
MATH-GA 2010.001/CSCI-GA 2420.001, Georg Stadler (NYU Courant)

Fall 2017: Numerical Methods I
Assignment 7 (due Dec 14, 2017)

This assignment again contains sets of basic questions to check your understanding of the
concepts from class. These questions require either a true/false, or another short answer. You
should be able to do them quickly. Similar questions will also be part of the final. For each
block of 10 questions, you will get 0.5 points if you have at least 6 correct answers, 1 points
for 7, 1.5 for 8, 2 for 9, and 2.5 points for 10 correct answers.

1. [Basic understanding questions, 4×2.5 points]

Let F : D → Rn with an open set D ⊂ Rn, and we assume that F is continuously
differentiable. We are interested in finding x∗ such that F (x∗) = 0.

1 Since F is continuously differentiable, there is at least one x with F (x) = 0.

2 Newton’s method converges from any initialization x0.

3 Damping of the update step can be used for faster local convergence close to the
solution.

4 For a regular matrix A ∈ Rn×n, solving AF (x) = 0 is equivalent to solving
F (x) = 0.

5 If Newton’s method converges quadratically to a solution x∗, this implies that
close to the solution ‖xk+1 − x∗‖ ≤ c‖xk − x∗‖ with c < 1.

6 Assume that F is twice differentiable and that the Jacobian F ′(x∗) is invertible.
Specify the highest local convergence order you can guarantee.

7 Let F : R → R defined by F (x) = exp(x2) − 2. For this problem, Newton’s
method to solve F (x) = 0 converges from any initialization.

8 Newton’s method can also be considered as a fixed point method.

9 Let F (x) := x4 − 2. Then the Newton iteration to find a root of F is xk+1 :=
3
4
xk − 1

x3k
.

10 Give an example for a function F , for which Newton’s method to compute roots
of F only converges linearly.

1

Some of the below questions refer to a function f : R2 → R defined by
f(x, y) = y exp(4x2), and we use the 1-norm for R2.

1 There are gaps between two consecutive numbers stored in a computer.

2 All these gaps have the same size, called the machine epsilon.

3 The decimal number 10.25 can be represented exactly in single precission.

4 The decimal number 10.25 can be represented exactly in double precission.

5 In one kilobyte of memory, one can store 128 numbers in double precision or 256
numbers in single precision.

6 The relative condition number of f is κrel = 1 + 8x2.

7 The relative condition number of f is κrel = max{1, 8x2}.

8 f is poorly conditioned for |y| → ∞.

9 Addition of two numbers is poorly conditioned if the numbers are almost the
same.

10 Say, the condition number of a matrix A is 1012 and the machine epsilon is 10−16.
Both the matrix and a right hand side vector b have order 1 entries. How many
accurate digits will the solution of Ax = b at least have?

2

Let A ∈ Rn×n.

1 The LU-composition A = LU always exists if A is invertible.

2 The QR-composition A = QR always exists if A is invertible.

3 The Choleski factorization A = LLT always exists if A is symmetric and positive
definite.

4 Let κ(A) be the condition number of A. Considering a perturbation only in b,
then the relative error in x is at the most by κ(A) larger than the relative error
in b.

5 Multiplication of a dense matrix with a vector requires O(n) flops.

6 Solving Ux = b with an upper triangular matrix U requires O(n2) flops.

7 Compute the 1-norm (i.e., the matrix norm induced by the ‖ · ‖1 vector norm) of

the matrix A =

−2 4

0 3

.

8 Let A = QR be a QR factorization. Then det(A) = det(R).

9 Let Q be an orthogonal matrix such that Q

 1

−3

 =

c
0

. What is |c|?

10 If the QR-factorization A = QR of A is computed using Givens rotations, then
Q−1 = Q.

3

Let A ∈ Rm×n with n ≤ m. Let the rank of A be n and b ∈ Rm. Let Q ∈ Rm×m

orthogonal and R ∈ Rm×n an upper triangular matrix with A = QR, and let ‖ · ‖ be the
Euclidean norm.

1 The matrix ATA is symmetric and positive definite.

2 Denote x∗ the minimizer of minx∈Rn ‖Ax− b‖. Then x∗ satisfies ATAx∗ = b.

3 Denote x∗ as above, and let Θ be the angle between Ax∗ and b. Then, the
larger Θ, the worse the conditioning of the least squares problem.

4 For all x ∈ Rn holds ‖Ax− b‖ = ‖Rx−Qb‖.

5 The method of Givens rotations to compute the QR-factorization does not require
pivoting.

6 We know that R has the form [R1, 0]T , with R1 ∈ Rn×n. It holds that det(A) =
det(R1).

7 For sufficiently smooth functions, the Gauss-Newton method for the solution of
a nonlinear least squares problem converges locally at a quadratic rate.

8 The Gauss-Newton method for the solution of a nonlinear least squares problem
solves a linear least squares problem in each iteration.

9 Damping the update step in the Gauss-Newton method is a method to achieve
convergence for problems that might otherwise not converge.

