Numerical Methods I: Interpolation (cont'ed)

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

November 30, 2017

/20

Interpolation
Things you should know

v

Lagrange vs. Hermite interpolation

v

Conditioning of interpolation

v

Uniform vs. non-uniform points, Lebesgue constant

v

Polynomial bases: Lagrange, Newton, Monomial

N

Classical polynomial interpolation

Newton polynomial basis

The Newton basis wy, . ..,wy, is given by
i—1
wi(t) = [J(t—t;) € Ps.
j=0

The leading coefficient a,, of the interpolation polynomial of f
P(flto,....tn) = ana" + ...

is called the n-th divided difference, [to, ..., tn|f = an.

20

Classical polynomial interpolation

Newton polynomial basis

Theorem: For f € C™, the interpolation polynomial
P(flto,...,tn) is given by

n

P(t) = [to,. .., til f wi(t).
=0

If fe O™t then

f(t) = P(t) + [t07 . 7tmt]f wnJrl(t)'

This property allows to estimate the interpolation error.

20

Classical polynomial interpolation
Divided differences

The divided differences [to, ..., t,]f satisfy the following
properties:

> [to,...,tp]P =0 forall P € P,_;.

nodes.

/20

Classical polynomial interpolation
Divided differences

» The following recurrence relation holds for ¢; # t; (nodes with
a hat are removed):

([to, - - o tiy oo tn) f = [tos -ty))

to,...,¢ =
[0 n]f tj—tz‘

> If f€C [to,... talf = 5™ (r) with an a < 7 < b, and
the divided differences depend continuously on the nodes.

Classical polynomial interpolation
Divided differences

Let us use divided differences to compute the coefficients for the
Newton basis for the cubic interpolation polynomial p that satisfies

p(0) =1, p(0.5) =2, p(1) = 0, p(2) = 3.

t;

0 | [tolf =1

05 | [1lf =2 [tota]f = Leell —

1| [ta]f =0 [tata]f = M 4 [totrta]f = —6
[talf =3 [tats]f = M =3 [titots]f = 12 %

tz—t2 3

Thus, the interpolating polynomial is

p(t) = 1+ 2t + (—6)t(t — 0.5) + ?t(t —0.5)(t—1).

Classical polynomial interpolation
Divided differences

Let us now use divided differences to compute the coefficients for
the Newton basis for the cubic interpolation polynomial p that
satisfies p(0) =1, p'(0) = 2, p”(0) =1, p(1) = 3.

t |

0| [tolf=1

0| [tolf=1 [tot1]f =p'(0) =2

0| [tolf=1 [tlf=p(0)=2 [totsts]f =232 =1

1| [talf =3 [tots]f = [ell=lloll — o 0 -3

tz—to

Thus, the interpolating polynomial is

1 1
p(t) =1+2t+ 5t2 + (—§)t3

Classical polynomial interpolation

Approximation error
If f e C"tD then d .
L e

FD(r) o
@) = P(flto, .- tn)(t) = mwnﬂ(t)

for an appropriate 7 = 7(t), a < T < b.

In particular, the error depends on the choice of the nodes.

YA-PULF e)& = [by b b 00

&(wﬂ(Tﬂ W, Q—') Te @“@
D]

For Taylor interpolation, i.e., tg = ... = t,, this results in:

(n+1) (-
)= Pt 0) = LD =t

Classical polynomial interpolation

Approximation error

Consider functions

{f eC™([a,0]) : sp [fPHH)] < M(n+ 1)1
TE€[a,b

for some M > 0, then the approximation error depends on w,, (%),
and thus on tg,...,t,.

Thus, one can try to minimize

t
gggb\wnﬂ(B

which is achieved by choosing the nodes as the roots of the
Chebyshev polynomial of order (n + 1).

Classical polynomial interpolation

Approximation error

Summary on pointwise convergence:

» If an interpolating polynomial is close/converges to the
original function depends on the regularity of the function and
the choice of interpolation nodes

» For a good choice of interpolation nodes, fast convergence
can be obtained for almost all functions

Classical polynomial interpolation

Interpolation/Least square approximation/Splines

> Polynomial interpolation

> Least squares with polynomials

12/20

Splines

Assume (I + 2) pairwise disjoint nodes:
a:t0<t1<...<tl+1:b.

A spline of degree k — 1 (order k) is a function in C*~2 which on
each interval [t;, t;+1] coincides with a polynomial in Pj_;.

Most important examples: W

> linear splines, k = 2 — i —
» cubic splines, k =4 a=le H N A b~
ot — &' cz
\/\/J,
) Il —
Bt W - ‘[ke\

Splines

Cubic splines look smooth:

52

oY mealccg dag\nu,%

(y dagnu q fuds

ovaoll: Gl yulusuns

S3

Conghadnb ¢
cach S; U5 quinah ¥
\‘V\\-(A?ola\l ok oZ_Pe'\ulo
— L[Ko?_ COWO‘ALl:"hS

Lirsh & Seesnd dudrakive

Cotnaio o fnbasechiy,
ok

ta=b 2,.2=0C Cond

(=50, SO 5'E)
—> 2 pu degrag o foude eq. gf(%§ s'(9=0

14 /20

Splines
B-splines
B-splines are a basis in the spline space that:
» has local support
> satisfies a 3-term recursion

> non-negative

Ny Nip N3

Ti Ti+1 T Ti+1 Ti+2 Ti Titl Ti+2 Tit3

Splines

B-splines

» Coefficients for interpolation with the B-spline basis can be
computed efficiently using the De Boor algorithm.

» Splines are essential in Computer Aided Design (CAD).

» Also important in CAD: Bezier curves (these do not
interpolate points and have useful geometrical properties).

Trigonometric Interpolation

For periodic functions

Instead of polynomials, use sin(jt), cos(jt) for different j € N.

For N > 1, we define the set of complex trigonometric polynomials
of degree < N — 1 as

N-1
Tyn_1:= g cje”t,cj eC;,,
Jj=0

where i = /—1.

Complex interpolation problem: Given pairwise distinct nodes
to,...,tn—1 € [0,27) and corresponding nodal values

fo,--., fn—1 € C, find a trigonometric polynomial p € T'5_1 such
that p(t;) = fi, fori=0,...,N — 1.

Trigonometric Interpolation

> There exists exactly one p € T'y_1, which solves this
interpolation problem.

> Choose the equidistant nodes ¢ := 2”'“ fork=0,...,N — 1.
Then, the trigonometric polynomial that satisfies p(t) fi
fori=0,...,N — 1 has the coefficients

1 N- 27rz]k
LN

k=0

» For equidistant nodes, the linear map from CV — C defined
by (fo,---,fn—1)+ (co,...,cn—1) is called the discrete
Fourier transformation (DFT).

b DR
co'd
(Co oy Qo) —),» Zcq <
&\/al"“‘y\

éo a0 (9“’1) £N1g>90

Discrete Fourier transform

The interpolation problem (fo,..., fn—-1) — (co,...,cn—1) and its
inverse require the multiplication or solution with a dense n x n
system, i.e., at least O(n?) flops.

However, the special structure of the system matrix allows

performing those operations using a much faster algorith, the
Fast Fournier Transform (FFT).

Trigonometric Interpolation

The Fast Fourier Transform (FFT) is a (very famous!) algorithm
that computes the DFT and its inverse in O(n) flops.
» Note that uniform nodes are used (and even required for the
FFT).
» Tensor products on square domains can be used for two
dimensional approximations, i.e., p(z)p(y).
» Can be used to approximate and solve differential equations
(see Numerical Methods I1).

