
MATH-GA 2010.001/CSCI-GA 2420.001, Georg Stadler (NYU Courant)

Fall 2017: Numerical Methods I
Assignment 5 (due Nov 16, 2017)

1. [Properties of the power method, 2+2+1pt] Let A ∈ Rn×n be symmetric with eigen-
values

|λ1| > |λ2| ≥ . . . ≥ |λn|,

and denote the corresponding eigenvectors by η1, . . . ,ηn. We consider the power method
for finding the eigenvector corresponding to the dominant (i.e., largest in absolute value)
eigenvalue. We consider the power method to find the eigenvector, i.e., given an initializa-
tion x0 not orthogonal to η1, we compute xk+1 := Axk for k = 0, 1, . . .. The Rayleigh
quotient, an approximation to the corresponding eigenvalue, is given by

rk :=
(xk)TAxk

(xk)Txk
(1)

(a) Show that
rk = λ1

[
1 +O

(
(λ2/λ1)

2k
)]
.

(b) Consider a symmetric matrix A ∈ R5×5

A = AT =


−9 ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗
∗ ∗ 1 ∗ ∗
∗ ∗ ∗ 4 ∗
∗ ∗ ∗ ∗ 21

 ,
where ∗ represents elements of absolute values ≤ 1/4. Suppose the power method

is applied with A and the initial vector x0 =
[
0 0 0 0 1

]T
. Show that x0 is

an “appropriate” initial vector, i.e., that the sequence yk = xk/‖xk‖ does converge
toward the eigenvector belonging to the dominant eigenvalue of A.1

(c) Estimate how many correct digits rk+5 gains compared to rk, with rk as defined in
(1).

The next problems discuss eigenvalues and eigenvectors of stochastic matrices. Stochastic ma-
trices are very useful for ranking sport teams or the importance of web pages. In fact, Google’s
famous PageRank algorithm2 is based on eigenvectors of stochastic matrices and is (part of)
the reason why Google’s search was/is superior to other search engines. The basic algorithm is
described in a paper3 from 1998 by Sergey Brin and Larry Page, the founders of Google, who were

1This and the problem below require basic estimation of the eigenvalues of A, for which you can use Gershgorin
circle theorem. If you are not familiar with this theorem, that allows to estimate eigenvalues of a matrix using its
entries, take a look at any linear algebra textbook, or the Wikipedia page.

2The PageRank algorithm is named after Larry Page, one of the founders of Google.
3http://infolab.stanford.edu/pub/papers/google.pdf
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at that point both students at Stanford. This original paper has been cited more than 10, 000
times, and Google is worth more than 500,000,000,000 USD today4.

The basic idea is to give each web page a non-negative score describing its importance. This
score is derived from links pointing to that page from other web pages. Links from more important
web pages are more valuable as the score of each page is distributed amongst the pages it links
to. Let us consider an example with 4 web pages, where page 1 links to all other pages, page 2
links to pages 3 and 4, page 3 links to page 1, and page 4 links to pages 1 and 3. Denoting the
scores for the ith page by xi, this mini-web has the following conditions for its scores:

x1 = x3/1 + x4/2, x2 = x1/3, x3 = x1/3 + x2/2 + x4/2, x4 = x1/3 + x2/2,

or, equivalently, the eigenvalue equation Lx = x (i.e., the eigenvalue is 1), where x ∈ R4, and

L =


0 0 1 1/2

1/3 0 0 0
1/3 1/2 0 1/2
1/3 1/2 0 0

 . (2)

Thus, the solution of the eigenvalue problem Lx = x provides the importance score for our
mini-web. The matrix L has a special structure, it is a column-stochastic matrix. In general,
a column-stochastic matrix L ∈ Rn×n is a matrix with all non-negative entries, such that each
column sum of L is equal to 1, i.e.,

∑n
j=1 ljk = 1 for all k = 1, . . . , n. In the following problems,

we study properties of these matrices.

2. [Stochastic matrices, 1+1pt] Let L ∈ Rn×n be a column-stochastic matrix.

(a) Show that the column vector e of all ones is an eigenvector of LT . What’s the
corresponding eigenvalue?

(b) Argue that L has an eigenvector corresponding to the eigenvalue 1.

3. [Positive stochastic matrices, 2+2+1pt] Assume that all entries of a column-stochastic
matrix L are positive. We will prove that eigenvectors v corresponding to the eigenvalue 1
of L either have all positive or all negative values.5 We prove this by contradiction.

(a) Suppose an eigenvalue v ∈ Rn corresponding to the eigenvalue 1 has negative and
positive components. Show that for every i we have

|vi| <
n∑

j=1

lij|vj|.

Where in this argument is the positivity of L used?

(b) By summing over all i and using properties of L, show that this results in a contra-
diction.

4A good read is also the 2006 SIREV paper The 25,000,000,000 eigenvector. The linear algebra behind Google
by Kurt Bryan and Tanya Leise. It’s easy to find—just google it!

5These entries are used to rank the pages–the higher, the more important a page is.
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(c) Thus, either all vi ≥ 0 or all vi ≤ 0. Argue that either all vi > 0 or all vi < 0.

4. [Positive stochastic matrices, eigenspace dimension, 2+2pt] Under the same as-
sumptions as in the previous problem, we argue that the dimension of the eigenspace
corresponding to the eigenvalue 1 is one6.