10 The Gauss-Newton method is identical to the Newton method for solving the first-
order necessary condition of the nonlinear least squares minimization problem.

4

2. [Cubic spline construction—brute force version, 3pt] Let us construct a cubic spline1

for the nodes t0 = 0, t1 = 1, t2 = 2, t3 = 3. A cubic spline follows a cubic polynomial
in each interval I(j) := [tj, tj+1], j = 0, 1, 2, and is twice continuously differentiable ev-
erywhere in [t0, t3]. To find the cubic spline, let us use a monomial basis in each of the
intervals I(j):

s(j)(t) = a
(j)
0 + a

(j)
1 t+ a

(j)
2 t2 + a

(j)
3 t3, for j = 0, 1, 2.

Express the conditions the spline satisfies at the nodes ti in terms of conditions for s(j)

and its derivatives, and derive the resulting 10 linear conditions for the 12 coefficients

a
(j)
i . To make this under-determined system uniquely solvable, either add zero conditions

for the first or the second derivatives at t0 and t3. Let us now interpolate the function
f(t) = cosπt exp(t/2). Compute the spline coefficients by solving the resulting linear
system2 for both choices of boundary conditions at the first and last node. Plot your
results and compare with the build-in cubic spline interpolation (in MATLAB, you can use
the interp1 function, which has a ’spline’ option—see the description of the function.)
What conditions at the first and last node does the build-in function use?

3. [Extrapolation, 3pt] Extrapolation is interpolation where the point of interest, at which we
evaluate the interpolation polynomial, is outside the interpolation interval.3 Extrapolation
can, for instance, be used to approximate limits. Let us compute the sum

s :=
∞∑
k=1

1

k3/2
,

with has the exact value ζ(3/2) = 2.61237534868548834 . . ., through extrapolation. For
that purpose, consider the partial sums

si :=

ni∑
k=1

1

k3/2
with ni = 10 · 2i, for i = 1, . . . , 5.

Denoting by hi := 1/ni, extrapolation then amounts to fitting a polynomial to the values
(hi, si), for i = 1, . . . , 5, and evaluating that polynomial at h = 0 (which corresponds to
n =∞). The result s̃ is the extrapolated value for the approximation of s.

Use build-in functions for the interpolation/extrapolation (i.e., in MATLAB, the function
polyfit and polyval). List the values si and the extrapolated value s̃ and highlight the
number of exact digits. Note that you will have to output at least 12 digits (use format

long in MATLAB).

1Note that there are more efficient and stable ways to construct cubic splines, namely de Boor’s algorithm and
its variants, which we haven’t had time to cover in class. The purpose of this problem is to use a straightforward
algorithm that allows us basic experiments with spline interpolation.

2Note that in this approach, one has to solve a linear system of size 4(n+1) to find a spline with n+1 nodes.
De Boor’s algorithm avoids that global solve by using a better basis that again satisfies a recursion.

3See Section 9.4.2 in Deuflhard/Hohmann or https://en.wikipedia.org/wiki/Extrapolation.

5

https://en.wikipedia.org/wiki/Extrapolation

4. [Trapezoidal and Simpson sum, 3+2+2pt] Write functions trapez(f,x) and
simpson(f,x) to approximate integrals

I(f) =

∫ b

a

f(t) dt

using the trapezoidal and Simpson’s rules on each sub-interval Ii := [xi, xi+1], i =
0, 1, . . . , N − 1, where we assume that these sub-intervals cover [a, b] and have no overlap
except the sub-interval boundary points xi. The input vector to the functions should be
x = (x0, . . . , xN), i.e., the vector of sub-interval boundaries, and f is either a function
handle4 or the vector f = (f(x0), . . . , f(xN)). Note that simpson() also requires the
function values at the mid points of each interval, i.e., if f is a vector, it must include the
values f((xi+1 + xi)/2) and must thus be of size 2N + 1.

(a) Hand in code listings of these functions, and use them to approximate the integral∫ 5

0

√
x dx.

Compare the numerical errors for uniformly spaced points xi = 5ih, i = 0, . . . , N ,
h = 1/N for both quadrature rules. Try different N and plot the quadrature errors
versus N in a double-logarithmic plot.

(b) Estimate the error behavior by fitting cNκ, with c, κ ∈ R to the quadrature errors.
To avoid having to solve a nonlinear least squares problem for c and κ, apply the
logarithm to cNκ and solve a linear least squares problem for d := log(c) and κ.

(c) Use extrapolation as disussed in the previous problem to improve the results you find
with the trapezoidal rule for the above integral. That is, compute the numerical
approximations for the integral for different values of h, and then use extrapolation
to estimate the corresponding value for h = 0. Compare the accuracy with the exact
solution.

5. [Hermite quadrature, 3+3pt] Here, we study a quadrature rule that involves derivatives.

