
Scalable Adaptive Mantle Convection
Simulation on Petascale Supercomputers

Carsten Burstedde∗, Omar Ghattas∗¶, Michael Gurnis†, Georg Stadler∗, Eh Tan‡,
Tiankai Tu∗, Lucas C. Wilcox∗ and Shijie Zhong§

∗Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas, USA
¶Depts. of Geological Sciences and Mechanical Engineering, The University of Texas at Austin, Austin, Texas, USA

†Seismological Laboratory, California Institute of Technology, Pasadena, California, USA
‡Computational Infrastructure for Geodynamics, California Institute of Technology, Pasadena, California, USA

§Department of Physics, University of Colorado, Boulder, Colorado, USA

Abstract—Mantle convection is the principal control on
the thermal and geological evolution of the Earth. Mantle
convection modeling involves solution of the mass, momen-
tum, and energy equations for a viscous, creeping, incom-
pressible non-Newtonian fluid at high Rayleigh and Peclet
numbers. Our goal is to conduct global mantle convection
simulations that can resolve faulted plate boundaries, down
to 1 km scales. However, uniform resolution at these scales
would result in meshes with a trillion elements, which
would elude even sustained petaflops supercomputers. Thus
parallel adaptive mesh refinement and coarsening (AMR)
is essential.

We present RHEA, a new generation mantle convection
code designed to scale to hundreds of thousands of cores.
RHEA is built on ALPS, a parallel octree-based adaptive
mesh finite element library that provides new distributed
data structures and parallel algorithms for dynamic coars-
ening, refinement, rebalancing, and repartitioning of the
mesh. ALPS currently supports low order continuous
Lagrange elements, and arbitrary order discontinuous
Galerkin spectral elements, on octree meshes. A forest-of-
octrees implementation permits nearly arbitrary geome-
tries to be accommodated. Using TACC’s 579 teraflops
Ranger supercomputer, we demonstrate excellent weak and
strong scalability of parallel AMR on up to 62,464 cores
for problems with up to 12.4 billion elements. With RHEA’s
adaptive capabilities, we have been able to reduce the
number of elements by over three orders of magnitude,
thus enabling us to simulate large-scale mantle convection
with a finest local resolution of 1.5 km.

I. INTRODUCTION

Mantle convection is the principal control on the
thermal and geological evolution of the Earth. It is
central to our understanding of the origin and evolution
of tectonic deformation, the evolution of the thermal
and compositional states of the mantle, and ultimately
the evolution of the Earth as a whole. Plate tectonics
and volcanism are surface manifestations of mantle
convection, which in turn exert significant control on
multiple surface processes (such as mountain building,
sedimentary basin formation, and sea level change).
By controlling the thermal state of the mantle, mantle

convection dictates the cooling of the Earth’s core and
has a direct impact on the geodynamo. Understanding
convection within Earth has been designated one of the
“10 Grand Research Questions in Earth Sciences” in a
recent National Academies report [1].

Mantle convection modeling involves solution of
mass, momentum, and energy equations for a viscous,
creeping, incompressible non-Newtonian fluid at high
Rayleigh and Peclet numbers. Despite its central im-
portance to our understanding of the dynamics of the
solid Earth, simulation of global mantle convection down
to the scale of faulted plate boundaries is currently
intractable, due to the wide range of time and length
scales involved. The length scales of interest range from
several kilometers at faulted plate boundaries (requiring a
minimum O(1) km mesh), to the O(104) km scale of the
globe. Similarly, time scales range from O(104) years to
capture transport at the smallest length scales, to global
transit time scales of O(108−109) years. Taken together,
this implies a space–time problem with O(1016 − 1017)
degrees of freedom, which is well beyond the reach of
contemporary supercomputers.

The advent of petascale computing promises to make
such simulations tractable. However, uniform discretiza-
tion of the mantle at 1 km resolution would result in
meshes with nearly a trillion elements. Mantle con-
vection simulations on such meshes are estimated to
require one year on a sustained one petaflops system;
moreover, mantle convection inverse problems, which
we ultimately target, will require hundreds of such
simulations. Adaptive mesh refinement and coarsening
(AMR) methods can reduce the number of unknowns
drastically by dynamically placing resolution only where
needed. For the mantle convection problems we target,
this can result in three to four orders of magnitude
reduction in number of elements (as seen for example
in the problem solved in Section VI). Thus, AMR has
the potential to reduce the simulation wallclock time for



the mantle convection problems we target to hours on a
sustained one petaflops system.

Unfortunately, parallel AMR methods can also impose
significant overhead, in particular on highly parallel
computing systems, due to their need for frequent re-
adaptation and repartitioning of the mesh over the course
of the simulation. Because of the complex data structures
and frequent communication and load balancing, scal-
ing dynamic AMR to petascale systems has long been
considered a challenge. For example, the 1997 Petaflops
Algorithms Workshop [2] assessed the prospects of scal-
ing a number of numerical algorithms to petaflops com-
puters. Algorithms were classified according to Class 1
(scalable with appropriate effort), Class 2 (scalable pro-
vided significant research challenges are overcome), and
Class 3 (possessing major impediments to scalability).
The development of dynamic grid methods—including
mesh generation, mesh adaptation and load balancing—
were designated Class 2, and thus pose a significant
research challenge. In contrast, static-grid PDE solvers
were classified as Class 1. The assessments of scalability
that resulted from this workshop have withstood the test
of time, and remain largely accurate today.

The main contribution of this paper is to present
a new library for parallel dynamic octree-based finite
element adaptive mesh refinement and coarsening that is
designed to scale to hundreds of thousands of processors,
and to describe its enablement of the first mantle con-
vection simulations that achieve local 1 km resolution
to capture yielding at faulted plate boundaries. ALPS
(Adaptive Large-scale Parallel Simulations), our new
library for parallel dynamic AMR, incorporates parallel
finite element octree-based mesh adaptivity algorithms,
including support for dynamic coarsening, refinement,
rebalancing, and repartitioning of the mesh. RHEA is
our new generation adaptive mantle convection code
that builds on ALPS, and includes a parallel variable-
viscosity nonlinear Stokes solver, based on Krylov so-
lution of the (stabilized) Stokes system, with precondi-
tioning carried out by approximate block factorization
and algebraic multigrid V-cycle approximation (via the
BoomerAMG package) of the inverse of viscous and
pressure Schur complement operators, and adjoint-based
error estimators and refinement criteria.

We discuss parallel scalability and performance on
Ranger, the 579 teraflops, 62,976-core Sun system at
the Texas Advanced Computing Center (TACC) that
went into production in February 2008. Parallel dynamic
AMR solutions of the advection-diffusion component
of RHEA with up to 12.4 billion elements, on up to
62,464 cores of Ranger, indicate just 11% of the overall
time is spent on all components related to adaptivity
(the remainder is consumed by the PDE solver), while
maintaining 50% parallel efficiency in scaling from 1

core to 62K cores. The algorithmic scalability of the
parallel variable-viscosity Stokes solver is also excellent:
the number of iterations is almost insensitive to a 16,384-
fold increase in number of cores, and to a problem size
of over 3.2 billion unknowns.

All of the timings and performance evaluations pre-
sented here correspond to entire end-to-end simulations,
including mesh initialization, coarsening, refinement,
balancing, partitioning, field transfer, hanging node con-
straint enforcement, and PDE solution. The results show
that, with careful attention to algorithm design and par-
allel implementation, the cost of dynamic adaptation can
be made small relative to that of PDE solution, even for
meshes and partitions that change drastically over time.
Scalability to O(104) cores follows. Figure 1 depicts
dynamically evolving plumes from a typical regional
mantle convection simulation, along with associated
dynamically-adapted meshes, computed using RHEA and
ALPS.

Most of the scalability and parallel performance
results—as well as the AMR-enabled mantle convection
simulations of yielding at faulted plate boundaries—
presented in this paper are based on the initial version
of ALPS, which employed second-order accurate trilin-
ear hexahedral finite elements on Cartesian geometries.
ALPS has recently been extended to support adaptivity
using high-order spectral elements with discontinuous
Galerkin discretizations on a very general class of ge-
ometries. These geometries are domains that can be
decomposed into non-overlapping subdomains, each of
which can be mapped to a hexahedron. The octree
algorithms described in this paper thus operate on each
subdomain, with appropriate handshaking between sub-
domains; the result is a forest of octrees. In addition to
the results using trilinear finite elements on Cartesian
geometries, we also give preliminary results for parallel
high order spectral element discontinuous Galerkin AMR
simulations using forest-of-octree adaptivity on spherical
geometries.

