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Abstract. In this thesis second-order methods for contact and friction problems
in linear elasticity are developed and analyzed in infinite-dimensional Hilbert
spaces. First, a scalar simplified friction problem written as non-differentiable
minimization problem is considered. By means of the Fenchel duality theorem
it is shown that its dual problem is an inequality-constrained maximization of
a smooth functional. For the solution of a smoothed version of this problem a
primal-dual active set strategy and a semi-smooth Newton are proposed, and
the close relation between these techniques is analyzed. For the solution of the
original problem these methods can be combined with a first-order augmented
Lagrangian method. Local as well as global convergence results are given. In
the second part of this thesis the Signorini contact problem without friction is
discussed and a semi-smooth Newton method as well as an exact and inexact
augmented Lagrangian method for the solution are analyzed. Finally, the Sig-
norini problem with Tresca as well as Coulomb friction is considered. In two
dimensions, results from the above problems can be extended to the problem
with Tresca friction. In arbitrary dimension, the complementarity function in-
volves additional nonlinearities which results in a different generalized Newton
method for the problem with Tresca friction. The methods carry over to the
Signorini problem with Coulomb friction by means of fixed point ideas. Compre-
hensive numerical tests discuss, among others, the dependence of the algorithm’s
performance on material and regularization parameters and on the mesh and
yield a remarkable efficiency of the proposed methods for the solution of prob-
lems involving contact and friction.
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CHAPTER 1

Introduction

Problems involving contact and friction abound in many practical applica-
tions. These include biological processes, the design of machines and transporta-
tion systems, and metal forming. The importance of these phenomena motivates
the development of methods allowing a reliable and fast simulation.

Contact and friction problems are inherently nonlinear, making modeling,
analysis and numerical realization truly challenging. A closed form for the solu-
tion of these problems is generally not known. Thus, fast and reliable numerical
solution techniques are extremely important. This and the fast development of
computing power have led to an increased research interest in the field of numer-
ical algorithms for contact problems with and without friction.

In contact problems, one is concerned with the deformation of an elastic
body whose surface or boundary may hit a rigid foundation. These problems are
often named after Signorini, who considered, as early as in 1933, the frictionless
contact of an elastic body with a rigid foundation [101]. Since it is not known in
advance which part of the body’s surface will be in contact, the main difficulty
is to determine the contact zone between elastic body and rigid foundation. In
addition, at this contact boundary frictional forces are often too large to be
neglected. Thus, besides the non-penetration condition, one also has to take
into account a frictional behavior in the contact zone. This causes yet another
nonlinearity in the problem formulation.

While in the engineering community finite-dimensional discretizations of con-
tact and friction problems are usually studied, little attention has been paid
to their infinite-dimensional counterparts, specifically to Newton-type methods.
This thesis focuses on the formulation and analysis of second-order solution al-
gorithms for the Signorini problem with and without friction in a function space
framework. Such an infinite-dimensional analysis gives more insight into the
problem, which is also of significant practical importance since the performance
of a numerical algorithm is closely related to the infinite-dimensional problem
structure. In particular, it is desirable that the numerical method can be con-
sidered as a discrete version of a well-defined and well-behaved algorithm for
the continuous problem. A finite dimensional approach misses important fea-
tures such as the regularity of Lagrange multipliers and its consequences, and
smoothing and uniform definiteness properties of the involved operators. It is
well-accepted that these properties significantly influence the behavior of numer-
ical algorithms.
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The approach taken in this thesis is to a large extent based on writing the
problems under consideration as optimization problems. Then, we can derive the
Fenchel dual problem (see [42]), which allows to transform a non-differentiable
minimization problem into an inequality constrained minimization of a smooth
functional. Whenever possible, in this work the problems are also seen from
the optimizational point of view, i.e., aside from using just the first-order neces-
sary conditions of the Signorini problem, which are usually the starting points
of the analysis, we additionally use for our investigation alternately the primal
and dual formulations of the problem. Another important aspect of this work is
the use of certain nonlinear complementarity (NC) functions, which allow one to
write complementarity conditions as nonsmooth operator equations in function
spaces. The main algorithmic techniques used are semi-smooth Newton meth-
ods in function spaces (see [24,58,69,81,104]), the closely related primal-dual
active set strategy (see, for example, [14,15,57,58,60,70,82]) and the first-order
augmented Lagrangian method (see [16,17,67]).

The outline of this work is as follows. Frequently used results are provided
in the next chapter. In Chapter 3, a simplified friction problem is discussed.
On the basis of this scalar model problem dual formulations, a regularization
technique and algorithms in Hilbert spaces and their convergence properties are
discussed. In Chapter 4, the contact problem without friction is investigated and
generalized Newton and exact as well as certain inexact augmented Lagrangian
methods for the solution are analyzed. In Chapter 5, the results for this problem
are generalized to the case that Coulomb or Tresca friction occur in the contact
zone. Certain nonlinear complementarity functions for both, 2D and 3D frictional
contact are discussed. All chapters include comprehensive numerical tests. By
means of several numerical examples the dependence of the algorithm on material
and regularization parameters and on the mesh is discussed.



CHAPTER 2

Preliminaries

In this chapter we introduce some basic definitions and summarize theoreti-
cal results that will frequently be used in this work. Besides results from convex
analysis, a generalized differentiability concept is introduced and its main prop-
erties are summarized. Finally we give an overview of the notations used in this
thesis.

1. Convex Functions

This section covers results from convex analysis and duality theory that will be
of importance in the subsequent chapters. We first discuss orthogonal projections
onto convex sets, before we turn to the definition of convex conjugate functions
and the subdifferential of a convex function. The statement of the Fenchel duality
theorem together with a brief discussion conclude this section.

1.1. Projections onto convex sets. Here we characterize projections onto
convex sets and summarize some basic properties of these mappings in order to
have them available for the subsequent sections. In the sequel let H be a real
Hilbert space with inner product (-, -) and induced norm || - ||.

DEFINITION 2.1 (Orthogonal Projection). Let C' C H be nonempty, closed
and convex. Then there exists a unique mapping P : H — C satisfying

|lv — Po|| = ing |lv —u|| forallve H.
ue
The mapping P is called orthogonal projection of H onto C.

A well known equivalent characterization of the orthogonal projection Pv in
a Hilbert space is that

(2.1) (v—Pv,u— Pv)y <0 forallueC.

We now derive some basic formulas for projections onto convex sets. Let v,w € H
be given and P denote the orthogonal projection onto the nonempty and closed
convex set C'. Utilizing that Pv, Pw € C, we obtain from (2.1) that

<v — Pv, Pw — Pv> <0,
<w — Pw, Pv — Pw> <0.
Summing up the above equations results in
(2.2) {(v— Pv) — (w — Pw), Pv — Pw) > 0.
3
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Equation (2.2) yields that

(v—w,Pv— Pw)={(v—Pv+ Pv) — (w— Pw+ Pw), Pv — Pw)

(2.3) = ((v— Pv) — (w — Pw), Pv — Pw) + (Pv — Pw, Pv — Pw)
> |Pv— Pul| > 0.

This observation shows that projections onto convex sets are monotone operators.

1.2. Convex conjugate functionals and the subdifferential. In this
paragraph we define the conjugate of a convex function and we recall the def-
inition of the subdifferential. We start with some basic definitions for convex
functions, where we utilize a vector space V.

DEFINITION 2.2 (Proper, lower semicontinuity). Let C' C V' be convex and
¢ :C = RU{—00,00} be a convex function. Then

e ¢ is called proper, if it nowhere takes the value —oo and if it is not
identically equal to +oc.
e ¢ is called lower semicontinuous if
lim inf ¢ (v,) > ¢(v)

n—oo

for all sequences (vy,)n>o with lim,,_, v, = v.

Next we define the conjugate of a convex function, which is a mapping defined
on the topological dual V*.

DEFINITION 2.3 (Convex conjugate). For a convex function ¢ : V' — R U
{—00, 0} the conver conjugate function ¢* : V* — R U {—oc, oc} is defined by

¢*(2*) = sup { (2%, z) — p(2)}
TeV
for z* € V*.

As simple example we derive the convex conjugate functional corresponding
to ¢ : R — R defined by ¢(x) := |z|. From the definition we get for z* € R

0 if |a*] <1,
(2.4) (a*) = sup{az — |x|}={ 7] <

oo else.
Thus, the convex conjugate of the absolute value function is the indicator function
of the interval [—1, 1].

Convex conjugate functions are important for the investigation of optimiza-
tion problems. Given an optimization problem, by means of convex conjugate
functions a so-called dual optimization problem can be derived (see Section 1.3)
that often allows to gain a deeper insight into the problem structure. For proper-
ties of conjugate functionals and a geometric interpretation we refer, e.g., to [87,
p. 195-199] and to the discussions in [9,31,42]. The convex conjugate functional
is closely related to the subdifferential of a convex function, which we turn to
next. The subdifferential is a multivalued mapping from V into the dual V*.
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DEFINITION 2.4 (Subdifferential). Let ¢ : V' — RU{—o00, 00} be proper and
convex. The subdifferential Op of @ at v € V is defined by

(2.5) dp(v) == {v* € V*: p(w) — ¢(v) > (v*,w—v) for all w € V}.
The elements v* € dp(v) are called subgradients of ¢ at v.

The set dp(v) is convex, closed and possibly empty, see [42, p. 21]. Provided ¢
is finite and continuous at v € V', then dy(x) is nonempty [42, p. 22]. Moreover,
if ¢ is Gateaux differentiable at v € V', then d¢(v) only contains a single point
that coincides with the Gateaux derivative. Conversely, if ¢ is continuous, finite
and has only one subgradient at v, then ¢ is Gateaux differentiable at v, and the
Gateuax derivative coincides with the element in dg(v), see [42, p. 23].

The next basic property makes us anticipate the important role of the subd-
ifferential in optimization problems:

o(u) = 1;%1‘1/1 o(v) if and only if 0 € dp(u).
We next formulate the dual of an optimization problem and recall the Fenchel
duality theorem, that clarifies the relation between primal and dual problem.

1.3. Fenchel duality theory. In this section we state the Fenchel duality
theorem in infinite-dimensional spaces. For a more complete discussion of duality
theory we refer to [42].

Let V and Y be Banach spaces and denote their topological duals by V*
and Y*, respectively. Furthermore, let A € L(V,Y), i.e., A is a bounded linear
operator from V to Y and let F: V — RU {0}, G: Y — RU {oo} be convex.
We consider the following optimization problem, henceforth called the primal
problem:

(P) &IGI‘f/ {.T(u) + g(Au)}.

Corresponding to (P) we define the so-called dual problem:

(P) sup { = FH(=Ap) - G (") },
p*ey*

where A* € L(Y™*, V*) is the linear adjoint operator of A and F* : V* — RuU{oc},
G* : Y* — RU{oc} denote the convex conjugates of F and G, respectively. The
Fenchel duality theorem now relates the problems (P) and (P*), see, e.g., [42,
p. 59] or [87, p. 201].

THEOREM 2.5. Suppose that F and G are proper and lower semicontinuous
and that there exists vo € V with F(vg) < 00, G(Avg) < 0o and G is continuous
at Avg. Furthermore, assume that F(u) + G(Au) — oo as |ju|| — oo and that
V is reflexive. Then the problems (P) and (P*) admit (at least) one solution u
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and p*, respectively, and further
F(u) + G(Au) = 1161‘f/ {F(u)+ G(Au)}

= sup {—P(—A*p*) . g*(p*)} — —P(—A*ﬁ*) . g*(ﬁ*)

p* GY*

(2.6)

In general, it can be shown [42, p. 48] that
inf {F(u) +G(Au)} > sup {=F*(=A"p") = G"(p")}

preEY*
holds true, which explains why (2.6) is often referred to as “no duality gap occurs”.
The next theorem states conditions that relate solutions of the primal and the
dual problem, for a proof see [42, p. 53].

THEOREM 2.6. If (P) and (P*) possess solutions, if further
RN inf {FW)+ G} = sup {~F(-A) — G ()

preYy*
and this number is finite, then all solutions u and p* of (P) and (P*) satisfy the
extremality conditions

—A*p* € OF ()

(28) p* € 89(/\@3,

where O denotes the subdifferential.
Conversely, if u € V and p* € Y* satisfy (2.8), then @ is a solution of (P),
P* is a solution of (P*) and (2.7) holds.

2. Generalized Differentiability in Function Spaces

We now summarize results on a recently developed generalized differentiabil-
ity concept in infinite-dimensional spaces. This will be essential for the methods
and analysis developed in this thesis. In a first paragraph we comment on the de-
velopment of these methods, before we summarize those facts about semi-smooth
Newton methods that are essential for this work.

2.1. Semi-smooth Newton methods. The application of generalized New-
ton methods for semi-smooth problems in finite dimensions has a rather long
history, see, e.g., [43,44,91,92] and the references given there. Recently, in
[24, 58,81, 103, 104] concepts for generalized derivatives in infinite dimensions
were introduced. Our work uses the notion of “slant differentiability in a neigh-
borhood” as proposed in [58], which is a slight adaption of the terminology intro-
duced in [24], where also the term “slant differentiability at a point” is introduced.
A similar concept is proposed in [81], where the name Newton map is coined.
Applications of such pointwise approaches to Newton’s method, however, presup-
poses knowledge of the solution. The differentiability concept in [58] coincides
with a specific application of the theory developed in [103,104], we refer to the
discussion on this relationship in [58]. As in the recent papers [69, 70] and also
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motivated from [81], we use instead of the notion “slant differentiability in a
neighborhood” the name “Newton differentiability”.

We remark, that the primal-dual active set strategy can be interpreted as a
certain application of the semi-smooth Newton method to nonlinear complemen-
tarity functions, see [58]. The primal-dual active set strategy has been success-
fully applied to linear optimal control problems involving PDE’s and ODE’s with
pointwise constraints (see [14,15,57,60,82]), and, more recently also to nonlinear
control problems [35, 36, 70].

2.2. Definition and properties. In this section we define Newton differen-
tiability according to [58] and summarize facts on semi-smooth Newton methods.
Let X,Y and Z be Banach spaces and F': D C X — Z be a nonlinear mapping
with open domain D.

DEFINITION 2.7. The mapping F' : D C X — Z is called Newton differen-
tiable on the open subset U C D if there exists a mapping G : U — L(X, Z) such
that

1
(2.9) lim —||F(z 4+ h) — F(z) — G(x + h)h|| =0
h—0 ||h||

for every x € U. The mapping G in the above definition is referred to as gener-
alized derivative.

Note that in the above definition G is not required to be unique to be a gener-
alized derivative of F'in U. We now give an example for a Newton differentiable
function that will frequently be used in this work, namely we discuss Newton
differentiability of the pointwise max- and min-operator in function space. For
this purpose let X denote a function space of real-valued functions on some
Q C R, further max(0, y) and min(0, y) the pointwise max- and min-operations,
respectively. As candidates for the generalized derivatives we introduce

1 ify(z) >0, G (4)(&) = {1 if y(z) <0,

(2.10)  Graa(y)(z) = {0 if y(z) < 0; 0 ify(z)>0.

Then we have the following result, see [58].

THEOREM 2.8. The mappings max(0,-) : L(Q) — LP(Q) and min(0,-) :
L1(Q) — LP(Q) with 1 < p < q¢ < oo are Newton differentiable on L(Q2) with
generalized derivatives Gpes and Guin, respectively.

Note that Theorem 2.8 requires a norm gap (i.e., p < ¢) to hold true. In [58]
it is shown that the functions in (2.10) cannot serve as generalized derivatives if
p > q. We remark that one can choose an arbitrary real value for the generalized
derivatives G 4. (y) and G, (y) in Definition (2.10) for points where y(z) = 0,
and the above result still holds true, see [58].

We now focus on the generalized Newton method for the solution of the
possibly nonsmooth equation F'(z) = 0. Based on the above differentiability
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concept we are interested in the sequence (z*);>; calculated from the Newton
step

(2.11) P = gk — QM) TR (),

where G is a generalized derivative in the sense of Definition 2.7.

The next theorem aims at the convergence of this generalized Newton method
(for a proof see [24,58,104]).

THEOREM 2.9. Suppose that & € D is a solution to F(x) = 0 and that F is
Newton differentiable in an open neighborhood U of T and that {||G(z)7 || : z €
U} is bounded. Then the Newton-iteration (2.11) converges superlinearly to T
provided that ||z° — z|| is sufficiently small.

Next we turn to a first chain rule for Newton differentiable functions, for a
proof we refer to [69].

THEOREM 2.10 (Chain rule 1). Let K : X — Y be an affine mapping with
Ky =By+b, Be L(X,)Y),beY, and assume that F : D C Y — Z is
Newton differentiable on the open subset U C D with generalized derivative G.
If K~Y(U) is nonempty, then H := F o K is Newton differentiable on K (U)
with generalized derivative given by G(By +b)B € L(X, Z).

A more general version of Theorem 2.10 is proved in [70], where a nonlinear,
but continuously Fréchet differentiable K is allowed. However, for this work the
result of Theorem 2.10 suffices. We also need a chain rule for the case that a
Fréchet differentiable mapping is decomposed with a Newton differentiable one.

THEOREM 2.11 (Chain rule 2). Let F : D C X — Y be Newton differen-
tiable in an open neighborhood U C D with generalized derivative G such that
{NIGW)|lex,y) : v € U} is bounded. Furthermore, let K :Y — Z be continuously
Fréchet differentiable in F(U) with derivative K'. Then H := K o F' is Newton
differentiable with generalized derivative K'(F)G € L(X, 7).

ProoF. The Newton differentiability of F' implies that for all uw € U
(2.12) F(u+h) — F(u) =G(u+ h)h + ||h]|xa(h)

with a(h) € Y and ||a(h)||y — 0 as ||h||x — 0. Due to the Fréchet differentiabil-
ity of K we have for all v € F/(U) that

(2.13) K(v+k) — K(v) = K'(0)k + |||y b(k)

with b(k) € Z and ||b(k)||z — 0 as ||k|ly — 0. Setting v := F(u) and k :=
F(u+ h) — F(u) in (2.13) results with (2.12) in

(2.14) K(F(u+h)) — K(F(u)) = K'(F(u+ h))G(u + h)h + c¢(h),
where

c(h) = (K'(F(u)) = K'(F(u+ h))G(u+ h)h + [[bllx K'(F (u))a(h) + [|k][y b(K).
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Since K' is continuous and there exists C' > 0 such that ||G(v)||z(x,y) < C for
all v € U, we obtain

[le(h)l
Tl S O E() = K'(Fu+ W)l + 1K (F@)lecxmllah) Iy
F - F
IFut ) = F@lyy
12l x
which tends to 0 as h — 0. This proves the assertion of the theorem. O

3. Notation

In this section we summarize the notation and notational conventions used
in this work.

3.1. Vector and function spaces. We usually work on a domain in R”
denoted by € with boundary I'. This boundary may be separated into several
parts denoted, for instance, by I'q, 'y, 3.

Abstract vector spaces are denoted by capital letters such as V.Y and for
function spaces we use the standard notation H'(Q2), L*(T),.... To distinguish
products of function spaces we denote them by bold Latin letters, e.g.,

HY(Q) = HY(Q) x HY(Q) x - x HY(Q),
L2(T) = LA(T) x LA(T) x - -- x L*(Q).

The topological dual of a vector space V' is denoted by V*.

For norms in a general vector space X we write || - || x. To shorten the nota-
tion we utilize abbreviations for norms in frequently appearing function spaces,
namely: The norm in R" is only denoted by || - ||, the absolute value function
in R by | -|. To shorten notation we frequently utilize the shorter notion ||g||s
instead of ||g|z2(s)-

Duality pairings between elements in V, V* are denoted by < , ->V* v+ and
unless otherwise specified, for the scalar product in a Hilbert space H we write
<- , >H However, the scalar product in L?(S) is just denoted by (-,-)s and, if
the set S is clear from the context we only write (-, -).

The vector space of bounded linear mapping from a space X into Y is denoted
by £(X,Y), and the corresponding norm by || - ||z(x,y) or shorter by || - || ..

3.2. Variables and mappings. We usually denote scalar variables by Latin
or Greek letters such as =,y and A. For n > 2 vectors in R” are denoted by bold
letters, e.g., by @, y,v. To distinguish matrices from vectors we denote them by
underlined bold letters, such as p, q, o, €.

Mappings are denoted according to their image space. For instance, the trace
mapping from H'(Q) — L*(T) is denoted by 7, while the trace mapping from
H'(2) — L?(I') is denoted by the bold 7. This vector valued trace mapping
can be decomposed into a scalar valued map that only contains the component
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in direction normal to the boundary that is consequently denoted by 7n. The
vector valued tangential component trace mapping is denoted by 7.

For linear operators we frequently dismiss the brackets for the argument. For
example, we write 7y instead of 7(y), and the stress of a deformation y is denoted
by oy instead of o(y).



