
Numerical Methods I: Numerical

Integration/Quadrature

Georg Stadler
Courant Institute, NYU
stadler@cims.nyu.edu

November 30, 2017

1 / 20

 



Numerical integration

We want to approximate the definite integral

I(f) = Iba(f) =

Z b

a
f(t) dt

numerically. Properties of the Riemann integral:

I I is linear

I positive, i.e., if f is nonnegative, then I(f) is nonnegative.

I additive w.r. to the interval bounds: Ica = Iba + Icb
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Numerical integration

Conditioning

Lets study the map

([a, b], f) !
Z b

a
f(t) dt,

where we use the L1-norm for f . The absolute and relative
condition numbers of integration are:


abs

= 1,


rel

=
I(|f |)
I(f)

.

So, integration is harmless w.r. to the absolute condition number,
and problematic w.r. to the relative condition number if I(f) is
small and f changes sign.
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Numerical integration

We are looking for a map

Î :

(
C([a, b]) ! R
f 7! Î(f)

such that |I(f)� Î(f)| is small.

Example: Trapezoidal rule.

General quadrature formula:

Î(f) =
nX

i=0

�if(ti),

with weights �i and nodal points ti, i = 0, 1, . . . , n.
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Numerical integration

Newton-Cotes formulas

Replace f by easy-to-integrate approximation f̂ , and set

Î(f) := I(f̂).

Given fixed nodes t0, . . . , tn, use polynomial approximation

f̂ = P (f |t0, . . . , tn) =
nX

i=0

f(ti)Lin(t)

Thus:

Î(f) = (b� a)
nX

i=0

�inf(ti),

where �in = 1
b�a

R b
a Lin(t) dt
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Numerical integration

Newton-Cotes formulas

Theorem: For (n+ 1) pairwise distinct points, there exists exactly
one quadrature formula that is exact for all p 2 P n.

Uniformly spaced points:

�in =
1

b� a

Z b

a

Y

i 6=j

t� ti
ti � tj

dt =
1

n

Z n

0

Y

i 6=j

s� j

i� j
ds

These weights are independent of a and b.

9.2. Newton-Cotes Formulas 275 

the constructed quadrature formulas are called Newton-Cotes formulas. 
The term for the corresponding Newton-Cotes weights Ain simplifies via 
the substitution s := (t - a)/h: 

1 lb n t - tj 1 in n S - j 
Ain = -- II-- dt= - II-- ds. 

b - a a j=O ti - tj n 0 j=O i - j 
j#i j#i 

The weights Ain, which are independent of the interval boundaries, only 
have to be computed once, respectively, given once. In Table 9.1, we have 
listed them up to order n = 4. The weights, and therefore also the quadra-
ture formulas, are always positive for the orders n = 1, ... , 7. Higher orders 
are less attractive, since starting with n = 8, negative weights may occur. 
In this case, the Lebesgue constant is the characteristic quantity (9.3), up 
to the normalization factor (b - a)-I. Note that we have already encoun-
tered the Lebesgue constant in Section 7.1 as the condition number of the 
polynomial interpolation. 

Table 9.1. Newton-Cotes weights Ain for n = 1, ... ,4. 

n AOn , ... , Ann Error Name 

1 1 1 1" (,) Trapezoidal rule "2 "2 

2 1 4 1 Simpson's rule, Kepler's barrel rule (; (; (; 

3 1 3 3 1 3:05 f(4)(,) Newton's 3/8-rule 8 8 8 8 

4 7 32 12 32 7 f(6)(,) Milne's rule 90 90 90 90 90 

In Table 9.1, we have already assigned the respective approximation er-
rors to the Newton-Cotes formulas (for sufficiently smooth integrands), 
expressed as a power of the step size h and a derivative at an intermediate 
position, E [a, b]. Observe that for the even orders n = 2,4, the power 
of h and the degree of the derivative always jump by 2. In the following 
we shall verify these estimates for the first two formulas, by which one can 
already see the principle for odd n (see Exercise 9.3). 

Before starting, we recall a not so obvious variant of the mean value theo-
rem, which we shall encounter repeatedly in the proof of the approximation 
statements. 

Lemma 9.5 Let g, h E C[a, b] be continuous functions on [a, b], where g 
has only one sign, i.e., either g(t) 2: 0 or g(t) ::; 0 for all t E [a, b]. Then 

lb h(t)g(t) dt = h(,) lb g(t) dt 

for some, E [a, b]. 

Weights are positive up to order 7, then some become negative.
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Numerical integration

Newton-Cotes formulas

Proof of error terms is based on

I a variant of the mean value theorem for integrals

I the Newton remainder form from interpolation, e.g., for linear
interpolation

f(t)� P (t) = [t, a, b]f · (t� a)(t� b) =
f 00(⌧)

2
(t� a)(t� b).

For piece-wise polynomial approximations (e.g., the trapezoidal
rule), analogous estimates as shown in the table hold.
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Numerical integration

Gauss-Christo↵el quadrature

Now, let’s allow the nodes t0, . . . , tn to vary. The best we can
hope for is exact interpolation up to polynomials of degree 2n+ 1
(based on a non-rigorous counting argument).

Also, for generalization, we consider quadrature of weighted
integrals, with a positive weight function !(t):

I(f) =

Z b

a
!(t)f(t) dt

with weight funcations !(t) = 1,!(t) = 1/
p
1� t2, . . ..
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Numerical integration

Gauss-Christo↵el quadrature

Theorem: If Î is exact for polynomials p 2 P 2n+1 (for !-weighted
integration), then

Pj+1(t) = (t� ⌧0j) · . . . · (t� ⌧jj) 2 P n+1

are orthogonal with respect to the scalar product induced by !(t).
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Numerical integration

Gauss-Christo↵el quadrature

Thus:

I one must choose the roots of the orthogonal polynomials
(which are single roots)

I the weights are uniquely determined and yield exact
integration for polynomials up to degree n. . . but:

Theorem: Let ⌧0n, . . . , ⌧nn be the roots of the (n+ 1)st orthogonal
polynomial for the weight !. Then any quadrature formula Î is
exact for polynomials up to order n if and only if it is exact up to
order 2n+ 1.

