
MATH-GA 2010.001/CSCI-GA 2420.001, Georg Stadler (NYU Courant)

Fall 2017: Numerical Methods I
Assignment 6 (due Nov 30, 2017)

This assignment contains three sets of basic questions that check your understanding of the
concepts from class. These questions require either a true/false, or another short answer. You
should be able to do them quickly. Similar questions will also be part of the final. For each
block of 10 questions, you will get 0.5 points if you have at least 6 correct answers, 1 points
for 7, 1.5 for 8, 2 for 9, and 2.5 points for 10 correct answers.

1. [Basic understanding questions on optimization and interpolation, 3×2.5 points]

We consider f : Rn → R a twice continuously differentiable function, and are interested in
solving minx∈Rn f(x).

1 If f is convex, then the optimization problem has a global minimum.

2 The Hessian matrix of f at a local minimum x? must be positive semidefinite.

3 If f is bounded from below, the minimization problem can have multiple local
minimia, but must have a unique global minimum.

4 For n = 2 and f(x) = 1
2
xTAx − bTx, give an example for A such that the

minimization problem has no solution.

5 For n = 2 and f(x) = 1
2
xTAx− bTx with A =

1 0

0 0

, give an example for b

such that the minimization problem does not have a solution.

6 For n = 2 and f(x) = 1
2
xTAx− bTx with positive definite matrix A, the speed

of convergence of the steepest descent method with linesearch depends crucially
on the condition number of A.

7 For f(x) = 1
2
xTAx − bTx with positive definite matrix A, Newton’s method

without line search always converges.

8 An iterative minimization method with iterates x0,x1, . . . for which f(x0) <
f(x1) < . . . holds, converges to a stationary point if f is bounded from below.

9 An initial step length of 1 in backtracking is always a good choice for the steepest
descent method.

10 The Newton search direction at a point x is a descent direction if the Hessian
matrix at x is positive definite.
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Denote by P (f |t0, . . . , tn) the Lagrange polynomial that interpolates f ∈ C2([a, b]) at the
nodes t0 < . . . < tn. Denote by [t0, . . . , tk]f the k-th divided difference of f .

1 The Lagrange basis polynomial L0(t) for the nodes t0 = 0, t1 = 1, t2 = 2 is
t2 − 3t+ 2.

2 If one uses the Lagrange basis for interpolation, one needs to solve a system with
the Vandermonde matrix.

3 The conditioning of polynomial interpolation depends on the node locations.

4 The Lebesgue constant is only an upper bound for the absolute condition number
of polynomial interpolation in the infinity norm—the actual conditioning may be
smaller.

5 Give the Newton polynomial ω2(t) for the nodes t0 = 0, t1 = 2, t2 = 17.

6 Let f(t) = 3t3 − t+ 2. Then [t0, t1, t2, t3]f = 9.

7 Let f(t) = 8t2 − t. Then [t0, t1, t2, t3]f = 0.

8 P (f |t0, . . . , tn)(tj) = f(tj) for j = 0, . . . , n.

9 Choosing the equidistant nodes tj = a + j(b − a)/n for j = 0, . . . , n is a good
choice for polynomial interpolation.

10 Let t0 = 0, t1 = 3 and f(t0) = 0, f(t1) = 6. What is the value of P (f |t0, t1)(1)?

Denote by P (f |t0, . . . , tn) the Hermite interpolation of f ∈ C2([a, b]) with nodes
t0 ≤ . . . ≤ tn, where for duplicated nodes additionally to the function value also the first
derivative is interpolated, for twice duplicated nodes additionally the second derivative is

interpolated, and so on. Denote by [t0, . . . , tk]f the k-th divided difference of f .

1 The polynomial P (f |t0, . . . , tn) is uniquely defined.

2 If f is a polynomial of degree n, then P (f |t0, . . . , tn)(t) = f(t) for all t ∈ [a, b].

3 The divided differences are the coefficients of the interpolating polynomial for the
monomial basis.

4 For t0 = t1 = t2 = 0 and f(t) = exp(2t), what is [t0, t1, t2]f?

5 For t0 = t1 = t2 = 1, give the Newton polynomial ω1(t).

6 The cubic Hermite interpolation polynomial of f(t) = cos(t) for the nodes t0 =
t1 = 0, t2 = t3 = 2π is P (f |t0, t1, t2, t3) = 1.