CHAPTER 3

A Simplified Friction Problem

This chapter is devoted to the development and analysis of iterative algo-
rithms for the solution of mechanical problems involving friction. As a model
problem we consider a simplified friction problem that can be stated as the min-
imization of the non-differentiable functional

1 %
1) = 5190l + Sl = (oo + [ Iruo)ldo
f

over the set Y := {y € H'(Q2) : 7y = 0 a.e. on [y},

(P)

where @ C R", I'y C I := 02 is a possibly empty open set, I'y := I\ Iy,
g>0,u>0, feL?Q) and 7 denotes the trace operator. The precise problem
formulation will be given in the first section.

While usually in engineering papers finite dimensional discretizations of (P)
and related problems are studied, little attention has been paid to their infinite-
dimensional counter-parts, specifically to Newton-type methods. This contribu-
tion focuses on the formulation and analysis of second-order solution algorithms
for (P) in a function space framework. Such an infinite-dimensional analysis gives
more insight into the problem, which is also of significant practical importance
since the performance of a numerical algorithm is closely related to the infinite-
dimensional problem structure. In particular, it is desirable that the numerical
method can be considered as the discrete version of a well-defined and well-
behaved algorithm for the continuous problem. A finite dimensional approach
misses important features as for example the regularity of Lagrange multipliers
and its consequences as well as smoothing and uniform definiteness properties
of the involved operators. It is well accepted that these properties significantly
influence the behavior of numerical algorithms.

In principal there are two approaches to overcome the difficulty associated
with the non-differentiability in (P). One is based on resolving the derivative of
the absolute value function introducing a Lagrange multiplier, the other one is
based on an appropriate smoothing of the non-differentiable term.

An over-relaxation method and the Uzawa algorithm are proposed in the classical
monographs [46,47] for the solution of (P) and convergence results for these first-
order methods are given. The Uzawa method is also suggested for a variational
inequality of the second kind in [6,51], however, no numerical results are given
there. The recent paper [26] discusses an inexact version of the Uzawa algorithm

11
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for variational inequalities of the second kind and reports on numerical exam-
ples. In [62] iterative techniques for the solution of friction contact problems are
presented and developed further in [54]. Those methods require to minimize a
non-differentiable functional over a convex set in every iteration step, which also
motivates our investigation of problem (P).

In [28-30] a generalized differentiability concept (Pang’s B-differential) is used
that allows to apply a Newton-like method for discretizations of friction contact
problems, whereas algorithm formulation and analysis is done in finite dimen-
sional spaces and only few convergence rate results are given. The authors of
those contributions report on good numerical results and, in [30], an almost
mesh independent behavior of the algorithm is observed, which suggests that the
finite dimensional method is induced by an infinite-dimensional one. A different
approach towards numerical realization of discrete elliptic variational inequalities
of the second kind was followed in [77,78], where monotone multigrid methods
are employed to derive an efficient solution method.

For a smoothed variational inequality of the second kind again in [47] the Uzawa
method is proposed. More recent contributions apply classical Newton methods
to the smoothed finite dimensional problems, see, e.g., [84].

While there is a large literature on finite dimensional constrained and non-
differential optimization techniques (see, e.g., [43,44,91,92] for finite dimensional
semi-smooth Newton methods), the systematic analysis of these methods in con-
tinuous function spaces started only rather recently [24,58,81,104]. The meth-
ods proposed in this chapter are related to the primal-dual active set strategy
for the solution of constrained optimal control problems [14, 15]. This algo-
rithm is closely related to infinite-dimensional semi-smooth Newton methods as
shown in [58]. This relation allows to establish fast local convergence [58] and
mesh-independence results [56,61]. While in the papers [14,15,58,69] the above
methodologies are applied to unilateral pointwise constrained optimization prob-
lems, the convergence analysis for bilaterally constrained problems (as is the dual
of (P)) involves additional problems as will come out in this contribution (see
also [57,60]). The first-order augmented Lagrangian method for nonsmooth con-
vex optimization that can be seen as an implicit version of Uzawa’s algorithm is
investigated within a Hilbert space framework in [67].

This chapter is organized as follows: In Section 1 the exact formulation and
basic results for (P) are given, the dual problem and the extremality condi-
tions are determined. Section 2 is devoted to a regularization procedure for the
dual formulation, the corresponding primal problem and the convergence of the
regularized problems. In Section 3 we state algorithms for the solution of the
regularized and the original friction problem and investigate their close relation.
Section 4 analyzes these algorithms and gives local as well as global convergence
results. Section 5 summarizes our numerical testing for (P) and Section 6 applies
our findings to a dynamical version of (P).
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1. Simplified Friction Problem

In this section we precisely state the simplified friction problem and state
basic existence, uniqueness and regularity results. Furthermore, we calculate the
dual problem and the corresponding extremality conditions for (P).

1.1. Problem statement. Let {2 C R" be an open bounded domain with
Lipschitz continuous boundary I'. We choose a possibly empty open measurable
subset I'g of I" and set I'; := I'\I'y. Let there be given two constants g > 0, > 0
and a real-valued f € L?(Q). For y € H'(Q2) we define the functional

1 %
BY )= Il Sl (e a [ vl ds
7
where || - || and (-,-)q denote the usual norm and scalar product in L*(2) and
7 : HY(Q) — Hz(T) denotes the trace operator. Using (3.1) and defining
(3.2) Y={ye H(Q):7y =0 a.e. on Iy}
the simplified friction (P) problem is given by
J
min J(y).

Note that problem (P) is an unconstrained minimization problem of a non-differ-
entiable functional. For y, 2 € H'(Q2) we introduce the notations

(3.3) a(y, z) := (Vy, V2)a + u(y, 2)a

and
(3.4) - / ry(@)| da.
Then we can equivalently formulate (P) as an elliptic variational inequality of

the second kind [46]:
{ Find y € Y such that

a(y,z—y)+73(z) —j(y) > (f,z—y)q forall z€Y.

To emphasize our basic ideas we treat the rather simple model problem (7P).
Many generalizations are possible. In particular, the bilinear form a(-, -) defined
in (3.3) can be replaced by any coercive scalar product (see, e.g., [102]). An-
other simple generalization of (P) is to allow instead of a constant g in (3.4) a
nonnegative function g € L*(T;), leading to j(y fr x)|Ty(z)| dz.

(3.5)

1.2. Basic results. We first investigate existence and uniqueness of solu-
tions to (P) in the case that a(-,-) is Y-coercive.

THEOREM 3.1. Let T'g # 0 or p > 0. Then problem (P) or equivalently (3.5)
admits a unique solution y € Y.
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PROOF. In the case Ty # (0, u > 0 it follows from the Poincaré inequality
that a(-,-) defines a continuous and elliptic bilinear form on Y; if 4 > 0 and
'y = 0 this obviously also holds true. In [46, p. 49] it is proved that j(-) is lower
semicontinuous on H'(2), thus on Y. Now we can apply the general existence
and uniqueness result for elliptic variational inequalities of the second kind, [46,
p. 5], to obtain existence and uniqueness of a solution to (P). O

In the case that a(-,-) is not coercive we have

THEOREM 3.2. If 'y = 0 and p = 0 we get existence and uniqueness of a
solution to (P) provided that
/ f(z)dz
Q

PROOF. Existence of a solution under assumption (3.6) is proved in [39,
p. 70], uniqueness in [39, p. 73]. O

(3.6) < g[T\.

In [39] it is also shown that one cannot expect existence nor uniqueness of a
solution to (P) when weakening condition (3.6). For the sake of completeness we
finish this section with a regularity result, cf. [46].

THEOREM 3.3. If T is sufficiently smooth and Tq = 0, then the solutiony € Y
of (P) is in H*(Q).

1.3. The Fenchel dual. To get a deeper insight into problem (P) we cal-
culate the corresponding dual problem. To simplify notation we use the trace
operator 7y : Y — L*(I';) defined by 77y = (7y)r,. We start with rewriting
problem (P) as

(3.7 inf {F () +6(A0)]
with A := 7 € L(Y, L*(Ty)),
Fo) = 500.) = L) and G(Ap)i=g [ |Ay(a)]do.

The functionals F : Y — R and G : L*(I'}) — R are convex and continuous.
Following Section 1.3 or [42, p. 61] the Fenchel dual problem is

(3.8) sup { ~ FH(—AN) — Q*()\)},

AEL2(Ty)
where F*: Y* — R and G* : L*(I'}) — R denote the convex conjugate functionals
to F and G, see Definition 2.3, and A* € L£(L*(T'y), Y™*) the adjoint of the operator
A. In (3.8) we already identified L*(T;) with its dual.
Next we specify (3.8) for problem (P). Let therefore A € L?*(T') be given. Due
to the definition of F* we have

F*(—A*)) = sup {—()\,Tf w)r, — %a(w,w) + (f,w)Q} .

weyY
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It can easily be seen that the above supremum is attained by w € Y satisfying
(3.9) a(w,v) = (f,v)a+ A, v)r, =0 forallveY.
Thus, using (3.9) with v := w leads to
1 1
(3.10) F(=ANX) = =\, pw)r, — §a(w,w) + (fyw)g = ga(w,w),

where w = w(\) satisfies (3.9).
Finally we calculate the conjugate convex functional of G. For A € L?(T}) we
have

(3.11) g ()= sup {(A,mrf—g(u)}:{

vel? (Ff)

0 if |\ <gae only,

oo otherwise,

as shown in [42]. Plugging (3.10) and (3.11) into (3.8) we can now specify the
dual problem:

‘/\|<gS£eI.)on r TH(A) = —%a(w()\),w()\)),
) <o weony

where w(\) satisfies
a(w(N),v) = (f,v)a+ (A, 7pv)r, =0 forallveY.

It is easy to see that the functions F and G satisfy the conditions of Theorem
2.5, and thus it follows that
inf J(y) = sup J*(N),
yey [A|<g a.e. on Ty
that is, no duality gap occurs. As already shown, the primal problem (P) admits
a solution § € Y if a(-,-) is Y-coercive or condition (3.6) holds. Thus, under

these assumptions existence of a solution A € L?(T}) for the dual problem (P*)
follows from Fenchel duality theory, see Theorem 2.5 or [87, p. 201].

REMARK 3.4. By means of duality theory we have transformed (P), the
unconstrained minimization of a non-differentiable functional into (P*), the con-
strained maximization of a smooth functional. Constrained optimization prob-
lems like (P*) have been extensively studied in literature, see, e.g., [17,87] and
lots of theoretical results are available. This illustrates that considering the dual
problem can result in new insight into the structure of optimization problems,
that is of interest also for constructing efficient solution methods.

1.4. Extremality conditions. Following Theorem 2.6 the solutions 7, A of
primal and dual problem, respectively, satisfy the extremality conditions (2.8),
namely

(3.12) —A\*X € 0F(y),
(3.13) A € 0G(11 7).
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Due to the differentiability of F equation (3.12) can be written as
—<A*5\,’U>Y*7Y = <.7-"'(gj),v>Y*7Y forallv ey,
or equivalently as
—(\,10)r, = a(G,v) — (f.v)q forallv e Y.
Hence condition (3.12) yields
a(y,v) — (f.v)a+ (A, 7p0)r, =0 forallv e Y.

Next we turn our attention to (3.13). From the definition of the subdifferential
it follows that

g/F (I 9(@)] = [v(2)]) de S/ M) (77 5(x) — v(2)) dz

Ty

for all v € L*(T), which implies for v = 0 the relation
/ gl y(@)| = @) y(e) de < 0.
Ly

Since we have |\| < g a.e., it follows that

(3.14) gl 9| — A g =0 a.e. on I}.
Introducing active and inactive sets for the dual problem (P*) by
(3.15a) A_={z €T;: A= —gae. onl}},

(3.15h) Z:={zel;:|\ <gae. onl}},

(3.15¢) Ay :={z €Ty: A=gae onI}}

one can express the conditions [A| < g and (3.14) as

77y <0 ae on A_,
(3.16) 77y =0 ae on I,
77y >0 ae on A,

The next lemma states that (3.15) and (3.16) can be expressed as one nonlinear
equation.

LEMMA 3.5. Conditions (3.15), (3.16) can equivalently be expressed as
(3.17) 7§ =max(0,73 7+ o(A — g)) + min(0, 737 + c(A + g))
for every o > 0.

PrOOF. The equivalence follows from general results in convex analysis [67],
but can also be verified by a direct computation. It can be seen easily that
(A, 77 9) satisfying (3.16) also satisfies (3.17).

Conversely, let us assume that (3.17) holds and let us show (3.16) by contradic-
tion. Assuming 7yy > 0 on A_ implies, using (3.17) that

77y = max(0, 77y — 209) = 177y — 2049,
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giving a contradiction. Hence, on A_ holds 744 < 0. Similarly one gets that
779 > 0 on A,. Finally, assume that either 749 > 0 or 774 < 0 on Z. In the first
case (3.17) implies

7y =max(0,7y +o(A = g)) =7y + (A —g),
which is a contradiction since A — g # 0 on Z. Utilizing the same arguments

the assumption 77y < 0 on Z leads to a contradiction, which shows that (3.17)
implies 774 = 0 on Z and ends the proof. O

The function
S, (r7y,A) =1y —max(0, 77y +0(A — g)) — min(0, 77y + o(A + g))

is called nonlinear complementarity (NC) function for (3.16) due to the fact that
(3.16) is equivalent to ®,(779,A) = 0 for arbitrarily fixed o > 0. Thus the
extremality conditions (3.12), (3.13) yield

(3.18a) a(y,v) — (f.v)a+ (A, 7p0)r, =0 forallv €Y,
(3.18b) P, (11 7,A) = 0 for all o > 0.
Using Theorem 2.6 or [42, p. 59] we summarize our results in the next theorem.

THEOREM 3.6. For (y,\) € Y x L*(I}) the following two conditions are
equivalent to each other:

(i) The variables y and \ solve the primal and dual problem (P) and (P*),
respectively, and
J(y) = =T*(A).
(ii) The pair (y, \) satisfies the conditions (3.18).

REMARK 3.7. If the solution variables 4 and A of (P) and (P*), respectively,
are sufficiently smooth, then (3.18a) can be written as

—Ay+py = f ae. in

g—z—kﬂ = 0 a.e. only.

1.5. Comments on the numerical solution. In [46,47] two methods for
the numerical solution of (P) are proposed. Firstly, an (over-)relaxation method
for the discretized problem is described and tested, secondly a duality method
(the Uzawa algorithm) is applied to (P) and convergence results are given. The
latter is a first-order update method for the dual variable [6]. For an inexact
version of the Uzawa method applied to variational inequalities of the second
kind we refer to [26].

In the sequel we focus on second-order (Newton-type) algorithms for the solu-
tion of (P). In finite dimensions the application of generalized Newton methods
for semi-smooth problems has a rather long history, see, e.g., [43,44,91,92] and
the references given there. Here we are interested in infinite-dimensional gener-
alized Newton methods based on recent generalized differentiability concepts in
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function space [24,58,81,104]. For this purpose it seems necessary to introduce
a regularization procedure that allows to state and analyze our algorithms in
infinite dimensions.

2. A regularization procedure

In this chapter we introduce a regularization procedure to overcome the diffi-
culty associated with the non-differentiability of the functional .J in (3.1). There-
fore we consequently utilize results from duality theory and discuss relations be-
tween regularization, the primal and the dual problem. For the original simplified
friction problem (P) the iterates of the algorithms presented in the next section
are not contained in spaces of square integrable functions, which presents a diffi-
culty, both from the point of view of a numerical implementation and convergence
analysis. Considering the regularized problem allows to formulate and analyze
the algorithms in infinite-dimensional Hilbert spaces.

For the term frf |7y ()| dx that involves the absolute value function, many ways

to construct sequences of differentiable approximations are possible, see, e.g., [64].
In [50] the non-differentiable term in (3.1) is replaced by

(3.19) /F V@ P + 2 da

with small ¢ > 0 and an a posteriori error estimate for the solution of the reg-
ularized simplified friction problem is established, but no numerical results are
presented. Compared to the regularization (3.19) for the primal problem (P)
our approximation is motivated by considering the dual problem and by results
in the context of semi-smooth Newton methods [58,69,104] and augmented La-
grangians [67,68]. In the corresponding primal problem the regularization turns
out to be a very natural one that is related to those used in [47,51,83].

This section is organized as follows. After presenting the regularization for the
dual problem we calculate the corresponding primal problem and the optimality
system, discuss the relation to [47,51,83] and [69] and investigate the convergence
as the regularization parameter tends to infinity.

2.1. Regularization of the dual problem. From now on we assume that
the bilinear form a(-,-) is coercive in Y with coercitivity constant v > 0, i.e.,

(3.20) a(y,y) > 1/||y||§p(ﬂ) forally € Y.

We can now introduce the regularized dual problem, where compared to (P*)
we change the sign of the cost functional and thus the maximization becomes
a minimization. For fixed A € L*(I';) and regularization parameter v > 0 we
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consider
min () = za(w(A), w(h) + oA — M2, — I3[
[A|[<g a.e. on Iy 7 2 ’ 2’7 Ty 2’7 Ty
()

where w(\) satisfies
a(w(A),v) = (f,v)a + (A, 7pv)r, =0 forallveY.

Thus the regularized problem is obtained from (P*) by adding
1 12 1<
(3.21) ﬂ”)‘_)‘HFf - gH)\Ilrf,

to the objective functional. Choosing this regularization is motivated by aug-
mented Lagrangians and results from optimal control problems. Note that the
influence of the terms in (3.21) decreases as v — oo. Standard arguments show
that (P*) admits a unique solution \, for every v > 0. The second term in (3.21),
which is a constant, can be neglected from the optimizational point of view; it
has been introduced to get a simple connection with the corresponding primal
problem (see Theorem 3.9).

In the sequel we shall use e : Y x L?*(Ty) — Y* defined by

{e(y, A), z>Y*’Y =a(y,z) — (f,2)a + (A7 2)ry-
This notation allows us to write the variational equality in (B*) as
e(y,A) =0 in Y™
We now derive the first-order optimality conditions for (P*).

THEOREM 3.8. Let A, € L*(Ty) be the unique solution of (B*). Then there
exists y, € Y and &, € L*(T}) such that

(3.22a) e(Yy, Ay) =0in Y™,

(3.22b) T+ (A= Ay) =& =0 in LA(TY),

and for every o > 0 holds

(3.22¢) &, —max(0,&, + (A, — g)) — min(0,&, + o(A, + g)) = 0 in L*(Ty).

PROOF. We introduce the Lagrangian functional .Z : Y x L*(I}) x Y — R
for (R*) defined by

Ly, A B) = T3y, N) + (e(y, A); B)y. -

First note that the derivative of e(-,-) can easily be calculated and turns out to
be surjective for all (y,\) € H*(Q) x L*(I'y). This ensures, following [88] the
existence of y,, 5, € ¥ such that

Zy(y% )‘%57) =0 and 6(9% )W) =0.



20 CHAPTER 3. SIMPLIFIED FRICTION PROBLEM

More precisely, for all 6, € Y we have
Zy(Yys My By)(0y) = a(yy, 0y) + a(By, 0y)
=a(B,,6y) + (f,0y)a — (A, 77 6:'!)Ff =0,
yielding that 3, = —y, due to the fact that the variational problem
{e(y, )\),z>Y*’Y =0 forallzeVY
admits a unique solution. Optimality with respect to A, implies
LAYy Ays By) (On — Ay) = 0
for all 6, € L*(T;) with |d,] < g a.e. on I'y. This yields
(771()‘7 - 5‘) + 7f Bys 06 — )\’Y)Ff = (_771(5‘ - )‘7) — T Yy ON — )\’Y)Ff >0

and after introducing the variable &, := 7_1(5\ — A\y) + 77y, results in the com-
plementarity condition

& <0 ae.on A, _,
(3.23) & =0 ae on I,
& >0 ae.on A,.,

where the sets A, ;, A, ,Z, C I’y are defined as

(3.24a) A, ={zel;: N\, =—gael},

(3.24h) I, ={z eIy |\ <gael,

(3.24¢) A, ={relf: N\, =gael.

Condition (3.23) is equivalent to (3.22c¢) as can be verified by a direct computation
similarly as in the proof of Lemma 3.5. U

The necessary conditions (3.22a)-(3.22c) are also sufficient for A, to be the
solution of (B*). This can be verified in several ways, we will use an argument
form duality theory in Theorem 3.9 to argue sufficiency.

2.2. The corresponding regularized primal problem. Next we turn
our attention to the primal formulation of problem (2*). For a € R we define a
function A: R x R — R by

2
?jya+al - 29— if vz +al>y,
(3.25) h(z,q) = 71 K
%(vaH—a)z if |yz+al <g.
The function A is continuously differentiable and Figure 2.2 illustrates that A
smoothes the absolute value function. We can now define the problem (P,) that
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gl-|
— h(.,a)

h(x, a)

(Fg-o)y 0 -aly (g-a)ly X

FIGURE 1. Approzimation h of the absolute value function as defined
n (3.25).

will turn out to be the primal problem corresponding to (B*):

(P5) min J, (y) := %a(y,y)—(f,y)mt/F h(rey(x), Mz)) da.

yey

Note that the functional .J, is uniformly convex and continuously differentiable.
The next theorem clarifies the connection between (P,) and (R*).

