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intersection of theN(xu), u ∈ U andAl. Then
∏

u∈U

(pul − ε) ≤ |Y |m−1 ≤
∏

u∈U

(pul + ε) (9.8)

Let x1, . . . , xr be a normal partial copy. We say it is destroyed byxr+1 ∈ Ar+1 if
x1, . . . , xr+1 is a partial copy but is not normal. We claim at most2sεm vertices
xr+1 can destroyx1, . . . , xr. How can this occur? Letl > r+1 be adjacent tor+1
and letU, Y be as above (looking only atx1, . . . , xr). ThenY ∩ N(xr+1) would
need to be either too big or too small. If more than2sεm verticesxr+1 destroyed
x1, . . . , xr then there would be a setX ⊂ Ar+1 of size at leastmε of suchxr+1, all
with the samel and with either allY ∩N(xr+1) too big or all too small. Assume the
former, the latter being similar. Thend(X,Y ) > pr+1,l + ε. But |Y | ≥ mε by our
choice ofκ. Fromε-regularity|X| ≤ mε, as claimed.

TheN choices ofxi ∈ Ai, 1 ≤ i ≤ s for whichxi, xj are adjacent inGwhenever
i, j are adjacent inH fall into two categories. There are at most2s2εms choices such
thatxr+1 destroysx1, . . . , xr for somer. The other choices are bounded in number
betweenms

∏
(pij−ε) andms

∏
(pij +ε), the products overi, j adjacent inH. Let

f(ε) denote the maximum distance between either of these products and
∏
pij . We

can then setγ2 = 2s2ε+ f(ε).
�

9.5 GRAPHONS

As in Section 9.3 we setNG(H) denote the number of labelled copies ofH as a (not
necessarily induced) subgraph ofG. We sett(H,G) = NG(H)n−a whereH,G
havea, n vertices respectively. This may naturally be interpreted as the proportion
of H in G, 0 ≤ t(H,G) ≤ 1 tautologically.

Definition 5 A sequence of graphsGn is called a limit sequence, iflimn→∞ t(H,Gn)
exists for all finite graphsH.

Definition 6 Two limit sequencesGn, G
′
n are called equivalent iflimn→∞ t(H,Gn) =

limn→∞ t(H,G′
n) for all finite graphsH. Agraphonis an equivalence class of limit

sequences.

A graphon is a subtle object, an abstract limit of a convergent (by Definition
5) sequences of graphs. (We call a limit sequenceGn a graphon even though,
technically, the graphon is the equivalence class.) It isnot itself an infinite graph,
though it may seem like one. It reflects the properties of verylarge graphs (formally,
in a limit sense) of similar nature. The excellent book (Lovász 2012) serves as a
general reference to graphons.

Surprisingly, and integral to the strength of this concept,there is a good charac-
terization of graphons. LetW : [0, 1] × [0, 1] → [0, 1] be a Lebesgue measurable
function withW (x, y) = W (y, x) for all x, y ∈ [0, 1]. For each positive integern
we define a random graph, denotedG(n,W ) on vertex set1, . . . , n as follows:
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1. Selectx1, . . . , xn ∈ [0, 1] uniformly and independently.

2. Fori 6= j let {i, j} be an edge ofG(n,W ) with probabilityW (xi, xj), and let
the events that{i, j} are edges be mutually independent.

As an important example, whenW is the constant functionW (x, y) = p,G(n,W )
is simplyG(n, p). We callW checkeredif it splits into constant valued rectangles.
More precisely, letK ≥ 1, letai ≥ 0 for 1 ≤ i ≤ K with

∑K
i=1 ai = 1. Decompose

[0, 1] into intervalsIi, 1 ≤ i ≤ K, of lengthai. Then defineW (x, y) = W (y, x) =
pij for x ∈ Ii, y ∈ Ij , x ≤ y. For suchW , G(n,W ) is basically a random
multipartite graph with the vertex set split into setsVi of size∼ nai and all{x, y}
with x ∈ Vi, y ∈ Vj being adjacent with independent probabilitypij .

LetH be a graph on1, . . . , s. Set

c(H,W ) =

∫ ∏

{i,j}∈H

W (xi, xj) (9.9)

where the integral is overx1, . . . , xs ∈ [0, 1] and the null product is interpreted as
one. We leave as an exercise that with probability one the sequenceG(n,W ) is a
limit sequence with

lim
n→∞

t(H,G(n,W )) = c(H,W ) (9.10)

We say that a graphonGn is represented byW if

lim
n→∞

t(H,Gn) = c(H,W ) (9.11)

for every finiteH. Observe, from PropertyP p
1 (s) of Theorem 9.3.2, that a sequence

Gn is a graphon represented by the constant functionW (x, y) = p if and only ifGn

is a quasirandom graph sequence with parameterp, as given by Definition 4.

Theorem 9.5.1 Every graphon is represented by someW .

The proof of Theorem 9.5.1 requires some techniques slightly beyond the scope
of this chapter. Rather, we prove the following weaker version.