7 For t0 = t1 = 0, t2 = t3 = 1 and f(t) = 3t3 − 5, [t0, t1, t2, t3]f = 9.

8 In general, [t0, t1, t2]f 6= [t2, t0, t1]f .

9 If t0 6= tn, then [t0, . . . , tn]f = ([t1, . . . , tn]f − [t0, . . . , tn−1]f)/(tn − t0).

10 If f ∈ C∞([(a, b)]) and one increases the number n of nodes, then the interpo-
lating polynomial becomes a better and better approximation of f .
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2. [3-term recursion and orthogonal polynomials, 2+2pt] We consider the polynomial
recursion l0(x) = 1, l1(x) = 1− x, and

lk+1(x) =
2k + 1− x
k + 1

lk(x)−
k

k + 1
lk−1(x) for k = 1, 2, . . .

(a) Derive the polynomials for l2(x) and l3(x) from the recursion.1 Verify2 that∫ ∞
0

exp(−t)li(t)lj(t) dt = 0 for 0 ≤ i < j ≤ 3.

Since this orthogonality relation holds for all i 6= j (you do not need to show that),
the polynomials li() are orthogonal on [0,∞) with weight function ω(t) = exp(−t).

(b) Write a function my l(k, x), which returns lk(x). The function should also allow
vector inputs x = (x1, . . . , xn) and return (lk(x1), . . . , lk(xn)). Your function should
not derive the polynomials analytically, but just compute their value at the points
x using the recursion. Hand in a code listing, and plot graphs of the first several
polynomials li (these polynomials are called Laguerre polynomials).

3. [Chebyshev polynomials, 1+1+1+1+1+2+2pt] The recurrence relation for Cheby-
shev polynomials Tk is T0(x) = 1, T1(x) = x and Tk(x) = 2xTk−1(x) − Tk−2(x). Show
from this relation that:

(a) For even k, Tk is symmetric, i.e., Tk(−x) = Tk(x). For odd k, Tk satisfies Tk(−x) =
−Tk(x).

(b) By showing that T ′k(x) = cos(k arccos(x)) satisfies this 3-term recurrence relation,
argue that that T (x) = T ′(x). Note that this implies that |Tk(x)| ≤ 1 for all x.

(c) By showing that

T ′′k (x) =
1

2

(
(x+

√
x2 − 1)k + (x−

√
x2 − 1)k

)
satisfies the same 3-term recurrence relation, argue that T ′′(x) = T (x). Note that
differently from T ′(x), the form T ′′(x) is defined for all x ∈ R.

(d) Show that the zeros of Tk(x) are given by

xj = cos

(
(2j + 1)π

2k

)
for j = 0, . . . , k − 1.

These xj are called Chebyshev nodes (corresponding to the k-th Chebyshev polyno-
mial).

1Note that in this recursion the polynomials are not normalized as in the problems we discussed in class,
where the leading coefficient was assumed to be 1. Such a (or another) normalization can easily be achieved by
multiplication of Li(x) with an appropriate scaling factor.

2Feel free to look up the values for the indefinite integrals
∫∞
0

exp(−t)tk dx (k = 0, 1, 2, 3)—I use Wolfram
Alpha for looking up things like that: http://www.wolframalpha.com/.
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(e) The Newton polynomial ωn+1 that is based on Chebyshev nodes (i.e., the roots of
Tn+1) satisfies

|ωn+1(x)| ≤
1

2n
for all x ∈ [−1, 1]. (1)

Hint: Think about what the difference is between the Newton polynomial with node
points given by the roots of the Chebyshev polynomial Tn+1, and the Chebyshev
polynomial Tn+1 itself. Note that it can be shown that the Chebyshev nodes minimize
the pointwise bound given by (1), which is referred to as the min-max property of the
Chebyshev nodes and explains their usefulness for interpolation.

(f) Show that this implies the following error estimate for the interpolation error Ef (x) :=
f(x)− pn(x), where pn ∈ P n is a polynomial that interpolates a function f ∈ Cn+1

at the Chebyshev nodes x0, . . . , xn:

|Ef (x)| ≤
1

2n(n+ 1)!
‖f (n+1)‖∞, (2)

where for continuous functions g, ‖g‖∞ = ‖g‖C0([−1,1]) := max−1≤t≤1 |g(t)| is the
supremum norm on the interval [−1, 1].

