Indermezzo Computer representation of number

- Mathematically, there are infinitely many real numbers, but computer can only work with a finite subset. Thus, there are gaps between numbers in a computer — this requires rounding. The gaps around the number I is machine epsilon. Its size depends on the type of number supresentation. It's about of the precission, "double" ~ 10⁻¹⁶ for double precission, "double" ~ 10⁻⁷ for single precission "theat" ~ 22 bits
- Computer store numbers in binary formatic i.e., with a base of 2 instead of 10; A "bit" can have value 0,1 such that $\frac{2}{12}$ [$\frac{1}{2}$ [

bar2:
$$X = \pm S \times 2^E$$
, $ES < 2$
So we only need to shore the following:

double
Sign II bb for E 52 kh for S
G Klat
Sign II bb for E 52 kh for S
G Klat
S 2.7 Nours and condition numbers
We ask : What consequence has a small pahubahien / ethod
in A a b an the solution
$$x$$
 of $Ax=b$
Can small changes in A a b polarhially haire a
big in fluonce on $x ?$ If ye, when?
Mallab example: $A = \begin{bmatrix} 4.5 & 2.1 \\ 1.6 & 1.1 \end{bmatrix} = \begin{bmatrix} 19.249 \\ G. 193 \end{bmatrix} = \begin{bmatrix} 19.25 \\ 6.81 \end{bmatrix}$
 $\longrightarrow x = \begin{bmatrix} 3.94 \\ 0.19 \end{bmatrix} x_1 = \begin{bmatrix} 2.9 \\ 2.0 \end{bmatrix}$
Thus: The small change $\Delta b = \begin{bmatrix} 0.001 \\ -0.003 \end{bmatrix}$ has a
big influence on $x ?$
We consider the purturbation Δx is a consequence of the
also purturbation Δb .
We would hive estimate like:
 $\|\Delta x\| \le K \|\Delta b\|$ for all Δb with $K > 0$

