Numerical Methods I: Linear least squares

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

September 28, 2017

east-squares problems

Given data points/measurements

$$
\left(t_{i}, b_{i}\right), \quad i=1, \ldots, m
$$

and a model function ϕ that relates t and b :

$$
b=\phi\left(t ; x_{1}, \ldots, x_{n}\right)
$$

where x_{1}, \ldots, x_{n} are model function parameters. If the model is supposed to describe the data, the deviations/errors

$$
\Delta_{i}=b_{i}-\phi\left(t_{i}, x_{1}, \ldots, x_{n}\right)
$$

should be small. Thus, to fit the model to the measurements, one must choose x_{1}, \ldots, x_{n} appropriately.

Least-squares problems

Example: 1., $\phi\left(t_{i} x_{1}, x_{2}\right)=x_{1} t^{2}+x_{2} \exp (f) \ldots$ Patametes x_{1}, x_{2} enter line aaly "Rinara least squates"

$$
\text { 2. } \widetilde{\phi}\left(t_{i} x_{1}, x_{2}\right)=x_{1}^{2} t^{2}+\log \left(x_{2}\right) t^{3} \quad x_{1}, x_{2} \text { echer han- hinaeally }
$$

Least-squares problems

Measuring deviations

Least squares: Find x_{1}, \ldots, x_{n} such that

$$
\frac{1}{2} \sum_{i=1}^{m} \Delta_{i}^{2} \rightarrow \min
$$

From a probabilistic perspective, this corresponds to an underlying Gaussian error model.

Weighted least squares: Find x_{1}, \ldots, x_{n} such that

$$
\frac{1}{2} \sum_{i=1}^{m}\left(\frac{\Delta_{i}}{\delta b_{i}}\right)^{2} \rightarrow \min
$$

where $\delta b_{i}>0$ contain information about how much we trust the i th data point.

Least-squares problems

Measuring deviations

Alternatives to using squares:
L^{1} error: Find x_{1}, \ldots, x_{n} such that

$$
\sum_{i=1}^{m}\left|\Delta_{i}\right| \rightarrow \min
$$

Result can be very different, other statistical interpretation, more stable with respect to outliers.
L^{∞} error: Find x_{1}, \ldots, x_{n} such that

$$
\max _{1 \leq i \leq m}\left|\Delta_{i}\right| \rightarrow \min
$$

Linear least-squares
We assume (for now) that the model depends linearly on x_{1}, \ldots, x_{n}, egg.:

$$
\phi\left(t ; x_{1}, \ldots x_{n}\right)=a_{1}(t) x_{1}+\ldots+a_{n}(t) x_{n}
$$

Ex: $\phi\left(t ; x_{1}, x_{2}\right)=x_{1} t^{2}+x_{2} \exp (t)$, data points

$$
\begin{aligned}
& \Delta_{1}=b_{1}-\left(x_{1} t_{1}^{2}+x_{2} \operatorname{lex}\left(t_{1}\right)\right) \\
& \Delta_{2}=b_{2}-\left(x_{1} t_{2}^{2}+x_{2} \exp \left(t_{2}\right)\right) \\
& \Delta_{3}=b_{3}-\left(x_{1} t_{3}^{2}+x_{2} \exp \left(t_{3}\right)\right)
\end{aligned}
$$

$$
\left(t_{i}, b_{i}\right), i=1,2,3
$$

$\min _{x_{1}, x_{2}} \sum_{i=1}^{3} \Delta_{i}^{2} \rightarrow$ linear lead squats perter unknowns: X_{1}, x_{2}, (2unknowns), 3 equations

Linear least-squares
Choosing the least square error, this results in

$$
\min _{\boldsymbol{x}}\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{T}, \boldsymbol{b}=\left(b_{1}, \ldots, b_{m}\right)^{T}$, and $a_{i j}=a_{j}\left(t_{i}\right)$.
In the following, we study the overdetermined case, ie., $m \geq n$.
In example:

$$
\begin{array}{rr}
A=\left[\begin{array}{ll}
t_{1}^{2} & \exp \left(d_{1}\right) \\
t_{2}^{2} & \exp \left(d_{2}\right) \\
t_{3}^{2} & \exp \left(d_{3}\right)
\end{array}\right] \\
\in \mathbb{R}^{3 \times 2} & \in\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
& \in \mathbb{R}^{2} \quad \mid \\
\mathbb{R}^{3}
\end{array}
$$

inear least-squares

Different perspective:
Consider non-square matrices $A \in \mathbb{R}^{m \times n}$ with $m \geq n$ and $\operatorname{rank}(\mathrm{A})=n$. Then the system

$$
A \boldsymbol{x}=\boldsymbol{b}
$$

does, in general, not have a solution (more equations than unknowns). We thus instead solve a minimization problem

$$
\min _{x}\|A \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}<2 \text {-nom, Euclidean nom }
$$

