ2 is only valid for ǫ small.
We require upper bounds that work for the entire range of ǫ. The following
specific bounds ((25,26) are included for completeness) are often useful:

ln(1 + ǫ) ≤ ǫ − 1

2
ǫ2 when − 1 < ǫ ≤ 0 (25)

ln(1 + ǫ) ≤ ǫ − 1

4
ǫ2 when 0 < ǫ ≤ 1 (26)

ln(1 + ǫ) ≤ 0.7ǫ when ǫ > 1. (27)

We break RIGHT = [n1/8,∞) into two parts. We set

NEARRIGHT = [n1/8, n1/2]
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and
FARRIGHT = [n1/2,∞),

reflecting the ranges for the bounds (26,27) with ǫ = λn−1/2. For NEARRIGHT
we employ the argument used for LEFT . The function gn(λ) is decreasing

for λ positive and is ∼ e−n1/4/2 at n1/8. As NEARRIGHT has length less
than

√
n,
∫

gn(λ)dλ over NEARRIGHT is at most
√

ne−n1/4/2 which goes
to zero.

In FARRIGHT , (27) gives that

n ln(1 + λn−1/2) − λn1/2 ≤ 0.7λ
√

n − λ
√

n ≤ −0.3λ
√

n (28)

In this interval gn(λ) is thus bounded by the exponentially decaying
function exp−0.3λ

√
n. Thus

∫ ∞

√
n

gn(λ)dλ <

∫ ∞

√
n

e−0.3λ
√

ndλ =
1

0.3
√

n
e−0.3n (29)

and this also goes to zero as n → ∞.

We have shown that the integrals of gn(λ) over LEFT , NEARRIGHT
and FARRIGHT all approach zero and that the integral of gn(λ) over
MIDDLE approached

√
2π. Putting it all together, the integral of gn(λ)

over [−√
n,∞) does indeed approach

√
2π.

Whew! Let us take two general principles from this example:

• Crude upper bounds can be used for negligible terms as long as they stay
negligible.

• Terms that are extremely small often require quite a bit of work.

2 Approximating Sums by Trapezoids

With this method we will not achieve the full Stirling’s Formula (1) but only

n! ∼ Knne−n√n (30)

for some positive constant K.
Our approach is to estimate the logarithm of n! via the formula

Sn := ln(n!) =
n
∑

k=1

ln(k) (31)

The notion is that Sn should be close to the integral of the function ln(x)
between x = 1 and x = n. We set

In :=

∫ n

1
ln(x)dx = [x ln(x) − x]n1 = n ln(n) − n + 1 (32)
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Let Tn be the value for the approximation of the integral In via the trape-
zoidal rule using step sizes 1. That is, we estimate

∫ i+1
i f(x)dx by 1

2(f(i) +
f(i + 1)). Summing over 1 ≤ i ≤ n − 1,

Tn =
1

2
ln(1) +

n−1
∑

k=2

ln(k) +
1

2
ln(n) = Sn − 1

2
ln(n) (33)

Set
En = In − Tn (34)

to be the error when approximating the integral of ln(x) by the trapezoidal
rule. For 1 ≤ k ≤ n − 1 let Sk denote the “sliver” of area under the curve
y = ln(x) for k ≤ x ≤ k +1 but over the straight line between (k, ln(k)) and
(k +1, ln(k +1)). The curve is over the straight line as the curve is concave.
Then

En =
n−1
∑

k=1

µ(Sk) (35)

where µ denotes the area.
Our goal is to bound the error.
Figure Omitted Here

Theorem 2.1 En approaches a finite limit c as n → ∞. Equivalently:

lim
n→∞

∞
∑

k=n

µ(Sk) = 0 (36)

Assumming Theorem 2.1, (31,32,33) yield

ln(n!) = Tn+
1

2
ln n = In−En−

1

2
lnn = n ln n−n+1−c+o(1)+

1

2
ln n (37)

Exponentiating both sides

n! ∼ nne−n√ne1−c (38)

giving the desired (30) with K = e1−c.