(a) Assume given two linearly independent vectors u,v ∈ Rn. Then there exists a vector
w ∈ span{u,v} such that w has both, positive and negative components. Hint: Try
to find a nonzero vector w such that

∑
j wj = 0.

(b) Use the above result to argue that the eigenspace corresponding to the eigenvalue 1
of a column-stochastic matrix L is of dimension 1.

5. [Application of power method, 2+2pt] In many applications7, the column-stochastic
matrix L is very large and solving an eigenvalue problem with L is difficult. A simple
possibility to compute the largest eigenvalue and the corresponding eigenvector is the power
method. Let us assume a column-stochastic matrix L and assume that the eigenvalue 1
has an algebraic multiplicity of 18. We assume that the starting vector v0 has a nonzero
component in the direction of the eigenvector for the eigenvalue 1.

(a) Generalize the result on the convergence of the power method for symmetric matrices
to matrices that are diagonalizable over C.

(b) Use power iterations to compute (in MATLAB or Python) the dominant eigenvalue
for the matrix L defined in (2).

6. [Stability of eigenvalues for non-symmetric matrices, 2+1pt] Let Aε be a family of
matrices given by 

λ 1
. . . . . .

. . . 1
ε λ

 ∈ Rn×n.

Obviously, A0 has λ as its only eigenvalue with multiplicity n.

(a) Show that for ε > 0, Aε has n different eigenvalues given by

λε,k = λ+ ε1/n exp(2πik/n), k = 0, . . . , n− 1,

and thus that |λ− λε,k| = ε1/n.

(b) Based on the above result, what accuracy can be expected for the eigenvalues of A0

when the machine epsilon is 10−16?

6Thus, the importance score vector is unique.
7The number of internet web pages is around 15 billion.
8For positive column-stochastic matrices, it can be shown that the algebraic multiplicity of the eigenvalue 1 is

one.
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7. [Finding all roots of a polynomial, 2+1pt] An efficient way to find individual roots of
a polynomial is to use Newton’s method. However, as we have seen, Newton’s method
requires an initialization close to the root one wants to find, and it can be difficult to
find all roots of a polynomial. Luckily, one can use the relation between eigenvalues and
polynomial roots to find all roots of a give polynomial. Let us consider a polynomial of
degree n with leading coefficient 1:

p(x) = a0 + a1x+ . . .+ an−1x
n−1 + xn with ai ∈ R.

(a) Show that p(x) is the characteristic polynomial of the matrix (sometimes called a
companion matrix for p)

Ap :=


0 −a0
1 −a1

. . .
...

1 −an−1

 ∈ Rn×n.

Thus, the roots of p(x) can be computed as the eigenvalues of Ap using the QR
algorithm (as implemented, e.g., in MATLAB’s eig function).

(b) Let us consider Wilkinson’s polynomial pw(x) of order 25, i.e., a polynomial with the
roots 1, 2, . . . , 25:

pw(x) = (x− 1) · (x− 2) · . . . · (x− 25).

The corresponding coefficients can be found using the poly() function. Use these
coefficients in the matrix Ap to find the original roots again as eigenvalues of Ap.
Use your own implementation of the QR algorithm for that purpose, and hand in your
code.9

8. [Properties of the SVD, 1+2+1+1+1pt] Consider the singular value decomposition
of A ∈ Cm×n, i.e.,

A = UΣV ∗, (3)

where U ∈ Cm×m and V ∈ Cn×n are unitary, Σ ∈ Rm×n is diagonal and V ∗ denotes
the adjoint of V (i.e., the complex conjugate matrix). The diagonal entries in Σ are
real and nonnegative, and we assume them to be ordered in non-increasing order, i.e.,
Σ = diag(σ1, σ2, . . . , σp), σ1 ≥ σ2 ≥ . . . σp ≥ 0, where p = min(m,n). If A is a real
matrix, it has a real SVD, i.e., U, V can be chosen as real orthonormal matrices. The
singular values are uniquely determined. If all the singular values are different, the columns
of U and V (which are called the left and right singular vectors), are uniquely determined
up to multiplication with scalars of absolute value 1.

9If you use MATLAB, you can compare the method developed here with the build-in method (called roots())
for finding the roots of a polynomial. For many MATLAB functions that do not use external libraries, you can
see how they are implemented by typing edit name of function. Doing that for the roots function will show
you how MATLAB computes roots of polynomials—basically, it is using the method outlined above.
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(a) Show that the columns of U are the eigenvectors of AA∗ ∈ Cm×m, and that the
columns of V are the eigenvectors of A∗A ∈ Cn×n. What are the corresponding
eigenvales?

(b) Use the previous two properties to compute a (real) SVD for the matrix

A =

(
1 0 3
−3 0 −1

)
.

(c) Let m = n and A be invertible. Using the SVD of A, give an expression for A−1.

(d) Let m < n, and rank(A) = m, i.e., A has full rank. Use the SVD of A to compute
the pseudoinverse A† := A∗(AA∗)−1.

(e) The Frobenius norm10 of a matrix A ∈ Rm×n is given by

‖A‖F =

√∑
i,j
a2ij.

Given the SVD of A, compute ‖A‖F .

10Note that we have discussed matrix norms, that were induced by norms of vectors. The Frobenius norm is
not naturally induced by a vector norm, since, for instance, an induced norm of the identity matrix should be 1.
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