Numerical Methods I: Numerical Integration/Quadrature

> Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu

> > November 30, 2017

We want to approximate the definite integral

$$I(f) = I_a^b(f) = \int_a^b f(t) \, dt$$

numerically. Properties of the Riemann integral:

- I is linear
- ▶ positive, i.e., if f is nonnegative, then I(f) is nonnegative.
- ▶ additive w.r. to the interval bounds: $I_a^c = I_a^b + I_b^c$

Conditioning

 $\|f\|_{1} = \int_{0}^{p} [f(f)] df \|_{1} - norm \|$

Lets study the map

$$([a,b],f) \to \int_a^b f(t) \, dt,$$

where we use the L^1 -norm for f. The absolute and relative condition numbers of integration are: recall $(a_1b) \longrightarrow a_{b}b$

We are looking for a map

$$\begin{split} \hat{I} : \begin{cases} C([a,b]) & \to \mathbb{R} \\ f & \mapsto \hat{I}(f) \end{cases} \\ \text{such that } |I(f) - \hat{I}(f)| \text{ is small.} \\ \text{Example: Trapezoidal rule.} \\ \text{General quadrature formula:} \\ \hat{I}(f) = \sum_{i=0}^{n} \lambda_i f(t_i), \\ \hat{I}(f) = \sum_{i=0}^{n} \lambda_i f(t_i), \\ \text{with weights } \lambda_i \text{ and nodal points } t_i, i = 0, 1, \dots, n. \end{split}$$

with weights λ_i and notal points $t_i, i = 0, 1, \dots, n$.

Newton-Cotes formulas

Replace f by easy-to-integrate approximation \hat{f} , and set

 $\hat{I}(f) := I(\hat{f}).$

Given fixed nodes t_0, \ldots, t_n , use polynomial approximation

$$\hat{f} = P(f|t_0, \dots, t_n) = \sum_{i=0}^n f(t_i) L_{in}(t) \qquad \begin{array}{c} \text{La grange} \\ \text{polynomials} \\ \text{Lin}(t) = \prod_{k+i} \underbrace{(t-t_k)}_{(t-i-k)} \end{array}$$

Thus:

$$\hat{I}(f) = (b-a) \sum_{i=0}^{n} \lambda_{in} f(t_i),$$

where $\lambda_{in} = \frac{1}{b-a} \int_a^b L_{in}(t) dt$

Newton-Cotes formulas

Theorem: For (n + 1) pairwise distinct points, there exists exactly one quadrature formula that is exact for all $p \in \mathbf{P}_n$.

Uniformly spaced points:

$$\lambda_{in} = \frac{1}{b-a} \int_{a}^{b} \prod_{i \neq j} \frac{t-t_{i}}{t_{i}-t_{j}} dt = \frac{1}{n} \int_{0}^{n} \prod_{i \neq j} \frac{s-j}{i-j} ds$$

These weights are independent of a and b.

	Table 9.1. N	$\hat{I}(f) = \frac{1}{b - a} (f(a) + f(b))$		
n	$\lambda_{0n},\ldots,\lambda_{nn}$	Error	Name heb-a	2 2
1	$\frac{1}{2}$ $\frac{1}{2}$	$\tfrac{h^3}{12}f''(\tau)$	Trapezoidal rule	
2	$\frac{1}{6}$ $\frac{4}{6}$ $\frac{1}{6}$	$\frac{h^5}{90}f^{(4)}(\tau)$	Simpson's rule, Kepler's barrel rule	
3	$\frac{1}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{1}{8}$	$\frac{3h^5}{80}f^{(4)}(\tau)$	Newton's 3/8-rule	
4	$\frac{7}{90} \frac{32}{90} \frac{12}{90} \frac{32}{90} \frac{7}{90}$	$\frac{8h^7}{945}f^{(6)}(\tau)$	Milne's rule	"to "It,

6/20

Weights are positive up to order 7, then some become negative.