Now, how do we show Theorem 2.1? We consider µ(Sk) in Asymptopia,
as k → ∞. Roughly 3 µ(Sk) is the error between the integral from k to
k + 1 of f(x) = ln x and the straight line approximation of f(x). This er-
ror is caused by the second derivative of f(x). (Had the second derivative
been zero the straight line would have been the precise function.) Here,
the second derivative f

′′

(x) = −x−2 is on the order of k−2 and the interval
has length 1, so we feel the error should be on the order of k−2. As k−2 is
decreasing sufficiently quickly, the infinite sum of µ(Sk) should converge.

Guided by this intuitive approach we give an explicit upper bound for
µ(Sk). Observe that it need not be a good upper bound. We still would get
convergence of

∑

µ(Sk) even if our upper bound were, say, ten times the

3An intuitive feel is very useful, but it must be followed up with a rigorous argument!
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actual value.

Here is one approach that works. Let P = (k, ln k) and Q = (k+1, ln(k+
1)). Let C denote the curve f(x) = ln x in the interval [k, k + 1]. In the
interval [k, k + 1] our function f(x) = ln x has derivitive between 1

k and
1

k+1 . Let U (upper) be the straight line segment starting at P with slope
1
k , ending at x = k + 1. Let L (lower) be the straight line segment starting
at P with slope 1

k+1 , ending at x = k + 1. As the derivative of curve C is
always between those of U and L, the curve C is under U and over L. At
x = k + 1, L then is below the curve C, so below the point Q. Thus the
straight line PQ lies above the line L. We can then bound µ(Sk), the area
between C and the straight line PQ, by the area between U and L. But this
latter area is a triangle. Make the base of the triangle the line from U to L
at x = k + 1 to be the distance from U to L at x = k + 1, which is precisely
the difference of the slopes which is 1

k − 1
k+1 . The height of the triangle is

then 1, from x = k to x = k + 1. We have thus shown

µ(Sk) ≤
1

k
− 1

k + 1
(39)

This value is O(k−2) and so we achieve convergence. Indeed we have the
explicit upper bound

∞
∑

k=1

µ(Sk) ≤
∞
∑

k=1

1

k
− 1

k + 1
= 1 (40)

as the sum telescopes. This yields Theorem (30), the Stirling formula.

3 Combining Forces to Estimate the Error

Setting c = limn→∞ En define the tail

Fn = c − En =
∞
∑

k=n

µ(Sk). (41)

Now (37) becomes

ln(n!) = n lnn − n + 1 − c +
1

2
ln n + Fn. (42)

From the proof of Stirling’s Formula in Section 1 we know that e1−c =√
2π. Exponentiating both sides we may express the result as

n!

nne−n
√

2πn
= eFn . (43)

That is, eFn gives the error term in the Stirling Formula approximation.
Since Fn → 0, eFn = 1 + Fn(1 + o(1)) and so

n!

nne−n
√

2πn
= 1 + Fn(1 + o(1)). (44)
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While (43) is exact, we do not have a closed form for Fn. Still, we may find
it in Asymptopia.

Consider µ(Sk) more carefully. Parametrizing y = k + x, we have 4

µ(Sk) =

∫ 1

0
ln(k + y) − [(1 − y) ln(k) + y ln(k + 1)]dy (45)

as the bracketed term is the equation of the straight line PQ above. From
Taylor’s Theorem (the asymptotics here are as k → ∞, uniformly over
y ∈ [0, 1])

ln(k + y) = ln k +
1

k
y − y2

2k2
+ O(k−3) (46)

As

ln(k + 1) = ln k +
1

k
− 1

2k2
+ O(k−3) (47)

we find

(1 − y) ln(k) + y ln(k + 1) = ln k +
1

k
y +

y

2k2
+ O(k−3). (48)

Subtracting 5

µ(Sk) =

∫ 1

0

1

2k2
(y − y2) + O(k−3)dy (49)