The remaining sections of this paper are organized as
follows. In Section II, we give a brief description of the
challenges involved in modeling global mantle convec-
tion. Section III describes the numerical discretization
and solution algorithms employed, while Section IV
overviews the octree algorithms we employ. Parallel per-
formance and scalability results are presented in Section
V, and Section VI presents results from the first large-
scale mantle convection simulations with 1 km local
resolution at faulted plate boundaries. In Section VII,
we give a brief description, and performance evaluation,
of extensions to ALPS that support high order spectral
element discretizations and forest-of-octrees adaptivity
on general geometries. Finally, we end with conclusions
in Section VIII.



Fig. 1. Illustration of dynamic mesh adaptation for mantle convection. The figure shows snapshots of the thermal field T at three time instants
(left column) and corresponding adapted meshes (right column). The mesh resolves the rising plumes as well as the instabilities at the top layer.
The elements span levels 4 to 9 in octree depth.

II. MANTLE CONVECTION MODELING

The dynamics of mantle convection are governed by
the equations of conservation of mass, momentum, and
energy. Under the Boussinesq approximation for a man-
tle with uniform composition and the assumption that
the mantle deforms as a viscous medium, a simplified
version of these equations reads (e.g. [3], [4]):

∇ · u = 0, (1)

∇p−∇ ·
[
η(T,u)

(
∇u + ∇uT

)]
= Ra T er (2)

∂T

∂t
+ u ·∇T −∇2T = γ, (3)

where u, p, η, and T are the velocity, pressure,
temperature- and strain-rate-dependent viscosity, and
temperature, respectively; γ is the internal heat genera-
tion; er is the unit vector in the radial direction; and Ra is
a Rayleigh number that controls the vigor of convection
and is defined as Ra = αρ0g∆TD3/(κη0), where α,
ρ0, η0, and κ are the reference coefficient of thermal
expansion, density, viscosity, and thermal diffusivity,
respectively, ∆T is the temperature difference across
the mantle with thickness D, and g is the gravitational
acceleration. Mantle convection modeling requires nu-
merical solutions to these governing equations. However,

the highly nonlinear and multiscale physical processes
caused by complex deformation mechanisms, the sig-
nificant compositional heterogeneities (e.g., continents)
associated with melting and mantle differentiation, and
large Rayleigh numbers (O(108− 109)) pose significant
numerical and computational challenges [5].

Mantle viscosity at high temperatures (> 1000◦C)
depends on temperature, pressure, stress, and grain size,
while at intermediate temperatures (between 450◦C and
1000◦C) the deformation is controlled by plasticity, and
at low temperatures (< 450◦C) by faulting. While the
high temperature deformation mechanism can be reason-
ably approximated as Newtonian flow, the latter two are
highly nonlinear and may lead to extreme localization
in deformation such as through tectonic faults at plate
boundaries where earthquakes occur. At faulted plate
boundaries, one may need ∼1 km resolution to resolve
the physics of deformation [6], [7].

There are three difficulties in modeling highly non-
linear and multiscale mantle convection problems. The
first is with the highly nonlinear deformation and large
variations (O(105) or greater) in material properties that
are caused by nonlinear deformation-, temperature-, and
grain size-dependent viscosity. This makes the linearized



Stokes systems of equations arising at each iteration and
time step extremely ill-conditioned and not easily solved
with standard iterative solvers. Second, to fully resolve
the physics at the smallest scale of faulted plate bound-
aries in global models with a uniform mesh of 1 km
resolution, one may need O(1012) elements, beyond the
reach of any contemporary supercomputer. Third, the
system is highly time-dependent with plate boundaries
and mantle plumes migrating, often with the same ve-
locities as plates. This rules out static mesh methods
that are widely used for steady-state and instantaneous
mantle convection problems. Dynamic AMR appears to
be the only viable approach that can accommodate the
wide range of minimal spatial scales required. For a
variable resolution of 1 km near plate boundaries, 5 km
within thermal boundary layers and plumes, and 15 km
for the rest of the mantle, we estimate the total number
of elements needed for AMR to be O(109), three orders
of magnitude smaller than using a uniform mesh. This is
an approximate figure, and will depend on the number of
plumes that will be realized in simulations under mantle
conditions.

III. NUMERICAL DISCRETIZATION AND SOLUTION

We give a brief overview of the numerical algorithms
used to discretize and solve the governing equations of
mantle convection (1)–(3) on highly adapted meshes.
The discussion here is limited to low order discretization
on Cartesian geometries; extensions to high order and
more general geometries are discussed in Section VII.
We employ trilinear finite elements for all fields (tem-
perature, velocity, pressure) on octree-based hexahedral
meshes. These meshes contain hanging nodes on non-
conforming element faces and edges. To ensure conti-
nuity of the unknowns, algebraic constraints are used
to eliminate the hanging nodes at the element level.
Galerkin finite element discretizations of Equation (3)
require stabilization to suppress spurious oscillations
for advection-dominated flows, for which we use the
streamline upwind/Petrov-Galerkin (SUPG) method [8].
For realistic mantle convection regimes, Equation (3)
is strongly advection-dominated, so we use an explicit
predictor-corrector time integrator [9] for its solution.
It is well known that equal-order velocity-pressure dis-
cretization of the Stokes equation does not satisfy the
inf-sup condition for numerical stability of saddle point
problems. We circumvent this condition via polynomial
pressure stabilization [10], [11]. Solution of the coupled
system (1)–(3) is split into an advection-diffusion time
step to update temperature, followed by a variable-
viscosity Stokes solve to update the flow variables. The
nonlinearity imposed by strain-rate-dependent viscosity
is addressed with a Picard-type fixed point iteration.

The discretization of the variable-viscosity Stokes

equation leads to a symmetric saddle point problem,
which we solve iteratively by the preconditioned min-
imal residual (MINRES) method [12]. Each MINRES
iteration requires one application of the Stokes matrix to
a vector, storage of two vectors, and two inner products.
The stabilized Stokes matrix can be block-factored into
the form(

A B>

B −C

)
=

(
I 0

BA−1 I

) (
A 0
0 −S

) (
I A−1B>

0 I

)
where S = (BA−1B> + C) is the Schur complement,
A is the discrete tensor divergence operator, B is the
discrete vector divergence, and C is the stabilization
matrix. The factorization shows that the Stokes operator
is congruent to a block-diagonal matrix. Neglecting
the off-diagonal blocks motivates use of the symmetric
positive definite preconditioner

P =
(

Ã 0
0 S̃

)
.

Here, Ã is a variable-viscosity discrete vector Laplacian
approximation of A, which is motivated by the fact that
for constant viscosity and Dirichlet boundary conditions,
A and Ã are equivalent. S̃ is an approximation of
the Schur complement given by a lumped mass matrix
weighted by the inverse viscosity η−1. The resulting
diagonal matrix S̃ is spectrally equivalent to S [11].
The preconditioner P captures the variability in element
size as well as viscosity, which is essential for algo-
rithmic scalability of MINRES for highly heterogeneous
viscosities and adaptively refined meshes. Moreover, P
replaces the indefinite Stokes system with a much-easier-
to-solve block-diagonal system consisting of Poisson-
like or Gram-type blocks.