Theorem 9.5.2 Letκ > 0 and positive integerL be given. LetGn be an arbitrary
graphon. Then there exists a checkeredW such that

| lim
n→∞

t(H,Gn)− c(H,W )| ≤ κ (9.12)

for all H with s ≤ L vertices.

Proof. Let ε be a small positive real andt a large positive integer, as described more
fully below. For eachGn apply the Regularity Lemma (Theorem 9.4.1) to give an
ε-regular partition(V0, V1, . . . , Vk) with t ≤ k ≤ T = T (ε, t). Take a subsequence
on whichk is a constant. Further take a subsequence on which the set of{i, j} for
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which (Vi, Vj) is anε-regular pair is the same. Further take a subsequence such that
d(Vi, Vj) approaches a limitpij for all 0 ≤ i, j ≤ t and such that the proportion of
vertices inVi approaches a limitαi for all 0 ≤ i ≤ t. Now define a checkeredW
by splitting [0, 1] into intervalsIi of lengthαi, 0 ≤ i ≤ t and lettingW take the
constant valuepij on Ii × Ij . LetH be a graph on vertex set1, . . . , s with s ≤ L.
We comparelim t(H,Gn) andc(H,W ). Letψ : V (H)→ V (Gn) with ψ(i) ∈ Vxi

.
We sayx1, . . . , xs ∈ {0, 1, . . . , t} is normal (else, abnormal) if thexi are distinct
and nonzero and all(Vxi

, Vxj
) areε-regular. The proportion of abnormalψ is then

at mostsε (someψ(i) ∈ V0) plus
(
s
2

)
ε (some(Vxi

, Vxj
) are notε-regular) which

is at mostL2ε. We can make this arbitrarily small by adjustingε. Now suppose
x1, . . . , xs is normal. LetN(x1, . . . , xs) denote the number of choices ofvi ∈ Vxi

,
1 ≤ i ≤ s, such thatvi, vj are adjacent inG wheneveri, j are adjacent inH. From
Theorem 9.4.4N(x1, . . . , xs)m

−L differs from
∏
pij (product over adjacenti, j) by

at mostγ, wherem is the size of eachVxi
. Summing over all normalx1, . . . , xs the

contribution toNn−L differs from the contribution toc(H,W ) by at mostγ. From
(9.7) we may makeγ arbitrarily small by choosing appropriately smallε. The total
difference betweent(H,Gn) andc(H,W ) is then at mostL2ε + γ. For any given
positiveκ we may findε so that this is less thanκ. �

Among the applications of graphons is the replacement of asymptotic questions
on graphsGn with analytic questions on functionsW . We content ourself with a
typical example.

Let b be the minimal real number so that there existGn with 0.7
(
n
2

)
+o(n2) edges

andb
(
n
3

)
+ o(n3) triangles. Letb′ be the minimum of

∫
W (x, y)W (x, z)W (y, z)

(x, y, z ∈ [0, 1]) given that
∫
W (x, y) = 0.7. (We leave as an exercise that the

minima b, b′ are attained.) Both tough questions. We will show that they are the
samequestion, thatb = b′.

The easy part isb ≤ b′. LetW be such thatc(K2,W ) = 0.7 andc(K3,W ) = b′.
Then the random sequenceGn ∼ G(n,W ) has, with probability one,0.7

(
n
2

)
+o(n2)

edges andb′
(
n
3

)
+ o(n3) triangles. Hence the minimal possibleb hasb ≤ b′.

For the opposite direction we first give a natural topological result:

Theorem 9.5.3 Any sequenceGn contains a subsequence which is a limit sequence
in the sense of Definition 5.

Proof. Place all finite graphs into a countable listH1, H2, . . . and setti(G) =
t(Hi, G). LetSEQ0 denote the original sequenceGn. As all t1(G) ∈ [0, 1] we find
a subsequenceSEQ1 on whicht1(G) converges. GivenSEQi−1 we find a subse-
quence of it, denotedSEQi, on whichti(G) converges. Employ diagonalization,
lettingSEQω be that sequence whosei-th term is thei-th term ofSEQi. For eachi,
SEQω is a subsequence ofSEQi except for possibly the firsti− 1 terms and hence
ti(G) converges. �

Now letGn be any sequence with0.7
(
n
2

)
+o(n2) edges andb

(
n
3

)
+o(n3) triangles.

Apply Theorem 9.5.3 to find a limit sequence with the same property. Now apply
Theorem 9.5.1 to findW representing that limit sequence. ThatW hasc(K2,W ) =
0.7 andc(K3,W ) = b. Thus the minimal possibleb′ hasb′ ≤ b.



172 QUASIRANDOMNESS

9.6 EXERCISES

1. By considering a random bipartite three-regular graph on2n vertices obtained
by picking three random permutations between the two color classes, prove
that there is ac > 0 such that for everyn there exists a(2n, 3, c)-expander.