THEOREM 3.9. Problem (RY) is the dual problem of (P,) and we have

(3.26) J;()‘v) = _Jv(yv)a

where N\, and y. denote the solutions of (B*) and (P,), respectively. Further-
1

more, introducing the variable &, == 15y, + v~ ()\ \,) € L*(Ty), the extremality
conditions relating (P,) and (B*) yield (3.22a)-(3. 22(:) and these conditions are
sufficient for A\, and y, to be solutions of (B¥) and (P,), respectively.

PRrROOF. For calculating the dual problem to (P,) we use the notation intro-

duced in Section 1.3, where the dual problem for the (original) simplified friction
problem is derived. We only have to replace the functional G in (3.7) by

G(ryy) = / h(ryy(c), Mz)) de
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with the definition of h as given in (3.25). For calculating the convex conjugate
functional G* to G let A € L?(I'). Then,

G*(A\) = sup {()\,V)Ff—/r h(u(m))dm}

VELZ(Ff)
A R < 2 AN
(3.27) = sup {/ —(’yu+)\)—g"w+)\ +g———dx
veL?(Ty) lyw+A>g vy 2y y
1 «
(3.28) + / A — —(yv + \)? d:v}.
v+Al<g 2y

From (3.27) one gets that G*(\) = oo unless |A| < g a.e. on I';. Suppose now that
|A| < g a.e. on I';. We will show that when evaluating the above supremum one
only has to take into account the term in (3.28). For given A € L*(T}), |A\| < ¢
a.e., we define a mapping H : L*(Ty) — R by

200
LMy,
2y v

\ . .
H(v) ::/ —(7y+)\)—g‘fyu+)\
lyw+A|>g v

1 .
—I—/ A\ — —(yv + \)? dx.
oti<g 27

For vy € L*(I}) we introduce 7y € L*(I}) by

vo () if |yvo(z) + AMz)| < g,
Po(z) == ¢ 71 g — A(x)) if ywo(z) + Az) > g,
v U =g —Aa)) if we(z)+ANz) < —g

Then it follows that

H(vy) — H (%)
1 « R
=—/ YAvg — ygro — gA+ g* — Mg — A) dz
’7 fyu0+5\>g
1 « R
+—/ YA g+ gA+ 7 — A(—g — ) d.
v YVo+AL<—g
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Since |A] < g we get, using vy > 7' (g — 5\) under the first integral and vy <
v Y(—g — A) under the second that

- 1 2 “ 2
Hw) —H) <2 [ (=02 =g+ = Ao - Vo
Y YYo+A>g
1 . . R
s [ g N A Mg - N ds
,Y 7yo+5\<fg
= 0.
The above consideration shows that
sup H(v) = sup H(v)
U€L2(Ff) V€L2(Ff)

lyv+A|<g a.e. on Iy

yielding that in calculating the supremum in (3.27), (3.28) only the term (3.28)

has to be considered. Hence, the maximizer is easily calculated as vy = fy*l()\—j\),
which shows that

1 . 1 . ‘

00 else.

Plugging (3.29) and (3.10) into (3.8) results in problem (2*), which verifies that
(B) is the dual of (P,). In addition, the conditions of Theorem 2.5 are satisfied
and thus (3.26) holds true. Evaluating the extremality conditions can be done
in a similar way as for the simplified friction problem (see page 15) and results
in system (3.22a)-(3.22c). This shows, using Theorem 2.6 that the conditions
(3.22a)-(3.22¢) are also sufficient for A, and y, to be a solution to (R*) and (P,),
respectively. O

2.3. Convergence as 7 — oc. The aim of this chapter is to establish a
convergence result with respect to the regularization parameter v. For related
results we refer, e.g., to [47,69].

THEOREM 3.10. For any A e L*(Ty) the solutions y, of the reqularized prob-
lems (P,) converge to the solution § of the original problem (P) strongly in'Y
as v — oo. Furthermore, the solutions \, of the dual problems (R*) converge to
the solution X of (P*) weakly in L?(T}).

ProoF. Recall the complementarity conditions and the definition of the ac-
tive and inactive sets (3.16), (3.15) for the original and (3.23), (3.24) for the

regularized problem. Furthermore, recall that (y,, A,) as well as (y, A) satisfy the
variational equality

(3.30) (e(y,A), 2)y. , =0 forall zeV
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with the definition of e(-,-) given in Section 2.1. Note that for all v > 0 we have
|Ay| < g a.e. on I'y. We now choose an arbitrary sequence 7, such that v, — oo
for n — oc. From the weak compactness of the unit sphere in a Hilbert space
we can infer the existence of \* € L?(I'y) and a subsequence Ay, D L*(Ty) such
that

Ay,, — A" weakly in L*(Ty).
Since closed convex sets in Hilbert spaces are weakly closed, [42, p. 6], we have
|A*| < g a.e. in L*(Ty). The weak convergence of (), ) in L?(Ty) implies y,, —
y* weakly in Y for some y* € Y and that the pair (y*, \*) also satisfies (3.30).
We henceforth drop the subscript ny with v,,. From (3.30) it follows that

a(Yy = 9, yy — ) = — (A, — j‘va (yy — g))l“f
(3.31) = (Tf Y, )\7 — )\)Ff + (7} Yrys A— )\’Y)Ff'

We are now going to estimate the above two terms separately. Let us first turn
our attention to the term (777, Ay — A)r,. We have that

79\ = A) =77\, —g) <0 ae. on A,

since 77§ > 0 and A\, < g. Similarly we find that 7g(\, — ) < 0 on A_
utilizing 77y < 0 and A\, > —g. Finally, on T we have 7; y = 0 which yields, since
I'y=A_UALUT that

(3.32) (779, Ay = My <0.

Next we consider 77y, (A — A,) on the sets A, , A, and Z,, which also form a
disjoint splitting of I';. On A, _ the variable A, is equal to —g and y77y,+A < —g
holds. This implies

333) A =A)=7y,A4+9) <7 H=g—-N(A+g) ae onA,_.
By a similar calculation one finds

(3.34) 19,(A—=A) <7 g — AN (A —g) ae on A, .

On Z, we have A\, = y17y, + A and thus |y7ryy + A| < g, which shows that

i ;
g <Tf'y,y<gT.

Thus almost everywhere on I'y we have
(3.35) Tfyw(j‘ —A) =1 yv(j‘ — VT Yy — 5‘)

_’Y|Tf yw|2 + 7 ?Jv(j‘ - 5‘)

—~
@
w
D

~

IN

=y + 17 9a ][ = Al

—~
@
w
~J

~—

IN

79, F 77 g+ ADIA = AL
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Hence, using (3.33),(3.34) and (3.35) one gets
(3.38) (793, A = M)y <97 (g + AL A+ A+ 9)ry
Using the coercivity of a(-,-), (3.31),(3.32) and (3.38) we can now estimate

(3.39) 0 < limsup vy, — 7ll31
’Y*)OO
<limsupa(y, — 4,9y — )
y—00
(3.40) < lim (Tf Yy, A— )\’Y)Ff
y—00
(3.41) < lim 3~ (g + AL AL+ A + g)r, = 0.
Y—00

It follows that y, — ¥ strongly in ¥ and hence y* = y. Passing to the limit in
(3.30) for (y,A) = (yy,Ay) and using that weak limits are unique implies that
A* = \. Thus we have proved that every sequence 7, with v, — oo for n — oo
contains a subsequence 7, such that A, —— A in L*(T}) and Ypo, — Jin Y.

Since (7, A) is the unique solution to (3.22a)-(3.22c) the whole family {(y,, \,)}
converges in the sense given in the statement of the theorem. U

As a corollary to the proof of Theorem 3.10 one can obtain a convergence
rate of y, to §.

COROLLARY 3.11. Let y, and y be solutions of (P,) and (P), respectively
and denote by v > 0 the coercivity constant of a(-,-) on'Y. Then there exists a
constant C' > 0 independent of v such that

vy, — g”%ﬂ(ﬂ) <alyy, — 9.y, —9) < —.

= [Q

PRrOOF. The left inequality follows form the coercivity of a(-,-) on Y, the
right inequality from (3.31) and (3.38).

O

2.4. Relation to other regularizations. First consider the case that A=
0. Then the smoothing of the absolute value function in (P,) results in

1 . g

glz] = 592 if || > 5

Me)=1q 4 g
~ if |z| < =.

2 v

Problem (P,) with the above smoothing of the absolute value function has also
been studied in [47, p. 249-287], where it is seen as problem of determining a
thermal control. The above smoothing has further been used in [51,83] for the
numerical solution of related problems. Note that A = 0 and f = 0 implies
Jy(y,) = 0, which appears natural if one considers .J, as an energy functional.
Setting A := A (the solution of (P*)) in the regularized problems (P) and
(P,), the solution variables A, and y, of (B*) and (P*) coincide with A and 7, the
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solutions to (B*) and (P,), respectively. The above choice for A is surely not very
realistic, but it motivates an update strategy in A for the iterative solution of the
simplified friction problem, which leads to the augmented Lagrangian method,
[67,68]. We return to this method in Section 3.4.

Let us now argue the relation of the above regularization to the one in [69],
where ) is now arbitrary. For this purpose we choose o := v~! in the comple-
mentarity condition (3.22c) and eliminate the variable &, using (3.22b). This
gives

~ ~

1, - 1 .
(3.42) Tfwa;()\—)w)—maX(U;Tfwa;()\—g))—mln(O,Tfwa;()\ﬂLg)) =0.

The specific choice of ¢ = v ! results in eliminating the variable )\, in the max-
and min- function, which is of interest regarding semi-smooth Newton methods,
[58,104], as will become clear in the next section. In [69] a formulation related to
(3.42) was successfully used to construct an effective algorithm for unilaterally
constrained variational problems of the first kind. However, in the case of (R*),
which is a bilaterally constrained optimization problem, (3.42) may mislead us
to an algorithm, which is less efficient. Obviously, from the theoretical point of
view, the two formulations are equivalent, but the splitting of (3.42) into (3.22b)
and (3.22c¢) contains the additional parameter o and thus motivates a slightly
different algorithm, as will be discussed in the next section.

3. Primal-Dual, Semi-Smooth Newton and Augmented Lagrangian
Methods

In this section we present iterative second-order algorithms to solve the op-
timality system (3.22a)-(3.22c) and discuss some of their basic properties. To
simplify notation we drop the subscript ‘¥’ for the iterates (y’;, )\ﬁ, 54“) of the al-
gorithms. The solution variables of the regularized problem are still denoted by

(y’ya )"Ya 57)

3.1. Primal-dual active set algorithm. The primal-dual active set strat-
egy (PDAS) is related to the algorithms in [14,15,57,60,70] in the context of
constrained optimal control problems and to the one in [69] for the solution of
obstacle problems. It is an iterative algorithm which uses the current primal vari-
able \* for (R*) and the current dual variable &* to predict new active sets AT,
AEF! for the constrained optimization problem (P*), whereas this prediction is
motivated from expressing the complementarity condition in the form (3.22c).
On these active sets the variable A*+! is fixed. In each iteration step the method
requires to solve an equality constrained problem, which in our case turns out to
be linear. Note that, compared to inequality constrained optimization, equality
constrained problems are significantly easier to handle, both theoretically and
numerically. The whole algorithm is specified next.

Algorithm 1: (PDAS)
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0
(1) Choose 3° € {y € Y : g_Z\Ff € L*(Ty)}, o0 > 0 and set \° := —%an,

£ =1y +97 (A=), k=0,
(2) Determine
A ={x ey &F +o(N +g) <0},
At ={z €Ty : & + (N - g) > 0},
T =T\ (AR U AR,
EB; If kb >1, A5t = Ak and AET = AE stop, else
4) Solve
a(y*™, 2) = (f,2)a + (N 7 2)r, =0 forall z €Y,
Ty TN = MY = 0 on TF,
Nt = —gon A5 and At = g on A%F.
(5) Set
A+ = R 4y y#+ on T,
7y (A +g) on AR
G =Syt 97 (A —g)  on AR
0 on ZF 1
k =k + 1 and go to Step 2.

Note that the system in Step 4 of the algorithm constitutes the first-order opti-
mality system for the equality constrained optimization problem
(3.43) min  J7(A) st oe(wg,A) =0in Y~
AEL2(Ty)
A=—g on Ak+1
A=g on Aﬁfl

and hence existence of a solution follows. Note that £¥*! is the Lagrange mul-
tiplier for the equality constraints in (3.43). The justification of the stopping
criterion in Step 3 of (PDAS) is given by the following lemma.

LEMMA 3.12. If Algorithm (PDAS) stops, the last iterate is the solution to
system (3.22a)-(3.22c).

PROOF. First note that, by construction, the iterates fulfill (3.22a), (3.22b).
It remains to show that (3.22c) is satisfied, too. Let (y*~1 A\*~1 £571) denote
the iterate upon termination. On ZF = 78=! we have |[€¥~! + o \*"!| < og and
€1 =0, thus |A\*~!] < g. On A*"! the variable \*~! is set to —¢g and one can
infer from A* = AF*! that €51 + o (V1 4 g) = €51 < 0. A similar argument
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yields €¥71 > 0 on A% '. This shows that (y¥=', \F=1 ¢5=1) satisfies (3.23) or
equivalently (3.22¢), which ends the proof. O

REMARK 3.13. Let us now discuss the influence of the parameter o on the
iteration sequence for & > 1. On 7' we have that & = 0 and thus ¢ has no
influence when determining the new active and inactive sets. On A* we have
M = —g and distinguish two cases: The set where £&¥ < 0 belongs to A**! for
the next iteration independently from o. In case £ > 0 we have

4o\ —g) = €8 —20¢.

The set where ¢ — 20g < 0 moves to 78! if €8 — 209 > 0 to A%*! for the
next iteration. Hence, only in this case o influences the sequence of iterates.
Smaller values for ¢ make it more likely that points belong to A* N A’fl. A
similar observation as for A* holds true for A’i, which shows that with ¢ > 0
one can control the probability that points are shifted from one active set to the
other within one iteration. We also remark that if for some ¢ := o > 0 one has
AF N AETY = AR 0 AR = (), then for every o > o also AF NAST! = AR NAFH! =
(). Furthermore, in this case the sets A**' A¥*! and ZF+! are the same for all
o> o0;.

The above observation will be of interest in connection with our local conver-
gence analysis of (PDAS). We now turn our attention to the reduced primal-dual
active set algorithm.

3.2. Reduced primal-dual active set algorithm. We now utilize (3.42)
to write the optimality system (3.22a)-(3.22¢) for the regularized problem as one
nonlinear equation. For this purpose we denote by g the solution to the problem

a(y,v) — (f,v)g =0 forall v € Y.

Furthermore, we introduce B~! € ﬁ(H*%, Y'), the solution mapping for the vari-
ational equality

a(y,v) — (\. 7 U>H_%7H% =0forallveY

for given A € H _%(Ff). We can now define the Neumann-to-Dirichlet operator
(3.44) C = rfB‘—Lg(Ff) € L(L*(Ty), L*(Ty))
and summarize some of its properties in the next lemma.

LEMMA 3.14. The Neumann-to-Dirichlet operator C' defined in (3.44) is self-
adjoint, positive definite, injective and compact.

PROOF. Let A, Ay € L?(T}), then
(CA, )\z)rf = (Tf Y1, )\2)Ff
with y; € Y satisfying
(3.45) a(yr,2) — (M, 77 2)r, = 0 for all z € Y.
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In addition, we introduce y, € Y that solves (3.45) with A; replaced by Ay. Thus

(C')\1,)\2)rf = (Tf y1,)\2)rf = a(y2, 1),
()\1,C>\2)rf = ()\I:Tf y2)rf = a(y1,y2),
which shows, utilizing the symmetry of a(-,-) that C is self-adjoint. Taking
0 # A = Ay results in
(CA1, M)y = alyi, y1) >0

yielding the positivity of C', which implies that C' is injective. To verify the
compactness of C' we observe that Rg(C) C H%(Ff) due to the trace theorem,
[86]. Thus, utilizing that the embedding

H>(Ty) == L*(Ty)
is compact [1], compactness of C' follows. O

With the help of the operators B~! and C' one can write the solution y to
a(y,z) — (f,z)a+ (AN, 1p2z) =0forall z € Y

for given A € L*(I'y) as y = —B™'A + ¢ and 73y as —C\ + 779. This allows
to eliminate the variable 77y in (3.42). For this purpose we utilize the mapping
F: L*(Ty) — L*(Ty) defined by

FQ) =Cx—mg—v'A=N
(3.46) +max(0, —CA+ 75+~ (A —g))
+min(0, —~CX + 715 + v~ (A + g)).

Note that F'(A) = 0 characterizes A as the solution of (B*). In the sequel we
utilize for S C T’y the extension-by-zero operator Es : L?(S) — L?(I'}) defined
by

(3.47) Es(g)(x) := 0 Lo,

{g(m) ifres

Its adjoint operator E% : L*(Ty) — L*(S) is the restriction operator onto S. To
simplify the notation we utilize gs := E%g for g € L*(I't). The primal-dual active
set method for the reduced problem is specified next.

Algorithm 2: (RPDAS)

(1) Choose y° € {y € Y : %Iff € L*(Ty)}, 0 > 0 and set \° := —%m and
k= 0.
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(2) Determine

A = {r e Ty —CN + 75+ v\ 4 g) <0},

T =T\ (AR U B,
(3) Set
Nt = —g on AFF M = g on AFF!
and solve for \¥*1 on 7F+1

1 EP
;)\Qﬁl + C(Bpri Ml = B genng gon + Egenng pn) = (779 + ;)\)zﬂl

(4) Update k := k + 1 and go to Step 2.

The equation in Step 3 of the algorithm arises from fixing \*+! on A%t! AkH
and calculating \ utilizing F(\) = 0. This equation admits a solution due to
the positivity of the operator C', which implies positivity of the operator % +
EZ1CEpera1. Furthermore, note that - neglecting possible errors in a numerical
realization of the algorithm - (RPDAS) coincides with (PDAS) when o = v~ 1.
Hence the simple stopping criterion from Step 3 of (PDAS) can also be used for
(RPDAS). Then the assertion of Lemma 3.12 holds for (RPDAS) as well.

3.3. Relation between (RPDAS), (PDAS) and a semi-smooth New-
ton method. Writing the optimality system as a single nonlinear equation as
done in (3.46) suggests to apply a generalized Newton method to solve F()\) = 0.
Recall from Section 2 that for the application of the semi-smooth Newton method
to an equation involving the max- and min-operator the relevant variables inside
the max- and min- function have to appear under a smoothing operator. We
can now show that the function F' fulfills this condition, and that the result-
ing semi-smooth Newton algorithm is related to (RPDAS). First, observe that

Rg(C) C Hz(Iy) and that

20=1) s
\ =——>2 ifn ,

(3.48) HE(T)) s LYTy) for 417 n—2 =
q < 00 if n =2,

where n > 2 denotes the dimension of §2. Note that ¢ > 2 for all n > 2. From
the Theorems 2.8 and 2.10 it follows that F' is Newton differentiable on L?(I'y).
A generalized derivative of F' is given by

1 1
(349)  GrN(©) = Co+ 6 = Fa_(CO)a = Fa,(C8)a, = (FLF3C + )3
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where the extension-by-zero operator E is defined as in (3.47), and A , A, T
are given by

o

A-={z €l =OCA+ 75 +7 "(A—g) > 0},
Ay ={ze€Ti: —=CA+ 15+~ (A +g) <0},
IT=T;\(A_UAy).

For given \* € L*(T}) the resulting Newton step

(3.50) o* = g% — Gp(2®) T F(2Y)

for F is

(%+E@HE;HCm“4:—cuh+q@+%@—A%

N

_ Ajjr+1(—0)\k+7‘-fy—|—;()\_g))_,41jr+l
1.

- A11+1(—C’)\k+7'fg]+;(A—Fg))AﬁH,

where 61 = M1 _\F and AFF! 4K 7541 are defined as in Step 2 of (RPDAS).
On AFL the above Newton step gives

1 1« 1«
—H=—CN+ 5+ (A= N)+ ON — 75 — = (A + g)),
Y Y Y
which shows that . .
_)\k+1_)\k:__)\k+g
! )= )
yielding \**! = —g on A**!. Similarly one deduces \*+! = g on A¥*!. Finally,
on 7! we find . )
(C+ )6 =—ON 754+ —(\ = \F)
v v
resulting in
(3.51) (C + l)A’““ =79+ E5Y
Y Y
Hence, one semi-smooth Newton iteration step for the solution of F(\) = 0

is given as follows: For a given iterate \* € L?(I}) calculate the active sets
according to Step 2 of (RPDAS). Then set

MH = —gon AT N = g on ARH
and solve for \¥*! on Z¢+!
1 _ 1.
;)\?—J}l + C(EIk+1 )\g:rll - EA'i“ g gkt + EAngAiH) = (Tf Y+ ;)\)IkJrl.