Each MINRES iteration requires an approximate solve
with the preconditioner P . Ã contains, for each velocity
component, a highly-variable-viscosity discrete Poisson
operator. For the approximate solution of these systems,
we employ algebraic multigrid (AMG). Compared to
geometric multigrid, AMG can have advantages due to
its ability to mitigate heterogeneities in mesh size and
viscosity. In its setup phase, AMG derives a coarse grid
hierarchy and corresponding restriction and interpola-
tion operators. We use the parallel AMG implementa-
tion BoomerAMG from the hypre package [13], [14].
BoomerAMG allows the user to choose among various
coarsening strategies and to trade off effectiveness of the
grid hierarchy against setup time. Using one V-cycle of
AMG as a preconditioner leads to almost optimal al-
gorithmic scalability, as reflected by the nearly-constant
number of MINRES iterations as the problem size and
number of cores increases in Figure 2. On the other hand,
AMG can impose significant communication require-
ments, particularly at very large numbers of processors;



#cores #elem #elem/core #dof MINRES
#iterations

1 67.2K 67.2K 271K 57
8 514K 64.2K 2.06M 47
64 4.20M 65.7K 16.8M 51

512 33.2M 64.9K 133M 60
4096 267M 65.3K 1.07B 67
8192 539M 65.9K 2.17B 68

Fig. 2. Weak scalability of variable-viscosity Stokes solver, which
involves MINRES iterations preconditioned by approximate block fac-
torization of the Stokes system based on one V-cycle of BoomerAMG
applied to vector Poisson and Schur complement blocks. Table demon-
strates excellent algorithmic scalability of solver, despite strong ill-
conditioning due to severe heterogeneity in material properties. Num-
ber of MINRES iterations is essentially insensitive to an 8192-fold
increase in number of cores, and problem size to over 2 billion
unknowns.

we defer a discussion of the parallel scalability of the
variable-viscosity Stokes solver to Section V.

IV. THE ALPS LIBRARY FOR PARALLEL AMR

In this section we briefly describe parallel data struc-
tures, parallel algorithms, and implementation issues
underlying ALPS, our library for parallel finite element
octree-based AMR that supports dynamic coarsening,
refinement, rebalancing, and repartitioning of the mesh.
In this section we describe the initial version of ALPS,
which supports trilinear hexahedral finite elements on
Cartesian geometry and employs the Octor library [15],
[16]. Extensions to high order discretizations on general
geometries via forest-of-octree adaptivity are discussed
in Section VII.

We begin first by contrasting octree-based finite ele-
ment AMR methods with other AMR methods. These
generally fall into two categories, structured (SAMR)
and unstructured (UAMR) (see the review in [17] and
the references therein). SAMR methods represent the
PDE solution on a composite of hierarchical, adaptively-
generated, logically-rectangular, structured grids. This
affords reuse of structured grid sequential codes by nest-
ing the regular grids during refinement. Moreover, higher
performance can be achieved due to the locally regular
grid structure. SAMR methods maintain consistency and
accuracy of the numerical approximation by carefully
managing interactions and interpolations between the
nested grids, which makes high-order-accurate methods
more difficult to implement than in the single-grid case.
This results in communications, load balancing, and grid
interaction challenges that must be overcome to achieve
scalability to large numbers of processors. Exemplary
SAMR implementations that have scaled to O(103) pro-
cessors include Chombo [18], PARAMESH [19], [20],
SAMRAI [21], and Cart3D [22].

In contrast to SAMR, UAMR methods typically em-
ploy a single (often conforming) mesh that is locally
adapted by splitting and/or aggregating (often) tetrahe-
dral elements. As such, high-order accuracy is achieved
naturally with, e.g., high order finite elements, and the
unstructured nature of the tetrahedra permits boundary
conformance. Furthermore, the conforming property of
the mesh eliminates the need for interpolations between
grid levels of SAMR methods. The challenge with
UAMR methods is to maintain well-shaped elements
while adapting the mesh, which is particularly diffi-
cult to do in parallel due to the need to coordinate
the coarsening/refinement between processors. As in
SAMR, dynamic load-balancing, significant communi-
cation, and complex data structures must be overcome.
Exemplary UAMR implementations include Pyramid
[23] and PAOMD [24], [25].

ALPS uses parallel octree-based hexahedral finite
element meshes, which can be thought of as being
intermediate between SAMR and UAMR. We build
on prior approaches to parallel octree mesh generation
[16], [26], and extend them to accommodate dynamic
solution-adaptive refinement and coarsening. Adaptation
and partitioning of the mesh are handled through the
octree structure and a space-filling curve, and a distinct
mesh is generated from the octree every time the mesh
changes. Flexibility of the mesh is attained by associat-
ing a hexahedral finite element to each octree leaf. This
approach combines the advantages of UAMR and SAMR
methods. Like UAMR, a conforming approximation on
a single mesh (as opposed to a union of structured grid
blocks) is constructed, though here the mesh itself is not
conforming; instead, algebraic constraints on hanging
nodes impose continuity of the solution field across
coarse-to-fine element transitions. These constraints are
imposed at the element level, making use of interpola-
tions from the element shape functions. A global 2-to-
1 balance condition is maintained, i.e., edge lengths of
face- and edge-neighboring elements may differ by at
most a factor of two. This ensures smooth gradations
in mesh size, and simplifies the incorporation of alge-
braic constraints. High-order approximations and general
geometries are naturally accommodated as in any finite
element method (see Section VII). Like SAMR, element
quality is not an issue, since refinement and coarsening
result from straightforward splitting or merging of hex-
ahedral elements, but communication is reduced signifi-
cantly compared to SAMR: interpolations from coarse
to fine elements are limited to face/edge information
and occur just once each mesh adaptation step, since
a single multi-resolution mesh is used to represent the
solution between adaptation steps. (Forest-of-) octree-
based AMR on hexahedral finite element meshes with
hanging node constraints has been employed in such li-



Proc 0 Proc 1 Proc 2

Fig. 3. Illustration of the distinct octree and mesh parallel data
structures used in ALPS and their partitioning (quadtree shown for
display purposes). The data structures are linked logically by a 1-to-1
correspondence between leaves of the tree and elements of the mesh.
A pre-order traversal of the leaves of the octree in the sequence of
triples (z, y, x) creates a space-filling curve in Morton (or z) order,
shown in red. A load-balanced partition of the octree is determined by
partitioning the space-filling curve into segments of equal length; the
partitions are shown as shades of blue.

braries as deal.II [27], libMesh [28], hp3d [29], AFEAPI
[30], and SAMRAI [31], and has been demonstrated to
scale to well to O(100− 1000) processors. Our goal is
the design and implementation of parallel data structures
and algorithms that enable octree-based finite element
AMR methods to scale to the O(105) cores (and beyond)
characteristic of sustained petaflops architectures. In the
remainder of this section, we discuss the distributed
data structures, parallel algorithms, and implementations
underlying ALPS.

A. Octrees and space-filling curves

All coarsening and refinement information is main-
tained within an octree data structure, in which there is
a one-to-one correspondence between the leaves of the
octree and the hexahedral finite elements of the mesh
(see Figure 3). The root of the octree represents an octant
of the size of the computational domain. The leaves
of the octree represent the elements that are present
in the current mesh. The parents of these leaves are
used to determine the relationships between the leaves.
When an element is refined, it is split into eight equal-
sized child elements. This is represented in the octree by
adding eight children to the leaf octant representing the
element being divided. A coarsening operation amounts
to removing all children with a common parent. The
operations defined on the octree and the mesh are
detailed below.

Most of the AMR functions in ALPS operate on the
octree from which the mesh is generated. Since we target
large parallel systems, we cannot store the full octree on
each core. Thus, the tree is partitioned across cores. As
we will see below, cores must be able to determine which
other core owns a given leaf octant. For this, we rely on
a space-filling curve, which provides a globally unique
linear ordering of all leaves. As a direct consequence,
each core stores only the range of leaves each other core
owns. This can be determined by an MPI_Allgather

call on an array of long integers with a length equal to the
number of cores. Thus the only global information that
is required to be stored is one long integer per core. We
use the Morton ordering as the specific choice of space-
filling curve. It has the property that nearby leaves tend
to correspond to nearby elements given by the pre-order
traversal of the octree, as illustrated in Figure 3.

The basic operations needed for mesh generation and
adaptation require each core to find the leaf in the octree
corresponding to a given element. If the given element
does not exist on the local core, the remote core that
owns the element must be determined. This can be done
efficiently given the linear order of the octree; see [16]
for details. The inverse of this operation, determining
the element corresponding to a given leaf, can be made
efficient as well.

B. AMR functions for mesh generation and adaptation

The procedure for adapting a mesh involves the fol-
lowing steps. First, a given octree is coarsened and
refined based on an application-dependent criterion, such
as an error indicator. Next, the octree is “balanced”
to enforce the 2-to-1 adjacency constraint. After these
operations, a mesh is extracted so that the relevant
finite element fields can be transferred between meshes.
Following this, the adapted mesh is partitioned and
the finite element fields are transferred to neighboring
cores according to their associated leaf partition. Fig-
ure 4 illustrates this process. The key features of the
AMR functions in this figure are described below. Here,
“application code” refers to a code for the numerical
discretization and solution of PDEs built on meshes
generated from the octree.