The main part can be integrated precisely and

µ(Sk) =
1

12k2
+ O(k−3) (50)

This allows us to estimate Fn:

Fn =
∞
∑

k=n

µ(Sk) ∼
∫ ∞

n

1

12z2
dx =

1

12n
(51)

This gives a more precise approximation for n!:

n!

nne−n
√

2πn
=

(

1 +
1 + o(1)

12n

)

(52)

Indeed, with considerably more care one can show that

1

12n + 1
≤ Fn ≤ 1

12n
(53)

which yields the remarkably close 6 bounds

e1/(12n+1) ≤ n!

nne−n
√

2πn
≤ e1/(12n) (54)

which are valid for all n.

4Moving the region of interest to near zero is oftentimes helpful!
5Caution! Subtracting in Asymptopia is tricky! Oftentimes main terms cancel and the

secondary terms become paramount. Even worse, occasionally the secondary terms also

cancel and it is the tertiary terms that are important.
6Try it for n = 10.
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4 Estimating the Integral more Accurately

Note: This section gets quite technical and should be considered optional.
Let us begin again with the precise formula

n! = nne−n√n

∫ ∞

−
√

n
gn(λ)dλ (55)

Our goal is to replicate (52) by more accurately estimating pn(λ). Our
previous estimate was e−λ2/2. Now, however, we will want the estimate to
be within an additive o(n−1) term. Our previous definition of MIDDLE
will be too broad, instead we define

L(n) = n0.01 (56)

and
MIDDLE = [−L(n),+L(n)],

LEFT = [−
√

n,−L(n)],

RIGHT = [L(n),
√

n].

The bounds on
∫

pn(λ)dλ are still (this requires checking!) exponentially
small and thus they are not only o(1) but o(n−1). This allows us to concen-
trate on

∫

pn(λ)dλ over our new MIDDLE. We have En(λ) and ln(En(λ))
as in (17,18). Now, however, we need a more accurate Taylor Series estima-
tion for ln(1 + ǫ) with ǫ = λn−1/2. A priori, it is unclear just how many
terms we will need.

• Experimentation is part of the Art of Asymptopia

After possibly a number of false starts, examine the Taylor Series out to
four terms with the error term. From (a previous) Theorem

ln(1 + ǫ) = ǫ − 1

2
ǫ2 +

1

3
ǫ3 − 1

4
ǫ4 +

1

5
x5 (57)

with |x| ≤ ǫ. Applying this to (18) the first two terms cancel as before and

ln(En(λ)) =
1

3
λ3n−1/2 − 1

4
λ4n−1 +

1

5
n−3/2x5 (58)

With our MIDDLE now narrower, |15n−3/2x5| ≤ n−1.45 which will be neg-
ligible for our purposes here. With y = ln En(λ) we want to go from y to
ey−1. Because we need greater accuracy (and after some experimentation!),
we bound

ey − 1 = y +
y2

2
+ O(y3) (59)

Thus (58) becomes

En(λ) = 1 +
1

3
λ3n−1/2 +

1

18
λ6n−1 − 1

4
λ4n−1 + O(n−1.41) (60)
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(The O term in (60) contains several terms of which the largest is (λ3n−1/2)3.)

This gives us a good estimate for
∫

gn(λ)dλ over MIDDLE:

∫ L(n)

−L(n)
gn(λ)dλ =

∫ L(n)

−L(n)
e−λ2/2[1 +

1

3
λ3n−1/2 +

1

18
λ6n−1 − 1

4
λ4n−1 (61)

+O(n−1.41)]dλ (62)

The contribution of the O(n−1.41) term to the integral is o(n−1). This is an
acceptable error so we rewrite

∫ L(n)

−L(n)
gn(λ)dλ = o(n−1) +

∫ L(n)

−L(n)
e−λ2/2[1 +

1

3
λ3n−1/2 +

1

18
λ6n−1 (63)

−1

4
λ4n−1]dλ (64)

We want to replace the limits of integration to ±∞, but we must pause
for a moment as we require an accuracy of o(n−1).

