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Eigenvalues and eigenvectors
How hard are they to find?

For a matrix A € C"*™ (potentially real), we want to find A € C
and x # 0 such that
Az = \x.
Most relevant problems:
» A symmetric (and large)
» A spd (and large)
» A stochastic matrix, i.e., all entries 0 < a;; <1 are
probabilities, and thus >, a;; = 1.



Eigenvalues and eigenvectors
How hard are they to find?

» This is a nonlinear problem.

» How difficult is this? Eigenvalues are the roots of the
characteristic polynomial. Also, any polynomial is the
characteristic polynomial of a matrix. Thus, for matrices
larger than 4 x 4, eigenvalues cannot be computed analytically.

» Must use an iterative algorithm.



Eigenvalues and eigenvectors
Why useful?

» Example: Google's page rank algorithms is at its core a very
big eigenvector computation with a stochastic matrix, where
each webpage corresponds to a row/column, and the entries
are computed from the links between web pages.

» Original page rank paper is by Google founders Page and Brin
(10,000 citations, 500 billion value)

» SIAM Review paper from 2006: The $25,000,000,000
Eigenvector: The linear Algebra behind Google.
http://dx.doi.org/10.1137/050623280



Conditioning

Consider an algebraically simple eigenvalue \g of A:
Axg = \oxp.
Then, there exists a continuously differentiable map
A) A= AA)
in a neighborhood of A such that A\(4) = Ag. The derivative is

)\/(A C = (Cw(]:yO)
(mﬁvyo) ’

where ¥, is an eigenvector of AT for the eigenvalue ).
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Conditioning

Compute norm of ) (A) as linear mapping that maps

(Czo,yy) [M

O ) 181> "

Use as norm for C' the norm induced by the Euclidean norm:

||)\,(A)|| = sup |(C:130,’y0)/(.’130,’y0)| _ H:BOHHyOH
0
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Conditioning

Theorem: The absolute and relative condition numbers for
computing a simple eigenvalue A\ are

1
abs = [|N'(A)]| = ’
Rabs = [|A"(A)]] | cos(<t(x0, o))

and
Al

Ao cos(<t(0, Yo))|
In particular, for normal matrices, x,ps = 1. Note that finding
non-simple eigenvalues is ill-posed (but can still be done).
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Overview

Power method and variants

10/25



The power method

Choose starting point ¥ and iterate
ahtl = Az,

Idea: Eigenvector corresponding to largest (in absolute norm)
eigenvalue will start dominating, i.e., ¥ converges to eigenvector
direction for largest eigenvalue . Normalize to length 1:
y* =k /|2b.

» Convergence speed depends on eigenvalues

> Only finds largest eigenvalue Apax = thAlﬁ upon convergence
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The power method

Convergence

Thm: Let A € R™ "™ be symmetric and \; be a simple eigenvalue
with

A1] > A2l > ..o > |\
If 5 is not orthogonal to the eigenspace of A1, then the power

method converges to a normalized eigenvector of A corresponding
to Ai.
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The power method
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The power method—variants

Inverse power method: Having an estimate A for an eigenvalue \;,
consider the (A — AI)~! which has the eigenvalues

N—=N"L i=1,....n
Consider the inverse power iteration

(A - X\I)wk-i-l _ .’Ek, Yk-i—l _ xk-i—l/Hwk:-i-lH

> Requires matrix-solve in every iteration

» Same matrix, different right hand sides (single LU or Choleski
factorization)

» Convergence speed depends on how close X is to \;.
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The power method—variants

Rayleigh quotient iteration: Accelerated version of the inverse
power method using of changing shifts:

» Choose starting vector z° with ||z°|| = 1. Compute
Ao = (29T Az,
» Fori=0,1,... do

(A= XD)aht = ah, gt = gkt

» Compute My = (y* )T Ay**1, and go back.
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The QR algorithm
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The QR algorithm

The QR algorithm for finding eigenvalues is as follows (A° := A),
and for k =0,1,...:

» Compute QR decomposition of A*, i.e., A¥ = QR.
» ARl .= RQ, k:=k + 1 and go back.
Why should that converge to something useful?



The QR algorithm

v

Similarity transformations do not change the eigenvalues, i.e.,
if B is invertible, then

Aand P71AP

have the same eigenvalues.
QAMIQT = QRQQT = QR = A, i.e., the iterates A* in
the QR algorithm have the same eigenvalues.

The algorithm is closely related to the Rayleigh coefficient
method.

The algorithms is expensive (QR-decomposition is O(n?)).

Convergence can be slow.



QR algorithm and Hessenberg matrices

Find a matrix form that is invariant under the QR algorithm:
Lok M woing guwmaamjk Romfaieakion C%{vw& rotake, )
ke Bl A8 = N7 diag (hpde) aNX-¥
(
5% S % x ¢
'é ‘——9 o; ‘ x X KX
X< O x X % K <«

H,ou s\(gw& :

’\X)\/\:D

N P e

Xi*% Q X L* O O
x & .-

Ty R B - ]



QR algorithm and Hessenberg matrices

Idea: Find a matrix format that is preserved in the QR-algorithm. ”
Hessenberg matrices H are matrices for which H; ; = 0 if H" ;fx %
P>+ 1. Sl

» Hessenberg matrices remain Hessenberg in the QR algorithm.
» An iteration of the QR-algorithm with a Hessenberg matrix
requires O(n?) flops.
Algorithm:
1. Use Givens rotations to transfer A into Hessenberg form. Use
transpose operations on right hand side (similarity
transformation).

2. Use QR algorithm for the Hessenberg matrix.
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The QR algorithm for symmetric matrices
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QR algorithm for symmetric matrices

Let’s consider symmetric matrices A. Then the Hessenberg form

(after application of Given rotations from both sides) is tridiagonal.

Theorem: For a symmetric matrix with distinct eigenvalues
’)\1’>---‘)\n|>07 A:diag(/\l,...,)\n)

holds:

2. limkéoo Rk = A,

k
3. a%zO(Ai >forz’>j.

Aj




QR algorithm for symmetric matrices

» The method also converges in the presence of multiple
eigenvalues. Only when \; = —\;41, the corresponding block
does not become diagonal.

» One can speed up the method by introducing a shift operator:

> Ak —O’kI: QR
> Ak+1 = RQ + o 1.

Again, the shift can be updated during the iteration.



QR algorithm for symmetric matrices

Summary
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QR algorithm for symmetric matrices

Summary _ T T
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QR algorithm for symmetric matrices

Summary

Complexity: Convert to Hessenberg form using Givens rotations:
4/3n3 flops; each QR iteration: O(n2) flops. Overall, convergence
is dominated by the reduction to tridiagonal form.

This method finds all eigenvalues (of a symmetric matrix).

The corresponding eigenvectors can be found from the algorithm

as well:
0407 ~ A

with products of Givens rotations 2. If the original transformation
to tridiagonal form was A; = PAPT/L then the approximative
eigenvectors are the columns of (2P}’



Wy (s ead chabio of 1o QP olgsln oy B(F)2
(i S’W‘a hﬁdmgwi maliit, jumatn Yu'diagoned

Fo QL gl%emm
X % m Givus X x®
x"“gkso K Solah s Q".“,mo
. 'Y Lot .
0 X - @
X X
o o X
A=ol e

- = alll Juales orC IﬂAro‘&'e‘fomZ[
A=R0.= 648 [ gnd cach O shp 1qui
O () Hope.