2. LetG = (V,E) be an(n, d, λ)-graph, supposen is divisible byk, and let
C : V → {1, 2, . . . , k} be a coloring ofV by k colors, so that each color
appears preciselyn/k times. Prove that there is a vertex ofG which has a
neighbor of each of thek colors, providedkλ ≤ d.

3. LetG = (V,E) be a graph in which there is at least one edge between any two
disjoint sets of sizea+1. Prove that for every setY of 5a vertices, there is a set
X of at mosta vertices, such that for every setZ satisfyingZ ∩ (X ∪ Y ) = ∅
and|Z| ≤ a, the inequality|N(Z) ∩ Y | ≥ 2|Z| holds.

4. Prove that for everyǫ > 0 there exists ann0 = n0(ǫ) so that for every
(n, n/2, 2

√
n)- graphG = (V,E) with n > n0, the number of trianglesM in

G satisfies|M − n3/48| ≤ ǫn3.

5. Letε > 0, p ∈ (0, 1), λ > 0. LetG ∼ G(n, p), with vertex setVn. Show that
the following property has limiting probability one asn → ∞: (An, Bn) is
ε-regular forall disjointAn, Bn ⊂ Vn with |A| ≥ nλ and|B| ≥ nλ.

6. Combine Tuŕan’s Theorem with the Regularity Lemma to prove the following
result, due to Erd̋os, Simonovits and Stone: For every fixed graphH of
chromatic numberr > 1 and everyε > 0, there is ann0 = n0(H, ε) so that if
n > n0 then any simple graph withn vertices and at least(1 − 1

r−1 + ε)
(
n
2

)

edges contains a copy ofH.

7. Lett′(H,G) denote the number of induced copies ofH in G, i.e., the number
of vertex subsetsS such thatG|S is isomorphic toH. Show thatGn is a limit
sequence if and only iflimn→∞ t′(H,Gn) exists for all finite graphsH.

8. Prove Theorem 9.3.2.

9. Prove that the minimab, b′ given in Section 9.5 are actually attained.

10. LetG = Gn be a sequence of bipartitie graphs with designated partsTn, Bn

each of sizen. Let p ∈ (0, 1) and assumelimn→∞ d(Tn, Bn) = p. Call such
a sequence bipartite quasirandom with parameterp if for all ε > 0 the pair
(Tn, Bn) isε-regular forn sufficiently large. State and prove a result analogous
to Theorem 9.3.2, giving equivalent notions for bipartite quasirandomness.

11. Prove that for allH,W andε > 0 there existsα > 0 such that

Pr[|t(H,G(n,W ))− c(H,W )| > ε] < 2e−nα (9.13)

Deduce that with probability one the sequenceG(n,W ) is a limit sequence
satisfying (9.10)



THE PROBABILISTIC LENS:

Random Walks

A vertex-transitivegraph is a graphG = (V,E) such that for any two vertices
u, v ∈ V there is an automorphism ofG that mapsu into v. A random walk of
lengthl inG starting at a vertexv is a randomly chosen sequencev = v0, v1, . . . , vl,
where eachvi+1 is chosen, randomly and independently, among the neighborsof vi
(0 ≤ i < l).

The following theorem states that for every vertex-transitive graphG, the proba-
bility that a random walk of even length inG ends at its starting point is at least as
big as the probability that it ends at any other vertex. Note that the proof requires
almost no computation. We note also that the result does not hold for general regular
graphs, and the vertex transitivity assumption is necessary.

Theorem 1 LetG = (V,E) be a vertex-transitive graph. For an integerk and for
two (not necessarily distinct) verticesu, v ofG, let P k(u, v) denote the probability
that a random walk of lengthk starting atu ends atv. Then, for every integerk and
for every two verticesu, v ∈ V ,

P 2k(u, u) ≥ P 2k(u, v) .

Proof. We need the following simple inequality, sometimes attributed to Chebyshev.

Claim 9.6.1 For every sequence(a1, . . . , an) of n reals and for any permutationπ
of {1, . . . , n},

n∑

i=1

aiaπ(i) ≤
n∑

i=1

a2i .

173
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Proof. The inequality follows immediately from the fact that

n∑

i=1

a2i −
n∑

i=1

aiaπ(i) =
1

2

n∑

i=1

(ai − aπ(i))2 ≥ 0 .

�

Consider, now, a random walk of length2k starting atu. By summing over all the
possibilities of the vertex the walk reaches afterk steps we conclude that for every
vertexv,

P 2k(u, v) =
∑

w∈V

P k(u,w)P k(w, v) =
∑

w∈V

P k(u,w)P k(v, w) , (1)

where the last equality follows from the fact thatG is an undirected regular graph.
SinceG is vertex-transitive, the two vectors(P k(u,w))w∈V and(P k(v, w))w∈V

can be obtained from each other by permuting the coordinates. Therefore, by the
claim above, the maximum possible value of the sum in the right-hand side of (1) is
whenu = v, completing the proof of the theorem. �
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