NEWTREE. This function is used to construct a new
octree in parallel. This is done by having each core grow
an octree to an initial coarse level. (This level is several
units smaller than the level used later in the simulation.)
At this point, each core has a copy of the coarse octree,
which is then divided evenly between cores. The cores
finish by pruning the parts of the tree they do not own, as
determined by the Morton order. This is an inexpensive
operation that requires no communication.

COARSENTREE/REFINETREE. Both of these work
directly on the octree and are completely local op-
erations requiring no communication. On each core,
REFINETREE traverses the leaves of the local partition
of the octree, querying the application code whether or
not a given leaf should be refined. If so, eight new
leaves are added to the level beneath the queried octant.
COARSENTREE follows a similar approach, examining
the local partition of the octree for eight leaves from the
same parent that the application code has marked for
coarsening. Note that we do not permit coarsening of a
set of leaf octants that are distributed across cores. This



CoarsenTree

RefineTree
BalanceTree ExtractMesh PartitionTree ExtractMesh

InterpolateFields TransferFields

old mesh and

application data

are used to derive

error indicator

intermediate

mesh is used

for interpolation

of data fields

new mesh with

interpolated

data fields on

new partition

Fig. 4. Functions for mesh adaptivity. Blue boxes correspond to functions that operate on the octree only; cyan boxes denote functions that
act between the octree and the mesh; mesh and data field operations are enclosed in orange boxes; green boxes represent functions that act on
the mesh and the application data fields only. Solid arrows represent the flow of function calls; dashed arrows signify the input and output of
mesh and/or data fields.

is a minor restriction, since the number of such leaf sets
is at most one less than the number of cores.

BALANCETREE. Enforcing the 2-to-1 size difference
constraint between adjacent elements, also known as bal-
ancing the tree, is done with the parallel prioritized ripple
propagation algorithm described in [16]. The algorithm
uses a buffer to collect the communication requests as it
balances the octree one refinement level at a time. This
buffering aggregates all of the communication so that the
number of communication rounds scales linearly with the
number of refinement levels.

PARTITIONTREE. Dynamic partitioning of the octree
for load balance is a key operation that must be per-
formed frequently throughout a simulation as the mesh
is adapted. The goal is to assign an equal number of
elements to each core while keeping the number of
shared mesh nodes between cores as small as possible.
The space-filling curve offers a natural mechanism for
partitioning the octree, and hence mesh, among cores.
The curve is divided into one segment per core according
to the total ordering. The result is a partition with good
locality properties, i.e., neighboring elements in the mesh
tend to reside on the same core.

EXTRACTMESH. This function builds the mesh from
a given octree and sets up the communication pattern
for the application code. Unique global ordering of
the elements and degrees of freedom of the mesh are
determined and the relationship between the elements
and nodes is established. Hanging nodes do not have
unknowns associated with them, and therefore are not
part of the global degrees of freedom. Their dependence
on the global degrees of freedom, which is required to
enforce the continuity of the finite element data fields, is
also determined in this function. Ghost layer information
(one layer of elements adjacent to local elements) from
remote cores is also gathered.

INTERPOLATEFIELDS. This function is used to inter-
polate finite element data fields from one mesh to a new
mesh that has been created by at most one level of coars-
ening and refinement. For simple interpolation between
two trilinear finite element meshes, there is no global
communication required to execute this step, given the
value of ghost degrees of freedom. Once finished, the

cores gather the information for their ghost degrees of
freedom by communicating with their neighboring cores.

TRANSFERFIELDS. This function is the operation on
the data fields analogous to PARTITIONTREE. Following
the Morton ordering among the degrees of freedom,
the data associated with element nodes is transferred
between cores to complete the load-balancing stage. At
the end of this process every core has obtained the data
for all elements it owns and discarded what is no longer
relevant due to the changed partition.

MARKELEMENTS. We target PDE applications in
which solution features evolve spatially over time, ne-
cessitating dynamic mesh adaptivity. Given an error in-
dicator ηe for each element e, MARKELEMENTS decides
which elements to mark for coarsening and refinement.
Since we wish to avoid a global sort of all elements
according to their error indicators, we employ a strategy
that adjusts global coarsening and refinement thresholds
through collective communication. This process iterates
until the overall number of elements expected after
adaptation lies within a prescribed tolerance around a
target.

V. PERFORMANCE OF PARALLEL AMR ON RANGER

In this section we study the performance of the ALPS
parallel AMR library on Ranger, the 579 teraflops, 123
terabyte, 62,976-core Sun/AMD system at TACC. In
our analysis below, we study both isogranular (i.e.,
weak) and fixed-size (i.e., strong) scalability. The com-
plete end-to-end run time is always used to calculate
speedups and parallel efficiencies; this includes mesh
initialization, coarsening, refinement, 2:1 octree balanc-
ing, octree/mesh partitioning, field transfer, hanging node
constraint enforcement, and PDE solution.

We conduct most of our AMR experiments on so-
lutions of the time-dependent advection-diffusion equa-
tion (3) in the high-Peclet number regime, for several
reasons. First, this represents a challenging test problem
for parallel mesh adaptivity when advection dominates,
since the equation acquires hyperbolic character: sharp
fronts are transported and frequent coarsening/refinement
and repartitioning of the mesh for load balance are
required. Second, since we use explicit time-stepping



for the advection-diffusion component, the work done
per time step is linear in problem size and has the
usual surface/volume communication-to-computation ra-
tio, and therefore the numerical components should
exhibit good scalability. This allows us to focus our
assessment on scalability of the AMR components, with-
out diluting their role by mixing in the implicit non-
linear Stokes solver. Finally, the low-order-discretized,
explicitly-solved, scalar, linear transport equation is a
severe test of AMR, since there is very little numerical
work over which to amortize AMR: vector unknowns,
nonlinear equations, implicit solvers, and high-order
discretizations increase the computational work by or-
ders of magnitude, making it difficult to assess the
scalability of the standalone AMR components. Indeed,
results presented at the end of this section demonstrate
that—thanks to the scalable design of the underlying
algorithms—all AMR components together consume
negligible time on O(104) cores when running side-by-
side with our full (nonlinear, implicit, vector) mantle
convection code. For all of the studies in this section,
the frequency of adaptation is fixed at once every 32
time steps for the advection-diffusion component, and
once every 16 time steps for the full mantle convection
code.

A. Extent of mesh adaptation

Figure 5 illustrates the extent of mesh adaptation in
a typical simulation on 4096 cores with about 131,000
elements per core. The left image shows the number
of elements that are coarsened, refined, and unchanged
within each mesh adaptation step. The figure illustrates
the aggressiveness of mesh adaptation when driven by
the advection-dominated transport problem: typically
half the elements are coarsened or refined at each
adaptation step. The figure also demonstrates that the
MARKELEMENTS function is able to keep the total
number of elements about constant. The right image
depicts the distribution of elements across the refinement
levels for selected mesh adaptation steps. By the 8th
adaptation step, the mesh contains elements at 10 levels
of the octree, leading to a factor of 512 variation in ele-
ment edge length. These results illustrate the significant
volume and depth of mesh adaptation over the course
of a simulation. This is worth keeping in mind when
examining the scalability results in subsequent sections.

B. Fixed-size scaling

Figure 6 shows the speedups for small, medium-
sized, large, and very large test problems as the number
of cores increases while the problem size remains the
same (strong scaling). The small, medium, and large
meshes on 1, 16, and 256 cores (respectively) contain

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

S
p
e
e
d
u
p

Number of cores

Ideal speedup

1.99M elements

32.7M elements

531M elements

2.24B elements

Fig. 6. Fixed-size scalability: Speedups based on total runtime plotted
against the number of cores for four different problem sizes. Baseline
granularity of the small, medium, and large problems is the same, at
2 million elements per core. The very large problem has a baseline
granularity of 547,000 elements per core.

approximately 2.1 million elements per core. The largest
test problem has 0.54 million elements per core at
4096 cores. Using the MARKELEMENTS function, these
numbers are kept approximately constant during the
simulation. We selected these problem sizes based on
the multicore architecture of Ranger. Each compute node
has 32 GB of main memory and 16 cores. The size of
each problem is chosen such that it uses one core per
node for the initial number of cores (1, 16, 256). This
provides optimal conditions for these initial runs since
every core has exclusive access to processor memory
and the node’s network interface. The first four scaling
steps keep the number of nodes constant and increase
the number of cores used per node to 16, while at the
same time increasing the sharing of resources. Once all
16 cores are used on a node, we increase the number of
nodes in powers of two.