This iteration step is equal to Steps 2 and 3 of (RPDAS). An analogous result
for unilaterally constrained optimization problems was established in [58]. Note
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that the norm gap required for Newton differentiability of the max- and min-
function results from directly exploiting the smoothing property of the operator
C. This has become possible since we chose o := =" in (3.22¢) which allowed us
to eliminate the explicit appearance of A in the max- and min-function. Taking
advantage of this fact, (RPDAS) does not require a smoothing step as the semi-
smooth Newton method in [104].

We now investigate whether (PDAS) can also be interpreted as generalized
Newton method. We introduce F : Y x L*(Ty) x L*(T'y) — Y* x L*(T}) x L*(T})
by

e(y, A)
(352) F(y )&= | my+7 (A=) —¢ ,
& —max(0,£ +o(A—g)) — min(0, £+ a(A + g))

and observe that F'(y, \,§) = 0 characterizes y and A\ as solutions to (P,) and
(P*), respectively. Applying the Newton iteration (3.50) with the generalized
derivative of the max- and min-function as given in (2.10) to the mapping F' re-
sults in Algorithm (PDAS). This can be seen similarly as for (RPDAS). However,
note that for (PDAS) this procedure is purely formal, since we do not have the
norm gap required for infinite-dimensional Newton differentiability of the max-
and min-function. Hence, in principle we cannot expect properties coming from
the interpretation as Newton method for (PDAS). Nevertheless, in Section 4.2 it
is shown that for certain problems (PDAS) converges locally superlinearly with-
out the necessity of a smoothing step as used in [104] to get local superlinear
convergence of semi-smooth Newton methods.

3.4. Augmented Lagrangian methods for the solution of (P*). Aug-
mented Lagrangian methods combine ordinary Lagrangian methods and penalty
methods without suffering of the disadvantages of these methods. For instance,
the augmented Lagrangian method converges without requiring that the penalty
parameter tends to infinity. The first-order augmented Lagrangian method that
we state here can be considered as an implicit version of the Uzawa method, see
[67]. For a detailed discussion of these methods we also refer to [16].

To argue the close relation of the regularization for (P*) to augmented La-
grangians recall that (3.22b),(3.22¢) can equivalently be expressed as (3.42) and,
after multiplication with v as

(353) Ay =77y, + A — max(0,97y, + A — g) — min(0,97y, + A+ g).

The augmented Lagrangian method is an iterative algorithm for the calculation
of Ain (P*). Given an iterate \' for (P*), the next iterate A'*! can be determined

setting A := A in the right side of (3.53). The whole method is specified next.

Algorithm 3: (ALM)
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(1) Choose v > 0, \° € L*(T;) and set [ := 0.

(2) Solve for (y"1, NF1 1) € ¥V x L2(Ty) x L*(Ty) system (3.22a)-(3.22c¢)
with A == AL

(3) Update [ := 1+ 1 and go to Step 2.

The auxiliary problem in Step 2 of (ALM) has exactly the form of our regular-
ized problem and can thus efficiently be solved using (PDAS) or (RPDAS). The
question arises concerning the precision to which the system in Step 2 of (ALM)
should be solved. Several strategies are possible, such as solving the system ex-
actly for all [ or performing only one iteration step of the semi-smooth Newton
method in each iteration. We tested several strategies and report on them in
Section 5. Note that in (ALM) the regularization parameter y plays the role of a
penalty parameter, which is not necessarily taken to infinity, nevertheless (ALM)
detects the solution of (P*), as will be shown in the next section.

4. Convergence Analysis

4.1. Local convergence analysis of (RPDAS). In this section we give a
local convergence result for (RPDAS) for the solution of the regularized friction
problem. For this purpose we utilize the interpretation of (RPDAS) as a semi-
smooth Newton method.

THEOREM 3.15. If [|\° — A\ ||, is sufficiently small, then for all A e LA(Ty)
and v > 0 the iterates \¥ of (RPDAS) converge to (\,) superlinearly in L*(T).
Furthermore, the corresponding primal iterates y* converge superlinearly in 'Y to
Yry-

PROOF. We only have to show superlinear convergence of \¥ to A, in L*(T;).
Then, the superlinear convergence of y* to y, inY C H'() follows since B! €
L(L*(T}),Y) is continuous.

We already argued Newton differentiability of the mapping F : L?(I}) —
L*(Ty). To apply Theorem 2.9 it remains to verify that the generalized derivative
G € L(L*(Ty), L*(T})) of F have uniformly bounded inverses. Recall for S C I
the definition of the extension-by-zero operator Es and its adjoint E% as given in
(3.47). Let (ha_,ha,,hr) € L*(A_) x L*(A4) x L*(Z) and consider the equation
(3.54) Gr(A)(0) = Gr(A)(0a_,0a,,07) = (ha_, ha,, hz).

Recalling the explicit form (3.49) of G we get from (3.54) that 4 = vh4 and
04, = vha, must hold. Furthermore,

1
(3.55) (; + E5CEz7)0r = hy — yEfCE4 ha — YE;CE4 ha,.

Due to the positivity of C' we can define a new scalar product ((-,-)) on L?*(Z)
by

({(z,y)) :== <(% + E;CEz)x,y), for z,y € L*(T).
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Utilizing the positivity of C' we have
1
((x,x)) > —(z,x) for all z € L*(7),
g

i.e., the product {(-,-)) is coercive with constant v~! independently from Z. Ap-
plying the Lax-Milgram lemma one finds that not only (3.54) admits a unique
solution d7, but also that

l16zllz < Alhzllz + *I1Cll ey {Macllaz + hagllag }-

This proves the uniform boundedness of G7'()) for all A € L*(I'y) and ends the
proof. O

4.2. Local convergence analysis of (PDAS). As observed at the end of
Section 3.3 algorithm (PDAS) cannot directly be interpreted as locally super-
linear convergent semi-smooth Newton method if no smoothing steps are used.
However, utilizing Remark 3.13 local superlinear convergence holds for (PDAS)
as well, provided the dimension n of {2 is 2.

COROLLARY 3.16. Assume that n = 2 and I'g C T' is sufficient reqular. If
IA° = Xy llr, is sufficiently small, the iterates (y*, \*) of (PDAS) with o > !
converge superlinearly in'Y x L*(T).

Proor. The idea of this proof is, to show that in a neighborhood of the
solution A, the iterates A¥ of (PDAS) coincide with A\* from (RPDAS), which
allows to apply Theorem 3.15 also for (PDAS).

Step 1. We first only consider (RPDAS) and denote by 6 > 0 the convergence ra-

dius of this semi-smooth Newton method. We introduce a dy with 0 < dy < ¢ that

will be further specified below and choose \° € L*(I'y) such that [|\* — A, [|r, < do.

Since &y < ¢ the method converges and ||A\F — )\k+1||pf < 20, for k > 1. Note that

the difference of the corresponding variables y* — y#+!
a(y® —y* ' v) + (A = M o), =0 forall v € Y.

Then it follows from regularity results for mixed elliptic problems [97,100] that
19" = " eo@y < ClIAF = N, for some C > 0.

For the corresponding traces we have

(3.56) 177 (4" = y* D)oy < CIAF = M |p, < 204,

We now show that, for & sufficiently small A N AMTT = Ak 0 AMFT = ). We
prove this claim by contradiction, i.e., we assume that J = A’i NAML £ (). Then,
almost everywhere on J we have

solves

"y (A=) > 0 and TyF + 4 (A +g) <0,
which implies
2
k+1 yk) > _g

7(y )
Y
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Thus, utilizing (3.56)

2
(3.57) 79 < r @ = yh)leor) < 2C6.

If we choose dy < &, relation (3.57) cannot hold true and therefore J = 0; An

analogous observation holds true for A* N Aﬁ“, which shows that

(3.58) AF nABT = A n AT =0 if 6 < Ci-
5

Step 2. Recall that the iterates of (PDAS) with o = 4! coincide with those of
(RPDAS). Thus, if [A° = A, ||, < &g, then AF NAST = AR A =  for (PDAS)
with ¢ = 471 Tt follows from Remark 3.13 that for the active sets calculated
from (PDAS) using o > ! also A¥ N AKH = A% N AM™ = () holds. This
shows that (RPDAS) and (PDAS) determine the same iterates for the variable
Ay provided that [[A° — A, |lr, < dp. Hence, superlinear L*-convergence for \*
determined from (PDAS) holds. For the variables y* superlinear convergence in
Y follows from the continuity of solution mapping B~ € (L*(I}),Y). O

4.3. Global conditional convergence of (RPDAS). Our global conver-
gence result is based on an appropriately defined functional which decays when
evaluated along the iterates of the algorithm. A related strategy to prove global
convergence (i.e., convergence from arbitrary initialization) is used in [70] in the
context of optimal control problems. For unilateral constrained problems global
convergence results can be gained using monotonicity properties of the operators
involved, see, e.g., [69]. For bilateral constraints (as in (B*)) such properties can-
not be utilized. In the sequel we use the notation from (PDAS) with o := 7!
for (RPDAS). For (A, &) € L*(Ty) x L*(I'y) we define the functional
(3.59)

MO8 = [ 0= P+ 09 Pdr+ [ @ Fdes [ 17 Fan

* *
. AT

where A% ={z € Iy : AMz) > g} and A* ={z € I} : Az) < —g}. By (-)" and
(1)~ we denote the positive and negative part, i.e.,

()" := max(0,-) and (-)~ := —min(0, -).

As a preparatory step for the following estimates we prove a lemma on compact
operators in Hilbert spaces.

LEMMA 3.17. Let X be a real Hilbert space with inner product (-,-) and
C € L(X) injective, self-adjoint, positive and compact. Then

(v, 9) < Clleex)(C7 'y, )
for ally € Rg(C).
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PROOF. Self-adjointness, positivity and compactness of C' imply that C' can

be written in the form
C=> Py
n=1

with projection operators P, and 0 < A, < ||Cllzx) for n = 1,2,..
e.g., [33]. We have y = Cz with z € X and thus

., see,

(v,9) = (Cz,Cx) ZVIIP D)z S NClecx ZMIP )12 x)

oo

= ICllecx) Y Anl, Pa(@)) = [ICleexy (2, 9) = [|Clleen) (C 'y, w),
n=1

where (P,(x), P,(z)) = (z, P,(x)) was used, which holds since P, is a projection
operator on a subspace and thus (P,(z) — x, P,(z)) = 0. O

Following Lemma 3.14 the Neumann-to-Dirichlet mapping C', as given in
(3.44) fulfills the conditions of Lemma 3.17. Utilizing the operator C' the Steps
4 and 5 of (PDAS) imply

k41
g on AT,
Cile yk+1 _ _)\k+1 =7 yk+1 + 5\ on Ik+1,
—g on AL
(3.60) Ty T = M) gkt — g,
With the above notation we get
Rfiﬁ on Aiﬂ,
(3.61) C Hmp (" =) = A =N = G (" —y") + BE on T,
Rk on AL
where
0 on AMTT N AR
Ry, =<g—A<0 on A NTF

2g < y&F on A%t AF;

yryF 4+ A —g=7F <0 on T N Ak,
RE=X0 on IFtiNIF,
vk >0 on TFt N Ak,
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—2g > y&F on AN AX
Rf4+: —g—XM>0 on AN TF,
0 on AMIN Ak,

Let us denote by RF the function defined on T';, whose restrictions to AR TRt
and Aﬁ“ coincide with R¥ | R% and R 4k » Tespectively. Note that, from the

definition of R*¥ we have
(3.62) IRMIIE, < A2IEF 1% + llg — A’“Ili@lrﬂk + g + AP
(3.63) < PM(N,ER),

where B* = 7F+1 0 (AR U AR) U (A5 N Aak) U (A5 N AE). To shorten the
notation we introduce o) := 77 (y**! — ¢*). Multiplying (3.61) with —d, results
in

nZ*

071(55)(55) = —Rkés - Xl—k+1’}/(5§)2 a.e. on I'y,
where xz++1 denotes the characteristic function for Z#*!. Thus,
(C'o, 08, :/ —R6; d:v—y/k (65)* du
Iy TR+t
(3.64) < [1R*Ir, 19l

where we used the Cauchy-Schwarz inequality and [7:..(6F)*dz > 0. Utilizing
Lemma 3.17 for the Neumann-to-Dirichlet mapping C' yields

(3.65) 195117, < 11Clleqz2my (C 0y, 6,)ry-
Combining (3.64) and (3.65) implies that
(3.66) 1651y < NClleczayn 1R Iry-

We can now prove the following convergence theorem for (RPDAS), or equiva-
lently for (PDAS) with o =y~

THEOREM 3.18. If v < ||C||Z(1L2(Ff)), then
M(NML ) < M(AF, €Y)

for k =0,1,2,... with (\¥, &%) # (\,,&,), where (\F,&F) denote the iterates of
(PDAS) with o = v~'. Moreover, (y*, \¥, £¥) converges to (y,, A\, &,) strongly in
Y x LQ(Ff) X LQ(Ff)

PROOF. Recall that form the definition of (PDAS) with 0 = y~! one gets
AR — VT yk+1 +5\ on Ikﬂ,
£k+1 — 7}cyk+1 + 771(5\ + g) on AliJrl,
£k+1 — 7}cyk+1 + 771(5\ _ g) on Aﬁ:}'l.
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We therefore have

=5k +myt+97 (A= g)

(3.67) €F— Y g= M) >0 on A AR,
=0+ (M —g) >0 on AMNTE
&F>0 on A" N Ak

Thus

(€517 < 165 ae. on ALT
Note that
AP = {r e T N (2) > g} = AT U {w e I N (2) > g,

which implies, using £&¥+! = 0 on Z¥+!,

(3.68) (€517 < 165 a.e. on AL
Analogously, it follows that

k41 k *,k+1
(3.69) (¥ 7] < |6, ] a.e. on AT,

where A"Ft .= {2 € T} : M*1(z) < —g}. Moreover, on Z#!,
NeFL g :75§+vrfyk+5\—g
Y&+ (W —g)) <0 on TN AL,
:75§+ N — g <0 on ZFtINI1*,
vk <0 on ZFn Ak
The above estimate shows that
(3.70) |\ — )| < ~16F] ae. on T,
and analogously one can show
(3.71) |\ 4 g) 7| < 46y ae. on T
Since on active sets \¥*! is set either to g or —g, we get that
(3.72) (AL g)F = (WL 4 g)~ =0 on AMFLU AIJchrl‘
Furthermore, at most one of the expressions at a.a. x € I
(A= g)* ] [+ 9) 7], (DL 1€
can be strictly positive, which shows, combining (3.68)-(3.72) that
(3.73) ML) < oz,
Combining (3.62) and (3.66) with (3.73) shows that
(3.74) MNP R < 72||C||%(L2(Ff))M()‘kafk)-
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Our assumption on v implies that

(3.75) ICNZ L2y < 1.
which shows that
(3.76) MWL ET) < MO, €9,

unless (A*, &%) = (A, &,). Combining (3.62), (3.66), (3.73) and (3.74) it follows
that

1512, < IO o IRE I3, < VPO e,y MAE, €5)
(3.77) <O o 185 M3 < (HIC ezeyy) ™ M0, €9),
which shows, utilizing (3.75) that
lim M (X &%) = Jlim | R*||r, = 0.

k—oo

Moreover, summing up equations (3.77) over k and utilizing (3.75) shows

oo
> lI5Iz, < oo,
k=1

which implies that 7;4* is a Cauchy sequence and thus there exists z € L*(T)
such that

(3.78) lim 77 y* = 2

k—oo

in L*(T'y). Using (3.61) results in
A= Mol < A6y vy, + IR Iy

k 1
< (VClle2ryy)” (PNIC oy +7)MA®, E°)z,

and therefore, with the same argument as above, there exists A\ € L?(T}) such
that

lim A\¥ = \ in L*(T}),

k—o00

and from (3.60), (3.78)
ek F o 72
Jim & = &€ L3(Ty).
Since 0 = limy_,00 M (AF, %) = M (), €), the pair (), €) satisfies condition (3.22c).
From (3.22a) follows the existence of § € Y such that
limy* =9 in V-

k—o0
Note that, since (y*, \¥, €¥) satisfies (3.22a), (3.22b), this is also the case for

(7, N, €). Hence, due to the uniqueness of a solution to (3.22a)-(3.22c) (see The-
orem 3.9), (7, X\, &) = (yy, Ay, &), which ends the proof. O
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4.4. Global convergence of (ALM). The next theorem states global con-
vergence of (ALM) for all ¥ > 0 and shows that large v increases the speed of
convergence. In the statement of the next theorem we denote the coercivity
constant of a(-,-) on Y by v > 0.

THEOREM 3.19. The iterates \' of (ALM) and the corresponding variables 1!
satisfy

1 - 1 -
41 =12 o Y2 o 2
BT vl = dl + 5N - A < N,
and thus
oo ) 1 ~
(3.80) v I =0l < 5”” =A%,
k=1

which implies that y' — § strongly in' Y and \' — X\ weakly in L*(T}).

PROOF. From the fact that § and A are the solutions to (P) and (P*), re-
spectively, it follows that

(3.81) a@y™* =9 — (LY = Do+ A @ = 9)r, =0,

and since y'*! and M solve (P,) and (R*) with X := A we infer

(3.82) alyt 'yt =) = (FyT = Do+ AL T = 9)r, =0.
Subtracting (3.81) from (3.82) results in

(3.83) ay™' =gyt =)+ VT = A (T = 9))ry, = 0.

Note that one can write (3.53) and (3.17) as

(3.84) M = P(yrp g + N and A = P(yrp 5+ M),

where P : L*(Ty) — L?*(I'y) denotes the pointwise projection onto the convex set
{v e L*Ty) : |v] < g a.e. on Ty}. Thus we get

W= X7 (0 — ), = O = X, (r g+ A — (v 5+ W)y
. 771()\1“ _ 5\, P j\)rf
> 1AL - j\H%f G G Y U jx)rf,
where we used that

AT =X (g™ A = N — (9754 A= A)ry > 0,
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which holds using (3.84) and since P is a projection onto a convex set (compare
with (2.2)). Using (3.83) and the coercivity of a(-,-) on Y we get

vy =gl < o™ =50 =) = =T = A (T = 0)ry

1 - 1 _ _
< —;||)\l+1 — A, + ;(Al“ =X =Ny

1 - 1 -
. +1 Y2 I Y2

which proves (3.79). Summing up (3.79) with respect to [ we obtain (3.80). Thus
y' = gin Y and A — X\ from (3.22a). O

5. Numerical Results

In this section we present our test examples for the algorithms proposed in
Section 3 for the solution of the regularized and the original simplified friction
problem. For simplicity we use for all examples the unit square as domain,
i.e., Q2 =1(0,1) x (0,1). The set of admissible deformations is

Y={ye H(Q):7y=0o0nTy},

where I'y = 0Q \ I’y with Iy C 09 specified separately for each example. For our
calculations we utilize a finite difference discretization with the usual five-point
stencil approximation to the Laplace operator. The discretization of the normal
derivative is based either on one-sided or symmetric differences. We denote by
N the number of gridpoints in one of the space dimensions, that is we work on
an N x N-grid. The implementation is done in MATLAB 6.1. To investigate
convergence properties we frequently report on

(3.85) dy == [|A = Nlry.,

where A := Ajgis is the solution of (R*) with v = 10'® and A’ denotes the actual
iterate. We compare our results with those obtained using the Uzawa algorithm,
which can be interpreted as an explicit form of the augmented Lagrangian method
[67]. While (ALM) converges for every v > 0 the Uzawa method converges only
for v € [y, an] with 0 < o < e, where «; and a5 are in general not known [47].
We initialize both the Uzawa and the first-order augmented Lagrangian method
with A? := 0. We report on the number of iterations for the Uzawa method (one
iteration requires one linear solve) and stop the iteration if dj < 10=*. Unless
otherwise specified we use ¢ = 1 for (PDAS), )\ = 0 and, as initialization for
(PDAS), (SS) and (ALM) the solution to (3.22a)-(3.22c) with £ = 0, which
corresponds to the solution of (B*) neglecting the constraints on \.

5.1. Example 1. This example is taken from [47, p. 301], the data is as
follows: The part I'; of the boundary, where friction occurs is ([0, 1] x {0}) U
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TABLE 1. Ezample 1: Number of iterations for different values of .

v 102 10* 105 108
Hiter | 2 3 3 3

15F T T T T ] 0.04

y= 107

0.031

0.021

0.011

-0.01f

-0.02f

-0.031

. . . . ~0.04 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIGURE 2. Ezample 1: Solution variables A, (dotted), Ty, (multiplied
by 10, solid) for v =108 (left) and X\, for v = 10?,103,10%,10° (right).

([0,1] x {1}). Furthermore, =0, g = 1.5 and

[ 10 forwe(0,1/2) x(0,1),
fle) = —10  for z € [1/2,1) x (0,1).

