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intersection of theV(x,,), uw € U and 4;. Then

[T @u—2 <Yim™ < I (pur +¢) (9.8)

uelU uelU

Letzy,...,x, be a normal partial copy. We say it is destroyediby; € A, 41 if
x1,...,T.41 IS @ partial copy but is not normal. We claim at mastm vertices
Zry1 Can destroyey, . .., z,.. How can this occur? Lét> r + 1 be adjacentto 41
and letU,Y be as above (looking only at,...,z,). ThenY N N(z,41) would
need to be either too big or too small. If more tisam verticesx,.,; destroyed
z1,...,x, then there would be a s&t C A, of size at leastne of suchz, 1, all
with the samé and with either all” N N (z,1) too big or all too small. Assume the
former, the latter being similar. Thef{X,Y") > p,11; +¢. But|Y| > me by our
choice ofx. Frome-regularity| X | < me, as claimed.

TheN choices ofr; € A;,1 < i < sforwhichz;, z; are adjacent id’ whenever
i, j are adjacent ii fall into two categories. There are at mastsm?® choices such
thatz,, destroysey, ...,z for somer. The other choices are bounded in number
betweenn® [ [(pi; —e) andm® [ [(pi; +¢), the products over, j adjacent inf. Let
f(e) denote the maximum distance between either of these pdnd{ | p;;. We
can then set, = 2s%¢ + f(e).

|

9.5 GRAPHONS

As in Section 9.3 we se¥ (H ) denote the number of labelled copiestbfas a (not
necessarily induced) subgraph @f We sett(H,G) = Ng(H)n™* whereH, G
havea, n vertices respectively. This may naturally be interpretedh& proportion
of Hin G, 0 < t(H,G) < 1 tautologically.

Definition 5 A sequence of graplds, is called alimit sequence, Ifm,, , o t(H, G,,)
exists for all finite graph<7.

Definition 6 Two limitsequences,,, G}, are called equivalentifim,, . t(H,G,) =
lim,,, o t(H, G%,) for all finite graphsH. Agraphonis an equivalence class of limit
seguences.

A graphon is a subtle object, an abstract limit of a convergby Definition
5) sequences of graphs. (We call a limit sequeGGea graphon even though,
technically, the graphon is the equivalence class.) ttasitself an infinite graph,
though it may seem like one. It reflects the properties of \engye graphs (formally,
in a limit sense) of similar nature. The excellent book (as¥ 2012) serves as a
general reference to graphons.

Surprisingly, and integral to the strength of this concépre is a good charac-
terization of graphons. L& : [0,1] x [0,1] — [0,1] be a Lebesgue measurable
function withW(z,y) = W(y, z) for all z,y € [0, 1]. For each positive integer
we define a random graph, denot@@n, 17) on vertex set, . .., n as follows:
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1. Selectry,...,x, € [0,1] uniformly and independently.

2. Fori # jlet{s, j} be an edge off(n, W) with probabilityW (z,, z,), and let
the events thafi, j} are edges be mutually independent.

As animportant example, whéf is the constant functioW (z, y) = p, G(n, W)
is simply G(n,p). We callW checkeredf it splits into constant valued rectangles.
More precisely, lefX > 1, leta; > 0for1 < i < K with Zfil a; = 1. Decompose
[0,1] into intervalsl;, 1 < i < K, of lengtha;. Then defindV (z,y) = W(y,z) =
pij for x € I,y € I;,z < y. For suchiW, G(n,W) is basically a random
multipartite graph with the vertex set split into s&fsof size~ na; and all{x, y}
with z € V;, y € V; being adjacent with independent probabiity.

Let H be agraphon,...,s. Set

c(H,W) = H W(x;, x;) (9.9)
{igteH
where the integral is overy, ...,z € [0, 1] and the null product is interpreted as

one. We leave as an exercise that with probability one theesezeG(n, W) is a
limit sequence with
lim ¢(H,G(n,W)) = c(H,W) (9.10)

n—o0
We say that a graphafi,, is represented by if
lim t(H,Gp) =c(H,W) (9.12)

n—00

for every finiteH. Observe, from Properti!(s) of Theorem 9.3.2, that a sequence
G, is a graphon represented by the constant fundfitix, y) = p ifand only if G,,
is a quasirandom graph sequence with parametaes given by Definition 4.

