
MATH-GA 2010.001/CSCI-GA 2420.001, Georg Stadler (NYU Courant)

Fall 2017: Numerical Methods I
Assignment 2 (due Oct. 5, 2017)

The same rules as for the previous assignment hold. For this assignment, you are asked to hand in
code for some of the problems. Please try to produce well-written code following the suggestions
on the previous assignment. This assignment has (and future assignments will have) an extra credit
problem. I recommend that you only work on those once you are done with the regular problems.
Extra credit problems are supposed to encourage exploration and are usually worth less than regular
problems.

1. [Convergence order, 1+2+2pt] We estimate the convergence order of a value uh that depends
on h > 0, as h→ 0. Often, h is a step size parameter, and we expect that uh → u as h→ 0.

(a) If we know the limit value u, we can estimate the order p using the ansatz

uh − u = Chp +O(hp+1). (1)

Use (1) to show that p can be estimated from

log2

∣∣∣∣ uh − uuh/2 − u

∣∣∣∣ = p+O(h), (2)

where log2 denotes the 2-based logarithm.

(b) If one does not know the limit u, one way to estimate the convergence rate is to replace
u by the best available approximation and then use (2). As an alternative, one can use
approximations with successively halved values for h. Show that:∣∣∣∣ uh − uh/2uh/2 − uh/4

∣∣∣∣ = 2p +O(h).

(c) Try both methods to estimate the convergence rate of the trapezoidal rule to approximate

the integral
∫ b
a f(t) dt. The trapezoidal rule approximation is given by:

uh =
h

2
f(a) + h

N−1∑
j=1

f(a+ jh) +
h

2
f(b),

where h = (b− a)/N , for f = exp(x)/(1 + 4x2) and interval bounds a = 0, b = 4.

2. [Floating points, O/o-notation, convergence, 1+2+2+1pt]

(a) How many IEEE double precision numbers are between an adjacent pair of nonzero single
precission floating point numbers?

(b) Consider

αn :=
2n2 + 4n

n2 + 2n+ 1
for n = 1, 2, . . .

Show that αn = α + O( 1
n2 ) as n → ∞, where α = limn→∞ αn. What is the convergence

order of

α′n :=
2n2 + 3n

n2 + 2n+ 1
?
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(c) Some of the following statements are true, some false. Prove them or give a counterexample.

• sin(x) = O(x2) as x→ 0.

• 1− cos(x) = O(x) as x→ 0.

• If limx→a |g(x)| <∞, then O(f(x)g(x)) = O(f(x)) as x→ a.

• O(n2) = o(n2) as n→∞.

(d) At what rate does the sequence

xn := sin

(
5

n

)
converge to zero as n→∞?

3. [Orthogonal matrices and matrix condition numbers, 2+1+2pt]

(a) Let Q ∈ Rn×n be orthogonal, i.e., QTQ = I. Show that ‖Qx‖2 = ‖x‖2. Does the same
hold for the norms ‖ · ‖1 and ‖ · ‖∞ as well? Prove or give a counterexample.

(b) Show that for an orthogonal matrix Q holds ‖Q‖2 = 1 and κ2(Q) = 1, where κ2 is the
condition number with respect to the ‖ · ‖2-norm.

(c) Let A ∈ Rn×n be invertible. Let b ∈ Rn\{0}, and Ax = b, Ax′ = b′ and denote the
perturbations by ∆b = b′ − b and ∆x = x′ − x. We have shown that

‖∆x‖2
‖x‖2

≤ κ2(A)
‖∆b‖2
‖b‖2

.

Show that this inequality is sharp, that is, find vectors b,∆b for which equality holds above.1

4. [Properties of LU decomposition, 1+2pt]

(a) Give an example of an invertible 3× 3 matrix that does not have zero entries, for which the
LU decomposition without pivoting fails.

(b) Show that the LU factorization of an invertible matrix A ∈ Rn×n is unique. That is,

A = LU = L1U1

with upper triangular matrices U,U1 and lower triangular matrices L,L1 that have 1’s in the
diagonal necessarily implies that L = L1 and U = U1. Hint: Show first that the set L of
lower triangular matrices with 1’s on the diagonal is a subgroup of the group of invertible
matrices, i.e., L contains the identity matrix, the product of two elements in L is again in
L, and the inverse of an element in L is also in L.

5. [Forward substitution, 5pt] We implement forward substitution to solve the triangular system

Lx = b,

where L ∈ Rn×n is an invertible, lower triangular matrix, and x, b ∈ Rn. Write functions that
take L and b as input arguments and return the solution x, and hand in code listings with your
assignment. The programs should check if L is square and if its size is compatible with the size
of b.

• Implement a naive forward substitution x = forward1(L,b) by looping over rows (outer
loop) and over columns (inner loop).

1Hint: consider the eigenvectors of ATA.
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• Implement forward substitution x = forward2(L,b) by looping over the rows and using
vector operations in each row2, i.e.:

x1 = b1/L11,

xi = (bi − Li,1:i−1x1:i−1) /Lii for i = 2, 3, . . . , n,

where, following MATLAB’s notation, k : l = (k, k + 1, . . . , l) such that Li,1:i−1x1:i−1
denotes the multiplication of a row with a column vector.

