
MATH-GA 2010.001/CSCI-GA 2420.001, Georg Stadler (NYU Courant)

Fall 2017: Numerical Methods I
Assignment 4 (due Nov 2, 2017)

1. [Convexity, 1+1+1pt] A set S is convex, if for all x,y ∈ S, also the convex combinations
λx+(1−λ)y are in S, for all λ ∈ (0, 1). Convex functions are usually defined over convex
sets (or over all of Rn, which is, of course, a convex set).

(a) Show that for a convex function f , the set of global minimizers of f is a convex set.

(b) Let ‖ · ‖ be any norm on Rn. Show that x 7→ ‖x‖ is a convex function.

(c) Let Q ∈ Rn×n be symmetric and positive semidefinite, and b ∈ Rn. Prove that the
function x 7→ 1

2
xTQx− bTx is convex.

2. [Necessary and sufficient optimality conditions, 1+1+1pt] Consider the function
f : R2 → R given by f(x, y) = (x− y2)(3x− y2).

(a) Show that f satisfies the first and second-order necessary optimality conditions at
x∗ = (0, 0), but every neighborhood of x∗ contains a point z with f(z) < f(x∗).

(b) Nevertheless, show that for every direction d ∈ R2, α∗ = 0 is a minimizer for the
restriction to the one-dimensional function α 7→ g(α) := f(x∗ + αd).

(c) Give an example of a twice continuously differentiable function that has a minimum
at a point x∗ that satisfies first and second-order necessary conditions, but does not
satisfy the second-order sufficient conditions.

3. [Modified metric in steepest descent, 2pt] Consider f : Rn → R continuously differ-
entiable, and x ∈ Rn with ∇f(x) 6= 0. For a symmetric positive definite matrix A ∈ Rn×n,

we define the A-weighted norm ‖y‖A =
√
yTAy. Derive the unit norm steepest descent

direction of f in x with respect to the ‖ · ‖A-norm, i.e., find the solution to the problem1

min
‖d‖A=1

∇f(x)Td.

Hint: Use the factorization A = BTB and the Cauchy-Schwarz inequality.

4. [Gaussian mixtures interpolation/data fitting (continuation of problem 5 from
the previous assignment), 1+1+2+1pt+2pt extra credit] Let us try an approach
for fitting data that avoids having to solve a nonlinear least squares problem. We use
the same measurements as for the previous assignment, but choose a larger N and make
several fixed choices for τj, σj, and only use a numerical method to find appropriate weights
ωj. We use two different values for σj, namely 1 and 1/2, and 11 values for τj, namely
τj ∈ {−5,−4, . . . , 4, 5}. This gives the model function

ϕ2(t;x) =
11∑
j=1

ωj exp(−
1

2
(t− (j − 6))2) +

11∑
j=1

ωj+11 exp(−2(t− (j − 6))2). (1)

1If f is twice differentiable with positive definite Hessian matrix, one can choose A = ∇2(x). This shows that
the Newton descent direction is the steepest descent direction in the metric where norms are weighted by the
Hessian matrix.
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Now, the only model parameters are x = (ω1 . . . , ω22)
T , and since these enter linearly in

ϕ2, this is now a linear least squares problem, namely

min
x∈R22

1

2

10∑
i=1

(ϕ2(ti;x)− fi)2. (2)

(a) Specify the entries of the matrix A ∈ R10×22 and the vector f ∈ R10 such that (2)
can be written as

min
x∈R22

1

2
‖Ax− f‖2.

(b) Comparing the number of unknowns and linear equations, we see that this is an
underdetermined system, which does not have a unique solution x. Find a solution
to this underdetermined system using the built-in function (backslash in MATLAB).
Amongst all of the possible solutions to this system, the built-in function should return
a vector x that has some sparsity, i.e., a vector where several entries are zero, which
means that many of the coefficients ωj in (1) are zero. Because the terms with zero
weight can, of course, be neglected in (1), we have found a model with small(ish) N .
Let’s aim at improving the result by looking at alternative approaches.

(c) To make the solution x unique, we can also consider the following modified least
squares problem

min
x∈R22

1

2
‖Ax− f‖2 + γ

2
‖x‖2, (3)

where γ is a (small) positive number. Show that the minimizer of (3) satisfies the
modified normal equation

(ATA+ γI)x = ATf , (4)

where I ∈ R22×22 denotes the identity.2 Prove that solutions of (4) are unique for
γ > 0.