The fixed-size scaling speedups are nearly optimal
over a wide range of core counts. For instance, solving
the small test problem (yellow line) on 512 cores is
still 366 times faster than the solution on a single core.
Similarly, the overall time for solving the medium-size
problem (green line) on 1024 cores results in a speedup
of more than 52 over the runtime for 16 cores (optimal
speedup is 64), the large problem (blue line) exhibits a
speedup on 32,768 cores of 101 over the same problem
running on 256 cores (128 is optimal) and solving the
very large problem (red line) on 61440 compared to 4096
cores is a factor of 11.5 faster (optimal speedup is 15).

These speedups are remarkable given the extensive
mesh adaptation (as illustrated in Figure 5), and the as-
sociated need for frequent and aggressive load balancing
(and hence communication),



0

1 · 10
8

2 · 10
8

3 · 10
8

4 · 10
8

5 · 10
8

6 · 10
8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E
le

m
en

ts

Mesh adaptation step

Marked for coarsening
Marked for refinement

Added by BalanceTree

Unchanged

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

2 3 4 8 18

E
le

m
e
n
ts

p
e
r

le
v
e
l

Mesh adaptation step

Level

3

4

5

6

7

8

9

10

11

12

Fig. 5. Left: number of elements that are refined (blue), coarsened (red), created to respect the 2:1 balance condition (gray, barely visible),
and unchanged (green), at each mesh adaptation step. Right: number of elements within each level of the octree for selected mesh adaptation
steps. The octree has elements across 10 levels for late-time meshes. Simulation ran on 4096 cores with approximately 131,000 elements per
core.

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 62464

P
er

ce
n
ta

g
e

o
f
to

ta
l
ru

n
ti
m

e

Number of cores

NewTree

CoarsenTree

RefineTree

BalanceTree

PartitionTree

ExtractMesh

InterpolateF’s

TransferFields

MarkElements

TimeIntegration

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 62464

P
a
ra

ll
e
l
e
ffi

c
ie

n
c
y

Number of cores

Relative time steps per total run time

Fig. 7. Weak scalability for advection-diffusion using trilinear elements. On the left is a breakdown of total run time into different components
related to numerical PDE integration (blue) and AMR functions (all other colors), with increasing number of cores from 1 to 62,464. Problem
size increases isogranularly at roughly 131,000 elements per core (largest problem has approximately 7.9 billion elements). The overall runtime
is dominated by the numerical integration. The most expensive operation related to AMR is EXTRACTMESH, which uses up to 6% of the
runtime. Overall, AMR consumes 11% or less of the overall time. On the right is the parallel efficiency measured in total processed elements
per core per total run time, normalized by the total processed elements per total run time for a single core, with increasing number of cores
from 1 to 62,464. Despite a 62K-fold increase in problem size and number of cores, parallel efficiency remains above 50%.

C. Isogranular scaling

Figure 7 provides evidence of the isogranular scalabil-
ity of parallel AMR on the advection-diffusion problem
using the ALPS library. The left image depicts the
breakdown of the overall runtime into the time consumed
by the explicit numerical time-stepping (blue) and all
of the AMR functions (all other colors), for weak
scaling from 1 to 62,464 cores. Problem size is held
approximately constant at 131,000 elements per core, i.e.
7.9 billion elements for the largest problem. The results
indicate that the mesh adaptation functions—including
refinement, coarsening, interpolation, field transfer, re-
balancing, repartitioning, and mesh extraction—together
impose little overhead on the PDE solver. Only for
62K cores does the total cost of AMR exceed 10% of
end-to-end run time, and even then just barely. This,
despite the fact mentioned above, that we are solving

a scalar, linear, low-order-discretized, explicitly-time-
advanced advection-diffusion problem. PARTITIONTREE
completely redistributes the octree (and thus the mesh)
among all cores to balance the load (we do not impose
an explicit penalty on data movement in the underlying
partitioning algorithm). Although this requires sending
and receiving large amounts of data using one-to-one
communication, Figure 7 demonstrates that the time
for PARTITIONTREE remains more-or-less constant for
all core counts beyond one (for which partitioning is
unnecessary). This is also reflected in the timings for
TRANSFERFIELDS, which do not show up in Figure 7
even though complete finite element data fields are
redistributed across the network.

The right image of Figure 7 displays the parallel
efficiency for isogranular scaling from 1 to 62,464 cores.
Here, parallel efficiency is defined as the total processed



0

10

20

30

40

50

60

70

80

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

O
v
e
ra

ll
ru

n
ti
m

e
p
e
r

ti
m

e
st

e
p

Number of cores

NewTree,CoarsenTree,RefineTree

BalanceTree,PartitionTree,ExtractMesh

InterpolateFields,TransferFields

MarkElements

TimeIntegration

MINRES

AMGSetup

AMGSolve

Fig. 8. Breakdown of overall run time per time step into different
components related to AMG setup (gray), AMG V-cycle (yellow),
MINRES iterations (blue) and numerical PDE integration (red). All
other operations are AMR functions and have negligible cost, even
though the mesh is adapted every 16 time steps. The number of cores
increases from 1 to 16,384. Problem size increases isogranularly at
roughly 50,000 elements per core (largest problem has approximately
815 million elements). The Stokes solve dominates the runtime (more
than 95%). The AMR, explicit advection-diffusion time integration,
and MINRES iterations (including element matvecs and inner products)
exhibit nearly ideal scaling, while the AMG setup and V-cycle times
grow with problem size.

elements per core per total run time for a given core
count, normalized by the total processed elements per
total run time for a single core. A parallel efficiency of
1.0 indicates perfect isogranular scalability. For example,
if the adaptivity process resulted in exactly twice as
many elements created and the same number of time
steps when doubling the core count and tightening the
refinement criteria (to increase problem size), then our
parallel efficiency measure would reduce to simply ob-
serving whether the total run time remained constant.
Otherwise, normalizing by the number of elements per
core and the number of time steps accounts for possible
vagaries of the adaptivity process. As can be seen in the
figure, despite extensive adaptivity and a problem that
maximally stresses parallel adaptivity, parallel efficiency
remains above 50% in scaling from 1 to 62,464 cores.
This excellent scalability is no surprise, given the small
fraction of overall time consumed by AMR relative to
PDE solution.

D. Isogranular scaling of full mantle convection code

The isogranular scalability of the full mantle con-
vection code is shown in Figure 8. The AMR func-
tions, explicit advection-diffusion time-stepping, and
MINRES iterations (which are dominated by element-
level matvecs) scale nearly optimally from 1 to 16,384
cores, as evidenced by the nearly-constant runtime as
the problem size and number of cores increase. Indeed,
the explicit time-stepping and AMR operations (the
mesh is adapted every 16 time steps) are negligible
relative to the MINRES iterations. On the other hand,
the times for the AMG setup and V-cycle (employed for

0

50

100

150

200

250

300

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

T
o
ta

l
p
re

co
n
d
it
io

n
in

g
ti
m

e

Number of cores

variable viscosity Poisson, octree, FEM
Laplace, 7 point stencil

Fig. 9. Overall time for AMG setup and 160 V-cycles as the core count
increases from 1 to 16,384. Problem size increases isogranularly at
roughly 50,000 elements per cores. Timings are given for the Laplacian
discretized on a regular grid with a 7-point stencil, and for a variable-
viscosity Poisson operator on an adapted hexahedral finite element
mesh.

the diagonal blocks of the preconditioner) do increase
with increasing problem size, due to communication
overheads and growth in complexity. To analyze this
further, in Figure 9 we compare isogranular scalability
of the main building block of our Stokes precondi-
tioner, namely a highly variable-viscosity, finite element-
discretized, adapted-grid Poisson solve, with the best
possible situation to test AMG scalability: a Laplace
solve discretized on a regular grid with a 7-point finite
difference stencil. To provide for a fair comparison with
Figure 8 for the Stokes solves, where the preconditioner
is reused as long as the mesh remains unadapted, i.e.
one AMG setup is performed per 16 time steps at
an average of 10 V-cycles required per time step, the
reported timings in Figure 9 include one AMG setup and
160 V-cycles. Note that while the Laplace preconditioner
application has lower run time, it yields similar parallel
scalability as the more complex Poisson preconditioner
application. Thus, we cannot expect better performance
from the latter, given the scaling of the former. Finally,
in Figure 10 we show the time used by the specific AMR
functions in each adaptation step compared to the time
used in the solver. Note that the time spent for mesh
adaptation remains well below 1% of the overall run time
over a range of 1 to 16,384 cores. Thus, in comparison
with the full mantle convection solver, AMR consumes
negligible time.

