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and linearity of expectation gives

E[X] =Y E[X4] <|A[(1/n)=1.

AcA

Thus for someyx we must haveX = 0. This meanslisc(A, x) < « and therefore
disc(A) < a. |

13.2 SIX STANDARD DEVIATIONS SUFFICE

When.A has both: sets and: points Theorem 13.1.1 gives
disc(A) = O(y/nln(n)) (13.1)
This was improved by the second author in Spencer (1985a).
Theorem 13.2.1Let A be a family ofn subsets of an element sef2. Then
disc(A) < 6v/n

With x : @ — {-1,+1} random,A € A, x(A) has zero mean and standard
deviation at most/n. If |x(A4)| > 6+/n thenx(A) is at least six standard deviations
off the mean. The probability of this occurring is very smalit a fixed positive
constant and the number of setsis going to infinity. In fact, a randony almost
always will not work. The specific constartt (actually 5.32) was the result of
detailed calculations that could certainly be further ioy&d and will not concern
us here. Rather we show Theorem 13.2.1 with some con&faeiplacing6. The
initial argument (found in earlier editions of this work)ddnot yield an efficient
algorithm for finding the desired coloring. Indeed, for many years the second
author conjectured that no such algorithm would exist. BR(010) gave the first
algorithmic argument for Theorem 13.2.1. Here we follow dpgproach of Lovett
and Meka (2012). Their argument is a virtual cornucopia oflera probabilistic
methods, we give the basic ideas and leave many of the detdfie exercises. We
begin by generalizing the problem to vectors.

Theorem 13.2.2Let7; € R", 1 <i < nwith all || < 1. LetZ = (21,...,2,)
with all z; € [-1,+1]. Then there exist8 = (z1,...,z,) with all z; € {-1,+1}
such that

7 (@ -2 < Kvn (13.2)

forall 1 < ¢ <n. HereK is an absolute constant.

When A is a family of n subsets4,,..., A, of Q@ = {1,...,n} consider the
n x n incidence matrix4, a;; = 1if j € A;, elsea;; = 0. Letr; be thei-th row of
Aand set’=0. TheZ = (z1,...,z,) given by Theorem 13.2.2 gives the coloring
x(j) = x; with the properties of Theorem 13.2.1.
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During the proof the vectar shallmoveinside the cubé—1, 4+1]". We refer to
this general technique adlaating colorsmethod. It will initially have valuer =
so that (13.2) is trivially satisfied. When a coordinateeomes close ta-1 it will be
frozen. For definiteness we set

e=n"t (13.3)

and sayr; is near the bordeif 1 — ¢ < |z;| < 1. We call such frozen and all other
i floating
We reduce Theorem 13.2.2 to:

Theorem 13.2.3Letr; € R™, 1 <i < nwith all |[7}| < 1. LetZ = (z1,...,2n)
with all z; € [-1,+1]. Then there exist§ = (z1,...,z,) with all z; near the
border such that

7 (# - 2)] < Kv/n (13.4)

forall 1 < i < n. Here K is an absolute constant.

With Z given by Theorem 13.2.3 one can then simply round eadb either—1
or +1, whichever is closer. The value$ - (¥ — Z) are then changed by at most
ne = 1 which iso(y/n), thus giving Theorem 13.2.2.

We find Z in phases Phase ends when at most2—¢ of the z; are not near the
border. As Phase One contains the basic ideas of the argueetate it separately.

Theorem 13.2.4Letr; € R, 1 <i <nwithall |[7}| < 1. LetZ = (z1,...,2n)
with all z; € [-1,+1]. Then there exist8 = (z1,...,z,) With at leastn/2 of the
x; near the border such that

7 (7 — 2)| < Kiv/n (13.5)
forall 1 < i < n. Here K; is an absolute constant.

Setu; = n~'/2r;. We will use (in Phase One) only that the Euclidean norm of
u; is at most one. We initially set = Z2. We moveZ in stepsuntil at least half the
coordinates are near the border. Fot i < n set

Li=1 (T2 (13.6)

Call 7 dangerousf |L;| is one of the largest of the value§L,|, 1 < s < n.
In case of ties select precisely valuesi. We emphasize that as moves the}
dangeroug can and will change.