10 / 20



Numerical integration

Gauss-Christo↵el quadrature
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Numerical integration

Gauss-Christo↵el quadrature

9.3. Gauss-Christoffel Quadrature 285 

Table 9.3. Commonly occurring classes of orthogonal polynomials. 

w(t) Interval I = [a, b] Orthogonal polynomials 

1 [-1,1] Chebyshev polynomials Tn 
v'1-t2 

e- t [0,00] Laguerre polynomials Ln 

e- t2 [-00,00] Hermite polynomials Hn 

1 [-1,1] Legendre polynomials Pn 

(w == 1) is only used in special applications. For general integrands, the 
trapezoidal sum extrapolation, about which we shall learn in the next sec-
tion, is superior. However, the weight function of the Gauss-Chebyshev 
quadrature is weakly singular at t = ±1, so that the trapezoidal rule 
is not applicable. Of particular interest are the Gauss-Hermite and the 
Gauss-Laguerre quadrature, which allow the approximation of integrals 
over infinite intervals (and even solve exactly for polynomials P E P 2n+1)' 

Let us finally note an essential property of the Gauss quadrature for 
weight functions w t 1: The quality of the approximation can only be 
improved by increasing the order. A partitioning into subintervals, however, 
is only possible for the Gauss-Legendre quadrature (respectively, the Gauss-
Lobatto quadrature; compare Exercise 9.11). 

9.3.2 Computation of Nodes and Weights 

For the effective computation of the weights Ain, we need another represen-
tation. For this purpose, let {Fd be a family of orthonormal polynomials 
Fk E Pk, i.e., 

(Fi' Fj ) = bij . 

These satisfy the Christoffel-Darboux formula (see, e.g., [82] or [64]). 

Lemma 9.14 Suppose that kn are the leading coefficients of the or-
thonormal polynomials Fn(t) = kntn + O(tn- 1 ). Then, for all 8, t E 

R, 

(Fn+l (t)Fn(s) - Fn(t)Fn+l (8)) = t Fj(t)Fj(s) . 
kn+l t - s . 

J=O 

The following formula for the weights Ain can be derived from this 
formula. 

Lemma 9.15 The weights Ain satisfy 

(9.5) 

Corresponding quadrature rules are usually prefixed with “Gauss-”,
i.e., “Gauss-Legendre quadrature”, or “Gauss-Chebyshev
quadrature”.

12 / 20



Numerical integration

Gauss-Legendre points/weights for interval [�1, 1]
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Numerical integration

Gauss points in 2D

Tensor-product Gauss points. Weights are products of 1D-weights.
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Numerical integration

I Accuracy in Gauss-(Chebyshev, Laguerre, Hermite,
Legendre,. . . ) can only be improved by increasing number of
points

I Of particular interest are quadrature points for infinite
intervals (Laguerre, Hermite)

I Interval partitioning superior, but only possible for ! ⌘ 1
(Gauss-Legendre or Gauss-Lobatto)

0

3

1

4

2

2D-Gauss-Lobatto integration points (also used as interpolation points).
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Integration on [0,1] (Laguerre)

How to approximate Z 1

0
g(t) dt,

where g decays rapidly enough such that the integral is finite?
Laguerre integration assumes integration weighted with e�t. . .
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Numerical integration

Interval partitioning

Split interval [a, b] into subintervals of size h = (b� a)/n. Basic
trapezoidal sum:

T (h) = Tn = h

 
1

2
(f(a)� f(b)) +

n�1X

i=1

f(a+ ih)

!

We can now think of what happens as h ! 0 (i.e., more
subintervals).

Theorem: For f 2 C2m+1 holds:

T (h)�
Z b

a
f(t) dt = ⌧2h

2 + ⌧4h
4 + . . .+R2m+2(h)h

2m+2,

which coe�cients ⌧i that depend on the derivatives of f at a and
b, and on the Bernoulli numbers B2k and R2m+2(h) is a remainder
term that involves f (2m).
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Numerical integration

Interval partitioning

Extrapolation:
lim
h!0

T (h) := lim
n!1

Tn = I(f)

Extrapolation uses h1, . . . , hn to estimate the limit.

I One can estimate the order gained by extrapolation
theoretically (Thm. 9.22 in Deuflhard/Hohmann).

I Existence of an asymptotic expansion with a certain order hp

(p � 1) can be used to improve the extrapolation.

I Extrapolation ideas with Trapezoidal rule leads to Romberg
quadrature.
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Numerical integration

Adaptive interval partitioning

Idea: On each sub-interval, estimate the quadrature error by
either:

I Using a higher-order quadrature (e.g., Simpson rule), or

I Comparing the error on a subinterval with the error on a
refinement

Then, subdivide the interval depending on the error estimation,
and repeat. Main challenge: Derive an error estimator ✏̄ that
estimates the true error ✏ in the following way:

c1✏  ✏̄  c2✏

with c1  1  c2. This method uses an a posteriori estimate of the
error.
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Numerical integration

Di�cult cases for quadrature:

I (Unknown) discontinuities in f : adaptive quadrature continues
to refine, which can be used to localize discontinuities

I Highly oscillating integrals

I (Weakly) singular integrals (as required, e.g., in integral
methods (the fast multipole method)
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