(g) Compute and plot the approximation of the function f(x) = 1/(1 + 12x2) with a
polynomial of order N = 14 on the interval [−1, 1]. Choose N + 1 equidistant nodes
(including the points ±1) and the Chebyshev nodes given by the roots of TN+1(x) as
interpolation points, and compare the results.3 What do you observe?

(h) Repeat the Chebyshev point-based interpolation with at least two larger numbers N
of Chebyshev interpolation points, and approximate the maximal interpolation error.4

Plot the maximal error as a function of N and compare with the estimate (2) (without
evaluating (2) explicitly, just in terms of how it changes as you change N). Use a
logarithmic scale for plotting the error (in MATLAB, you can use semilogy). Can
you spot a trend for the error?

4. [Recursion formula for divided differences, 2+1pt] For nodes t0 ≤ t1 ≤ . . . ≤ tn in
[a, b] we consider Hermite interpolation of a function f ∈ C([a, b]). We want to verify the
following recursion: For ti 6= tj holds

[t0, . . . , tn]f =

(
[t0, . . . , t̂i, . . . , tn]f − [t0, . . . , t̂j, . . . , tn]f

)
tj − ti

, (3)

where the “hat” means these nodes are removed.

(a) Show that

P (t) =
(ti − t)P (f |t1, . . . , t̂i, . . . , tn)− (tj − t)P (f |t1, . . . , t̂j, . . . , tn)

ti − tj
is a polynomial of degree n, and that it interpolates f at t0, . . . , tn. Hence, P =
P (f |t0, . . . , tn).

3You can use MATLAB’s polynomial interpolation functions polyfit.
4You can do that by choosing a very fine mesh with, say, 10,000 uniformly distributed points si in [-1,1], and

compute the maximum of |Ef (si)| for all i.
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(b) By comparing the leading coefficients, argue that (3) holds.

5. [Polynomial interpolation and error estimation, 1+1+1+2+2pt] Let us interpolate
the function f : [0, 1]→ R defined by f(t) = exp(3t) using the nodes ti = i/2, i = 0, 1, 2
by a quadratic polynomial p2 ∈ P 2.

(a) Use the monomial basis 1, t, t2 and compute (numerically) the coefficients cj ∈ R
such that p2(t) =

∑2
j=0 cjt

j.

(b) Give an alternative form for p2 using Lagrange interpolation polynomials.

(c) Give yet another alternative form of p2 using the Newton polynomial basis ω0(t) = 1,
and ωj(t) =

∏j−1
i=0 (t − ti) for j = 1, 2. Compute the coefficients of p2 using divided

differences.

(d) Compare the exact interpolation error Ef (t) := f(t) − p2(t) at t = 3/4 with the
estimate

|Ef (t)| ≤
‖ωn+1‖∞
(n+ 1)!

‖f (n+1)‖∞,

where f (n+1) is the (n+ 1)st derivative of f , and ‖ · ‖ is the supremum norm for the
interval [0, 1].

(e) Find a (Hermite) polynomial p3 ∈ P 3 that interpolates f in t0, t1, t2 and additionally
satisfies p′3(t3) = f ′(t3), where t2 = t3 = 1. Give the polynomial p3 using the Newton
basis.5

6. [Property of polynomial interpolation, 2pt extra credit] We consider Lagrange inter-
polation with distinct interpolation nodes t0, . . . , tn.

(a) Show that the nth divided difference [t0, . . . , tn]f , i.e., the leading coefficient of the
polynomial interpolant, satisfies:

[t0, . . . , tn]f =
n∑

k=0

f(tk)∏
i 6=k(ti − tk)

. (4)

Hint: Differentiate the expressions of the interpolant in the monomial and the Newton
basis n-times and compare.

(b) Show that, for any continuous function f(t) holds

(Pn(tf)− tPn(f))(t) = (−1)n+1[t0, . . . , tn]f ωn+1(t),

where Pn(g) = Pn(g|t0, . . . , tn) is the polynomial interpolant for a continuous function
g, and ωn+1(t) =

∏n
i=0 (ti − t) is the (n + 1)st Newton polynomial. Hint: Multiply

for t 6= tj, 1 ≤ j ≤ n, the numerator and the denominator in (4) by Lk(t)(tk − t),
where Li is the Lagrange polynomial for the node ti. Argue separately for t = tj.

5You should only have to add a row to the derivation you did when you computed p2 using the Newton
basis. Note that since t2 = t3, you can use that the divided difference [t2t3]f = f ′(t2). Moreover, note that
[t3]f = f(t3) = f(t2).
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