VI. MANTLE CONVECTION AMR SIMULATIONS

In this section, we present end-to-end simulations that
demonstrate the full power of AMR to resolve the range
of length scales, nonlinearities, and time-dependent phe-
nomena that we expect to be present in global models of
mantle convection. Although these calculations are in a
Cartesian regional domain, they approximate the range
of processes encountered in spherical domain models,



#cores NEWTREE Solve time
COARSENT

REFINET BALANCET PARTITIONT EXTRACTM INTERPOLATEF
TRANSFERF MARKE AMR time

Solve time
1 0.16 269.00 0.01 0.03 0.00 0.48 0.05 0.04 0.23%
8 0.45 355.42 0.02 0.10 0.35 0.77 0.06 0.08 0.39%
64 0.53 434.75 0.02 0.20 0.46 0.97 0.07 0.14 0.43%

512 0.62 578.53 0.02 0.61 0.67 1.83 0.09 0.17 0.59%
4096 0.84 813.43 0.02 1.04 0.95 2.73 0.15 0.23 0.63%
16384 1.61 1134.30 0.01 1.23 1.22 2.85 0.20 0.32 0.51%

Fig. 10. Breakdown of timings (in seconds) from Figure 8 for AMR solution of the mantle convection equations over a range of 1 to 16,384
cores with isogranular increase in problem size. The second column shows the time for mesh and tree initialization, which is performed just
once in the simulation. All other timings are provided per mesh adaptation step, i.e., per 16 time steps. The last column shows the percentage
of overall time spent in AMR components relative to the solve time, which is less than 1%.

which will be pursued using the extensions described
in the next section. We have verified RHEA with the
widely used, validated, static mesh mantle convection
code CitcomCU [32].

We present a mantle convection simulation for which
adaptivity is essential for capturing localization phenom-
ena. We adopt a viscosity law that displays yielding
under high stress. This simplified approach dynamically
achieves large-scale motions with narrow zones of low
viscosity such as those associated with plate tectonics
and faulted plate boundaries, an intermediate mode of
convection associated with instability of the low viscos-
ity thermal boundary layers, and the smallest modes of
secondary convection associated with the instability of
the tectonic plates. The models are in a 8×4×1 Cartesian
non-dimensional domain (equivalent to a dimensional
domain approximately 23,200 km across and 2,900 km
deep) with a temperature- and pressure-dependent vis-
cosity that yields under high deviatoric stress according
to

η =


min

{
10 exp(−6.9T ), σy

2ė

}
, z > 0.9

0.8 exp(−6.9T ), 0.9 ≥ z > 0.77
50 exp(−6.9T ), z ≤ 0.77

where σy is the yield stress and ė is the second in-
variant of the deviatoric strain rate tensor. The three-
layered viscosity structure simulates the lithosphere, the
aesthenosphere, and the lower mantle. Shallow mate-
rial can yield, while deeper material is subject only
to a temperature-dependent viscosity. This is an ap-
proximation to laboratory-derived constitutive relations,
but demonstrates our ability to incorporate weak plate
boundaries and strong downwellings (i.e. slabs) that are
recognized as essential parts of the dynamics of plate
tectonics (e.g. [5]). Here, the viscosities range over four
orders of magnitude.

Our AMR method well resolves both the evolving fine
scale thermal structures as well as zones of plastic failure
associated with the boundaries of plate-like structures
(Figures 1 and 11). The high Rayleigh number of the

mantle together with temperature-dependent viscosity
leads to sharp thermal and material boundaries that
rapidly move through the convecting domain, often at
the apex of rising plumes and descending slabs. Both
the hot rising and cold descending structures are ideally
captured by AMR (Figure 1). Fine meshes dynamically
follow the apex of plumes and slabs and resolve the
temperature and viscosity contrasts around deep seated,
low viscosity plume conduits. Substantial volumes of
the isothermal (and relatively slow moving) interior are
sufficiently resolved with large elements. The AMR effi-
ciently coarsens the mesh as it tracks plumes ascending
out of previously finely-resolved regions (Figure 1).

Within the stiff, cold upper thermal boundary layer,
the strain rates are localized in zones above the de-
scending sheets and cause yielding. Within the region of
yielding, the mesh has been refined down to about 3.0
km with some parts down to 1.5 km (Figure 11, lower
right plot). These zones of yielding have high strain
rates and low viscosity. The rest of the upper thermal
boundary layer has substantially lower strain rates and
little internal deformation.

This mechanical and numerical behavior has essential
components for the simulation of plate tectonics: large
coherent blocks of the stiff thermal boundary layer that
move with little internal strain (geologically, oceanic
plates), low viscosity zones as the thermal boundary
layer bends into a downwelling sheet (a subducted slab),
and a high resolution mesh that continuously tracks this
weak zone as the position of bending moves laterally
(tracking the plate boundary).

The simulation required 19.2 million elements at 14
levels of octree refinement on 2400 Ranger cores. A
mesh with uniform resolution requires 34 billion ele-
ments on level 13, and 275 billion on level 14. Even if
we only compare with a uniform mesh on level 13, AMR
enabled a more than 1,000-fold reduction in the number
of unknowns and permitted a calculation on 2400 cores
to be carried out in a reasonable time, while the uniform
mesh would be too large to fit in the memory of all
62,976 cores of Ranger.



Fig. 11. Mantle convection with yielding. Top: Temperature isosurfaces at T = 0.3 (cyan), T = 0.8 (orange). Bottom left: Horizontal slice of
temperature showing that grid refinement follows the temperature gradient. Bottom center: Vertical slice of temperature showing the downwelling
slab and the yielding zone. Bottom right: A zoom-in of the yielding zone, where the finest grid of ∼ 1.5 km resolution covers the region of
highest stress.

VII. EXTENSIONS

In this section we discuss extensions of the hexahedral
finite element, Cartesian octree-based AMR algorithms
and data structures in ALPS, which were described in
Section IV, to high-order spectral element discretizations
and to general geometries via a forest-of-octrees decom-
position. Whenever a domain can be decomposed into
non-overlapping subdomains that are mappable to cubes
(as is the case for spherical shell geometries that describe
the mantle), we can treat each of the cubes as the root
of an adaptive octree, thus creating a forest of (oc)trees.
Due to the topological relations between these trees,
their connecting faces involve transformations between
the coordinate systems of each of the neighboring trees.
A general-purpose adaptive code that implements this
philosophy is deal.II [27]. That code, however, replicates
the global mesh structure on each processor, which limits
the scalability to a few hundred processors.

We have created the P4EST library, which implements

a forest of arbitrarily connected parallel adaptive octrees.
P4EST extends the z−order technique for parallel single
octrees described in Section IV and in [15], [16], [26],
[33] by a connectivity structure that defines the topo-
logical relations between neighboring octrees. As in the
single-octree case, each core stores only the elements it
owns, minimizing global information. The main issue is
to enforce the 2:1 balance condition across faces, edges
and corners, not only inside an octree but also between
connected trees. This is complicated by the arbitrary
number of trees that can share any particular edge or
corner, each existing in a different coordinate system.
We have scaled P4EST up to 32,768 cores and will report
performance results elsewhere.

Exploiting the geometric flexibility of P4EST, we
have built MANGLL, a high-order nodal discontinuous
Galerkin (DG) discretization library for hexahedral ele-
ments, on top of the octree data structure. The imple-
mentation is an extension of Hesthaven and Warburton’s



nodal DG framework [34] to hexahedral elements. The
elements, also used in the spectral element method [35],
have nodes at the tensor product of Legendre-Gauss-
Lobatto (LGL) points. All integrations are performed
using the LGL quadrature, which reduces the block
diagonal DG mass matrix to a diagonal. The numerical
flux is integrated on nonconforming interfaces between
elements (where the mesh is refined) by introducing a
face integration mesh that integrates the contributions
from each smaller face individually using the two-
dimensional tensor LGL quadrature.