We choose N = 80 discretization points per space dimension. First, we state the
results obtained for the Uzawa algorithm. This method requires 32 iterations for
v = 10, 17 iterations for v = 20 and does not converge for v = 30. In our tests
for (PDAS) and (RPDAS) we vary the value of the regularization parameter -y
and investigate the convergence as v — oo. Table 1 reports on the number #iter
of iterations (RPDAS) needs for various values of 7. It can be seen that the
algorithm requires only very few iterations to find the solution of the problem.
For this example increasing the regularization parameter does not increase the
number of iterations required to detect the solution, compare with [69], where a
different behavior for obstacle problems is observed. We remark that for (RP-
DAS) no points are shifted from the lower active set to the upper or conversely
within one iteration and thus (PDAS) determines the same iterates as (RPDAS)
for all o > !, see Remark 3.13. For v = 10® the variables )\, and 73y, on
[0,1] x {0} are shown in Figure 2 (left), the result y, is plotted in Figure 3 (left).

We now investigate the convergence as v — oo. In Figure 2 (right) we plot
Ty, for v = 10?,10%,10%,10° on [0, 1] x {0}, for v > 10° the changes are beyond
the graphical resolution. It can be seen that, as v increases, 771, approaches 0,
e.g., on [0.4,0.6], such that the complementarity condition of the original friction
problem is almost satisfied for large ~.
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v |y, =9l
RRHHN
1| 4.46e-1
e 10 | 1.79e-1
LSRN SO 7
LRGN NN . -
RO N
N 3
ittt e SIS ety 10 2.49e-3
R R 7
7 TR 4
I
W 5
10 2.54e-5
6
10 2.54e-6

FIGURE 3. Ezample 1: Solution y, for v =10® (left) and convergence
w.r. to 7y (right).

Finally, the table in Figure 3 reports on the value of

[y, = alll = (aly, = 7.5, = 7)?
for various 7, where we take y := w916 as approximation to the solution of the
simplified friction problem and use a 160 x 160-grid to keep the discretization
error small. Note that ||| ||| is a norm equivalent to the usual one in H(£2). The

result suggests the convergence rate y~!, while from Corollary 3.11 we only get
the rate y~1/2.

5.2. Example 2. For this example, taken from [47, p. 281] the data is as

follows:
I'y=[1/4,3/4] x {0}, p=0and f(zr) =10 xc

with C' = (g,%)Q. The results y, for ¢ = 1 and v = 1,10,100 are shown in
Figure 4, compare with [47, p. 283], where the same problem is solved using
an iterative overrelaxation method. To detect the solution (RPDAS) as well as
(PDAS) requires only one iteration step, since no active points occur for the
dual solution variable A,. This shows another positive feature of the primal-dual
active set method: If the constraint is nowhere active at the solution, then the
algorithms (using the unconstrained solution as initialization) terminate after
the first iteration step at the exact solution of the discretized problem. For other
initializations (e.g., setting A\’ equal to one of the constraints) the algorithms
usually terminate after two iterations. For g = 0.25 the upper constraint on A
is active in some interval for all tested values of v and all grids, nevertheless
(RPDAS) and (PDAS) never required more than three iterations to terminate at
the solution.

5.3. Example 3. This example investigates the behavior of (PDAS), (RP-
DAS) and (ALM) for a more complicated structure of the active and inactive
sets. Uzawa’s method faces serious troubles with this example: In all test exam-
ples with v > 0.2 the method did not converge. For v = 0.2 we stopped our test
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FIGURE 4. Ezample 2: Solution y, for g =1 and v =1 (left, top),
~v =10 (right, top) and v = 100 (bottom,).

TABLE 2. Ezample 3: Number of iterations of (RPDAS) and (PDAS)
for different values of v and N = 160.

10 50 100 150 160 10% 10%
4 5 6 7 div div dw
4 5 6 5 5 6 6

v
#ite’r(RpD)
#iter(pD)

W W W
= | Ot

after 400 iterations at d3’° =1.03e-2. We choose Iy = 92, which implies that
Y = H'(Q). Furthermore, ;1 = 0.5, g = 0.4 and the external force is

f(z) = 10(sindrx + cos 4mz).

Figure 5 (left) shows the solution ¥, for v = 50. In the table in Figure 5 we
report on

AE— )

A T ||)\]€—1 k:1,2,

o )\'Y”Ff ’
for v = 50 to investigate if one can observe local superlinear convergence of the
iterates determined with (RPDAS). We observe a monotone decrease of ¢%, which
corresponds to superlinear convergence of A\¥ in L?(T;).
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FIGURE 5. Ezample 3: Solution y, for v =50 (left) and values for d% (right).

Table 2 shows the number of iterations #iterrpp) and #iterpp) required by
(RPDAS) and (PDAS), respectively, to find the solution for different values of
v, where 160 x 160 inner gridpoints are used. We observe a slight increase in
the number of iterations as 7 increases. For v > 160 (RPDAS) does not detect
the solution, whereas (PDAS) does. Using (RPDAS) for these examples we can
observe the following behavior: Points in I'y move from AT to Ai, and then
from A’i back to A*"! for some k > 2, and due to this scattering the algorithm
does not find the solution. Algorithm (PDAS) does not experience such problems
and finds the solution after a few iterations for all v that we tested.

To avoid possible difficulties due to local convergence of the semi-smooth
Newton method (RPDAS) we test the following globalization strategies: First
we use a continuation procedure with respect to 7, motivated from the local
convergence result for (RPDAS): We solve for v = 150 and use the solution as
initialization for the algorithm with larger . This procedure turns out to be
successful only for a moderate increase in 7. Increasing v moderately, typically
only one or two more iterations are needed to find the solution for larger ~.
However, this method appears inconvenient and costly. Next we test backtracking
with J,, as merit function to globalize (RPDAS). This strategy works successfully,
but in particular for larger v several backtracking steps are necessary in each
iteration. The resulting stepsize is very small and thus overall up to 50 iterations
are needed to find the solution. This behavior becomes more distinct for large 7.

We also apply algorithm (ALM) (see Section 3.4) for the solution of this ex-
ample. Recall that in (ALM) ~ is fixed, but the variable A is updated. Recall
further that (ALM) is a solution method for (P*), the dual of the original sim-
plified friction problem. In each iteration of (ALM) one has to solve an auxiliary
problem, which is of the form of our regularized problem with the specific choice
A := A\ In a first attempt we solve this auxiliary problem exactly using (PDAS),
where this method is initialized with the solution of the auxiliary problem in
the previous iteration step of (ALM). Due to the local superlinear convergence
of this semi-smooth Newton method the auxiliary problem is solved in very few



46 CHAPTER 3. SIMPLIFIED FRICTION PROBLEM

TABLE 3. Ezample 3: Tests for (ALM) with exact solve of the auziliary
problem, N = 160, v = 102, 10*.

l 1 2 3 4 ) 6 7
v =107 #iterpp 6 3 2 1 1 1 1
df\ 2.55e-2  8.54e-3 3.62e-3 1.62e-3 7.45e-4 3.58e-4 1.77e-4
y = 104 #’iteT‘pD 6 1 1 1 1
dl/\ 4.00e-4 3.06e-6 2.67e-8 2.62e-10 2.84e-12

iterations, as can be seen in Table 3, where for v = 10? and v = 10* we report on
the number of iterations #iterpp required by (PDAS) in every step  of (ALM).
Moreover, we report on

(3.87) dy == I\ = Allry.,

where A denotes the iterates of (ALM) and A := Ajqi6 is the approximate solution
of (P*). As expected we observe faster convergence of A in the case v = 10*,

In a second approach we test (ALM) with only one iteration step of (PDAS)
in every (ALM)-iteration. The results for v = 102,10* are shown in Table 4.
Again we report on the value of d. We observe that for v = 10% the first
iterates present a better approximation to A than for v = 10%, whereas then the
case v = 10% shows a faster convergence behavior. This leads us to the idea of
increasing the parameter 7 in every step of (ALM). We start with v = 10 and
multiply v by 10 in every step of (ALM). The results for this test run are shown
in the last line of Table 4.

We now compare the above results for (ALM) with those of the primal-dual
active set algorithms for large v (e.g., v = 10'%). In the case of exact solving the
auxiliary problems in (ALM) the overall number of system solves is significantly
higher than if (PDAS) with large ~ is used. The second strategy, where we only
apply one semi-smooth iteration in the inner loop turns out to be more efficient,
and the results in the case where we also increase v are remarkably good. In
this case the number of overall system solves is the same as for the primal-dual
active set strategies with large v. However, these semi-smooth Newton methods
determine the solution of the regularized problem (), which is - for large 7 -
close to the solution of (P*), while (ALM) is a solution method for the original
simplified friction problem (P*). We finally remark the advantage of (RPDAS)
and (PDAS) with large v compared to (ALM) that one has a simple stopping
criterion available, which guarantees that the exact solution of the discretized
(regularized) problem is found.

5.4. Example 4. For the last example the Uzawa algorithm again only con-
verges for small v which results in an extremely slow convergence. The data are
as follows: I'y = 9 and thus Y = H*(Q), furthermore u = 0.5, ¢ = 0.3 and the
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TABLE 4. Ezample 3: Values for d (as defined in (3.87)) applying
(ALM) with one iteration step of (PDAS), N = 160, v = 10%,10%, 10".

l 1 2 3 4 S 6 7 8

v =102 | 2.96e-1 1.6le-1 5.84e-2 1.65e-2 3.95e-3 1.88e-3 9.78¢-4  5.19e-4
v =10*|3.8le-1 2.15e-1 1.46e-1 3.79e-2 6.14e-3 1.5le-5 1.47e-7 1.59e-9
v =10" | 1.41e-1 1.84e-1 9.67e-2 3.44e-2 5.65e-3 1.33e-7 1.45e-12

-0 -0
-0.2] -0.2]
-0.3| -0.3|

) 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

-

FIGURE 6. Ezample 4: Solution y, (left) and variables Ay (solid), Ty,
(dotted) on (0,1) x {0}, (0,1) x {1}, {0} x (0,1), {1} x (0,1) fory = 103
(right).

external force is
f(z) = |3z — 1] + 2sgn(2y — 1) + 2sgn(z — 0.75) + 5sin(67x).

In Figure 6 (left) we show the solution y, for v = 10%. The corresponding
variables A\, and 7y, on the different parts of I'; are shown in Figure 6 (right).
In a series of test runs (Table 5) we investigate the number of iterations for
various grids (IV corresponds to an N x N-grid) and different values for v. We
observe that the number of iterations required to detect the solution is rather
small for all mesh-sizes and choices for . For the calculations we use (RPDAS),
except for those indicated by *. For these examples with a rather large values of
v (RPDAS) starts to chatter due effects described in the previous example. Thus
we utilize (PDAS) to solve these problems, which is always successful. Utilizing
(PDAS) also for the examples with smaller ~y yields the same number of iterations
as (RPDAS). Furthermore, note from Table 6 that for small v (y = 5, 10) a mesh-
independent behavior can be observed, whereas for larger ~ this is not the case.
A possible explanation for this behavior is the decreasing convergence domain for
the infinite-dimensional semi-smooth Newton method (RPDAS) as 7 decreases.

We also tested whether one can observe superlinear convergence of the iterates
calculated with (RPDAS). The results in Table 6 yield that ¢§ (as defined in
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TABLE 5. Example 4: Number of iterations for different values of 7
on N x N-meshes.

vy 5 10 30 50 10* 10® 10° 10'
2003 3 3 3 3 3 3 3
4013 3 4 5 4 4 4 4

N 8|3 4 4 5 5 6 6 67
603 3 5 5 6 8§ T T
32003 4 5 6 7 7 & &

TABLE 6. Exzample J: Values for qf{ for v =10 and v = 100, N = 80.

k 1 2 3 4 d

g5 fory=10 {0.39 0.12 0.08 0.00 -
q5 for v=100|0.64 0.61 0.13 0.07 0.00

TABLE 7. Exzample J: Values for dl)\ (as defined in (3.87)) applying
(ALM), N = 160, v = 102,10%, 10"

l 1 2 3 4 ) 6 7 8
v =102 | 1.62e-1 1.07e-1 2.22e-2 6.42e-3 1.37e-3 4.47e-4 1.84e-4 8.87e-5
v =10*| 2.14e-1 1.38e-1 1.10e-1 1.47e-2 2.88e-3 4.13e-4 8.88e-7 8.0le-9
v =10" | 8.54e-2 8.78e-2 3.89e-2 1.04e-2 2.07e-3 4.17e-4 8.85e-10

(3.86)) decreases, which corresponds to superlinear convergence of the iterates
A in L2(Ty).

We also tested (ALM) for the solution of this example, where we used (PDAS)
to solve the auxiliary problem. In the case that this problem was solved exactly
the overall number of system solves was 16 for v = 50 and between 12 and 20
for other tested values of 7. The results for the case where only one iteration
step of (PDAS) is performed in every (ALM)-iteration are summarized in Table
7, where we again report on dj as defined in (3.87). Increasing v as in Example 3
turns out to result in a very efficient method. In this case the number of system
solves is similar as when the primal-dual active set methods are applied to the
regularized problem with large v, but (ALM) has the advantage that the iterates
converge to the solution of the original (i.e., not regularized) simplified friction
problem.

5.5. Summary of the numerical results. In our numerical testing we ob-
serve a remarkable efficiency of algorithms (RPDAS) and (PDAS) for the solution
of the regularized simplified friction problem (B*) and of (ALM) for the solution
of (P*). For moderate values of 7 the iterates of (RPDAS) and (PDAS) coincide
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and these algorithms converge superlinearly. For large values of v (RPDAS) may
start to chatter, while (PDAS) always detects the solution. The two tested glob-
alization strategies for (RPDAS) turn out to be successful but inconvenient. The
number of iterations of the semi-smooth Newton methods increases only slightly
for finer grids and larger regularization parameters. The efficiency of (RPDAS)
and (PDAS) is interesting also with respect to augmented Lagrangian methods
since these algorithms present a powerful tool to solve or approximately solve the
auxiliary problem in (ALM). Our tests show that, solving the auxiliary problem
in (ALM) only approximately using (RPDAS) or (PDAS), the overall number
of system solves for (ALM) is rather the same as for the semi-smooth Newton
methods with large v. However, (ALM) has the advantage that it detects the
solution of the dual of the original simplified friction problem (P*) without re-
quiring that v — oo. Finally, we remark the advantage of (PDAS) with large
that one has a simple stopping criterion at hand that guarantees that the exact
solution of (P*) is detected.

6. A Dynamical Simplified Friction Problem

In this section we apply our findings for (P) to a dynamical version of the
simplified friction problem. First we state the problem and give basic result.
Then we apply a discretization with respect to the time variable and end up with
a problem similar to (P) that has to be solved in every time step. A numerical
example shows that the semi-smooth Newton algorithms are an efficient tool also
for the solution of time-dependent friction problems.

6.1. Problem formulation. Let Z be a Hilbert space with inner product
(+,)z and corresponding norm || - ||z. For "> 0 we introduce the spaces

L*(0,T; 7) := {gp 0,7 — Z - /0 llo()||% dt < oo},
L>®0,T7;7) :={¢:[0,T] = Z s.t. 3C > 0: ||¢(t)||z < C a.e. in [0,T]}

with corresponding norms

1

T b
ol = ( / ||<p(t)||22dt> |
ol oo 0,52y := Inf{C > 0 : ||p(t)|| < C a.e.in [0,T7}.

It can be shown that the above spaces are Banach spaces and that L*(0,T; Z)
is a Hilbert space, [47]. In the sequel we denote by the prime ’ the derivative
with respect to the time variable ¢ and use the notations for Y, a(-,-) and j(-)
as defined in (3.2), (3.3) and (3.4). We can now formulate (P, ), the dynamical
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simplified friction problem as follows.

Find y € L*(0,T;Y) s.t.

y' € L*(0,T:Y),y" € L*(0,T3 L*(Q)),y(0) = yo, ¥'(0) = y1 and
(v"(t) = f(t), 2=/ () +aly, 2 = y' (1) +4(2) = 5(y' (1)) > O
for a.a. t € [0,7) and all z €Y,

(den)

where f € L*(0,T; H'(Q)) and v, y; € Y are given. Then the following existence
and uniqueness result for problem (Py,,) holds.

THEOREM 3.20. Assume that f', f" € L*(0,T; L*(Q)), yo € H*() and y, €
HY(Q). Then there exists a unique solution y of (Puyn) with y' € L=(0,T;Y)
and y" € L>(0,T; H'(Q)).

PROOF. A verification for the above theorem follows from Theorem 5.7 in [39,
p. 157]. Notice that the rather lengthy proof for existence of a solution consists
of three main steps: Approximating j(-) by a smooth functional j., establishing
a priori estimates for the solution u, independent of ¢ and then passing to the
limit as ¢ — oo. U

Next we summarize the first-order necessary conditions for a solution y of
(Payn): There exists A : [0, 7] — L?*(I'y) such that for a.a. ¢ € [0, T] the following
equations are satisfied:

(3.88a) a(y(t), z) + ("(t) = f(t), 2)r, + (A(t), 77 2)r, =0 for all z € Y
(3.88Dh) 77 (t) = max(0, 7 7' (t) + o(A — g)) + min(0, 77 (t) + o(A + g))

in L*(Ty) for every o > 0.

Note that the optimality condition for (Py,,) concerns an inequality of evo-
lution of second order in ¢. Systems such as (3.88a),(3.88b) with §” replaced by
y' in (3.88a) correspond to problems of, e.g., temperature control, see [39, p. 46].

6.2. Semi-discretization in time. In this section we discretize (Py,,) with
respect to the time variable. We divide the interval [0,7] into M equidistant
subintervals, i.e., into [t; 1,#;] fori=1,..., M with ¢, = Hi, H =TM™". By ¢
we denote the approximation to the solution y of (Py,,) on time level ¢ and we
introduce the abbreviations
oyt .yt
d' = Vi and ¢' = i
Note that (6 + 6 !)/2 = d' and that
5 — &Lyl oyl il (i — 5

(3.89) = = ==

We denote by
YO = (1-0)y' + Oy’ = 20Hd' — OHS' +,
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and analogously . . _
e =1-0)f +oft,

where f' = f(t;,-) € L*(Q). For © € [0, 1] we discretize the variational inequality
in (Pyyn) as follows:

i1 i g it

y o2ty

(3.90) ( =
for all z € Y. This is, using (3.89) equivalent to

Q

H
+37(2) —j(d) >0forall z € Y,

2dt — 51 ) ) . . . .
(g — f7% 2 dl) +a(20Hd — OH ' +y', 2 — d)
Q

and further to
%(di — 5 —dYg — (f7°, 2 —d)q +20Ha(d', z — d)
—a(OH§ ™ —y' 2 —d')+j(2) —j(d) >0 forall z € Y.
The solution of the above variational inequality is also characterized as solution
to the optimization problem

- { max 3 d)n + Ol d) = 125+ H,d)g
—Ba(@HS ! -y, d') + Tj(d).

This enables us one by one to compute the approximate solution of (Py,,) at the
time levels ¢; as follows:

(1) Set 3 :=yo, y' := yo + Hyr.

(2) Fori=1,...,M — 1 solve (P') and set y"*' := y*~! + 2Hd".
In [47, p.484] the above scheme is investigated for the case g = 0 (i.e., j(-) = 0),
where unconditional stability for © = 1 and conditional stability for © < 1 is
shown. For © > 0 problem (P’) has a similar form as the static problem (P)
and can thus be analyzed and solved similarly as (P).

6.3. Numerical results. For a numerical realization we regularize problem
(P?) as done for the static case and apply (PDAS) for its solution. As initial-
ization for the solution of (P?) we choose d' = 0 on 92 and calculate the other
variables from the linear equation (3.88a). Utilizing this initialization the same
linear system with changing right hand side has to be solved in each time step.
To exploit this fact we a priori calculate the Choleski-factorization of the system
matrix (which is an M-matrix, see [49]) before we start our calculations for the
time evolution. Thus the initialization step for (PDAS) only requires one forward
and one backward substitution in every time step.

We report on an example with the following data: Q = [0,1]%, [} = 99,
f=0,g=1,u=0.5,T =2 and

Yo(w,y) = dy(y — 1)y/sin(rz), yi(z,y) = —yo(x,y).
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TABLE 8. Average number of (PDAS)-iterations for various values of
© and H, N = 50.

) 05 05 05 0.5 1 1 1 1
H 0.01 0.02 005 0.1 0.01 0.02 005 0.1
aver. #iter | 1.005 1.08 1.325 1.50 1.005 1.12 1.43 1.50

We choose the regularization parameter v = 10° and N = 50 (i.e., the state
variables are discretized on a 50 x 50 grid). For the time discretization we apply
a semi-implicit scheme (i.e., © = 0.5) and the time increment H = 0.01. Figure
7 shows the solution y(¢;,-) for t; = 0.1,0.4,0.7,1.3. The semi-smooth Newton
method usually only requires one iteration step to detect the solution for problem
(P%). With the above parameters only one of the 200 solved problems (P*)
requires two iterations that is an average number of iterations of 1.005. For
tested values of © smaller than 0.5 leaving the other parameters unchanged the
scheme turns out to be unstable, while for all tested ©® > 0.5 we observe a stable
behavior, also for larger timesteps such as H = 0.1. Table 8 reports on the
average number of (PDAS)-iterations (aver. #iter) for different © and H.