We define a vector spadé ¢ R™, which will describe the allowable directions
in which # may move.V is thosey = (y1,...,y») satisfying the following linear
conditions:

1. If z; is near the border they = 0.
2.5-(-2)=0.

3. i - u; = 0 for all dangerous.
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The number of linear conditions is less thian- 1+ %. Lettingd denote the dimension
of V,d > 7. We lety be a standard multidimensional GaussianianThat is, let

bi, ..., by be an orthonormal basis fof and set
7 =d ?[niby + - + nabg) (13.7)

where then; are independent, each with the standard Normal distributio

We shall use the directionless property of the Gaussiand kel’. Theny - a@ has
a Gaussian Distribution with mednand variancel~!|a|?. Supposé € R". We
can decomposk= @ + ¢with@ € V,éc VL. Thenj-b = - a. Thusy-bhas a
Gaussian Distribution with meahand variance at most! [b|2.

We now mover a small distance in directioft Set, for definiteness,

§=n"10 (13.8)
A single step then consists of resetting
T T+ 0y (13.9)

While the Lovett-Meka algorithm is discrete, as thef (13.8) becomes small one
may think ofZ as moving in a controlled Brownian motion, with the vectoacp/”
of permissible directions always changing.

A step fails if somgx;| > 1. Whenz; is near the bordey; = 0 and sox; does
not change. If; is not near the border it would need to change by at le@sbone
step. Letl/; denote the vector with one in theth position, zero elsewhere. In one
step the change in; is 67 - U; which is Gaussian with mean zero and variance at
mostd—'42. With the values, ¢ the probability that the change ir is more than
¢ is then exponentially small. There are onlychoices ofi and we shall see that
there are only polynomially many steps. Thus with probgbili— o(1) no step fails.
The chi squared distribution (see exercise$}t- ... + n2 is tightly concentrated
around its mea. Thus|di]? is at least(1 — o(1))6? throughout Phase One. At
each step — 2|2 is being increased by this amount. As they both li¢-in, +1]",
|# — Z]? < 4n. Letting T denote the number of steps in Phase One, we deduce
T < (1+o0(1))4nd—2.

Fix 1 < ¢ < n. LetL;(t) denote the value af; given in (13.6) after the-th step,
with initial value L;(0) = 0. With i the Gaussian selected at thth step

Li(t) = Li(t — 1) + 6u7; - 7 (13.10)

HenceL; will change by a Gaussian with varianeé < 2. The L;(t) then form a
martingale. We apply the martingale inequality (13.17hia Exercises. Here

02 =T < (14 0(1))4nd~2d 16> < (1 +0(1))4n/d <16 +0o(1) (13.11)
soo =4+ o(1). Thus

Prmax [L:(1)] > K(1+0(1))] < 2e~5°/32(1 4 0(1)) (13.12)
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Theorem 13.2.4 is shown by selectihy = K such that

2e=K%/32 0,05 (13.13)

EachL; has probability less than05 of ever becoming bigger thaki in absolute
value. By linearity of expectation, the expected numbemeghs is less thar).05n.
The randomized Phase One is a success if one nevetrfas 1, it ends in at most
(1 + o(1))4nd—? stepsand there are fewer thafl.1n valuesi such that/L;| ever
becomes bigger thaf'. The last occurs with probability at leasb and so Phase
One is a success with probability at lest — o(1).

Suppose we have success. Have we improved the situationaogtandard
randomized selection of the? It seems that we still have a positive proportion of
outliersto deal with. But look again! At each step the dangerobsd theirL;
unchanged since the mowe being inV/, was orthogonal tar;. As less thard.1n
of the L; ever havgL;| > K it must be that whenever dii;| becomes at leagt’
it will become, and stay, dangerous and ¢ will remain the same throughout the
remainder of Phase One. The single move in which exceedsX is miniscule so
that after it|L;| is only K + o(1). Therefore at the end of the procest of the
|L;| < K + o(1), completing the argument.