• Implement forward substitution x = forward3(L,b) by looping over the columns and using
vector operations in each row.3 Note that the following steps will overwrite b with the
solution x:

bj = bj/Ljj ; bj+1:n = bj+1:n − bjLj+1:n,j for j = 1, 2, . . . , n− 1,

bn = bn/Lnn.

Choose a lower triangular matrix with random entries4 to verify that your implementations are
correct by comparing solutions with the build-in solver. Report timings for large systems (n =
5, 000 and larger) for each of your implementation as well as the build-in implementation for
solving linear systems (\ in MATLAB).5

6. [Implementing Choleski, 3+2pt] Implement the Choleski decomposition for a symmetric and
positive definite (spd) matrix A. The function C = mychol(A) should terminate if it encounters
a zero or negative diagonal element, and otherwise return the upper triangular Choleski factor C
such that A = C ′C.

(a) Verify your implementation by comparing with the build-in Choleski factorization. Document
that comparison and hand in a code listing of mychol().

(b) Report timings for large (e.g., n = 500, 1000, 5000) spd matrices for your own as well as
the build-in Choleski factorization.6 Do the timings grow as expected from floating point
operation counts (i.e., with a factor of n3)?

7. [Sherman-Morrison formula, 6pt] Sometimes, one has to solve linear systems that are rank-1
modifications of other linear systems, for which a factorization is already available. Let us derive a
solution algorithm for the modified system. Let A ∈ Rn×n be invertible and u,v ∈ Rn be column
vectors.

(a) Show that the matrix A + uvT is invertible if and only if vTA−1u 6= −1, and that in this
case the inverse is

(A+ uvT )−1 = A−1 − 1

1 + vTA−1u
A−1uvTA−1.

2Compare with Program 1 in Section 3.2.1 in Quarteroni/Sacco/Saleri.
3Compare with Program 2 in Section 3.2.1 in Quarteroni/Sacco/Saleri.
4To avoid roundoff problems resulting in NaN’s due to poorly conditioned matrices, you can choose a triangular matrix

with all 1’s in the diagonal in this tests.
5Despite the fact that each method requires roughly the same number of floating point operations, timings should differ

significantly. This is mainly due to how matrices are stored in memory and how this memory is accessed. MATLAB stores
matrices as one-dimensional arrays, column by column. You can verify that by accessing matrices with only one index, i.e.,
using A(k) for an n× n matrix returns the entry A(m, l), where k = m+ (l − 1)n, 1 ≤ l, 1 ≤ m ≤ n. Numbers that are
next to each other in memory can be read from memory much faster than numbers that are stored further away from each
other.

6You can generate a random spd matrix by multiplying a matrix with random entries with its transpose. The resulting
matrix is symmetric and positive semidefinite, and almost always positive definite.
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(b) Let vTA−1u 6= −1 and assume given the LU decomposition of A. Specify an efficient
algorithms based on the Sherman-Morrison formula to solve the rank-1 modified system
(A+ uvT )x = b for a given right hand side b ∈ Rn.

(c) Use the above algorithm to solve the system
2 1 2 2 3
2 3 4 4 6
3 3 7 6 9
4 4 8 9 12
5 5 10 10 16

x =


8
15
21
29
36


by choosing a suitable diagonal matrix for A and vectors v,u.

8. [Spectral radius, diagonally dominant matrices, 1+2+1pt] Let A ∈ Rn×n, n ≥ 1.

(a) Show that the spectral radius ρ(A) is a lower bound to all induced matrix norms, i.e.,

ρ(A) := max
1≤i≤n

|λi(A)| ≤ ‖A‖,

where ‖A‖ is the matrix norm induced by an arbitrary vector norm ‖ · ‖.
(b) Recall that a matrix is called strictly (row) diagonally dominant if

|aii| >
∑
j 6=i

|aij |, for i = 1, . . . , n.

Show that the LU-factorization without pivoting of an invertible matrix A can be performed
if AT is strictly diagonally dominant.

(c) Show that strictly diagonal dominant matrices are invertible.

9. [Numerical study of random matrices, Extra credit, 2pt] The goal of this problem is to
numerically explore some properties of random matrices. We will try to come up with conjectures
based on experiments and plots of our results. A random matrix is an n × n matrix where each
entry is a draw from a real normal distribution with zero mean and standard deviation 1/

√
n.7

The factor
√
n is introduced to obtain a well-behaved limit as n→∞.

(a) What do the eigenvalues of a random matrix look like? Take 100 random matrices and
superimpose all their eigenvalues in a single plot.8 If you do this for n = 8, 16, 32, 64, 128 . . .,
what do you observe? How does the spectral radius ρ(A) of a random matrix behave as
n→∞?

(b) Let us look at the matrix norms ‖A‖2 of these random matrices. As we showed above,
ρ(A) ≤ ‖A‖2. Does the inequality appear to approach an equality as n→∞?

(c) Repeat with random triangular matrices, i.e., upper triangular matrices with entries drawn
from the same distribution as above. How do your answers change?

7In MATLAB, A=randn(n,n)/sqrt(n);
8The eigenvalues will be complex and can be plotted in the complex plain. Turn off the connecting lines between them

to obtain a clean plot—in MATLAB you can use something like plot(eig(A),’o’);
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