A possible explanation for the remarkable efficiency of the semi-smooth New-
ton method (PDAS) for the solution of (P?) may be that - compared to the
static problem (P) - the differential operator in (P?) involves an additional iden-
tity operator which results — after discretization — in an M-matrix for which
all eigenvalues are larger than 1. Furthermore, for small timesteps this matrix is
close to the identity matrix. We remark that for unilateral constrained problems
M-matrix properties can be utilized to gain monotonicity and thus convergence
results for the iterates, see [58,69].
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CHAPTER 4

Contact Problems in Linear Elasticity

Contact problems in elasticity appear in important processes in nature and
in many technical applications. Firstly, they are used in mechanical problems if
no or negligible friction in the contact zone occurs. Secondly, they are crucial
ingredients for the investigation and simulation of more realistic frictional contact
problems. And, thirdly, they are also of theoretical mathematical interest due to
their relation to variational inequalities and constrained optimization problems.

In contact problems (also known as Signorini problems), one is concerned
with the deformation of an elastic body whose surface or boundary possibly hits
a rigid foundation. It is not known in advance which part of the body’s surface
will be in contact with the foundation. Such problems are known as unilateral
contact problems in contrast to so-called bilateral contact problems, where the
contact region is a priori known. The main difficulty in Signorini problems is
to identify the contact zone. Then — provided the material law is linear — the
problem reduces to a linear one. The problems discussed in this chapter do not
involve friction in the contact zone, i.e., the deformation in tangential direction
is unrestricted.

Classical references for contact problems are [62, 73], while a general treat-
ment of variational inequalities can be found in [39,46,47,75]. For a rather new
contribution on computational contact problems we refer to [107].

Let us now discuss various approaches towards the pointwise inequality con-
straints in Signorini problems. Pure regularization techniques [23,46,47] require
careful handling of regularization parameters in order to find a reasonable com-
promise between efficiency and accuracy. Duality techniques are based on the
introduction of a Lagrange multiplier (cf., [17,46,47]), and result in a system that
includes a complementarity condition. Active set strategies (see, e.g., [63,107])
iteratively provide approximations of the contact set. A domain decomposition
method combined with an inexact projection method for the numerical treat-
ment of discrete contact problems is suggested and analyzed in [98,99]. Mono-
tone multigrid methods (see, e.g., [63,76,78-80]) also represent efficient methods
for the numerical solution of discrete Signorini problems. Recently, a finite di-
mensional primal-dual active set strategy combined with a multigrid approach
has been applied to multibody contact problems in [65,66]. The methods used
in these papers are related to [59], and also to the techniques developed in this
chapter.

55
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For convergence rates of the finite element approximations of Signorini prob-
lems, we refer to [10,12] and the references given therein.

The approach taken in this chapter is motivated by the variational formu-
lation of the Signorini problem in a Hilbert space framework. We present a
regularization procedure that is mainly of penalty type, which allows us to ap-
ply a superlinearly convergent generalized Newton method in infinite dimensions.
The resulting algorithm turns out to have the form of an active set strategy and is
observed to converge in numerical practice regardless of the initialization. Com-
bining the regularized problem with a first-order augmented Lagrangian method
results in the convergence of the solutions to the solution of the original con-
tact problem. We also discuss a certain inexact variant of this method and give
convergence results. The methods presented in this chapter are motivated by
semi-smooth Newton methods in function spaces [58,104] and their application
to optimal control and obstacle problems [58,69].

Let us give a brief outline of this chapter. In Section 1, the contact problem is
stated in a functional analytic framework, equivalent statements and basic prop-
erties are discussed. A regularization procedure is presented in Section 2, where
the convergence as the regularization parameter tends to infinity is investigated
as well. In Section 3 and 4 we present the semi-smooth Newton algorithm, the
exact and inexact first-order augmented Lagrangian method, and give conver-
gence results for these methods. In the concluding Section, our numerical testing
of the algorithms is summarized.

1. The Contact Problem

In this section the contact problem in linear elasticity is formulated in an
appropriate functional analytic framework and existence and uniqueness results
are summarized. A dual formulation of the problem is derived and a Lagrange
multiplier that resolves the contact condition is introduced.

1.1. Problem statement. Let {2 C R”, n > 2 be an open bounded domain
with CH'-boundary T' := 9Q (see Figure 1). We define H'(Q) := [[}_, H'(Q)
and use the analogous notation for the product spaces L2(Q2), H2(I),... and
their duals. The set of admissible deformations is introduced as

Y = {v e H'(Q): 7v =0 a.e. on [y},

where Ty C T is open, nonempty and 7 : H(Q) — Hz(I') denotes the (com-
ponentwise) trace operator. Furthermore, we denote by ¥ := int(I' \ ['y) the
interior of I' \ 'y, by I'. C ¥ the nonempty open region of possible contact and
by I';, ;= int(X\T;) the (possible empty) set with given Neumann conditions. We
assume that I, C ¥, that 0., 0% C I' are smooth and define a closed subspace
of H2(X) by

1
HZ)(X) :={¢€ € L’(X) : there exists v € HY(Q) : 7o, =0, 7v)5 = €}
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FIGURE 1. Elastic body with rigid obstacle.

For equivalent ways to define this space we refer to [34,39]. Next we decompose

the elements in HééQ(E) into normal and tangential components. For this reason

the Clt-regularity of the boundary is required, which guarantees that the compo-
nents of the unit outward vector v = (v4,...,1,) on ¥ are Lipschitz-continuous.
We define the surjective, continuous and linear normal trace mapping

1
w:Y — H(Y)
by 7w := (7v) Tv. The corresponding tangential trace mapping
1 1
Tr: Y - H} (2) == {v e Hj(X) : 7yv =0}

defined by T7v := v — (7yv)v is also linear, continuous and surjective, see [73,
p. 88]. Since by assumption I'. C ¥ it follows that

; !
H:z(T',) = {€|I‘C 1€ € Hgy(X) )
The restrictions of 7y and 77 to I,
TN, = TN, P Y — H%(FC),
1 1
T =Ty, Y — Hp(T) = {v € H2(',) : 7y,v = 0}

are also linear, continuous and surjective. In the sequel we use the notations 7y,
and 77 only if we want to highlight that we are dealing with restricted functions.
If no confusion can occur we use 7y and 77 for 7y, and 77, respectively.

Next we define the strain and stress tensors for linear elasticity. For y € Y
the components of the strain tensor g(y) € (L?(£2))"*™ are given by

i == for 1 < < n.
81](14) 2 <axj + ax1> or — Z:j =n

The stress tensor o (y) € (L?(Q))™*" is calculated from g(y) according to
a(y) = Ce(y) = (Mr(e(y))l + 21e(y)),
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where I denotes the n x n-identity matrix and tr(-) the trace of a matrix. The
Lamé constants A, y are given by

E E
p=—" A= v

2(1+v)’ (1+v)1-2v)
with £ > 0 denoting Young’s modulus and v € (0, %) the Poisson ratio. Above,
the fourth order isotropic material tensor C that describes the mapping from
€(y) to o(y) has been introduced. In linear elasticity its inverse C™! exists and
can be calculated explicitly, namely

(1) (y) = C'aly) =5 o(y) ~ o e

where n denotes the dimension of 2. We can now define the symmetric bilinear
form for the Navier-Lamé system. Let y,z € Y, then

aly, 2) = / ew) s o(x)dr = [ aly):e(z)dn

Q

where ‘> means the sum of the componentwise product of two matrices, that is

the above expression denotes the usual scalar product (e(y), o(y)) between g(y)
and o(y) in (L*(2))"*". For given f € L*(Q2) and t € L*(T,,) we define the
continuous linear form L : Y — R by

L(y):/ﬂfydij/Fnt'rydx

for y € Y. Furthermore, we denote by
K={veY:nyv<0ae onl.}

the cone of functions in Y with non-positive normal trace component on I'..
To model a possible gap between the elastic body and the rigid foundation we
introduce d € Y with 7vd > 0 a.e. on I'. and denote by d := 7n.d € H%(FC).
Then the Signorini problem can be written as minimization of the potential
energy over the set of admissible deformations, i.e., as

(P) min J(y) = a(y.y) ~ L(y),

or equivalently as elliptic variational inequality of the first kind [46]:

{ Find y € d + K such that

4.2
42) a(y,z —y) > L(z —y) forall z € d+ K.

1.2. Basic results. We now state existence and uniqueness results for the
contact problem in linear elasticity.

THEOREM 4.1. Problem (P) or equivalently (4.2) admits a unique solution
yed+ K.



1. THE CONTACT PROBLEM 59

ProOOF. (Sketch) The proof follows from the so-called Korn inequality, which
states that there exists a constant ¢ > 0 such that

(1) [ 3 cutwrzat) e+l = el

Q 1,j=1

for all y € H'(Q). For the involved proof of (4.3) we refer to [39, p. 110] or [73,
p. 103]. Since the elements in Y are fixed on the nonempty set I'y, Poincare’s
inequality implies together with (4.3) that a(-,-) is coercive on Y. This yields
that

J(y) = o as ||y|ly — oo,

and implies, since K is weakly closed, the existence of a solution to (P). Unique-
ness of the solution follows from the uniform convexity of J(-). O

Finally we give the strong formulation of the contact problem (P). The
Navier-Lamé equation is given by

— Dive(y) = —pAy — (A +p)(Vdivy) = f in &,

where Div denotes the rowwise div-operator and A the vector-Laplacian. We
have the Dirichlet boundary conditions

Ty=0o0nlYy
and Neumann-type boundary conditions
o,y=tonl,,

where o,y = (oy)"v. To complete the strong formulation we give the contact
condition on I'.:

ory =0, wy—d<0, oyy<0, (wy—d)oyy=0 on [,

where oyy = (o,y) v and oy = o,y — (ony)v. The above condition on
I'. expresses that the deformation on the boundary is stress-free in tangential
direction (i.e., o7y = 0), that the nonpenetration condition 7yy —d < 0 on T,
is satisfied and that the normal stress oy is nonpositive in the zone of contact
(i.e., where 7yy — d = 0), and 0 outside this region.

1.3. Optimality system. In the next theorem we characterize the solution
of (P) introducing a Lagrange multiplier that will turn out to be the negative
normal stress on the boundary. In the sequel we abbreviate the notation of the
duality pairing for elements

¢e H>(T,),0€ H2(T,) by (0.&)y, instead of <975>H—z ),H2 (L)’
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THEOREM 4.2. The solution y € d + K of (P) is characterized by the exis-
tence of A € H™2(T,) such that

(4.4a) a(y, z) — L(z) + (), TNCZ>I,C =0 forallz€Y,
(4.4b) <5\,TNCz>F <0 forall z € K,
(4.4c) (\7ng —d), =0.

PROOF. Since 7y, : Y — Hz(T,) is surjective, it follows for instance from
88] that there exists a Lagrange multiplier A € H~2(I',) such that (4.4a)-(4.4c)
hold. O

Note that, provided A € L'(T,), the conditions 4 € d + K, (4.4b) and (4.4c)
can equivalently be written as
(4.5) A = max(0, A + o(wy — d)) for each o > 0.

This can be verified by a direct computation, and it also follows from results in
convex analysis. Writing the complementarity conditions (4.4b), (4.4c) as (4.5)
motivates the application of a semi-smooth Newton method for the solution of
the Signorini problem, see Section 3.

1.4. The dual problem. Next we calculate the Fenchel dual for (P). This
is done following the theory in Section 1.3, see also [42]. A related discussion for
contact problems can be found in [73, p. 201].

We start the calculation of the dual problem with some definitions. Let
F : Y — R be defined by

#ty) = {

and define the set of symmetric matrices of L?-functions by
V ={p e (L*(Q)"" : pij = pj; forall 1 < i, < n},

furthermore A € L(Y,V) is defined by Ay := g(y). Finally, G: V — R is given
by

—L(y) ifyed+K,

00 else,

2
It is easy to check that F and G are proper, convex and lower semicontinuous
functions. Utilizing the above definitions the contact problem (P) can be written
in the form

(4.6) min {f(y) + g(Ay)}.

yeY

1
G(p) := —/Qz_az(C}_)dx.

We now turn to the dual problem corresponding to (P) which obeys the abstract
form

(4.7) sup { = F(=A'p) — " (p)}.

peEV®
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where F* and G* denote the convex conjugate functions for F and G, respectively,
and A* € £L(V*,Y*) is the linear adjoint of A. Note that F and G satisfy the
conditions of Theorem 2.5, and thus the solutions y and p of (4.6) and (4.7),
respectively, satisfy the extremality conditions B

—A\*p € 0F(y),

p € 9G(Ay),

with 0 denoting the subdifferential. In the following discussion we identify V with
its dual V*. To evaluate the dual problem for (P) we start with the calculation
of F7*(=A*p). Due to the definition of the convex conjugate functional we have

P = s {(- Xl 50

(4.8)

= s (AP g+ (Fyat LTy
S
TNy—dgy(] a.e. on I'¢

> sup {(Divg,y>y*y+(f,y)n}-
y€H(Q) 7

The latter supremum (and thus F7*(—A*p)) equals +oo unless
(4.9) —Divp=f
and thus Divp € L?(Q2). We now state a trace theorem for elements in Vp;, :=

{p € V:Divp € L*(Q)}, cp. [73, p. 93].

LEMMA 4.3. There exists a uniquely determined linear continuous mapping
7 : Vpiy — H’%(F) such that

w(p) =p- v if p is continuously differentiable on

and such that the following Green’s formula holds (the subindex (-); denotes the
i-th row of p)

Furthermore, one can split the trace operator m in its normal and tangential
component that is, there exist linear operators

_ 1
- =0 forall z € H'(Q).

1 _1 1
TN : VDz’v — H7§(F), ™ = VDiv — HT2(F) = {y € H*E(F) ITNY = 0},
such that
NG = (gu)Tu and mwrq = qu — (TNq)V

for all q that are continuously differentiable on Q.

Let us now suppose that (4.9) holds. Then it follows, utilizing (4.10) that

F*(—A*p) = su { — TP, TY) __1 o+ (tT }
( 1—)) yeg < I_) y>H002 (2)71_1020(2) ( y)Fn
TNYy—d<0 a.e. on I'¢
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which is 400 unless
(4.11) mp =t in L*(T,).
Finally, the splitting
(—mp.my)p = (—7vp, WYy, +(— 7P, TTY),
into normal and tangential part shows that

—(myp,d), if (4.9), (4.11), 7rp = 0 and
F*(—A*p) = myp < 0in H*%(FC),

00 else.

Next we calculate G*(p):

1
G*(p) = sup {(p.q@) —G(a@)} = SUp/{Q:g—ig:C_}dx
qgevVv qev.JQ
1 1.
—§/Q(C p:pdx.

We can now summarize our results for the dual problem in the next lemma.

LEMMA 4.4. The dual problem corresponding to (P) is given by

1
(P*) sup ——/ C'p:pdr+ (7yp. d>r .
s.t. (4.9), (4.11) 2 /g - - ¢

7rp=0 and nyp<0 a.e. on I'c

The relation between primal and dual variables is given by the extremality
conditions (4.8). Evaluating the condition p € 0G(Ay) yields that

G(Ay) — G(Az) < / piely—z)ds

Q
for all z € Y, which implies that

1 1

3 | (Cew)—2p) ety dn < 5 [ (Cele) —2p) sel) e

From the first-order necessary optimality conditions to the above minimization
problem one gets that

(4.12) p=Ce(y) =a(y).
The extremality condition —A*p € 0F(y) leads to the variational inequality
(4.13) (p.e(z—y)) — L(z—y) >0 forall z € d+ K,

and after introducing a Lagrange multiplier \ € H*%(Fc) to
(4.14) (p.e(z)) — L(z) + (A, wz), =0forall zed+K,
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and to (4.4b) and (4.4c¢). Finally, (4.12) together with (4.14) results in (4.4a).
Thus, we have shown that the extremality conditions lead to the optimality sys-
tem (4.4) as well. We conclude this section with giving a physical interpretation
for the Lagrange multiplier A. This variable, introduced as a multiplier, will turn

out to be the negative normal stress along the boundary. To prove this assertion
we deduce from (4.14), (4.4c) and Lemma 4.3 that

0= /91_7 te(y) de — L(z) + (A wz),,

= <7r1_3, ‘rz>r + <t, ‘rz>rn + <)\, TNZ>FC

= (Tnp + A, TNZ>I,C + (7P, TTZ>FC
for all z € Y. This implies that
(415) A= —TND,

i.e., A is the negative normal boundary stress. Using this observation we can
replace Typ in (P*) by —A (with the same X as in (4.4)) and further “sup” by
“min” to obtain an alternative formulation for the dual problem (P*), namely

) 1
— min_ J*(N) = §Cl(’y()\)ay()\)) + <)‘7d>rc’
A>0in H™2(T¢)
(4.16)
where y(\) satisfies

a(y(N),z) — L(z) + (A, z), =0forallz€Y.

Observe that in the above formulation the variable y(\) only enters the formu-
lation as auxiliary variable that depends on A.

2. Regularization

The regularization procedure that will be presented in this section allows us
to apply a semi-smooth Newton method for the solution of the contact problem
in an infinite-dimensional framework. Furthermore, for certain examples it will
turn out to have a positive influence onto the numerical performance of our
algorithms.

2.1. Regularization and the corresponding dual and primal prob-
lem. To introduce the regularized problem we replace the complementarity con-
dition (4.5) for given A € L*(T,) and v > 0 by

(4.17) A = max(0, A + y(mvy — d)).

This replacement is motivated from semi-smooth Newton methods for the so-
lution of nonlinear complementarity functions such as (4.5), see [58,69]. The
introduction of A is motivated by first-order augmented Lagrangians, cf. [67] and
the discussion in the next sections.
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Considering in (4.17) the variable y as a function of A defined by means
of (4.4a), we observe that 7yy is smoother than A. This property is necessary
for semi-smoothness of the max-function (see Theorem 2.8). In the original
problem (4.5) we cannot expect any smoothing of the expression inside the max-
function due to the explicit appearance of \. We now turn to the primal and dual
problem corresponding to (4.4a) and (4.17). The regularized primal problem is
the unconstrained minimization problem

. 1 1 .
(P) miy Jy(y) = 5a(y,y) = Lly) + o7 max(0, A+ 9(wy = d)) P

yeyY

and the corresponding dual problem (in the min-notation (4.16)) is given by

~  min la(y()\),y()\))+<)\,d>rc+%||)\—5\

A>0 in L2(T.) 2

1 .
%‘C - gn)\ %‘Ca
where y(\) satisfies

a(y(A),z) — L(z) + (M, wz), =0 forallze€Y.

Note that the last term in (7F) only involves the constant A and can thus be
neglected for the minimization. However, it is necessary to ascertain the usual
relation (2.6) between the values of primal and dual functional. By a calculation
similar to the one for the original contact problem (P) it can be verified that
(Pr) represents the dual problem of (P,). Note that in (P,) the parameter v
plays the role of a penalty parameter that penalizes the violation of the (primal)
constraint. Hence, (P,) is an unconstrained problem while the original problem
(P) involves a pointwise inequality constraint. Thus, a solution to (P,) is not
necessary feasible for (P). On the other hand, the dual problems (P*), (PF) are
both constrained optimization problems and a solution A, to () is feasible for
(P*) and vice versa provided that A € L%(T'.). For later reference we summarize
the above results in the following lemma.

LEMMA 4.5. Problem (P}) is the dual of (P,) and the solutions y., of (P,)
and A\, of (P$) are characterized by the extremality conditions
(4.18) a(y,,z) — L(z) + (A, wz)r, =0 forall z € Y,
(4.19) A, — max(0, A + Y(wy, —d)) =0 on ..

2.2. Convergence as 7 — oo. In this section we investigate the conver-
gence of the solution variables (y.,, \,) of the regularized problems (P,) and (7))

towards (y, A), the solution of (P) and (P*), respectively.

THEOREM 4.6. With the above notation we have that y., — y strongly in 'Y
and A, — \ weakly in H2(T,).
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PROOF. Recall that both, the variables (y.,\,) and (y, A) satisfy equation

(4.4a). Furthermore, (4.4b) and (4.4c) hold for (g, A), while (y., \,) satisfies
(4.20) Ay = max(0, A + v(my, — d)).

Setting z :=y. — g in (4.18) results in

(421) a’(y'ya Y, — g) - L(y'y - '!_J) + ()"Y’TN (yfy - g))rc =0.

Next we estimate

(A'Y’TN (y'y - g))rc = ()\’77TNyfy - d)Fc - ()\’y; TN:_'_J - d)FC

> ’7_1()‘7’ 5‘ + ’Y(TNy'y - d))pc - ’7_1()‘77 )\)Fc’

where (A, 7wy — d) <0 a.e. on I'. was used. Thus,

~

()\’Y’ ™ (yfy - g))pc Z 771 ()"Y’ max((], 5‘ + /Y(TNy'y - d)))rc - 771()"77 )\)Fc

(4.22) =3 MIE =7 T M
(4.23) = = AR IR — R > AR
° - 27 Y FC 2,}/ Y FC 2,}/ FC - 27 FC'
Equation (4.21) together with (4.22) imply that
1 1. _
(4.24) a(y.,y,) + ;IIMH%C <a(y, y) + ;(M, Mr, + L(y, —9).