(a) Let us find basis polynomials H0(t), H1(t), H2(t) ∈ P 2 for Hermite interpolation of
f(0), f ′(0) and f(1), i.e., find the quadratic polynomials that satisfy

H0(0) = 1, H ′0(0) = 0, H0(1) = 0,

H1(0) = 0, H ′1(0) = 1, H1(1) = 0,

H2(0) = 0, H ′2(0) = 0, H2(1) = 1.

Derive these polynomials using the Newton basis and the divided differences scheme.

(b) For numerical integration on the interval [0, 1], find weights α1, α2, α3 such that the
quadrature formula

Î(f) := α1f(0) + α2f
′(0) + α3f(1)

integrates polynomials p ∈ P 2 exactly. Hint: Use that the Hermite polynomials
H0, H1, H2 are a basis of P 2, i.e., it suffices if Î is exact for these Hi.

4See http://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html if
you are not familiar with that concept.

6

http://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html

6. [Hierarchical Lobatto quadrature, 3+2pt] Gauss5 quadrature chooses the quadrature
point location and the quadrature weights such that a high order approximation is achieved
with a minimal number of points. The Gauss quadrature points for an interval [a, b] do
not include the beginning and end points a and b. It is often convenient if these points are
included. When not all points are allowed to vary but the location of some points is fixed,
the corresponding quadrature rules are called Gauss-Lobatto rules. Let us compute such
Gauss-Lobatto points and corresponding quadrature weights for the interval [−1, 1]. Due
to the symmetry, the quadrature formula for 4 nodes is:

Î1(f) = ω1(f(−1) + f(1)) + ω2(f(−t2) + f(t2)),

with to be determined weights ω1, ω2 and the interior node location t0. Because of sym-
metry, the monomials with odd degree are integrated exactly by the above formula. Since
there are 3 parameters, we hope that we can choose them to integrate the even monomials
1, x2, x4 exactly.

(a) Give the set of nonlinear equations needed to be satisfied by ωi, ω2 and t2 to integrate
the first three even monomials exactly, and solve it analytically.6

(b) Often, one is interested in an adaptive quadrature rule that allows to add quadrature
points while re-using the quadrature points from a less accurate rule, where the func-
tion has already been evaluated.7 Thus, let us try to extend the above quadrature
rule by adding internal nodes, while re-using the point t2. We add three points: Due
to symmetry, one must lie at the center (t = 0), and the other two added points must
be symmetric around the center, such that the new quadrature rule becomes:

Î2(f) = ω3(f(−1) + f(1)) + ω4(f(−t2) + f(t2)) + ω5(f(−t3) + f(t3)) + ω6f(0).

Note that t2 is fixed but the corresponding weight ω4 can differ compared to the
quadrature formula Î1. Thus, the free variables in Î2 are ω3, ω4, ω5, ω6 and t3, and we
can hope to integrate the monomials 1, x2, x4, x6, x8 exactly. Specify the correspond-
ing nonlinear system.

(c) [1pt extra credit] Solve this nonlinear system for the five parameters using Newton’s
method.

7. [Iterative solution of linear systems, 1+1+1+2pt] Let us study iterative solvers for
linear systems Ax = b, where A ∈ Rn×n and x, b ∈ Rn. For every n, A and b have the

5In this example, we use “Gauss quadrature” short for Gauss-Legendre quadrature, since we use the integral
weight function ω ≡ 1, and the corresponding orthogonal polynomials are the Legendre polynomials.

6A Gauss rule with 4 points and 4 weights allows exact integration of polynomials up to order 7. This Gauss-
Lobatto (or Gauss-Legendre-Lobatto) rule, which fixes two node locations, only integrates polynomials up to
order 5 exactly. This, namely that Gauss quadrature is two orders more accurate than Lobatto-Gauss quadrature,
remains true for higher-order quadrature.

7Function evaluation is usually the most expensive step in numerical quadrature, i.e., the target is to minimize
the number of required evaluations of f while obtaining a good approximation to the integral.

7

same structure, for instance for n = 7:

A =

0 0 2.01 −1 0 0 0

0 0 −1 2.01 −1 0 0

0 0 0 −1 2.01 −1 0

0 0 0 0 −1 2.01 −1

−1 0 0 0 0 −1 2.01

2.01 −1 0 0 0 0 −1

−1 2.01 0 0 0 0 0

, b =

1

1

1

1

1

1

1

.

(a) Why is it not possible to apply the Jacobi or the Gauss-Seidel iteration for solving
this linear system directly? Which rows/columns must be exchanged such that the
resulting linear system can be solved with these methods? In the following, we always
consider the system with properly exchanged rows/columns.

(b) Argue why the Jacobi and the Gauss Seidel method converge.

(c) Specify the iteration for the Jacobi and the Gauss-Seidel iteration component-wise.

(d) Implement both methods using component-wise expressions—you should never have
to assemble a matrix. Apply your implementation for the solution of the problem for
n = 102, 103, 104, and report the number of iterations for each n for both methods.
Use x0 = 0 as initialization, and terminate the iteration when the norm of the residual
rk := b − Axk has decreased by a factor of 108 compared to the initial residual r0,
i.e., when

‖rk‖
‖r0‖

< 10−8.

8