(d) Solve (4) for different γ > 0 and plot the resulting model curves on top of the data
points (ti, fi). We are told that N should be small in the model function, which would
mean that many of the components in x are zero or close to zero. Is this the case for
the solutions of (4) that you found?3

(e) Let us try to obtain a vector x that is sparser, i.e., has more zeros (and thus the
model ϕ(t) has a small N as desired). We add a different term to the minimization
problem compared to (3), namely:

min
x∈R22

1

2
‖Ax− f‖2 + γ‖x‖1, (5)

where ‖x‖1 =
∑22

j=1 |xj| is the 1-norm. This choice tends to “favor” sparse vectors,
i.e., by enforcing that ‖x‖1 be small, many entries of the computed x are zero. We

2Hint: At the minimizer of (3), the gradient with respect to x of 1/2‖Ax − f‖2 + γ/2‖x‖2 must be zero.
Alternatively, you can consider the an extended least squares problem with the autmented matrix Ā = [A,

√
γI]T ∈

R32×22 and use the results from class for overdetermined systems.
3It shouldn’t be. By adding the additional term in (3), we say that we prefer vectors x with small (squared)

2-norm, but not that we are looking for solutions x that contain a large number of zeros.
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would like to take derivatives of the function in (5) but, as we have seen before, this
is problematic since the 1-norm is not differentiable. We thus replace (5) by

min
x∈R22

1

2
‖Ax− f‖2 + γ

22∑
j=1

√
x2j + ε , (6)

where ε is a (small) positive number. Show4 that the solution of (6) satisfies the
nonlinear equation

ATAx+ γD(x)x = ATf , (7)

where D(x) = diag(1/
√
x21 + ε, . . . , 1/

√
x222 + ε) ∈ R22×22. To solve this nonlinear

equation, choose an initial guess x0 and use the fixed point-like iteration

(ATA+ γD(xk−1))xk = ATf for k = 1, 2, . . .

Try different values for γ and ε5, and plot the model functions which result from the
computed parameters. Are the vectors x obtained with this method sparser? Since
we had to introduce the parameter ε to make the problem differentiable, most entries
in x will not exactly be zero, but they should be rather small. Based on your results,
what do you think are the parameters of the Gaussian mixture used to generate the
original data?

5. [Behavior of descent methods, 6pt] Consider the unconstrained optimization problem

min f(x, y) ≡ − cosx cos(y/5).

(a) Find and classify all stationary points in the region −π/2 ≤ x ≤ π/2,−5π/2 ≤ y ≤
5π/2.

(b) There is a portion of the problem region within which the Hessian matrix of f(x, y)
is positive definite. Give expressions for this portion. You should be able to do this
analytically.

(c) Derive expressions for the search directions associated with the steepest descent and
Newton methods.

(d) Write a program that performs both iterations, both without a line search and with
an exact line search. Note that you will not be able to find the value of the optimal
step length analytically; instead, determine it numerically.6

(e) Run your program for various initial guesses within the region. Verify the following:7

4Again, you can show that by computing the gradient of the function in (6) and using that it has to be zero
at the minimizer.

5To get good results, these should be small, e.g., γ ∼ 10−3 and ε ∼ 10−9

6You can use a built-in one-dimensional minimization function (fzero in MATLAB). While we use exact line
search here, this is usually too costly as it requires a large number of function evaluations. As we’ve discussed,
one thus uses an inexact step size that satisfies, for instance, the Wolfe conditions to guarantee convergence to
a stationary point.

7One way to illustrate this (non)convergence is to randomly choose initializations and draw them as dots with
different colors depending on whether the method, started from that initialization, converged.
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• Steepest descent converges to the minimum x∗ for any starting point within the
region.

• Newton’s method with line search converges to the minimum only for initial points
for which the Hessian matrix is positive definite.

• Newton’s method without line search has an even more restricted radius of con-
vergence.

(f) What do you observe about the convergence rate in these cases?

6. [Globalization of Newton descent, 3+1pt] As we have seen, the Newton direction for
solving a minimization problem is only a descent direction if the Hessian matrix is positive
definite. This is not always the case, in particular far from the minimizer. To guarantee
a descent direction in Newton’s method, a simple idea is as follows (where we choose
0 < α1 < 1 and α2 > 0):

• Compute a direction dk by solving the Newton equation

∇2f(xk)dk = −∇f(xk).

If that is possible and dk satisfies8

−∇f(xk)Tdk

‖∇f(xk)‖‖dk‖
≥ min

(
α1, α2‖∇f(xk)‖

)
, (8)

then use dk as descent direction.

• Otherwise, use the steepest descent direction dk = −∇f(xk).

To illustrate this globalization, let f : R2 → R be defined by

f(x) =
1

2
(x21 + x22) exp(x

2
1 − x22).

(a) Using the initial iterate x0 = (1, 1)T , find a local minimum of f using the modified
Newton method described above, combined with Armijo line search with backtrack-
ing.9 Hand in a listing of your implementation.10

(b) Carry out the computation also with the modified Newton matrix ∇2f(x)+3I, which
has been made to be positive definite by adding a multiple of the identity. Discuss
your findings.

8This is a condition on the angle between the negative gradient and the Newton directions, which must less
than 90◦. However, using this condition, the angle may approach 90◦ at the same speed as ‖∇f(xk)‖ approaches
zero. Recall from class that what is required to guarantee convergence for a descent method with Wolfe line
search is that an infinite sum that involves the square of the right hand side in (8) and the norm of the gradient
is finite.

9For the Armijo linesearch, one usually uses c to be rather small, e.g., c = 10−4. Use α = 0.1 and α2 = 0.5
for the constants in (8).

10It is sufficient to hand in a listing of the important parts of your implementation, i.e., Armijo line search and
computation of the descent direction.
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