Theorem 9.5.1 Every graphon is represented by sofie

The proof of Theorem 9.5.1 requires some techniques sjigi@yond the scope
of this chapter. Rather, we prove the following weaker \@rsi

Theorem 9.5.2 Letx > 0 and positive integel. be given. Lets,, be an arbitrary
graphon. Then there exists a checkeW&dsuch that

| lim t(H,Gy) — c(H,W)| < & (9.12)

n—oo

for all H with s < L vertices.

Proof. Lete be a small positive real anch large positive integer, as described more
fully below. For each’,, apply the Regularity Lemma (Theorem 9.4.1) to give an
e-regular partition(Vo, Vi, ..., Vi) witht < k < T = T'(e, t). Take a subsequence
on whichk is a constant. Further take a subsequence on which the $&tjéffor
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which (V;, V) is ane-regular pair is the same. Further take a subsequence satch th
d(V;,V;) approaches a limjp;; for all 0 < 4,5 < ¢ and such that the proportion of
vertices inV; approaches a limity; for all 0 < i < ¢. Now define a checkereld
by splitting [0, 1] into intervalsI; of lengtha;, 0 < ¢ < ¢ and lettinglV take the
constant valug;; onI; x I;. Let H be a graph on vertex séf...,s with s < L.
We comparéim ¢t(H, G,,) andc(H,W). Lety : V(H) — V(G,,) with (i) € V.
We sayzxy,...,zs € {0,1,...,t} is normal (else, abnormal) if the; are distinct
and nonzero and a{lV,,, V,,,;) arec-regular. The proportion of abnormalis then
at mostse (somev(i) € Vp) plus (3)e (some(V,,,V,,) are note-regular) which
is at mostL2c. We can make this arbitrarily small by adjusting Now suppose
Z1,...,Zs iSNormal. LetN(z4,...,z,) denote the number of choicesafe V,,,

1 <4 < s, such thaw;, v; are adjacent iy whenevetr;, j are adjacent ifi. From
Theorem 9.4.4N (x4, ..., xzs)m~ L differs from[] p;; (product over adjacerit j) by
at mosty, wherem is the size of eacl,;,. Summing over all normat,, ..., z, the
contribution toNn~L differs from the contribution te(H, W) by at mosty. From
(9.7) we may make arbitrarily small by choosing appropriately small The total
difference betweet(H, G,,) andc(H, W) is then at mosfL2e + ~. For any given
positivex we may finde so that this is less than |

Among the applications of graphons is the replacement ahasgytic questions
on graphsG,, with analytic questions on functiori§. We content ourself with a
typical example.

Letb be the minimal real number so that there egistwith 0.7(%}) 4+ o(n?) edges
andb(}) + o(n?) triangles. Lety’ be the minimum of[ W (z,y)W (z,2)W (y, z)
(z,y,z € [0,1]) given that [ W(z,y) = 0.7. (We leave as an exercise that the
minimab, b’ are attained.) Both tough questions. We will show that theythe
sameguestion, thab = b'.

The easy partis < b'. LetW be such that(K3, W) = 0.7 ande(K3, W) = b'.
Then the random sequenGg ~ G(n, W) has, with probability one).7(%) + o(n?)
edges and’ (g) + o(n?) triangles. Hence the minimal possitbléasb < b'.

For the opposite direction we first give a natural topololieault:

Theorem 9.5.3 Any sequencé&',, contains a subsequence which is a limit sequence
in the sense of Definition 5.

Proof. Place all finite graphs into a countable &, H»,... and sett;(G) =
t(H;,G). Let SEQ, denote the original sequencg,. As allt; (G) € [0,1] we find
a subsequenc8FQ; on whicht; (G) converges. Givew EQ;_, we find a subse-
quence of it, denoted EQ;, on whicht;(G) converges. Employ diagonalization,
letting S EQ,, be that sequence whos¢h term is the-th term of SEQ);. For each,
SEQ, is asubsequence STEQ; except for possibly the firgt— 1 terms and hence
t;(G) converges. [ |

Now letG,, be any sequence with7 (%) +o(n?) edges and(%;) +o(n?) triangles.
Apply Theorem 9.5.3 to find a limit sequence with the same @rtyp Now apply
Theorem 9.5.1 to findil” representing that limit sequence. Th#thasc(K>, W) =
0.7 andc(K3, W) = b. Thus the minimal possiblg hast’ < b.
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9.6

11.

QUASIRANDOMNESS

EXERCISES

. By considering a random bipartite three-regular grapBrowvertices obtained

by picking three random permutations between the two cdisses, prove
that there is & > 0 such that for every. there exists &2n, 3, ¢)-expander.