In addition to offering greater accuracy per grid point,
high order discretizations generally achieve substantially
greater per-processor performance (because of the large
dense elemental matrices they generate in conventional
implementations) and greater parallel performance (due
to the increased work for a given communication vol-
ume, since most of the additional degrees of freedom
are on the interior of elements; and due to the smaller
number of elements for a given number of unknowns).
The dense matrices generated by high order methods
are associated with application of the derivative oper-
ator at the element level. Explicit application of the
element derivative matrix requires 6(p+1)6 flops, where
p is the element polynomial order. This matrix-based
implementation is extremely cache friendly, since the
application can be done in one large matrix-matrix
multiply. Alternatively, the tensor product structure of
basis function can be exploited to carry out the same
operation in 6(p + 1)4 flops. While this tensor product-
based implementation is asymptotically work-optimal,
unfortunately it is not as cache friendly since it pro-
duces smaller matrices (one for each spatial dimension).
Clearly, as the polynomial order increases, the tensor-
product implementation will be preferable to the matrix
implementation. The crossover point depends on how
much faster large dense matrix operations execute on
a given architecture. For the 2.3 GHz AMD Barcelona
nodes on Ranger, and using the highly-optimized Go-
toBLAS library for matrix-matrix multiplications, we
found the crossover point to occur between p = 2 and
p = 4 for the scalar advection problem solved in this
section. However, on other systems for which a wider
gulf exists between execution rates for small and large
dense element-level matrices—such as heterogeneous
systems with attached accelerators, like Roadrunner—the
crossover can be at a higher polynomial order. Thus, in
this section, we give performance results for both matrix-
based and tensor-product based implementations for a
variety of polynomial orders.

To illustrate ALPS’ MANGLL library for high-order
discretization and P4EST library for forest-of-octree
adaptivity on general geometries, we solve a pure ad-
vection problem on a spherical shell using high-order

Fig. 12. Partitioning of spherical shell on 1024 cores for two
neighboring time steps (left column) and corresponding adapted mesh
with temperature field (right column).

adaptivity to dynamically resolve an advecting spherical
front. The arbitrary order nodal DG discretization is
combined with upwind numerical fluxes to discretize the
advection problem in space. A five-stage fourth-order
explicit Runge-Kutta (RK) method is used to integrate
the solution in time. Figure 12 shows snapshots from a
solution of the advection equation using linear (i.e. p =
1) elements on 1024 cores. The spherical shell is split
into 6 caps as usual in a cubed-sphere decomposition.
Each cap consists of 4 octrees, resulting in 24 adaptive
octrees overall. The figure shows a hemispherical slice
for illustrative purposes. The right column shows the
adapted mesh and associated temperature field for two
time steps that are relatively close in time. Comparison
of the top right and bottom right images shows that the
mesh has adapted to the advecting temperature concen-
trations. The left column displays the partitioning of the
mesh onto cores, where the color indicates MPI rank.
As can be seen in the figure, the partitioning changes
drastically from one time step to the next.

Excellent performance is observed for high-order DG
AMR solution of the advection equation. For example,
for order p = 4, we observe 90% parallel efficiency
on 16,384 cores relative to 64 cores, and for order
p = 6 we found 83% parallel efficiency on 32,768
cores compared to 32 cores, both with adapting the mesh
every 32 time steps. We next measure sustained floating
point performance using PAPI for both the matrix- and
tensor product-based implementations of the element
derivative operator. For order p = 2, both approaches
are within 15% of one another in runtime. For p = 4,
the matrix approach is approximately 23% slower than



the tensor approach on 64, 512 and 16,384 cores. On
the latter number of cores, the matrix version sustained
30 teraflops. Increasing the order to p = 8 on the
same number of cores, the sustained rate increases to 71
teraflops. Finally, on 32,768 cores, order p = 6 sustains
100 teraflops, while order p = 8 sustains 145 teraflops.
We stress that for these higher order discretizations, the
less cache-friendly tensor product implementation of the
element derivative operator executes at a substantially
lower rate, yet still runs more quickly. For example,
for p = 6 on 32K cores, the sustained rate is just
9.3 teraflops, but the tensor product implementation
performs 20 times fewer flops, and therefore runs twice
as fast as the matrix implementation. Clearly, the ten-
sor implementation is the method of choice for higher
polynomial order on Ranger. However, we provide the
matrix-based performance numbers as indicators of per-
formance on heterogeneous systems that can take even
greater advantage of the matrix-based implementation’s
numerous large dense element-level matrix operations
than a homogeneous cache-based system can.

VIII. CONCLUSIONS

Because of the complex data structures and large
volumes of communication required, the scalability of
dynamic AMR to tens of thousands of processors has
long been considered a challenge. The main contribu-
tions of this paper have been to present ALPS, an AMR
framework that uses parallel octree-based hexahedral
finite element meshes and dynamic load balancing based
on space-filling curves designed to scale to sustained
petascale systems and beyond; and RHEA, an adap-
tive mantle convection code built on ALPS aimed at
kilometer local resolution in global mantle convection
simulations necessary to resolve faulted plate boundaries.

The main achievements of this paper can be summa-
rized as follows:
• Scalability studies of ALPS on Ranger for

the advection-dominated transport component of
RHEA, which maximally stresses AMR, have
demonstrated excellent weak and strong scalability
on up to 62,464 cores and 7.9 billion elements. A
speedup of over 100 is observed in strong scaling
of a 531M element problem from 256 to 32,768
cores, while 50% parallel efficiency is maintained
in isogranular scaling from 1 core to 62K cores.
The total time consumed by all AMR components
is less than 11% of the overall run time for the
low-order discretized transport component, which
provides few flops to amortize AMR over.

• For the full mantle convection simulation, which
augments the explicitly-solved transport equation
with the implicitly-solved nonlinear Stokes equa-
tions, the overhead of AMR is even smaller. In

scalings to 16,384 cores, the cost of the AMR
components is in fact negligible (less than 1%).

• The multiple orders of magnitude variation in vis-
cosity is addressed by a parallel preconditioner
for the nonlinear Stokes equation that exhibits a
number of iterations that is essentially independent
of problem size when scaling weakly from 1 to
8192 cores.

• High order spectral element discontinuous Galerkin
AMR solution of the advection equation on spher-
ical shells using the high order library MANGLL
and the forest of octrees library P4EST from ALPS
exhibits 90% parallel efficiency in scaling weakly
from 64 to 16,384 cores.

• On 62K cores, AMR with a low order discretization
for the transport component of RHEA sustains 36
teraflops, despite having very little numerical work
within the (small) element kernels. For a high order
DG discretization (p = 8), the matrix-based variant
of MANGLL sustains 145 teraflops on 32K cores
while carrying out full AMR. While the matrix-
based implementation is not the method of choice
for this order of polynomial, for Ranger, and for our
current level of optimization, it is suggestive of the
high performance that can be obtained even with
full AMR on systems with dedicated hardware that
can execute dense matrix operations at substantially
higher rates than host processors.

• The mantle convection simulations of Section VI
have used the AMR capabilities described in this
paper to model plastic yielding at plate boundaries
within large-scale mantle convection models with
more than three orders of magnitude fewer ele-
ments, while achieving a resolution of about 1.5
km in the regions of yielding.

We stress that all results in this paper include all over-
heads due to mesh adaptivity—refinement, coarsening,
rebalancing, repartitioning, field transfer, redistribution,
and error indication. The results show that, with careful
algorithm and data structure design and implementation,
the cost of dynamic AMR can be made small relative to
that of PDE solution on systems with tens of thousands
of cores, even for meshes that change drastically over
time.

ACKNOWLEDGMENTS

This work was partially supported by NSF’s PetaApps
program (grants OCI-0749334, OCI-0749045, and OCI-
0748898), NSF Earth Sciences (EAR-0426271), DOE
Office of Science’s SciDAC program (grant DE-FC02-
06ER25782), DOE NNSA’s PSAAP program (coopera-
tive agreement DE-FC52-08NA28615), and NSF grants
ATM-0326449, CCF-0427985, CNS-0540372, CNS-
0619838, and DMS-0724746. We acknowledge many



helpful discussions with hypre developers Rob Falgout
and Ulrike Yang, and with George Biros. We thank
TACC for their outstanding support, in particular Bill
Barth, Tommy Minyard, Romy Schneider, and Karl
Schulz.