Let us give some very rough upper bounds on
∫∞
L(n) λ4e−λ2/2dλ, as the

other side and the smaller powers are similar. We bound λ4 ≤ eλ, certainly
true for λ ≥ L(n). Then

∫ ∞

L(n)
λ4e−λ2/2dλ ≤

∫ ∞

L(n)
eλ− 1

2
λ2

dλ = e1/2
∫ ∞

L(n)−1
e−y2/2dy (65)

by substituting y = λ− 1 7 Here we substitute y = L(n)− 1 + z and bound
1
2y2 ≥ 1

2(L(n) − 1)2 + z(L(n) − 1) so that

∫ ∞

L(n)−1
e−y2/2dy ≤ e−(L(n)−1)2/2

∫ ∞

0
e−z(L(n)−1)dz = (66)

e−(L(n)−1)2/2)(L(n)−1)−1

(67)

This is exponentially small in n and, so, certainly o(n−1). (Note however
that it was important to let L(n) increase fast enough. Had we tried, say
L(n) = ln ln n, the bound would be o(1) and not the desired o(n−1).)

Returning to (63) we now have

∫ L(n)

−L(n)
gn(λ)dλ = o(n−1) +

∫ ∞

−∞
e−λ2/2[1 +

1

3
λ3n−1/2 +

1

18
λ6n−1 (68)

−1

4
λ4n−1]dλ (69)

7The tail of the Normal Distribution is more carefully studied in a later section.
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Fortunately
∫+∞
−∞ λie−λ2/2dλ can be found precisely for each nonnegative

integer i by elementary 8 calculus. For odd i the integral is zero and for
i = 0, 4, 6 the integrals are

√
2π,3

√
2π and 15

√
2π respectively so that

∫ L(n)

−L(n)
pn(λ)dλ = o(n−1) +

√
2π

(

1 +
15

18n
− 3

4n

)

(70)

which is the promised 1 + 1
12n term.

Remark: We need not stop here. One can take the Taylor Series for ln(1+
ǫ) out further and redefine MIDDLE to be narrower. With a considerable
amount of effort one can show

n! = nne−n
√

2πn[1 +
1

12n
+

1

288n2
+ o(n−2)] (71)

and, indeed, one gets an infinite sequence of such approximations.

5 An Application to Random Walks

Here we will apply Stirling’s Formula to yield a classical result in the study
of Random Walks.

Let G be an arbitrary graph for which each vertex has at least one, but
only a finite number of neighbors. Let s (source) be some specified vertex
of G. A simple random walk on G begins at s. Each time unit it moves
uniformly from its current position v to one of the neighbors of v.

The study of random walks was begun by George Pólya around 1920.
There is an essential dichotomy. A random walk is called recurrent if with
probability 1 it returns to its beginning, here s. Otherwise the random walk
is called transient. In this case, while the walk might return to s there is
a positive probability that it will never return to s. Let p(t) denote the
probability (dependent on G and s) that the random walk will be at s at
time t. Pólya showed that the dichotomy depended on the decay of p(t). He
showed:

Theorem 5.1 If
∑∞

t=1 p(t) is finite then the random walk is transient and

if
∑∞

t=1 p(t) is infinite then the random walk is recurrent.

Proof: Suppose there is a probability α that the random walk ever re-
turns to s. Once it returns it is again beginning a random walk. Hence
the probability that it returns at least j times would be αj . The expected
number of times it returns would then be

∑∞
j=1 αj . This expected number

is also
∑∞

t=1 p(t). If α < 1 then the sum if finite. If α = 1 the sum is infinite.
Now let us restrict ourselves to the grid Zd. The vertices are the vectors

~v = (a1, . . . , ad) ∈ Zd and the neighbors of ~v are those ~w which agree with
~v in all but one coordinate and are one away from ~v in that coordinate.
(This is the usual grid for Zd.) By symmetry, the start matters little so we

8Elementary does not mean easy! Use integration by parts.
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consider walks beginning at the origin ~0. In Z2, for example, from each (a, b)
we move randomly either North (a, b + 1), East (a + 1, b), South (a, b − 1)
or West (a − 1, b). We continue forever, giving a sequence ~0 = ~w0, ~w1, . . .
where ~wt denote the position at time t.