The minimum $\overline{\boldsymbol{x}}$ of this optimization problem is characterized by the normal equations:

$$
A^{T} A \overline{\boldsymbol{x}}=A^{T} \boldsymbol{b}
$$

Linear least-squares: normal equations

Note: Such a characterization is only passible for nouns that have a corresponding inner product. $\langle, 1\rangle$.

$$
\|x\|=\sqrt{\langle x, x\rangle}
$$

Linear least-squares: normal equations
Lemma (3.4), $V,\langle .1\rangle$ finik-dim. vector space, $U \subset V$ subspace U^{\perp} is athogonal complement, ie. $U^{\perp}=\{v \in V \mid\langle v, u\rangle=0$ $v \in V$ fa all $n \in U\}$
Then: argmin $\left\|u^{\prime}-v\right\|=u \longleftrightarrow$

$$
u^{\prime} \in U
$$

Prose: Let $u \in U$ such that $v-u \in U_{0}^{\perp}$ Then for $u^{\prime} \in U$

$$
\begin{aligned}
& \left\|v-u^{\prime}\right\|^{2}=\|v-u\|^{2}+ \\
& \frac{2\left\langle v-u, u-u^{\prime}\right\rangle}{=0}+\left\|u-u^{\prime}\right\|^{2} \\
= & \|v-u\|^{2}+\left\|u-u^{\prime}\right\|^{2} \geqslant\|v-u\|^{2}
\end{aligned}
$$

Linear least-squares: normal equations
This unique $u \in U$ is called the orthogonal pegeiction of o condo $U, u=P v$
 P is linear

Thu: $\bar{x}=\underset{x \in \mathbb{R}^{n}}{\arg \min }\|A x-b\|^{2} \Longleftrightarrow A^{\top} A x=A^{\top} b$
In particular, minimum is unique if $\operatorname{rank}(A)=n \operatorname{since}$ then $A^{\top} A$ is invertible.
Prod:

$$
\begin{aligned}
& V=\mathbb{R}^{m}, \cup=R(A) \subset V \text { subspace } \\
& \|b-A x\|=\min \Longleftrightarrow\left\langle b-A x, A x^{\prime}\right\rangle=0 \quad \forall x^{\prime} \in \mathbb{R}^{n} \\
& \Longleftrightarrow\left\langle A^{\top}(b-A x), x^{\prime}\right\rangle=0 \quad \forall x^{\prime} \in \mathbb{R}^{n} \\
& \Leftrightarrow A^{\top} A x=A^{\top} b
\end{aligned}
$$

Linear least-squares problems-QR factorization
Solving the normal equations

$$
A^{T} A \overline{\boldsymbol{x}}=A^{T} \boldsymbol{b}
$$

$$
\begin{aligned}
& B \in \mathbb{R}^{\text {lan }} \\
& \|B\|_{2}=\left|\lambda_{\text {max }}(B)\right| \\
& \left\|B^{-1}\right\|_{2}=\left|\lambda_{\text {max }}\left(B^{-1}\right)\right|=
\end{aligned}
$$

requires:

- computing $A^{T} A$ (which is $O\left(m n^{2}\right)$)
- condition number of $A^{T} A$ is square of condition number of A;

Claim: (problematic for the Choleski factorization)

$$
\frac{\text { Lain: }}{K_{2}\left(A^{\top} A\right)}=\left\|A^{\top} A\right\|_{2}\left\|\left(A^{\top} A\right)^{-1}\right\|_{2}=K_{2}(A)^{2}
$$

$$
\text { Prod: } \left.k_{2}(A)^{2} \stackrel{(Q ⿻ \|}{ }\right) \frac{\max _{\|x\|_{2}=1}\|A x\|^{2}}{\min _{\|x\|_{2}=1}\|A x\|^{2}}=\frac{\max _{\|x\|_{2}=1}\langle A x, A x\rangle}{\min _{\| \| \|_{2}=1}\langle A x, A x\rangle}
$$

$$
=\frac{\max _{\| x}\left\langle A^{\top} A x, x\right\rangle}{\min _{x|l| l \mid}\left\langle A^{\top} A x, x\right\rangle}=\frac{\lambda_{\max }\left(A^{\top} A\right)}{\lambda_{\min }\left(A^{\top} A\right)}=k_{2}\left(A^{\top} A\right)
$$

