Eigenvalues & eigenvectors of symmetric matrices

\[A \in \mathbb{R}^{n \times n}, \quad x \in \mathbb{R}^n, \quad \lambda \in \mathbb{C}, \quad x \neq 0 \]

\[Ax = \lambda x \]

We'll try to find ways to compute \(x, \lambda \). That's a non-linear problem since both \(\lambda, x \) are unknown. If \(\lambda \) is known, then it's linear since \(x \) solves \((A - \lambda I)x = 0\).

Recall: \(A \in \mathbb{R}^{n \times n} \) symmetric, then:

- There exists \(n \) linearly independent eigenvectors \(x_i \in \mathbb{R}^n \) with eigenvalue \(\lambda_i \in \mathbb{R}^n \).
- \(\lambda \rightarrow \det(A - \lambda I) \) is a polynomial of degree \(n \) and the eigenvalues \(\lambda_i \) are its roots (characteristic polynomial).
- Eigenvectors corresponding to distinct eigenvalues are orthogonal, i.e., \(x_i \perp x_j \Rightarrow x_i^T x_j = 0 \).
- \(\lambda_i \) has multiplicity \(m \geq 1 \), then there exists a basis of orthogonal eigenvectors corresponding to \(\lambda_i \).
- \(A \) and \(B : = Q^T AQ \) with \(Q \) orthogonal have the same eigenvalues.
- There exists an orthonormal basis of \(\mathbb{R}^n \) consisting of eigenvectors of \(A \).

§5.4 Gerschgorin Theorems

They allow estimation of regions where the eigenvalues lie. This does not require \(A \) to be symmetric, they hold for any \(A \in \mathbb{C}^{n \times n} \).
Def: Gerschgorin discs D_i $i = 1, \ldots, n$ are defined as
$$D_i = \{ z \in \mathbb{C} \mid |z - a_{ii}| \leq R_i \}$$
with
$$R_i = \sum_{j=1}^{n} |a_{ij}|$$

Ex: $B = \begin{bmatrix} 3 & 1 & -0.5 \\ 1 & 2 & 0 \\ 1 & 0.5 & -1 \end{bmatrix}$
$R_1 = 1.5$ $D_1 = \{ z \in \mathbb{C} \mid |z - 3| \leq 1.5 \}$
$R_2 = 1.4$ $D_2 = \{ z \in \mathbb{C} \mid |z - 2| \leq 1.4 \}$
$R_3 = 1.4$ $D_3 = \{ z \in \mathbb{C} \mid |z - 0.5| \leq 1.4 \}$

Theorem (Gershgorin's 1st theorem)
All eigenvalues of $A \in \mathbb{C}^{n \times n}$ lie in $D = \bigcup_{i=1}^{n} D_i$.

Proof: $\lambda \in \mathbb{C}, x \neq 0 \times \in \mathbb{C}^n$
$$Ax = \lambda x \Rightarrow \sum_{j=1}^{n} a_{ij} x_j = \lambda x_i \quad i = 1, \ldots, n$$

Let k be such that $|x_k| \geq |x_i|$ for all i, i.e. k is the index with the largest entry in absolute value.
$$|\lambda - a_{kk}| |x_k| = |\lambda x_k - a_{kk} x_k| = \left| \sum_{j=1}^{n} a_{kj} x_j - a_{kk} x_k \right|$$
$$= \left| \sum_{j=1}^{n} a_{kj} x_j - a_{kk} x_k \right| \leq \sum_{j=1}^{n} |a_{kj}| |x_j| \leq \sum_{j=1}^{n} |a_{kj}| x_j$$
$$\leq R_k |x_k|$$
$$\therefore \quad |x_k| \to 0 \quad |\lambda - a_{kk}| \leq R_k \Rightarrow \lambda \in D_k$$

Theorem (Gershgorin's 2nd theorem). Let the D_i’s be divided into disjoint sets $D^{(p)}, D^{(q)}$ with p and $q = n - p$ discs.
Then the union of $D^{(p)}$ contains p eigenvalues and the
union of \(\mathbb{D}(a) \) contains \(q \) eigenvalues. In particular, disjoint discs contain exactly one eigenvalue.

Example:

\[
A = \begin{bmatrix}
4 & 0.2 & -0.1 & 0.1 \\
0.2 & -1 & -0.1 & 0.05 \\
-0.1 & -0.1 & 3 & 0.1 \\
-0.1 & 0.05 & 0.1 & -3 \\
\end{bmatrix}
\]

\(R_1 = 0.4 \)

\(R_2 = 0.35 \)

\(R_3 = 0.3 \)

\(R_4 = 0.25 \)

Since \(A \) is symmetric and the discs are disjoint, we know that:

\(\lambda_1 \in [-3.25, -2.75] \)

\(\lambda_3 \in [2.7, 3.5] \)

Power method for computing eigenvectors

Simple idea: Start with a vector \(x_0 \in \mathbb{R}^n \) and iterate

\[x_{k+1} = A x_k \quad k = 0, 1, 2, \ldots \]

If a simple \(\lambda \) is strictly larger in absolute value than the other eigenvalues, it will start to dominate in \(x_k \), i.e. \(x_k \) will "converge" to eigenvector of \(\lambda \).

\[|\lambda_1| > |\lambda_2| \geq |\lambda_3| \ldots \geq |\lambda_q| \]