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Numerical integration

We want to approximate the definite integral

I(f) =1°(f /f

numerically. Properties of the Riemann integral:

» [ is linear

> positive, i.e., if f is nonnegative, then I(f) is nonnegative.

» additive w.r. to the interval bounds: I¢ = I + Iy



Numerical integration
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Lets study the map
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where we use the L'-norm for f. The absolute and relative

condition numbers of integration are: recall (ab) — a+b
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So, integration is harmless w.r. to the absolute condition number,

and problematic w.r. to the relative condition number if I(f) is
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Numerical integration

We are looking for a map

i {C([a, o) —R
f = I(f)

such that [I(f) — I(f)] is small.

Example: Trapezoidal rule.

7L e
o 2 Qo)

General quadrature formula:




Numerical integration

Newton-Cotes formulas

Replace f by easy-to-integrate approximation f and set

I(f) == 1(f)
Given fixed nodes tg,...,t,, use polynomial approximation
o
f = P f|t ’ f
(flto z )
k G—LL

Thus:

f)=0b=a)> Ninf(t:),
=0

/20



Numerical integration

Newton-Cotes formulas
Theorem: For (n + 1) pairwise distinct points, there exists exactly
one quadrature formula that is exact for all p € P,,.

Uniformly spaced points:
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These weights are independent of a and b.

Table 9.1. Newton-Cotes weights A\in for n =1,...,4. j’l_q)() = b“‘_\q@‘\‘&[ﬁ)}
n Aons - -+ s Ann Error Name 2\'!- b-a. > 2
3 .
1 % % Z—gf "(t) | Trapezoidal rule o{:k—-f\—{bqh
2 fl; % % 3—0 f (4)(7’) Simpson’s rule, Kepler’s barrel rule
3 ;3381 %f(“)('r) Newton’s 3/8-rule \—l———{i ' ,
4| L &2 12 382 1|8k f(6)(7) | Milne's rule (Q“): ! hy,

Weights are positive up to order 7, then some become negative.



Numerical integration

Newton-Cotes formulas

Proof of error terms is based on
> a variant of the mean value theorem for integrals

> the Newton remainder form from interpolation, e.g., for linear
interpolation

ft) = P(t) =[t,a,b]f - (t —a)(t —b)

_ ()
= L2t —a)(t ).

For piece-wise polynomial approximations (e.g., the trapezoidal
rule), analogous estimates as shown in the table hold.

Wmm
M%\f\; LS

= T b
N <

20



Numerical integration noohahue tl e

Gauss-Christoffel quadrature q j“@\ _ j A . {ﬁ,(‘h\
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Now, let's allow the nodes ty,...,t, to vary. The best we can /e

hope for is exact interpolation up to polynomials of degree 2n + 1
(based on a non-rigorous counting argument).

Also, for generalization, we consider quadrature of weighted
integrals, with a positive weight function w(t):

with weight funcations w(t) = 1,w(t) = 1/V1 —¢#2,....



Numerical integration .
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Gauss-Christoffel quadrature o |
42 e
Tes T Ty Ty
Theorem: If I is exact for polynomials p € Pg, 1 (for w-weighted
integration), then q e
Pja(t) = (t —705) - ... (t = 7j5) € Pnpa

are orthogonal with respect to the scalar product induced by w(t).
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Numerical integration

Gauss-Christoffel quadrature

Thus:

> one must choose the roots of the orthogonal polynomials
(which are single roots)

> the weights are uniquely determined and yield exact
integration for polynomials up to degree n. .. but:

Theorem: Let 7oy, ..., Thn be the roots of the (n + 1)st orthogonal
polynomial for the weight w. Then any quadrature formula Iis
exact for polynomials up to order n if and only if it is exact up to
order 2n + 1.



Numerical integration

Gauss-Christoffel quadrature
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Numerical integration

Gauss-Christoffel quadrature

Interval I = [a, b]

Orthogonal polynomials

Corresponding quadrature rules are usually prefixed with “Gauss-",

[_1’ l]
[0, 00]
[—O0,00]

[_1’”

Chebyshev polynomials T},
Laguerre polynomials L,
Hermite polynomials H,

Legendre polynomials P,

i.e., “Gauss-Legendre quadrature”, or “Gauss-Chebyshev

quadrature”.



Numerical integration

Gauss-Legendre points/weights for interval [—1, 1]

Number of points, n Points, x; Weights, w;
1 0 2
2 + % 1
8
3 ° ’
3 5
/5 9
3 2 /6 184++/30
i\/? A 36
4
3 2 /6 18—+/30
i\/7 +7Vs 36
128
0 225
1 10 | 3224+13V70
5 jEa\/ 52T | w0
1 10 | 322-13V70
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Numerical integration
Gauss points in 2D
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Tensor-product Gauss points. Weights are products of 1D-weights.
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Numerical integration

» Accuracy in Gauss-(Chebyshev, Laguerre, Hermite,
Legendre,...) can only be improved by increasing number of
points

» Of particular interest are quadrature points for infinite
intervals (Laguerre, Hermite)

> Interval partitioning superior, but only possible for w =1
(Gauss-Legendre or Gauss-Lobatto)

4 [ [ ) ® 3 4
0 Py o Py Py
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2D-Gauss-Lobatto integration points (also used as interpolation points).



Integration on [0, oo) (Laguerre)
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where g decays rapidly enough such that the integral is finite?
Laguerre integration assumes integration weighted with e~ ..
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Numerical integration

Interval partitioning

Split interval [a, b] into subintervals of size h = (b — a)/n. Basic

trapezoidal sum: a o= b
e
n—1 .
T(h)=T"=h (;(f(a) HIO)+ Y fla+ z‘h)) Rh;fﬁf”f
=1 tac Supshid

We can now think of what happens as h — 0 (i.e., more
subintervals).

Theorem: For f € C?™*+! holds:

b
ﬂm/f@m:mﬁ+m#+m+RmH@mW{

which coefficients 7; that depend on the derivatives of f at a and
b, and on the Bernoulli numbers Bsj and Ray,12(h) is a remainder
term that involves f(2™)
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Numerical integration

Interval partitioning

Extrapolation:

m T(h) == lim T" =I(f) ‘= i 3
Extrapolation uses hq, ..., h, to estimate the limit.

» One can estimate the order gained by extrapolation
theoretically (Thm. 9.22 in Deuflhard/Hohmann).

> Existence of an asymptotic expansion with a certain order hP
(p > 1) can be used to improve the extrapolation.

» Extrapolation ideas with Trapezoidal rule leads to Romberg
quadrature.




Numerical integration ,
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Idea: On each sub-interval, estimate the quadrature error by
either:

» Using a higher-order quadrature (e.g., Simpson rule), or

» Comparing the error on a subinterval with the error on a
refinement
Then, subdivide the interval depending on the error estimation,
and repeat. Main challenge: Derive an error estimator € that
estimates the true error € in the following way:

c1€ < € < cg¢€

with ¢; <1 < ¢9. This method uses an a posteriori estimate of the
error.
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Numerical integration J b
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Difficult cases for quadrature:

» (Unknown) discontinuities in f: adaptive quadrature continues
to refine, which can be used to localize discontinuities

» Highly oscillating integrals \f { S’!ng : L

» (Weakly) singular integrals (as required, e.g., in integral

methods (the fast multipole method) {k
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