We outline the remainder of the argument for Theorem 13Phe.x at the end of
Phase — 1 becomes the initiad of Phase. (When the number of floating variables
reaches)(n In~'/2 n) we can switch to a more standard random choosing aof the
See the Exercises.) In Phasae begin withn2~! < m < n2'~! floating variables
so thatn < m2t. Ignore the nonfloating variables so that we consider R™. As
all coefficients lie in[—1, +1] we may boundr;|> < m. We setr; = m~/?7; so
that|u;| < 1. We modify Theorem 13.2.4 as follows:

Theorem 13.2.5Letn < m2t. Letr; € R™, 1 < i < nwith all || < 1. Let
Z=(z1,...,2m) Withall z; € [-1,+1]. Then there existg = (z1,...,z,) with at
leastm /2 of thez; near the border such that

|7 - (Z— 2)| < Kiv/m (13.14)
forall 1 < ¢ <n. Here K; is an absolute constant.

We defineL; = u; - (Z — Z) as in (13.6). Nowi is dangerous ifL;| is one of
then2~t~2 < 2 largest values. The large deviation bound (13.12) for/this still
valid but now, instead of (13.13) we defié= K such that

2 K*/2 < 0.05. 271 (13.15)

Now the expected number &f1 < i < n, for which|L;(t)| > K ever occurs is less
than0.05n2~* < 0.05m. The remainder of the argument is as before.
From (13.15) we may sk, = v/c; + coInt = O(v/Int). Asm < n27t*1, in
Phase all |L;| < K;+/nwith K} = 20-0/2/c; ey Int = O(27Y%V/1nt).
Finally we glue all the phases together. For egadhsing the original definition
(13.6) of L;, the absolute value of the changelinin Phaset is at mostk;. But
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> oo, K} converges to som& — basically the—*/2 gain by having fewer variables
outweighs the/In t loss by having more vectors than variables — and hence at the
end of the process dlL;| < K.

13.3 LINEAR AND HEREDITARY DISCREPANCY

We now suppose that has more points than sets. We write= {4,,..., 4, } and

= {1,...,m} and assumen > n. Note thatdisc(A) < K is equivalent to the
eX|stence of a sef; namelyS = {j : x(j) = +1}, with |S N A| within K/2 of
|A]/2 for all A € A. We define thdinear discrepancyindisc(.A) by

lindisc(A) =  max max | Z

P1,---Pm€[0,1] €1, €m 6{0 1} AeA

The upper boundindisc(A4) < K means that given any,,...,p, there is a
“simultaneous roundoff¢,, . .., €,, so that, withS = {j : ¢; = 1}, |SN A| is within

K of the weighted surijGA p; forall A € A. Taking allp; = % the upper bound
impliesdisc(A) < 2K. Butlindisc(A) < K is much stronger. It implies, taking
all p; = 3, the existence of a' with all |S N A within K of |4|/3, and much
more. Linear discrepancy and its companion hereditaryreligncy defined below
have been developed in Lasz, Spencer and Vesztergombi (1986). Kor (2 let
A|x denote the restriction ofl to X, i.e., the family{A N X : A € A}. The next
result “reduces” the bounding dfsc(.4) when there are more points than sets to the
bounding oflindisc(.A) when the points do not outnumber the sets.

Theorem 13.3.1Let A be a family ofn sets onm points withm > n. Suppose that
lindisc(A|x) < K for every subseX of at mostn points. Therdindisc(A) < K.

Proof. Letpy,...,p, € [0,1] be given. We define a reduction process. Call index
j fixed if p; € {0,1}, otherwise call it floating, and It denote the set of floating
indices. If|F'| < n then halt. Otherwise, lai;, j € F', be a honzero solution to the
homogeneous system

Z Y; = O, AeA.

JEANF

Such a solution exists since there are more variablg§ than equationsr() and
may be found by standard techniques of linear algebra. Now se

p; =pjtAy;, JjEF,
p; =Dy, ]gF

where we let\ be the real number of least absolute value so that for somé’ the
valuep; becomes zero or one. Critically,

DAl =D ieaPit A icanr Yi = Djeali (*)