Is the random walk in Zd recurrent or transient? George Pólya gave the
surprising solution:

Theorem 5.2 The random walk in Zd is recurrent if d = 1 or d = 2 and

is transient if d ≥ 3.

From parity considerations one can only return to ~0 after an even number
of steps. Thus the nature of the random walk depends on whether

∑∞
t=1 p(2t)

is finite. In Asymptopia we shall find the asymptotics of p(2t) (note that
p(2t) depends on the dimension d).

In one dimension we want the probability that out of 2t steps precisely
t are +1 (to the right). This has the formula

p(2t) = 2−2t

(

2t

t

)

. (72)

Applying Stirling’s Formula

p(2t) ∼ 2−2t (2t)
2te−2t

√

2π(2t)

[tte−t
√

2πt]2
∼
√

1

πt
. (73)

As
∑

t−1/2 diverges, the random walk in Z2 is recurrent.
For dimension two there is a clever way to compute p(2t). Change the

coordinate system9 to basis ~v1 = (1
2 , 1

2), ~v2 = (1
2 ,−1

2). Now North, South,
East and West have coordinates (1,−1), (−1,+1), (1, 1) and (−1,−1) re-
spectively. One returns to the origin at time 2t if and only each coordinate
is zero. The new coordinates are now independent and so we find the closed
formula

p(2t) = [2−2t

(

2t

t

)

]2. (74)

From (73) we now find

p(2t) ∼ 1

πt
. (75)

As this series diverges, the random walk in Z2 is recurrent.
Remark: While

∑ 1
πt diverges, it barely diverges in the sense that the

sum up to t grows only logarithmically. This makes the random walk in Z2

a strange beast. For example, it is possible to prove that the expected time
until the first return to the origin is infinite.

In the remainder we assume that the dimension d ≥ 3. (The methods
apply also to the cases d = 1, 2 but there the exact formulae make things
easier.) These cases are all quite similar and the reader may concentrate on
d = 3. For dimension d ≥ 3 there does not exist a closed form10 for p(2t). In

9Effectively, tilt your head at a 45 degree angle!
10The often used phrase “closed form” does not have a precise definition. We do not

consider an expression involving a summation to be in closed form.
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Asymptopia, however, that is hardly a stumbling block. In our asymptotics
below, d ≥ 3 is arbitrary, but fixed, and t → ∞.

Each step in the random walk is in one of 2d directions, each equally
likely. However, we split the choice of directions into two parts. First, we
decide for each step in which dimension it is moving. Let Xi denote the num-
ber of steps in dimension i. Then Xi has Binomial Distribution BIN [2t, 1

d ].

Note, however, that as
∑d

i=1 Xi = 2t the Xi are not independent!

Theorem 5.3 The probability that all Xi, 1 ≤ i ≤ d, are even is 2−d+1 +
o(1).

On an intuitive level, each Xi has probability roughly 1/2 of being even.
However, once X1, . . . ,Xd−1 are even Xd is automatically even. We use a
result on Binomial Distributions which is of independent interest.

Theorem 5.4 Let ǫ > 0 be arbitrary but fixed. Let p = p(n) with ǫ ≤ p ≤
1−ǫ for all n. Let X = Xn have Binomial Distribution BIN [n, p(n)]. Then,

the probability that Xn is even approaches 1/2.