. LetG = (V, E) be an(n,d, \)-graph, suppose is divisible by k, and let

C:V = {1,2,...,k} be a coloring ofl” by k colors, so that each color
appears precisely/k times. Prove that there is a vertex @fwhich has a
neighbor of each of thg colors, providedi\ < d.

. LetG = (V, E) be agraph in which there is at least one edge between any two

disjoint sets of size 4 1. Prove that for every séf of 5a vertices, there is a set
X of at mosta vertices, such that for every sBtsatisfyingZ N (X UY) =
and|Z| < a, the inequality N(Z) NY| > 2|Z] holds.

. Prove that for every > 0 there exists amg = no(e) so that for every

(n,n/2,2+/n)- graphG = (V, E) with n > ng, the number of triangles/ in
G satisfieg M — n3 /48| < en3.

. Lete >0,p € (0,1), A > 0. LetG ~ G(n, p), with vertex sel/,,. Show that

the following property has limiting probability one as— oo: (A, By) is
e-regular forall disjoint A,,, B,, C V,, with |A] > nX and|B| > nA.

. Combine Tuan’s Theorem with the Regularity Lemma to prove the follagvin

result, due to Erds, Simonovits and Stone: For every fixed grafghof
chromatic number > 1 and every > 0, there is amy = no(H, €) so that if
n > no then any simple graph with vertices and at leagt — = +¢) (%)
edges contains a copy &f.

. Let#’(H, G) denote the number of induced copiesdin G, i.e., the number

of vertex subsets' such thatz|s is isomorphic toH. Show that7,, is a limit
sequence if and only iim,, ., t'(H, G,,) exists for all finite graphg7.

. Prove Theorem 9.3.2.
. Prove that the minim&, b’ given in Section 9.5 are actually attained.
10.

LetG = G,, be a sequence of bipartitie graphs with designated fiart#,,
each of sizen. Letp € (0,1) and assumém,, . d(T,, B,,) = p. Call such

a sequence bipartite quasirandom with parametérfor all £ > 0 the pair
(T, Bn) ise-regular forn sufficiently large. State and prove aresult analogous
to Theorem 9.3.2, giving equivalent notions for bipartitesirandomness.

Prove that for alH, W ande > 0 there existsx > 0 such that
Pr(|t(H,G(n,W)) — c(H,W)| > ¢] < 2e7 "¢ (9.13)

Deduce that with probability one the sequerigg:, W) is a limit sequence
satisfying (9.10)



THE PROBABILISTIC LENS:
Random Walks

A vertex-transitivegraph is a graptG = (V, E) such that for any two vertices
u,v € V there is an automorphism &f that mapsu into v. A random walk of
length! in G starting at a vertex is a randomly chosen sequence- vg, v, . . ., vy,
where each; ; is chosen, randomly and independently, among the neigldfess
(0 <i<l.

The following theorem states that for every vertex-tramsigraphG, the proba-
bility that a random walk of even length @& ends at its starting point is at least as
big as the probability that it ends at any other vertex. Nb#g the proof requires
almost no computation. We note also that the result doesaldfor general regular
graphs, and the vertex transitivity assumption is necgssar

Theorem 1 LetG = (V, F) be a vertex-transitive graph. For an integerand for
two (not necessarily distinct) verticesv of G, let P*(u, v) denote the probability
that a random walk of length starting atu ends at. Then, for every integet and
for every two vertices,v € V,

P2 (u,u) > P?*(u,v).

Proof. We need the following simple inequality, sometimes attelito Chebyshev.

Claim 9.6.1 For every sequencgu, . .., a,) of n reals and for any permutation
of {1,...,n},

n n
Z Ailr() < Z a? .
1=1 i=1
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Proof. The inequality follows immediately from the fact that

n

Za’? - Zaiaﬂ(i) = %Z(al — aﬂ.(i))Q 2 0.
=1 =1

i=1

Consider, now, a random walk of length starting at:. By summing over all the
possibilities of the vertex the walk reaches aftesteps we conclude that for every
vertexv,

P (u,v) = Z P*(u, w)P*(w,v) = Z P*(u, w)P*(v,w), )
weV weV

where the last equality follows from the fact ti@ts an undirected regular graph.
Sinced is vertex-transitive, the two vecto(®* (u, w)) ey and(P* (v, w))wey
can be obtained from each other by permuting the coordinafbesrefore, by the
claim above, the maximum possible value of the sum in thettigind side of (1) is
whenu = v, completing the proof of the theorem. |
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