Newton-Cotes formulas

Proof of error terms is based on

- a variant of the mean value theorem for integrals
- the Newton remainder form from interpolation, e.g., for linear interpolation

$$f(t) - P(t) = [t, a, b]f \cdot (t - a)(t - b) = \frac{f''(\tau)}{2}(t - a)(t - b).$$

For piece-wise polynomial approximations (e.g., the trapezoidal rule), analogous estimates as shown in the table hold.

Gauss-Christoffel quadrature

quadrahue rule n $\hat{T}(f) = \sum_{i=0}^{n} \lambda_i f(f_i)$ wij lis modes Now, let's allow the nodes t_0, \ldots, t_n to vary. The best we can hope for is exact interpolation up to polynomials of degree 2n+1(based on a non-rigorous counting argument).

Also, for generalization, we consider quadrature of weighted integrals, with a positive weight function $\omega(t)$:

$$I(f) = \int_{a}^{b} \omega(t) f(t) \, dt$$

with weight funcations $\omega(t) = 1, \omega(t) = 1/\sqrt{1-t^2}, \dots$

Gauss-Christoffel quadrature

Theorem: If \hat{I} is exact for polynomials $p \in P_{2n+1}$ (for ω -weighted integration), then

1=3

$$P_{j+1}(t) = (t - \tau_{0j}) \cdot \ldots \cdot (t - \tau_{jj}) \in \boldsymbol{P}_{n+1}$$

are orthogonal with respect to the scalar product induced by $\omega(t)$. Prod " Part Py, jEn is in Part, I is wach -D I(Photi Ps) = S w(+) Phot (+) Pg (+) dt = (Photin Pg) $= \sum_{n=1}^{\infty} \lambda_{in} P_{nu}(T_{in}) P_1(T_{in}) = 0$ => (Pm, P)=0 j=0, m i.e. Pro, L Pj - Puri is alloponal polynomial.

Gauss-Christoffel quadrature

Thus:

- one must choose the roots of the orthogonal polynomials (which are single roots)
- ► the weights are uniquely determined and yield exact integration for polynomials up to degree n...but:

Theorem: Let $\tau_{0n}, \ldots, \tau_{nn}$ be the roots of the (n+1)st orthogonal polynomial for the weight ω . Then any quadrature formula \hat{I} is exact for polynomials up to order n if and only if it is exact up to order 2n + 1.

Gauss-Christoffel quadrature

dugen m. Have to show that I is exact up to dugen 2n+1.

$$P \in \mathbb{P}_{2n+1}, P = Q P_{n+1} + R, \quad \Theta_1 R \in \mathbb{P}_n \quad \text{and} \quad \text{for deg}$$

$$\int w(t) P(t) dt = \int w(t) (\Theta P_{n+1} + R)(t) dt = \int w(t) R(t) dt = \hat{T}(R)$$

$$= 0 \quad be cause P_{n+1} \perp all polynomials d degree and loss
$$\hat{T}(R) = \sum_{i=0}^{n} \lambda_{in}^i R(\tau_{in}) = \sum_{i=0}^{n} \int R(\tau_{in}) + Q(\tau_{in}) P_{n+1}(\tau_{in})$$

$$= \hat{T}(R)$$$$

Gauss-Christoffel quadrature

$\omega(t)$	Interval $I = [a, b]$	Orthogonal polynomials
$\frac{1}{\sqrt{1-t^2}}$	[-1, 1]	Chebyshev polynomials T_n
e^{-t}	$[0,\infty]$	Laguerre polynomials L_n
e^{-t^2}	$[-\infty,\infty]$	Hermite polynomials H_n
1	$\left[-1,1 ight]$	Legendre polynomials P_n

Corresponding quadrature rules are usually prefixed with "Gauss-", i.e., "Gauss-Legendre quadrature", or "Gauss-Chebyshev quadrature".