REFERENCES

[1] D. J. DePaolo, T. E. Cerling, S. R. Hemming, A. H. Knoll, F. M.
Richter, L. H. Royden, R. L. Rudnick, L. Stixrude, and J. S.
Trefil, “Origin and Evolution of Earth: Research Questions for
a Changing Planet,” National Academies Press, Committee on
Grand Research Questions in the Solid Earth Sciences, National
Research Council of the National Academies, 2008.

[2] D. Bailey, “The 1997 Petaflops Algorithms Workshop,” Compu-
tational Science & Engineering, IEEE, vol. 4, no. 2, pp. 82–85,
Apr-Jun 1997.

[3] D. P. McKenzie, J. M. Roberts, and N. O. Weiss, “Convection
in the Earth’s mantle: Towards a numerical solution,” Journal of
Fluid Mechanics, vol. 62, pp. 465–538, 1974.

[4] S. Zhong, M. T. Zuber, L. N. Moresi, and M. Gurnis, “Role of
temperature-dependent viscosity and surface plates in spherical
shell models of mantle convection,” Journal of Geophysical
Research, vol. 105, pp. 11 063–11 082, 2000.

[5] L. N. Moresi, M. Gurnis, and S. Zhong, “Plate tectonics and
convection in the Earth’s mantle: Toward a numerical simulation,”
Computing in Science and Engineering, vol. 2, no. 3, pp. 22–33,
2000.

[6] M. Gurnis, C. Hall, and L. Lavier, “Evolving force balance during
incipient subduction,” Geochemistry, Geophysics, Geosystems,
vol. 5, no. 7, pp. 1–31, 2004.

[7] M. I. Billen, “Modeling the dynamics of subducting slabs,” Annu.
Rev. Earth Planet. Sci., vol. 36, pp. 325–356, 2008.

[8] A. N. Brooks and T. J. R. Hughes, “Streamline upwind Petrov-
Galerkin formulations for convection dominated flows with par-
ticular emphasis on the incompressible Navier-Stokes equations,”
Computer Methods in Applied Mechanics and Engineering,
vol. 32, pp. 199–259, 1982.

[9] T. J. R. Hughes, The Finite Element Method. New York: Dover,
2000.

[10] C. Dohrmann and P. Bochev, “A stabilized finite element method
for the Stokes problem based on polynomial pressure projec-
tions,” International Journal for Numerical Methods in Fluids,
vol. 46, pp. 183–201, 2004.

[11] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements
and Fast Iterative Solvers with Applications in Incompressible
Fluid Dynamics. Oxford: Oxford University Press, 2005.

[12] C. C. Paige and M. A. Saunders, “Solution of sparse indefinite
systems of linear equations,” SIAM Journal on Numerical Anal-
ysis, vol. 12, no. 4, pp. 617–629, 1975.

[13] hypre. High Performance Preconditioners, User Manual, Center
for Applied Scientific Computing, Lawrence Livermore Na-
tional Laboratory, 2007, https://computation.llnl.gov/casc/linear
solvers/.

[14] H. De Sterck, U. M. Yang, and J. J. Heys, “Reducing complexity
in parallel algebraic multigrid preconditioners,” SIAM Journal on
Matrix Analysis and Applications, vol. 27, no. 4, pp. 1019–1039,
2006.

[15] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox,
“Towards adaptive mesh PDE simulations on petascale comput-
ers,” in Proceedings of Teragrid ’08, 2008.

[16] T. Tu, D. R. O’Hallaron, and O. Ghattas, “Scalable parallel octree
meshing for terascale applications,” in Proceedings of ACM/IEEE
SC05, 2005.

[17] L. F. Diachin, R. Hornung, P. Plassmann, and A. Wissink,
“Parallel adaptive mesh refinement,” in Parallel Processing for
Scientific Computing, M. A. Heroux, P. Raghavan, and H. D.
Simon, Eds. SIAM, 2006, ch. 8.

[18] P. Colella, J. Bell, N. Keen, T. Ligocki, M. Lijewski, and B. van
Straalen, “Performance and scaling of locally-structured grid
methods for partial differential equations,” Journal of Physics:
Conference Series, vol. 78, pp. 1–13, 2007.

[19] A. Calder, B. Curtis, L. Dursi, B. Fryxell, G. Henry, P. MacNeice,
K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, J. Truran, and
M. Zingale, “High-performance reactive fluid flow simulations
using adaptive mesh refinement on thousands of processors,” in
Proceedings of ACM/IEEE SC00, 2000.

[20] P. MacNeice, K. M. Olson, C. Mobarry, R. de Fainchtein, and
C. Packer, “PARAMESH : A parallel adaptive mesh refinement
community toolkit,” Computer Physics Communications, vol.
126, pp. 330–354, 2000.

[21] A. M. Wissink, D. A. Hysom, and R. D. Hornung, “Enhancing
scalability of parallel structured AMR calculations,” in Proceed-
ings of the International Conference on Supercomputing 2003
(ICS’03), San Francisco, CA, June 2003, pp. 336–347.

[22] D. J. Mavriplis, M. J. Aftosmis, and M. Berger, “High resolu-
tion aerospace applications using the NASA Columbia Super-
computer,” in Proceedings of ACM/IEEE Supercomputing 2005.
Washington, DC, USA: IEEE Computer Society, 2005, p. 61.

[23] C. D. Norton, G. Lyzenga, J. Parker, and R. E. Tisdale, “Devel-
oping parallel GeoFEST(P) using the PYRAMID AMR library,”
NASA Jet Propulsion Laboratory, Tech. Rep., 2004.

[24] J. E. Flaherty, R. M. Loy, M. S. Shephard, B. K. Szymanski, J. D.
Teresco, and L. H. Ziantz, “Adaptive local refinement with octree
load balancing for the parallel solution of three-dimensional con-
servation laws,” Journal of Parallel and Distributed Computing,
vol. 47, no. 2, pp. 139–152, 1997.

[25] J.-F. Remacle and M. Shephard, “An algorithm oriented mesh
database,” International Journal for Numerical Methods in En-
gineering, vol. 58, pp. 349–374, 2003.

[26] H. Sundar, R. S. Sampath, and G. Biros, “Bottom-up construction
and 2:1 balance refinement of linear octrees in parallel,” SIAM
Journal on Scientific Computing, vol. 30, no. 5, pp. 2675–2708,
2008.

[27] W. Bangerth, R. Hartmann, and G. Kanschat, “deal.II — A
general-purpose object-oriented finite element library,” ACM
Transactions on Mathematical Software, vol. 33, no. 4, p. 24,
2007.

[28] B. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey,
“libMesh: A C++ library for parallel adaptive mesh re-
finement/coarsening simulations,” Engineering with Computers,
vol. 22, no. 3–4, pp. 237–254, 2006.

[29] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz,
and A. Zdunek, Computing with hp Finite Elements II. Frontiers:
Three-Dimensional Elliptic and Maxwell Problems with Applica-
tions. CRC Press, Taylor and Francis, 2007.

[30] A. Laszloffy, J. Long, and A. K. Patra, “Simple data management,
scheduling and solution strategies for managing the irregularities
in parallel adaptive hp-finite element simulations,” Parallel Com-
puting, vol. 26, pp. 1765–1788, 2000.

[31] J.-L. Fattebert, R. Hornung, and A. Wissink, “Finite element
approach for density functional theory calculations on locally-
refined meshes,” Journal of Computational Physics, vol. 223, pp.
759–773, 2007.

[32] S. Zhong, “Dynamics of thermal plumes in three-dimensional iso-
viscous thermal convection,” Geophysical Journal International,
vol. 162, pp. 289–300, 2005.

[33] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox,
“Parallel scalable adjoint-based adaptive solution for variable-
viscosity Stokes flows,” Computer Methods in Applied Mechanics
and Engineering, 2008, accepted for publication.

[34] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin
Methods, ser. Texts in Applied Mathematics. Springer, 2008,
no. 54.

[35] M. Deville, P. Fischer, and E. Mund, High-Order Methods
for Incompressible Fluid Flow, ser. Cambridge Monographs on
Applied and Computational Mathematics. Cambridge University
Press, 2002, no. 9.


