
Numerical Methods I: Interpolation (cont’ed)

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

November 30, 2017

1 / 20

Interpolation

Things you should know

I Lagrange vs. Hermite interpolation

I Conditioning of interpolation

I Uniform vs. non-uniform points, Lebesgue constant

I Polynomial bases: Lagrange, Newton, Monomial

2 / 20

Classical polynomial interpolation

Newton polynomial basis

The Newton basis !0, . . . ,!n is given by

!i(t) :=

i�1Y

j=0

(t� tj) 2 P i.

The leading coe�cient an of the interpolation polynomial of f

P (f |t0, . . . , tn) = anx
n
+ . . .

is called the n-th divided di↵erence, [t0, . . . , tn]f := an.

3 / 20

Classical polynomial interpolation

Newton polynomial basis

Theorem: For f 2 Cn, the interpolation polynomial
P (f |t0, . . . , tn) is given by

P (t) =

nX

i=0

[t0, . . . , ti]f !i(t).

If f 2 Cn+1, then

f(t) = P (t) + [t0, . . . , tn, t]f !n+1(t).

This property allows to estimate the interpolation error.

4 / 20

Classical polynomial interpolation

Divided di↵erences

The divided di↵erences [t0, . . . , tn]f satisfy the following
properties:

I
[t0, . . . , tn]P = 0 for all P 2 P n�1.

I If t0 = . . . = tn:

[t0, . . . , tn]f =

f (n)
(t0)

n!

nodes.

5 / 20

Classical polynomial interpolation

Divided di↵erences

I The following recurrence relation holds for ti 6= tj (nodes with
a hat are removed):

[t0, . . . , tn]f =

�
[t0, . . . , ˆti, . . . , tn]f � [t0, . . . , ˆtj , . . . , tn]f

�

tj � ti

I If f 2 Cn
[t0, . . . , tn]f =

1
n!f

(n)
(⌧) with an a  ⌧  b, and

the divided di↵erences depend continuously on the nodes.

6 / 20

Classical polynomial interpolation

Divided di↵erences

Let us use divided di↵erences to compute the coe�cients for the
Newton basis for the cubic interpolation polynomial p that satisfies
p(0) = 1, p(0.5) = 2, p(1) = 0, p(2) = 3.

ti
0 [t0]f = 1

0.5 [t1]f = 2 [t0t1]f =

[t1]f�[t0]f
t1�t0

= 2

1 [t2]f = 0 [t1t2]f =

[t2]f�[t1]f
t2�t1

= �4 [t0t1t2]f = �6

2 [t3]f = 3 [t2t3]f =

[t3]f�[t2]f
t3�t2

= 3 [t1t2t3]f =

14
3

16
3

Thus, the interpolating polynomial is

p(t) = 1 + 2t+ (�6)t(t� 0.5) +
16

3

t(t� 0.5)(t� 1).

7 / 20

Classical polynomial interpolation

Divided di↵erences

Let us now use divided di↵erences to compute the coe�cients for
the Newton basis for the cubic interpolation polynomial p that
satisfies p(0) = 1, p0(0) = 2, p00(0) = 1, p(1) = 3.

ti
0 [t0]f = 1

0 [t0]f = 1 [t0t1]f = p0(0) = 2

0 [t0]f = 1 [t1t2]f = p0(0) = 2 [t0t1t2]f =

p00(0)
2! =

1
2

1 [t3]f = 3 [t2t3]f =

[t3]f�[t0]f
t3�t0

= 2 0 � 1
2

Thus, the interpolating polynomial is

p(t) = 1 + 2t+
1

2

t2 + (�1

2

)t3

8 / 20

Classical polynomial interpolation

Approximation error

If f 2 C(n+1), then

f(t)� P (f |t0, . . . , tn)(t) =
f (n+1)

(⌧)

(n+ 1)!

!n+1(t)

for an appropriate ⌧ = ⌧(t), a < ⌧ < b.

In particular, the error depends on the choice of the nodes.

For Taylor interpolation, i.e., t0 = . . . = tn, this results in:

f(t)� P (f |t0, . . . , tn)(t) =
f (n+1)

(⌧)

(n+ 1)!

(t� t0)
n+1

9 / 20

Classical polynomial interpolation

Approximation error

Consider functions

{f 2 Cn+1
([a, b]) : sup

⌧2[a,b]
|fn+1

(⌧)|  M(n+ 1)!}

for some M > 0, then the approximation error depends on !n(t),
and thus on t0, . . . , tn.

Thus, one can try to minimize

max

atb
|!n+1(t)|,

which is achieved by choosing the nodes as the roots of the
Chebyshev polynomial of order (n+ 1).

10 / 20

Classical polynomial interpolation

Approximation error

Summary on pointwise convergence:

I If an interpolating polynomial is close/converges to the
original function depends on the regularity of the function and
the choice of interpolation nodes

I For a good choice of interpolation nodes, fast convergence
can be obtained for almost all functions

11 / 20

Classical polynomial interpolation

Interpolation/Least square approximation/Splines

I Polynomial interpolation

I Least squares with polynomials

I Splines (i.e., piecewise polynomial interpolation):

12 / 20

Splines

Assume (l + 2) pairwise disjoint nodes:

a = t0 < t1 < . . . < tl+1 = b.

A spline of degree k � 1 (order k) is a function in Ck�2 which on
each interval [ti, ti+1] coincides with a polynomial in P k�1.