Gauss-Legendre points/weights for interval [-1, 1]

Number of points, n	Points, <i>x_i</i>	Weights, w_i	
1	0	2	
2	$\pm \sqrt{\frac{1}{3}}$	1	ł
	0	<u>8</u> 9	
3	$\pm \sqrt{\frac{3}{5}}$	$\frac{5}{9}$	f
4	$\pm \sqrt{\tfrac{3}{7} - \tfrac{2}{7}\sqrt{\tfrac{6}{5}}}$	$\frac{18+\sqrt{30}}{36}$	
-	$\pm \sqrt{\tfrac{3}{7} + \tfrac{2}{7}\sqrt{\tfrac{6}{5}}}$	$\frac{18-\sqrt{30}}{36}$	
	0	$\frac{128}{225}$	
5	$\pm \tfrac{1}{3} \sqrt{5 - 2 \sqrt{\tfrac{10}{7}}}$	$\tfrac{322+13\sqrt{70}}{900}$	
	$\pm \tfrac{1}{3} \sqrt{5 + 2 \sqrt{\tfrac{10}{7}}}$	$\frac{322-13\sqrt{70}}{900}$	

Gauss points in 2D

Tensor-product Gauss points. Weights are products of 1D-weights.

- Accuracy in Gauss-(Chebyshev, Laguerre, Hermite, Legendre,...) can only be improved by increasing number of points
- Of particular interest are quadrature points for infinite intervals (Laguerre, Hermite)
- Interval partitioning superior, but only possible for ω ≡ 1 (Gauss-Legendre or Gauss-Lobatto)

2D-Gauss-Lobatto integration points (also used as interpolation points).

Integration on $[0,\infty)$ (Laguerre)

How to approximate

$$\int_0^\infty g(t)\,dt,$$

where g decays rapidly enough such that the integral is finite? Laguerre integration assumes integration weighted with e^{-t} ...

should choose rook of Laguase polynomials, which integrate up to degree 2ntl leadly $\int e^{t} q(t) dt$ $\int_{0}^{\infty} g(f) = \int_{0}^{\infty} e^{-t} \left(e^{t} g(f) \right) df \approx \sum_{i=0}^{m} \lambda_{in} e^{t} g(f_{i})$ $\int_{0}^{\infty} g(f_{i}) df \approx \sum_{i=0}^{m} \lambda_{in} e^{t} g(f_{i})$ $\int_{0}^{\infty} g(f_{i}) df \approx \sum_{i=0}^{m} \lambda_{in} e^{t} g(f_{i})$

Interval partitioning

Split interval [a, b] into subintervals of size h = (b - a)/n. Basic trapezoidal sum:

We can now think of what happens as $h \to 0$ (i.e., more subintervals).

Theorem: For $f \in C^{2m+1}$ holds:

$$T(h) - \int_{a}^{b} f(t) dt = \tau_{2}h^{2} + \tau_{4}h^{4} + \ldots + R_{2m+2}(h)h^{2m+2},$$

which coefficients τ_i that depend on the derivatives of f at a and b, and on the Bernoulli numbers B_{2k} and $R_{2m+2}(h)$ is a remainder term that involves $f^{(2m)}$.

Interval partitioning

Extrapolation:

$$\lim_{h \to 0} T(h) := \lim_{n \to \infty} T^n = I(f)$$

~

Extrapolation uses h_1, \ldots, h_n to estimate the limit.

 $h \rightarrow 0$

- One can estimate the order gained by extrapolation theoretically (Thm. 9.22 in Deuflhard/Hohmann).
- \blacktriangleright Existence of an asymptotic expansion with a certain order h^p $(p \ge 1)$ can be used to improve the extrapolation.
- Extrapolation ideas with Trapezoidal rule leads to Romberg quadrature.

Idea: On each sub-interval, estimate the quadrature error by either:

- ▶ Using a higher-order quadrature (e.g., Simpson rule), or
- Comparing the error on a subinterval with the error on a refinement

Then, subdivide the interval depending on the error estimation, and repeat. Main challenge: Derive an error estimator $\overline{\epsilon}$ that estimates the true error ϵ in the following way:

$$c_1\epsilon \le \bar{\epsilon} \le c_2\epsilon$$

with $c_1 \leq 1 \leq c_2$. This method uses an a posteriori estimate of the error.

Difficult cases for quadrature:

- (Unknown) discontinuities in f: adaptive quadrature continues to refine, which can be used to localize discontinuities
- Highly oscillating integrals

 (Weakly) singular integrals (as required, e.g., in integral methods (the fast multipole method)