Conohtioning of an athagonal pragiction:
Lemma: $P: \mathbb{R}^{m} \rightarrow V$ orthogonal projection onto $V \subset \mathbb{R}^{n}$
For $b \in \mathbb{R}^{m}$, denote by I angle between b and V

$$
\text { i.e. } \quad \sin \theta=\frac{\|b-P b\|_{2}}{\|b\|}
$$

Than the relative condition number of (P, b) w.r. to the 2 -nam is $K=\frac{1}{\cos \vartheta}\|P\|_{2}$
Proof: $\|P b\|^{2}=\|b\|^{2}-\|b-P b\|^{2}$

$$
\rightarrow \frac{\|P b\|^{2}}{\|b\|^{2}}=1-\sin ^{2} \theta=\cos ^{2} \theta
$$

Pis linear, ie. $\quad K_{r e}=\frac{\|b\|_{2}}{\|P b\|_{2}}\left\|P^{\prime}(b)\right\|_{2}=\frac{1}{\cos v}\|P\|_{2}$

Linear least-squares problems-QR factorization

Conditioning

Solving the normal equation is equivalent to computing $P b$, the orthogonal projection of b onto the subspace V spanned by columns of A.

Let \boldsymbol{x} be the solution of the least square problem and denote the residual by $\boldsymbol{r}=\boldsymbol{b}-\boldsymbol{A x}$, and

$$
\sin (\theta)=\frac{\|\boldsymbol{r}\|_{2}}{\|\boldsymbol{b}\|_{2}}
$$

Linear least-squares problems-QR factorization

Conditioning

The relative condition number κ of \boldsymbol{x} in the Euclidean norm is bounded by

- With respect to puerturbations in \boldsymbol{b} :

$$
\kappa \leq \frac{\kappa_{2}(A)}{\cos (\theta)}
$$

- With respect to perturbations in \boldsymbol{A} :

$$
\kappa \leq \kappa_{2}(A)+\kappa_{2}(A)^{2} \tan (\theta)
$$

Small residual problems $\cos (\theta) \approx 1, \tan (\theta) \approx 0$: behavior similar to linear system.
Large residual problems $\cos (\theta) \ll 1, \tan (\theta)>1$: behavior essentially different from linear system.

Linear least-squares problems-QR factorization

One would like to avoid the multiplication $A^{T} A$ and use a suitable factorization of A that aids in solving the normal equation, the QR-factorization:

$$
\begin{aligned}
& A= \\
& A
\end{aligned}=\overline{Q R}=\left[Q_{1}, Q_{2}\right]\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]=Q_{1} R_{1},
$$

where $Q \in \mathbb{R}^{m \times m}$ is an orthonormal matrix $\left(Q Q^{T}=I\right)$, and $R \in \mathbb{R}^{m \times n}$ consists of an upper triangular matrix and a block of zeros.

How can the $Q R$ factorization be used to solve the normal equation?

$$
\min _{\boldsymbol{x}}\|A \boldsymbol{x}-\boldsymbol{b}\|^{2}=\min _{\boldsymbol{x}}\left\|Q^{T}(A \boldsymbol{x}-\boldsymbol{b})\right\|^{2}=\min _{\boldsymbol{x}}\left\|\left[\begin{array}{c}
\boldsymbol{b}_{1}-R_{1} \boldsymbol{x} \\
\boldsymbol{b}_{2}
\end{array}\right]\right\|^{2},
$$

where $Q^{T} \boldsymbol{b}=\left[\begin{array}{l}\boldsymbol{b}_{1} \\ \boldsymbol{b}_{2}\end{array}\right]$.

$$
=\min _{x}\left\|b_{1}-R_{1} x\right\|^{2}+\left\|b_{e}\right\|^{2}
$$

Thus, the least squares solution is $\boldsymbol{x}=R^{-1} \boldsymbol{b}_{1}$ and the residual is $\left\|b_{2}\right\|$.

$$
A-Q R
$$

How can we compute the QR factorization?
Givens rotations
Use sequence of rotations in 2D subspaces:
For $m \approx n: \sim n^{2} / 2$ square roots, and $4 / 3 n^{3}$ multiplications
For $m \gg n: \sim n m$ square roots, and $2 m n^{2}$ multiplications
Householder reflections
Use sequence of reflections in 2D subspaces
For $m \approx n: 2 / 3 n^{3}$ multiplications
For $m \gg n: 2 m n^{2}$ multiplications