Proof: The binomial formula gives

(px + (1 − p)y)n =
n
∑

i=1

(

n

i

)

(px)i((1 − p)y)n−i =
n
∑

i=1

Pr[X = i]xiyn−i (76)

Set x = −1, y = 1. Then

(p − (1 − p))n =
n
∑

i=1

Pr[X = i](−1)i = Pr[X even] − Pr[X odd] (77)

As 1 = Pr[X even] + Pr[X odd],

Pr[X even] =
1

2
+

1

2
(1 − 2p)n (78)

With p not close to either 0 or 1, (1− 2p)n → 0 and Pr[X even] = 1
2 + o(1).

We could also prove Theorem 5.4 in Asymptopia. Here is the rough11

idea. The distribution BIN [n, p] takes, with probability 1 − o(1), values
i ∼ pn. For such i one computes

Pr[BIN [n, p] = i]

Pr[BIN [n, p] = i + 1]
=

(n
i

)

pi(1 − p)n−i

( n
i+1

)

pi+1(1 − p)n−i−1
=

(i + 1)(1 − p)

(n − i)p
(79)

For those i ∼ pn this ratio is nearly 1. Supposing i even for convenience, the
contribution to Pr[BIN [n, p] = i] to BIN [n, p] being even is asymptotically
the same as the contribution Pr[BIN [n, p] = i + 1] to BIN [n, p] being odd.

Note, however, that the proof of Theorem 5.4 gives a much stronger
result. The probability that BIN [n, p] is even minus the probability that
BIN [n, p] is odd is exponentially small – something Asymptopia does not
yield. Furthermore, though we do not use it here, the proof of Theorem

11Try to write it in detail yourself!
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5.4 shows that the result holds even under the much weaker hypothesis that
p ≫ n−1 and 1 − p ≫ n−1. While we aim for proofs from Asymptopia in
this work we should remain mindful that other techniques can sometimes be
even more powerful!

Proof: (Theorem 5.3) Formally we show for 1 ≤ i ≤ d − 1 that the
probability that X1, . . . ,Xi is all even is 2−i + o(1). The case i = 1 is
precisely Theorem 5.4 with p = 1

d . By induction suppose the result for i.
Set m = 2t− (X1 + . . . + Xi). With probability 1− o(1) all X1, . . . ,Xi ∼ 2t

d
so that m ∼ 2t(1 − i

d). Thus with probability 2−i + o(1) all X1, . . . ,Xi are

even and m ∼ 2td−i
d . Conditional on these values Xi+1 has distribution

BIN [m, 1
d−i ]. From Theorem 5.4, the conditional probability that Xi+1 is

even is 1
2 + o(1).

In particular, X1, . . . ,Xd−1 are all even with probability 21−d + o(1). As
X1 + . . . + Xd = 2t is even, Xd is then even tautologically.

Theorem 5.5 Let pd(2t) denote the probability that a random walk on Zd

beginning at the origin is at the origin at time 2t. Then, for d ≥ 3 fixed and

t → ∞

pd(2t) ∼ 21−d





√

d

tπ





d

. (80)

Proof: As above, let Xi denote the number of steps in direction i. With
probability 21−d all Xi are even. From Large Deviation bounds given later
there is a K so that with probability 1− o(t−d/2) all Xi are within K

√
t ln t

of t
d . The o(t−d/2) term will not affect (80). (We actually only need that the

Xi are t
d + o(t).) Condition on the Xi all being even and having values 2si

with 2si ∼ 2t
d . Now in each dimension the probability that the +1 and −1

steps balance is the probability that a random walk in Z of time 2si ends
at the origin which is from (73) ∼ (1/siπ)1/2 ∼ (d/tπ)1/2. Conditioning on
the X1, . . . ,Xd the events that each dimension i balances between +1 and
−1 are mutually independent and so the probability that they all balance
– precisely what we need to return to the origin – is ∼ ((2d/tπ)1/2)d as
claimed.

We can now easily complete the proof of Polya’s Theorem 5.2. When
d ≥ 3, pd(2t) = O(t−d/2). In these cases d/2 > 1 and so

∑∞
t=1 pd(2t) is finite

and Theorem 5.1 gives that the random walk is transient.
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