Using the coercivity (with constant ¢ > 0) and the continuity (with constant
C >0) of a(-,-) in (4.24) results in

1 _ - 1 .
clly, Iy + ;IIM 2. < Cly,Ixl9lly + 1Ll sy oy ly — Bl + ;IIMIIFCIIAIIFC,

which shows that
1
clly,llv + ;H/\vlln

is uniformly bounded with respect to v > 1. Hence y, is bounded in Y and A,
in H=2(T,) from (4.18). Consequently, there exist (g, ) € Y x H~2(T,) and a
sequence 7y, with limy_, . & = oo such that
(4.25) Y, — y weaklyin Y and A\, — A weakly in H*%(FC).
In the sequel we dismiss the subscript ‘6’ with ;. Note that, due to the definition
of Ay,

1 2 13 2
(4.26) ;IIMIIFC = 7|l max(0, SA + wy, — )|,

Since H%(FC) embeds compactly into L*(T,), TNY., converges to 7yy almost ev-
erywhere on I'.. Thus (4.26) implies that 7y — d < 0 a.e. on [,.
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Subtracting equation (4.4a) for (y.,, A,) from the same equation for (y, A) and
setting z := y,, — y yields

(427) a’(y'y - g’ yfy - :.'_J) = _<)\’Y - 5‘77—N (yfy - g)>FC’
where, as before < , '>r denotes the duality pairing between elements in H > (T.)
and Hz(T',). Using (4.23), the coercivity of a(-,-) and (4.27) shows that

0 <limsupelly, — gl3 < lim (A 7w (y, —9),

Y—00

= lim <5\, Y — d>FC — <5\,7Ng — d>FC

=00
:,}Lr&<5\,TNQ —d). <0,
where 7wy — d < 0 a.e. on I'; is used. From the above estimate follows that
Y, — g strongly in Y and thus y = g. Passing to the limit in
a(y,,z) — L(z) + (A, wz)r, =0 forallz €Y
yields
(4.28) a(y,z) — L(z) + <5\,TNZ>FC =0forallzeY.

Comparing (4.28) with (4.4a) shows that A = A. Thus, every sequence 7, with
Yn — 00 for n — oo contains a subsequence v, such that

. T
Yy, 2 YinY and Ay — Ain H2 (T.).

This implies, due to the uniqueness of the solution variables g, A that the whole
family {(y.,\,)} converges as stated in the theorem. O

3. The semi-smooth Newton method

In this section we apply a semi-smooth Newton method for the solution of
(Py) and discuss properties of the algorithm. In the sequel we denote the solution
of (Py) and (Pr) by y, and \,, respectively, and for simplicity we dismiss the

: ) : : k \k ; k \k
subscript *y’ for the iterates, i.e., we use y*, \" instead of y7, A7.

3.1. Presentation of the algorithm. We now focus on the solution of
the regularized contact problem, that is we search for (y.,,),) € Y x L*(T)
solving (4.18) and (4.19). The algorithm given in this section results from the
application of the generalized Newton method (see Section 2, page 6) to the
mapping F : L*(T.) — L*(T,) given by

(4.29) F(\) == X — max(0, A + y(mwy(\) — d)),

where y()\) € Y is the unique solution y of (4.18) for given A\ € L*(T'.). Note

that vy € H%(Fc), which embeds continuously into L4(T.) for every ¢ < oo in
the case n = 2 and for ¢ = 2(n — 1)/(n — 2) if n > 3. Thus, 7wy € LI(T.) for
some ¢ > 2 and we obtain the norm gap required for Newton differentiability of
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the max-function (see Theorem 2.8). Applying the semi-smooth Newton method
with the derivative of the max-function as given in (2.10) to the equation F((\) =
0 results in the following algorithm, where xs denotes the characteristic function
foraset S CT,.

Algorithm: (C-SS)
(1) Choose (A%, y°) € L?(T',) x Y satisfying (4.18) and set k := 0.
(2) Determine

Al =1z eT,: A+ v(wy* — d) > 0},
Ik+1 — Fc \ AkJrl.

(3) If k > 1 and A" = A stop, else
(4) Solve

a(y*™, z) = L(z) + (A + 9wy = d), x v z), =0

(430) 5\ + k+1 _ d o Ak+1
for all z €Y, set A" = (v y ) on ’
on ZFt1,

and k :=k + 1 and go to Step 2.

Note that the solution to (4.30) is unique, since (4.30) represents the necessary
and sufficient optimality condition for the auxiliary problem

1 1«
miy sa(y, y) — L(y) + %HA +y(wy — d) [P

which is uniquely solvable. Properties of the algorithm are analyzed next.

LEMMA 4.7. If Algorithm (C-SS) stops, the last iterates y*, \¥ are the solu-
tions to (P,) and (Py), respectively.

PROOF. First note that all iterates (y*, \¥) satisfy (4.18). It remains to show
that if the conditions of the Lemma are satisfied, then (4.19) holds true as well.
From the uniqueness of the solution to (4.30) A**1 = A* implies y* ! = y* and
M+ = Ak This yields that A¥ > 0 on A¥*! = AF and M\¥ = 0 on ZF! = 7 and
thus

A = max (0, \*) = max(0, \ + v(my"* — d)),
which shows that (y*, \*) also satisfies the condition (4.19). O

Note that (P) is a unilaterally box-constrained optimization problem, in con-
trast to the simplified friction problem (see Chapter 3), which is (in its dual
form) bilaterally constrained. It is not difficult to verify that for unilaterally
constrained problems the determination of the active and inactive sets as the
original primal-dual active set strategy does (see [14,15]) is independent of the
factor o multiplied with (7yy — d), except possibly for the first iteration step.
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Thus, this value can be set to y~!, which results in the above algorithm, cp. [58].
For this reason a separated discussion of the primal-dual active set strategy and
the semi-smooth Newton method as for the simplified friction problem is redun-
dant.

3.2. Convergence analysis. In the next theorem local superlinear conver-
gence of the iterates of (C-SS) is proved.

THEOREM 4.8. Suppose that ||\g — A\ ||r. is sufficiently small. Then, for all
A€ L*(T.) and v > 0 the iterates (y*, \*) of (C-SS) converge to (y.,, \,) super-
linearly in Y x L*(T,).

PROOF. The proof is similar to the one for Theorem 2.2 in [69], see also the
proof of Theorem 3.15. Ol

4. Exact and Inexact Augmented Lagrangian Methods

Augmented Lagrangian methods apply for the solution of contact problems
provided the solution variable A € L?(T.). In this chapter we give conditions
that guarantee this regularity of the Lagrange multiplier and describe an exact
as well as an inexact augmented Lagrangian method for the solution of the Sig-
norini problem (P). We use the fact that the auxiliary problem in every iteration
step of the first-order augmented Lagrangian method coincides with the regular-
ized problem discussed in the previous sections. Note that in the augmented
Lagrangian approach the penalties can be chosen small, nevertheless the iterates
converge to the solution of the original problem (P). This can be advantageous
in numerical practice, since large penalty parameters v in (P;) may lead to an
ill-conditioning of the problem.

4.1. Regularity of \. For the application of augmented Lagrangian meth-
ods the multiplier A (or equivalently the solution of (P*)) must belong to L?(T,.).
We now comment on conditions that guarantee such a regularity. From [74,
Thm. 2.2] it follows that

y € H?(Qs) for each § > 0,

where

Qs ={x € Q: dist(z, 02 UIl.) > §}

provided that f € L2(Q2), g € H2(I',) and X, T, are sufficiently regular. Thus,
ony € L2 .(T.), i.e., ony is square integrable on compact subsets of T'.. Let us
now make the assumption that the active set at the solution

Alg)={ze€T.:wy—d=0ae}
is strictly contained in I'., that is

(A) A(g) C T..
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Then it follows from the complementarity conditions that oyy = 0 a.e. on
I, \ A(y). This implies that oxyy € L*(T.) and thus A € L*(T.). In general
(i.e., without assumption (A)) oxy € L'(T.) for sufficiently smooth data [74,
p. 633], but oy ¢ L?*(T.) even for arbitrarily smooth data. Note that assump-
tion (A) involves the unknown solution g and, hence, cannot be verified a priori
rigorously. However, for many examples it is clear form the geometry of the
problem that (A) holds and the augmented Lagrangian method can be applied.
For the rest of this section we assume that (A) holds.

4.2. The first-order augmented Lagrangian method. This method is,
such as the Uzawa algorithm, an update strategy for the multiplier in (P). It can
be considered as an implicit version of the Uzawa algorithm, cp. [67]. Its main
advantage compared to the latter strategy is its unconditional convergence for all
penalty (or regularization) parameters v > 0. The Uzawa method only converges
for sufficiently small (and possibly very small) v > 0, which may lead to extremely
slow convergence. However, the drawback of the augmented Lagrangian method
is that in every iteration step it requires to solve a nonlinear problem compared
to the linear problem in every iteration of the Uzawa algorithm. Since this
nonlinear problem is exactly of the form (P,), we can apply strategies presented
in the previous section for its solution. The whole method is specified next.

Algorithm: (C-ALM)
(1) Choose \” € L*(T') and set [ :=0.
(2) Choose v"*! > 0 and solve (P,) with A := A, i.e., determine (y'™!, A1)
such that
aly™, z) — L(z) + N 7w z)p, =0 forall z € Y,
M = max(0, A + " (yy' ™ — d)).
(3) Update [ := 1+ 1 and go to Step 2.

The following convergence result for (C-ALM) holds true, where g, A denote the
solution of (P) and (P*), respectively.

THEOREM 4.9. For every choice of parameters 0 < 7° < 48 < o2 < -
the iterates X' of (C-ALM) converge weakly to X in L*(T.). Furthermore, the
corresponding iterates y' converge strongly to y in Y.

PrOOF. The proof follows from the convergence proof for the inexact version
of Algorithm (C-ALM) presented in the next section. O

Let us commend on the role of the parameters 7 in (C-ALM). Due to possible
ill-conditioning of (P;*) for large penalty parameters v one may start with a
moderate value for v in Step 2 of (C-ALM) and increase this value during the
iteration. However, note that A* converges to A without the requirement that
v tends to infinity, which is not the case for pure penalty methods. The idea
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to solve the problem in Step 2 of (C-ALM) only approximately leads to inexact
augmented Lagrangian methods that will be discussed next.

4.3. An inexact first-order augmented Lagrangian method. In this
section we formulate an inexact augmented Lagrangian method in infinite dimen-
sions, where inexactness is allowed in the linear system. The result can be utilized
regarding to a preconditioned version of the augmented Lagrangian method and
is also of interest in connection with the stability of numerical implementations
of the first-order augmented Lagrangian method discussed in the previous sec-
tion. The formulation of the inexact method is motivated from inexact Uzawa
algorithms for saddle point problems, [19,25,27] and variational inequalities, [26].
Let a(-,-) be a scalar product and w > 1 such that

(4.31) a(z,2z) < a(z,z) <wa(z,z) forall z €Y.

To discuss the above condition, let us denote the matrices belonging to a(-,-)
and a(-,-) in a discrete setting by A and A, respectively. Then A can be chosen
as a preconditioner of A, that is

Az = f

should be easier to solve than
Ax = f.

The preconditioner A can be constructed, e.g., from incomplete LU or Choleski
decomposition, multigrid or domain decomposition methods [18,96,106]. In this
context property (4.31) can be understood as a condition on how well A shall
approximate A. This condition is a standard condition for preconditioning of
linear systems (see, e.g., [18]).

We now state the inexact augmented Lagrangian method.

Algorithm: (C-IALM)

(1) Choose A\’ € L*(T,) and set [ := 0.
(2) Choose y*! > 0 and determine (y'*t', A*!) such that

a(y™', z) —a(y', 2) + {a(y', 2) — L(z) + A" wz)r,} =0forall 2 €Y,
A = max(0, A + " (y! T = d)).
(3) Update [ := 1+ 1 and go to Step 2.
In the next theorem we prove global convergence of (C-TALM) provided the
bilinear form a(-, -) is a sufficiently good approximation for a(-,-). Observe that,

in case the scalar product a(-, -) equals a(-, -), the above algorithm coincides with
(C-ALM). Hence, the next theorem contains Theorem 4.9 as a special case.
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THEOREM 4.10. Suppose that (4.31) holds for some w < 5. Then, for every
choice of parameters 0 < 7% < y! < 4% < .- the iterates X' of (C-TALM) con-
verge weakly to A in L2(T,), furthermore the corresponding iterates y' converge
strongly to y in Y.

ProOF. The proof of this theorem is inspired by the convergence proof for
the inexact Uzawa algorithm in [26]. Let us denote by (5?5 =y — 9 €Y and

04 := A — X € L*(I';), where g, A denote the solution variables of (P) and (P*),
respectively. From the fact that (y, \) satisfies (4.4a) we have for [ > 1

(4.32) a(y,0,"") — L(6,"") + (A, o, )r, = 0,
and Step 2 of (C-TALM) implies
(4.33) a(y™ =99, +a(',6,") = LG, + (A oy, = 0.

Subtracting (4.32) from (4.33) results in

(434)  0=ay" —¢ o) +aly — 5.8, + (A = X,
(4.35) = a(d,"" = 8,0, + a8y, 8,71) + (8, ..
Note that

(4.36) AN =P\ 4+ (yyT = d)) and A= P(A++" (g — d)),

where P : L?(I",) — L*(I'.) denotes the pointwise projection onto the convex set
K ={¢€ L*{T,): £ >0 ae.}. Thus, following (2.2) we obtain

()\l“ — X (M eyt = d)) — A = (4 A vy — d) — X)) > 0.
This implies that
(64F1, TNééH)rc
— (A= A (N vy = ) = (1 vy - )
— ()T = AN = M,

> ()TN = X, = D) T = XN = M,

1 1

(4.37) > 2yl 2yl

13" 11E, — 15 11F..
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Let us now turn to the estimation of a(6."" — o, 6;") + a(d}, 04):

YUy YUy
a8t — 8t o0y a(ol, aL1)

1 1 1.
:a(§51y — o, 55; -6, — I (68, 0%) + a(d), 65t
> 151 P! 151 i w sLost sl
_a(§y_y 7§y_y )_Za(yi y)+a(yiy )
1 w
= a3, &) + a0l 5101) — Za(a), )

—La = w)as, ) + a6t 6,

4 Yy
Utilizing the above estimate, (4.35) and (4.37) yield that
1 1 1
(4.38) 31T ||5f\+1 %C < o 1|6 %C + Z(w — 1)a(5fj, 52) — a(ééﬂ’ 5§/+1).
Introducing the auxiliary variable
1
K= 2_,}/l||5f\ t, +a(dy,d,),

the estimate (4.38) implies

1+1 1 TR sl

K = 2’71—1—1 ||5/\||FC + Z(w - 1)a(5y: 6y)

< k! —a(d! 51)—|—1(w—1)a(5l L)

y %) Ty y> %
1
— ! L gl
=K + Z(w— 5)a(d,,6,),

where 7! < +'*! was used. Since 1 < w < 5, the sequence ' is monotonically
decreasing, it is obviously bounded from below and thus convergent. Hence,

(4.39) lim (0!, 0%) = 0,

l—o00 vy

l

resulting in y' — ¥ strongly in Y and from Step 2 of (C-IALM) M\ — \ weakly
in L2(T,). O

The above proof shows that in the augmented Lagrangian method the bilinear
form a(-,+) can be replaced by the approximation a(-,-), provided the residuum
is added to the right hand side of the linear equation. This may be advantageous,
if the matrix A (belonging to a(-,-)) is badly conditioned. If one applies (C-SS)
for the solution of the system in Step 2 of (C-TALM) one has to solve a linear
system involving A several times. Replacing A by the preconditioner A may lead
to an auxiliary problem that is easier to solve.
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FIGURE 2. Geometry for Example 1.

5. Numerical Results

In this section we present results of our numerical testing for contact problems
in plane elasticity utilizing the algorithms described above. In a first subsection
we state the examples and discuss the implementation, before we report on the re-
sults of our tests of the semi-smooth Newton as well as the first-order augmented
Lagrangian methods.

5.1. Presentation of examples and implementation.

FExample 1. The geometry for this example is shown in Figure 2, where for
reasons of graphical presentation the gap function d was multiplied by a factor
of 20. The geometry is given as follows: Q = [0, 3] x [0,1], Ty = {0} x [0, 1] and
['.=[0,3] x {0}. Furthermore, f = 0 and

(8) on [0,3] x {1},

(_g) on {3} x [0, 1].

We choose ' = 5000 and report on tests for v = 0.4,0.49,0.499, 0.4999. The
distance to the obstacle is given by d(z1) = 0.003(x; — 1.5)% + 0.001. We discuss
results on meshes of 30 x 10 up to 240 x 80 elements. Considering the geometry
of the problem, it is clear that condition (A) discussed in Section 4.1 is fulfilled,
i.e., the application of the (exact and inexact) augmented Lagrangian method
is justified even from the infinite-dimensional perspective. Note that elasticity
problems exhibit the phenomenon of “locking” with respect to the parameter v,
that is, for conforming finite elements the accuracy of the finite element solution
deteriorates as v — 0.5 (v = 0.5 characterizes incompressible materials), see [7,8].
Nevertheless for every fixed v < 0.5 the finite element schemes are converging,
but the convergence may be very slow as the degrees of freedom increase.

5.1.1. Ezample 2. The geometry and the initial mesh for this example are
shown in Figure 3: The curved part of the elastic body is given by a Bézier curve



74 CHAPTER 4. CONTACT PROBLEMS IN ELASTICITY
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FIGURE 3. Geometry and undeformed mesh for Example 2.
with control points

(00 ) (00 )-(03)(50):

This part of the boundary is also the region of possible contact I'., and the
obstacle is given by the straight line x5 = —0.053. We use a Young’s modulus
of £ = 5000 and the Poisson’s ration v = 0.4. Furthermore, f = 0 and an
external force of go = —250 is applied on [0,5] x {1}, whereas g = 0 on the
rest of the Neumann boundary I';, := [0,1.6] x {1}. On the left boundary we
assume symmetry conditions, i.e., 7wy = 0 and o7y = 0. Note that in this
example T'y = (), nevertheless a unique solution for the contact problems exists.
This can be seen intuitively considering the geometry, but can also be argued
rigorously, see [41,71,73]. Again, we can expect condition (A) to hold true,
thus the application of the augmented Lagrangian method is justified from the
infinite-dimensional point of view. For the construction of the initial mesh (shown
in Figure 3) the mesh generator of FEMLAB [32] was used. This mesh is refined
using an averaging a posteriori error estimator that has been shown to be reliable
for elasticity problems (without contact) [20-22]. The undeformed meshes after
2,4,6 and 8 refinement steps are plotted in Figure 4.

Software and setting of the parameters. For the discretization of the elasticity
problems we use P; and (); finite elements. We modified the MATLAB-code for
elasticity problems published in [2] in such a way that it applies for contact
problems as well: For the application of the semi-smooth Newton method a
MATLAB routine as an outer loop was written that requires in every iteration
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FIGURE 4. Ezample 2: Undeformed mesh after 2, 4 (upper row) and
6, 8 (lower row) refinement steps, v = 1010, v = 0.4.

the solution of a problem with given Dirichlet and Neumann conditions. The code
in [2] implements Dirichlet conditions as constraints, which makes the adaptation
for contact problems easier. For the refinement of the mesh all elements with an
error of at least 50% of the maximum error are marked. Then a red-refinement
routine implemented in MATLAB by Stefan A. Funken (written for the summer
school “Effiziente Algorithmen und adaptive FEM” in Benediktbeuern, Germany,
2001) is used. This refinement strategy leads to regular FE-meshes, i.e., it does
not allow hanging nodes and only adds triangles whose angles are bounded from
below. Unless otherwise specified all linear systems are solved exactly using
MATLAB’s backslash that makes use of the properties of sparse, symmetric
matrices.

The semi-smooth Newton method is always initialized with the solution of
the unconstrained problem (i.e., the solution of (4.18) with A = 0) and, unless
otherwise specified we use A = 0 for (C-SS). The augmented Lagrangian method
is always initialized with A\° = 0.

5.2. Results for Example 1. First we apply the semi-smooth Newton
method to the regularized problem (7,). The algorithm always converges af-
ter a few iterations and a monotone behavior can be observed in the sense that
the size of the active set decreases in every iteration. The deformed mesh for
v = 10" and v = 0.49 is shown in Figure 5, where the displacement y. as well
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TABLE 1. Ezample 1: Number of iterations for different values of v

and .
5 102 10* 10% 10
0.4 4 6 7 7
y 0.49 3 7 8 8
0.499 4 8§ 12 12
0.4999 | 4 9 25 29
12+
1 HHH
0.8
0.6
0.4
0.2
O?
-0.2 / 1 | | 1 )
-0.5 0 0.5 1 1.5 2 2.5 3 35

FIGURE 5. Ezample 1: Deformed mesh, gray tones visualize the elastic
shear energy density, v = 0.49, v = 1010,

as the gap-function d is magnified by the factor 20. The gray tones show the
elastic shear energy density, see [2]. In Table 1 we give the number of iterations
for v = 0.4,0.49,0.499,0.4999 and various values of v on a mesh of 120 x 40
elements. Observe that the number of iterations increases as v — 0.5.