Most important examples:

I linear splines, k = 2

I cubic splines, k = 4

13 / 20

Splines

Cubic splines look smooth:220 7. Interpolation and Approximation

s
So

a = to

Figure 7.13. Cubic splines, order k = 4.

curvature, i.e., of the second derivative. Thus the C 2-smooth cubic splines
are recognized as "smooth."

It is obvious that Sk,L:> is a real vector space, which, in particular, contains
all polynomials of degree::; k - 1, i.e., Pk-l C Sk,L:>. Furthermore, the
truncated powers of degree k,

if
if

t ? ti
t < ti

are contained in Sk,L:>. Together with the monomials 1, t, ... ,tk - l , they
form a basis of Sk,L:> , as we shall show in the following theorem:

Theorem 7.48 The monomials and truncated powers form a basis

(7.27)

of the spline space Sk,L:>. In particular, the dimension of Sk,fl. zs

dimSk,L:> = k + l.

Proof. We first show that one has at most k + l degrees of freedom for the
construction of a spline s E Sk,L:>. On the interval [to, tIl, we can choose
any polynomial of degree::; k - 1; these are k free parameters. Because of
the smoothness requirement s E C k - 2 , the polynomials on the following
intervals [tl, t2]' ... , [tl' t£+l] are determined by their predecessor up to one
parameter. Thus, we have another l parameters. Therefore dim Sk,L:> ::; k+l.
The remaining claim is that the k+l functions in B are linearly independent.
To prove this, let

k-l 1

s(t) := L ai ti + L Ci(t - = 0 for all t E [a, b].
i=O i=l

14 / 20

Splines

B-splines

B-splines are a basis in the spline space that:

I has local support

I satisfies a 3-term recursion

I non-negative
222 7. Interpolation and Approximation

Figure 7.14. B-splines of order k = 1,2,3.

Ti = Ti+k. The following properties are obvious because of the recursive
definition.

Remark 7.50 The B-splines satisfy

(a) SUppNik C [Ti,' .. , Ti+kl (local support),

(b) Nik(t) 0 for all t E R (nonnegative),

(c) Nik is a piecewise polynomial of degree ::::; k - 1 with respect to the
intervals [Tj, Tj+ll.

In order to derive further properties, it is convenient to represent the B-
splines in closed form. In fact, they can be written as an application of a kth

divided difference [Ti' ... ,Ti+kl to the truncated powers f(s) = (s -

Lemma 7.51 If Ti < Ti+k, then the B-spline Nik satisfies

Nik(t) = (Ti+k - Ti)[Ti, ... , Ti+kl(' - .

Proof. For k = 1, we obtain for the right-hand side

{ if Ti ::::; t < Ti+ 1

else

Furthermore, by employing the Leibniz formula (Lemma 7.15), it can easily
be verified that the right-hand side also satisfies the recurrence relation
(7.29). The statement now follows inductively. 0

Corollary 7.52 If Tj is an m-fold node,i.e.,

Tj-1 < Tj = ... = Tj+m-l < Tj+m ,

15 / 20

Splines

B-splines

I Coe�cients for interpolation with the B-spline basis can be
computed e�ciently using the De Boor algorithm.

I Splines are essential in Computer Aided Design (CAD).

I Also important in CAD: Bezier curves (these do not
interpolate points and have useful geometrical properties).

16 / 20

Trigonometric Interpolation

For periodic functions

Instead of polynomials, use sin(jt), cos(jt) for di↵erent j 2 N.
For N � 1, we define the set of complex trigonometric polynomials
of degree  N � 1 as

TN�1 :=

8
<

:

N�1X

j=0

cje
ijt, cj 2 C

9
=

; ,

where i =
p
�1.

Complex interpolation problem: Given pairwise distinct nodes
t0, . . . , tN�1 2 [0, 2⇡) and corresponding nodal values
f0, . . . , fN�1 2 C, find a trigonometric polynomial p 2 TN�1 such
that p(ti) = fi, for i = 0, . . . , N � 1.

17 / 20

Trigonometric Interpolation

I There exists exactly one p 2 TN�1, which solves this
interpolation problem.

I Choose the equidistant nodes tk :=

2⇡k
N for k = 0, . . . , N � 1.

Then, the trigonometric polynomial that satisfies p(ti) = fi
for i = 0, . . . , N � 1 has the coe�cients

cj =
1

N

N�1X

k=0

e�
2⇡ijk
N fk.

I For equidistant nodes, the linear map from CN ! CN defined
by (f0, . . . , fN�1) 7! (c0, . . . , cN�1) is called the discrete
Fourier transformation (DFT).

18 / 20

Discrete Fourier transform

The interpolation problem (f0, . . . , fN�1) 7! (c0, . . . , cN�1) and its
inverse require the multiplication or solution with a dense n⇥ n
system, i.e., at least O(n2

) flops.

However, the special structure of the system matrix allows
performing those operations using a much faster algorith, the
Fast Fournier Transform (FFT).

19 / 20

Trigonometric Interpolation

The Fast Fourier Transform (FFT) is a (very famous!) algorithm
that computes the DFT and its inverse in O(n) flops.

I Note that uniform nodes are used (and even required for the
FFT).

I Tensor products on square domains can be used for two
dimensional approximations, i.e., p(x)p(y).

I Can be used to approximate and solve di↵erential equations
(see Numerical Methods II).

20 / 20

