
MATH-UA.0252 (Georg Stadler, NYU Courant)

Fall 2018: Numerical Analysis
Assignment 6 (due December 6, 2018)

2 extra credit points will again be given for cleanly plotted and labeled figures (see also
rules on the first assignment).

1. [Hermite interpolation] Let x0 = 0, x1 = 1, x2 = 2. Recall that the Hermite interpolation
of a function f at the points x0, x1, x2 has the form

p(x) =
2∑
j=0

Hj(x)f(xj) +
2∑
j=0

Kj(x)f
′(xj).

(a) Show that the polynomial H1(x) in this representation is given by

x4 − 4x3 + 4x2.

(b) Verify that the polynomial K1(x) in this representation is

x5 − 5x4 + 8x3 − 4x2.

(c) Sketch H2(x) and K2(x) in the same graph without computing their exact form
explicitly.

2. [Composite trapezoidal and Simpson sum, 4+2pt] Write codes1 to approximate in-
tegrals of the form

I(f) =

∫ b

a

f(t) dt

using the trapezoidal and Simpson’s rule on the sub-intervals [xi−1, xi], i = 1, . . . ,m, where
xi = a+ ih, i = 0, . . . ,m with h = (b− a)/m.2

(a) Hand in listings of your codes, and use them to approximate the integral∫ 1

0.1

√
x dx.

Compare the numerical errors E for both quadrature rules (the exact value of the
integral is 2

3
− 1

15
√
10

). Try different m (e.g., m = 10, 20, 40, 80, . . .) and plot the

quadrature errors versus m in a double-logarithmic plot.

1Ideally, you write functions trapez(f,a,b,m) and simpson(f,a,b,m), where f is a function handle (see
http://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html if you are
not familiar with that concept) or f is the vector (f(x0), . . . , f(xm)).

2For these composite rules, see Definitions 7.1 and 7.2 in the book.
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(b) To numerically study how the errors E decrease with m, we assume that the errors
behaves like Cmκ, with to-be-determined C, κ ∈ R. Applying the logarithm to E =
Cmκ results in

log(E) = D + κ log(m), (1)

where D = log(C). Use the values for m and log(E) you computed in (a) to find the
best-fitting values for D and κ in (1) by solving a least squares problem. Compare
your findings for κ with the theoretical estimates for the composite trapezoidal and
Simpson’s rules.3

3. [Best 2-norm approximation, 2pt] The upper row in the below figure shows a function
f together with a polynomial approximation. For three plots, the optimal best 2-norm fit
for three different weights w(x) is used, and one is the result of an Lagrange interpolation.
Match the approximations in the upper row with the information (weight functions or
interpolation points) in the lower row.
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5 [Best 2-norm approximation, 4+6 points]

(a) The upper row in the below figure shows a function f together

with a polynomial approximation. For three plots, the optimal

best 2-norm fit for three different weights w(x) is used, and one

is the result of an Lagrange interpolation. Match the approxima-

tions in the upper row with the information (weight functions or

interpolation points) in the lower row.

(A) (B) (C) (D)

4. [Orthogonal polynomials, 2+2pt] Remember that a function f is called even if f(−x) =
f(x) and odd if f(−x) = −f(x) for all x in its domain. Let w be an even weight function on
the interval (−a, a) and {ϕ0, ϕ1, .., ϕn} be a system of orthogonal polynomials on (−a, a)
with respect to w, constructed from the monomial basis 1, x, x2, . . . using Gram-Schmidt-
Orthogonalization.

(a) Show that, if j is even, then ϕj is an even function and if j is odd, then ϕj is an odd
function.

3Compare with (7.16) and (7.18) in the book. You can ignore the constants, just compare κ, the exponent of
m, with the theoretical results.
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(b) Let f : [−a, a] → R and pn(x) = γ0ϕ0(x) + . . . + γnϕn(x) its best polynomial
approximation of degree n with respect to the weighted 2-norm. Show that if f is an
even function, then all the odd coefficients γ2j−1 are zero and if f is an odd function,
then all the even coefficients γ2j are zero.

5. [Newton-Cotes vs. Gauss Quadrature, 2+2+2+1pt] We discussed two methods to
integrate functions numerically, namely the Newton-Cotes formulas and Gauss quadrature.

(a) Recall that we calculated the first three orthogonal polynimals with respect to w ≡ 1
on (0, 1) in class to be {ϕ0, ϕ1, ϕ2} = {1, x − 1/2, x2 − x + 1/6}. Calculate ϕ3(x)
using the ansatz ϕ3(x) = x3 − a2ϕ2(x) − a1ϕ1(x) − a0ϕ0(x), with appropriately
computed a2, a1, a0 ∈ R.

(b) Derive the Gaussian Quadrature formula for n = 2, i.e., calculate both the quadra-
ture points x0, x1, x2 (these are the roots of ϕ3 and the corresponding weights
W0,W1,W2.4

(c) Now we want to compare Gaussian quadrature derived in (b) with the Simpson’s Rule.
Use both methods to numerically find

Ik =

∫ 1

0

xk dx, for k = 0, . . . , 7.

Plot the errors arising in each method as a function of k. Note that to find the error,
you will need to calculate the exact values for Ik (by hand).

(d) Explain your findings using the results on the exact integration for polynomials up to
certain degrees discussed in class.

6. [Orthogonal polynomials on [0,∞), 2+2+2pt extra credit]

(a) Find orthogonal polynomials l0, l1, l2, l3 for the unbounded interval [0,∞) with the
weight function ω(x) = exp(−x).5 Plot these polynomials (they are called Laguerre
polynomials).

(b) As these are orthogonal polynomials, they correspond to a quadrature rule for weighted
integrals on [0,∞). The resulting quadrature points and weight are given in Table 1.
Verify that for n = 2, n = 3, the quadrature nodes xi are the roots of the polynomials
l2(x), l3(x) (up to round-off).

(c) Use the quadrature rules from Table 1 to approximate the integrals∫ ∞
0

exp(−x) exp(−x) dx and

∫ ∞
0

exp(−x2) dx.

Note that, to take into account the weight ω(x) = exp(−x), for the first integral
f(x) = exp(−x) and for the second f(x) = exp(−x2 + x). Report the errors for
n = 2, 3, 4 using that the exact values for the integrals are 1/2 and

√
π/2.

4See equation (10.7) in the book.
5Feel free to look up the values for the indefinite integrals

∫∞
0

exp(−t)tk dx (k = 0, 1, 2, 3)—I use Wolfram
Alpha for looking up things like that: http://www.wolframalpha.com/.
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Table 1: Gauss quadrature points and weights for quadrature on [0,∞).

n xi Wi

2 0.585786 0.853553
3.41421 0.146447

3 0.415775 0.711093
2.29428 0.278518
6.28995 0.0103893

4 0.322548 0.603154
1.74576 0.357419
4.53662 0.0388879
9.39507 0.000539295
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