We now investigate the superlinear convergence of (C-SS). In Figure 6 we
plot

A, = Al
4.40 Fim S
A0 P, ¥l
versus the distance of the iterates to the solution
(4.41) d* = ||\, — M¥||r,, fork=2,3,...

for v = 0.499 and various regularization parameters . Firstly, we observe a
decrease of ¢* close to the solution ), indicating local superlinear convergence of
(C-SS). Secondly, the region where ¢* decreases is larger for smaller regularization
parameter v. Hence, the regularization parameter v influences the convergence
behavior significantly. Problems with smaller v require fewer iterations, and a
decrease of ¢* can be observed in the iteration process. Moderate values for
seem to increase the region of superlinear convergence of (C-SS). For other tested
values of the Poisson ration v we observe a similar behavior. However, if v is not
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FIGURE 6. Ezample 1: Quotient ¢* versus d* as defined in (4.40) and
(4.41) for various v on a grid of 120 x 40 elements.

close to the critical value 0.5 the number of iterations of (C-SS) is more stable
with respect to large values of v and fine grids.

Table 1 and Figure 6 suggest the application of a continuation procedure with
respect to 7: Thereby one solves the problem for rather small value of v, and
uses the solution as initialization for the next larger . As can be seen from
Table 2 this strategy reduces the overall number of iterations significantly, and
furthermore, it stabilized the algorithm as v — 0.5, i.e., a nearly v-independent
number of iterations is necessary for the solution. Furthermore, the continuation
procedure makes the algorithm almost mesh-independent, as can be seen from
Table 3, where the number of iterations for various grids is shown for v = 0.4999
utilizing the prolongation procedure. Table 2 as well as Table 3 show that the
overall number of iterations decreases significantly if the prolongation procedure
is used.

We next discuss the inexact augmented Lagrangian method for the solution
of (P). We therefore solve the linear system in (C-SS) iteratively using the
MATLAB function symmlq that solves systems with symmetric matrices, with
tolerance to1=10"2 and an incomplete Choleski factor as preconditioner. The (C-
SS) iteration is stopped either if the active sets are the same for two consecutive
iterations or after 3 (inexact) iterations. Table 4 shows the number of (C-SS)-
iterations and the number of active points #.A' in every (C-TALM)-iteration for
fixed v = 10% and v = 0.499. The same test run for increasing 7 is shown in
Table 5, and it can be seen that increasing 7 in every iteration of the augmented
Lagrangian method improves the behavior of the method.
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TABLE 2. Ezample 1: Number of iterations for different values of v
(first column), using prolongation w.r. to vy (2nd to 5th column), the
resulting overall number of iteration (»), and the result without pro-
longation (last column) on a grid of 120 x 40 elements.

v v
102 103 — 10* — 10 ]S [ 10%

0.4 1 3 +2 41 10| 7
L0499 |3 43 42 41 |9 8
0499 | 4  +3 43 41 |11] 12
04999 | 4 43 43 41 |11 29

TABLE 3. Ezample 1: Number of iterations on different grids (given
in the first column) using prolongation w.r. to 7y (2nd to 5th column),
the resulting overall number of iterations (Y.) and the result without
prolongation strategy (last column), v = 0.4999.

v v
102 — 10> —10* — 10| > 10"

60 x20 | 3 +3 +2 +1 9| 21
120 x 40 | 4 +3 +3 +1 11| 29
240 x 80| 4 +3 +3 +2 12| 31

TABLE 4. Ezample 1: Number of semi-smooth Newton iterations ((C-
SS)-iter) in the l-th iteration of the inexact augmented Lagrangian
method with v = 10° and number of active points #A' on 120 x 40-

grid, v = 0.499.
] 1 2 3 4 5 6
(C-SS)-iter | 33 2 2 2 1
v 103 10° 10% 10 10% 103
#A 45 34 32 31 30 30

TABLE 5. Same as Table J but vy is increased in every iteration of (C-IALM).

1 1 2 3 4
(C-SS)-iter | 3 3 1 1
v 10% 10* 105 10°
#A 45 31 30 30

5.3. Results for Example 2. Table 6 shows the number of (C-SS)-iter-
ations #iter for v = 10'° and the number of active points #.A for increasingly
fine grids. The original grid (see Figure 3) corresponds to grid no. 1 and ten grids



5. NUMERICAL RESULTS 79

TABLE 6. Ezample 2: Number of iterations of (C-SS) on various grids,
number of active points #A" at the solution and number of unknowns

#var, v =0.4.

grid no. 1 2 3 4 5 6 7 8 9 10 11
#iter 3 3 4 4 4 5 5 5 6 6 6
#A 4 6 8 8 16 16 17 18 30 30 32
#ovar | 530 548 634 T66 1074 1282 1784 2482 3052 3752 4738
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FIGURE 7. Ezample 2. Deformed mesh, v = 0.4, v = 10'°.

are constructed by iterative refinement (grid no. 2,...,11). Table 6 also shows
the number #var of unknowns of each FE-mesh. Note that, for this example
(where v = 0.4) the number of iterations increases only moderately on finer
grids. For all examples we observe a monotone behavior of the active sets in the
algorithm, i.e., the active set of an iterate is always a subset of the active set
from the previous iteration. The deformed mesh (with grid no. 9) for v = 10'°
and the rigid foundation are shown in Figure 7.

Next we report on local superlinear convergence properties of the iterates of
(C-SS) (see Theorem 4.8). For this reason we introduce

k+1

Lol

p o ayt -y Yt -y
1

q, = for k=1,2,...,
a(yk ~— Yy yk - y'y)5
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TABLE 7. Ezample 2: Values for q’?j for v =105,10' on grid no. 9.

v og a q 4 @
10° [0.394 0.419 0.361 0.283 0
10101 0.398 0.423 0.284 0.205 0

TABLE 8. Ezample 2: Convergence parameters of (C-ALM) on grid
no. 9, v = 103: Number of active points #A' and number of (C-SS)

iterations.

I 1 2 3 4 5
HA 37 33 32 30 30
(C-SS)-iter | 3 2 2 1 1

where y, denotes the solution for the problem corresponding to the regulariza-
tion parameter v, and y* the iterates. Since the norm induced by the scalar
product a(-,-) is equivalent to the usual norm on Y, superlinear convergence of
the iterates holds if the sequence q;j decreases for k > ky > 1. Table 7 shows the
values of ¢f for v = 10°,10'°. We observe a decrease of ¢} beginning from the
second iteration.

Next we turn to tests for the augmented Lagrangian method. For this rea-
son we utilize the grid obtained after 8 refinement steps. Table 8 summarizes
interesting data from the application of the first-order augmented Lagrangian
method, where y = 10? is fixed and in every (C-ALM)-iteration the semi-smooth
Newton method is initialized with the solution variables of the previous iteration.



CHAPTER 5

Frictional Contact Problems in Linear Elasticity

Problems involving friction and contact are among the most difficult in me-
chanics but certainly are of crucial importance in many different areas such as
machine dynamics, metal forming and implants in biomechanics. The main dif-
ficulty of these problems lies in the contact and friction conditions, which are
inherently nonlinear thus making both theoretical analysis as well as efficient
numerical realization truly challenging.

In pure contact problems, also known as Signorini problems, the contact
between an elastic body and a rigid foundation is incorporated in the model, but
friction in the contact zone is neglected. The main difficulty of contact problems
is that the deformation has to satisfy the nonpenetration condition, i.e. one has
to figure out the actual contact zone between elastic body and rigid foundation
that is a priori unknown.

However, at the contact boundary between the rigid foundation and the elas-
tic body, frictional forces are often too large to be neglected. Thus, besides
the nonpenetration condition, one also has to take into account the frictional
behavior in the contact zone.

The predominant friction laws used in literature are the Tresca and Coulomb
law. Both add, besides the contact condition, further nonlinearity to the problem.
While the contact problem with Tresca friction leads to a classical variational
inequality, the Coulomb friction problem results in a quasivariational inequality.
This makes proving theoretical results for Coulomb’s friction difficult, e.g., the
proof for existence of a solution to the quasistatic contact problem with Coulomb
friction is lengthy and only holds true under certain conditions. The question
whether or not a solution for the contact problem with Coulomb’s friction law
exists has been raised in [39]. First answers are given in [53,72,90], where the
existence of a solution is shown, provided the friction coefficient is sufficiently
small. The estimates for the smallness of this coefficient are weakened in [40]
utilizing a different technique of proof. For an overview on existence results for
contact problems with Coulomb friction see the review papers [4,5,94]. Instead
of the Coulomb law, frequently the Tresca friction law is used, since this law is
simpler to analyze (see, e.g., [4,39,52,53,72,90]). Moreover, a commonly chosen
approach towards the solution of Coulomb frictional contact problems is to define
the solution as a fixed point of a sequence of solution to the Tresca problem.

Concerning the numerical realization of Coulomb frictional contact problems,
two main approaches can be found in the literature. First, one may treat the

81
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discretized system directly as in [29,30,84]. A drawback of this approach is that
it can only be used in finite dimensions and that convergence results are difficult
to obtain. Nevertheless, the authors of the above mentioned papers report on
good numerical results. The second and more commonly used approach is to
utilize a sequence of Tresca friction problems and a fixed point idea (see, e.g.,
[38,54,55,80,85]). Thus, the crucial requirement to obtain an efficient numerical
algorithm for Coulomb frictional contact problems lies in a fast and reliable
algorithm for the solution of the contact problem with Tresca friction. Besides
the fact that frequently the Tresca friction model is directly used in applications
this highly motivates the development of fast solvers for contact problems with
Tresca friction. To summarize papers concerned with this question we start
with the contributions [85,93]. They utilize a successive overrelaxation method
and the Uzawa algorithm to solve the Tresca friction problem. The authors
of the more recent articles [38,54] use a dual formulation of the problem and
quadratic programming methods with proportioning and projections (see [37])
for the solution of discrete 2D Tresca frictional contact problems. This approach
is generalized to 3D in [55]. A different idea is followed in [80], where monotone
multigrid methods (see [76-78]) are applied to construct an efficient and globally
convergent solver for discrete Tresca frictional contact problems. However, the
implementation of this method is rather complicated and no convergence rate
results are available. A good survey on the development of numerical methods
for contact problems with Coulomb friction is [94].

This chapter is devoted to the development and analysis of algorithms for
frictional contact problems in infinite-dimensional function spaces. A recent
generalized differentiability concept in a Hilbert space framework is applied to
derive second order methods for elasticity problems subject to unilateral contact
with friction. The approach taken in this chapter is to a large extent based on the
Fenchel duality theorem (see [42]) that allows to transform a non-differentiable
minimization problem into an inequality constrained minimization of a smooth
functional. This approach is applied to the contact problem with Tresca friction,
which can be formulated as constraint non-differentiable minimization. Aside
from using just the first-order necessary conditions of this problem, which are
usually the starting points of the analysis, we additionally use for our investiga-
tion alternately the primal and dual formulations of the problem. Another im-
portant aspect of this work is the use of certain nonlinear complementarity (NC)
functions that allow one to write complementarity conditions as nonsmooth op-
erator equations in function spaces. An application of the semi-smooth Newton
methods as developed in [58,69,104] to the (smoothed) set of necessary opti-
mality conditions leads to new algorithms for the solution of both 2D and 3D
contact problems with Tresca friction. In the 2D—case a specific application of
this method turns out to be related to the primal-dual active set strategy that
is recently successfully used, e.g., for optimal control problems [14,15,58]. In
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numerical practice the resulting algorithms yield a remarkable efficiency for con-
tact problems with Tresca friction that also carries over to contact problems with
Coulomb friction.

Let us briefly outline the structure of this chapter. In the first section the
contact problems with Coulomb and Tresca friction are presented. The Fenchel
dual for the Tresca friction problem and the corresponding extremality condi-
tions are derived. Several formulations of these conditions utilizing NC-functions
are discussed. In Section 2, we investigate a regularization procedure for the
dual problem, derive the corresponding primal problem and the extremality con-
ditions, and prove convergence of the solutions as the regularization parameters
tend to infinity. In the subsequent section generalized Newton methods in Hilbert
spaces for the solution of the regularized contact problem with Tresca friction are
presented. The regularization allows us to prove local superlinear convergence of
the iterates in infinite dimensions. Besides generalized Newton methods for the
regularized problem, we also discuss first-order augmented Lagrangian methods
for the original problem. In Section 4, we focus on a regularized contact problem
with Coulomb friction, prove that this problem always has a solution and pro-
pose algorithms for its numerical realization. The last two sections summarize
our numerical testing of the algorithms for Tresca as well as Coulomb friction
contact problems.

1. Contact Problems with Coulomb and Tresca Friction

In this section we state the problem of determining the deformation of a linear-
elastic body subject to contact and friction conditions. We start with giving a
strong formulation of the contact problem with Coulomb friction and discuss
difficulties inherent in the problem. Then, we restrict ourselves to the problem
with given friction, also known as Tresca friction problem. We show existence and
uniqueness of the solution, derive the Fenchel-dual problem and relate primal and
dual variables by means of the extremality conditions. Moreover, we investigate
the influence of the regularity of the given friction on the regularity of the dual
solution variables. The investigation of the problem with given friction leads to a
mathematically precise weak formulation of the problem with Coulomb friction.
A brief summary of existence results for the solution of the Coulomb contact
problem concludes this section.

1.1. The contact problem with Coulomb friction. The main assump-
tions for this section are as for Chapter 4, but for the reader’s convenience we
briefly repeat them here.

Let Q C R*, n > 2 be an open bounded domain with C*'-boundary I' := 0.
Let this boundary be divided into three disjoint parts, namely the Dirichlet part
[y, furthermore the part I',, where Neumann data are given and the part I,
where contact and friction with a rigid foundation may occur. We assume that
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[.NT; = 0. The vector space of admissible deformations is
Y = {v e H(Q) : Tv = 0 a.e. on [y},

and we assume that f € L*(Q), t € L*(T,), d € Y with d := 7wyd > 0 on
I'.. To realize the contact conditions we define the cone of functions in Y with
non-positive trace on I,

K:={veY:mwv<0ae. inT.}.

Furthermore, we define the strain and stress tensors €, o for linear elasticity as
done in Chapter 4 and denote the corresponding symmetric bilinear form by
a(-,+). Let §: T, = R, § > 0 be the coefficient of friction, for the discussion of
its regularity we refer to Section 1.2. We denote by y the unknown deformation
and by o7y and oyy the corresponding boundary stress in tangential and normal
direction, respectively. Similarly, we split the deformation along the boundary
into its tangential part 77y and normal part 7yy. Then, the Coulomb friction
law is given by

(5.1) lory|| < Flony| on {x € T'.: 7ry = 0},
T
(5.2) orTyY = _S|0Ny|7Ty on {z € T'.: 7ry # 0},
7yl
where above and in the sequel || - || stands for the Euclidean norm in R" and

| - | for the absolute value function. Coulomb’s friction law is a local friction
law, since the frictional behavior in a point only depends on the tangential and
normal stress developed at this point. In case of (5.1) a point of the elastic body
is called sticky, and it is called sliding if (5.2) holds.

We can now state the strong formulation of the contact problem with Coulomb
friction in linear elasticity. In the following we denote the unit outward vector
along the boundary I'. by v.

(5.3a) —pAy — A+ p)(Vdivy) = f in €,

(5.3b)  TY =0 on [y,

(5.3¢) eoyv=t on [y,

(5.3d) mwy—d<0, oyy<0, (wy—d)joyy=0 onT,,

(5.3e) lloery| < Flovy| on {x € T.: Tpy = 0},
(5.3f) oy = —F|lony| Y on {x € T.: Tpy # 0}.

7yl

Above, A denotes the componentwise Laplace operator. Next we turn to a vari-
ational formulation of the above problem. We introduce the nonlinear functional
w:Y XY —Rby

(5.4) w(y, z) ::/ Slony|||Trz| dz.
I'e
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By means of the bilinear form a(-,-) and the functional w we can rewrite (5.3)
as variational inequality:

(5.5) Find y € d + K such that
' aly,z—y)+w(y,z) —w(y,y) > L(z—y) forall z € d+ K.

In [62,73] it is shown, that “sufficiently smooth” solutions of (5.5) and of (5.3)
coincide. However, there are major mathematical difficulties inherent in the
above problems. On the one hand, the functional w is not well-defined for
y € d+ K c H'(Q), since oyy is in general only an element in € H 2(T,)
and thus the expression |ony| has no meaning unless oyy is a pointwise al-
most everywhere defined function. Furthermore, (5.3) cannot be associated to
an optimization problem for which standard a priori estimates would guarantee
existence or uniqueness of a solution.

In the next sections we shall discuss various versions of the contact problem
with Coulomb and Tresca friction that allow an exact statement in a functional
analytic framework. In Section 1.4 we give an exact and well-defined weak for-
mulation of (5.3) that circumvents the above mentioned problems. We now turn
to the problem with Tresca friction, i.e., in the friction conditions (5.1), (5.2) the
term |oyy| is replaced by a given function that does not depend on y.

1.2. The contact problem with Tresca friction. Due to the above men-
tioned problems with formulating and analyzing the contact problem with Cou-
lomb friction, often the contact problem with so-called given friction, also known
as Tresca friction is considered (see, e.g., [52,62]). To incorporate friction in con-
tact problems with Tresca’s law is widely accepted in practice and it is known
to give good results, at least if one has a reasonable friction bound available. In
this friction law the bound between slip and stick is given a priori and does not
depend on oy such as in (5.3). Hence, the problem can be stated as optimiza-
tion problem, which allows the application of arguments from convex analysis to
argue existence of a unique solution. The Tresca problem can also be utilized
to obtain a mathematical precise weak formulation for the contact problem with
Coulomb friction, see Section 1.4. This formulation relies on a fixed point argu-
ment that can also be exploited numerically to calculate solutions for the model
with Coulomb friction.

We shall now comment on the regularity of the friction coefficient ¥, where
we follow [4] and assume that

g€ L>(T,),

and, in addition that § belongs to the space of factors on H%(FC). Then, the
mapping

H3(T,) 3 A §Ae H2(T,)
is welldefined and bounded. By duality it follows that, if § is a factor on H2 (L),
it is a factor on the dual H=2(I',) as well. In [48, p. 21] it is shown that, if § is
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uniformly Lipschitz continuous, then it is a factor on H#(I,). For more general
sufficient conditions that § is a factor and a rigorous treatment of the theory of
factors of Sobolev spaces we refer to [89].

To give the weak formulation of the problem with Tresca friction we define
for g € H73(I\), g > 0 (i.e., (g, h), > 0 for all h € HZ(I) with h > 0) the
linear functional j : H'(Q) — R by

(5.6) iy) = | 3gllTryll dz.

Te

Since Ty € H2(T,), the functional j(-) is well-defined. The contact problem
with given friction can now be written as minimization of a non-smooth functional
over the set of admissible deformations, i.e., as

P) min J(y) = Sa(y.y) ~ L(y) + (v),

or equivalently as elliptic variational inequality [46]:
(5.7) Find y € d + K such that
' a(y,z—y)+j(z) —jly) > L(z —y) forall z € d + K.

Due to the Korn inequality (4.3) the functional J(-) is uniformly convex, fur-
thermore it is lower semicontinuous. Since K is nonempty, closed and convex,
problem (P) and equivalently problem (5.7) admit a unique solution y € d + K.

1.3. Dual problem and extremality conditions. In this section we cal-
culate the Fenchel dual problem corresponding to (P). We first consider general

g € H’%(FC), whereas in a second step we restrict the results to the case of a
more regular given friction bound g € L?(T,.). Then we compare the extremality
conditions for the two cases and discuss the regularity of the multipliers.

The case g € H™2(T,). Let g € H 2(I,) be the given friction. To calcu-
late the dual of (P) we recall and extend the definitions from Chapter 4, Section
1.4. Let 7 :Y — R be defined by

Fly) = { —L(y) ifyed+K,

B o0 else,
and further
V= {pe (L*(Q)"" : pij = pj; for all 1 <i,j < n}.
We introduce A € £(Y,V x H2(T,)) by
(5.8) Ay = (My, Noy) = (e(y), T7y),
and G : V x H2(I',) — R by

1
(5.9) Glg.v) = §/Q:ng:€—|—/ Sollv]l dz,
Q Te
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i.e., (P) can be expressed as

min {.T(y) + Q(Ay)}.

yey

Endowing V x H> (T'.) with the usual product norm, it is easy to see that F and
G are convex, proper and lower semicontinuous, and that there exists y, € Y
such that F(y,) < oo, G(Ay,) < oo and that G is continuous at Ay,. Thus, the
conditions of Theorem 2.5 are satisfied implying that no duality gap occurs and
the extremality conditions (2.8) hold and characterize the solutions of primal
and dual problem. We now calculate the convex conjugate functions F*,G*
corresponding to F, G, respectively. For this purpose let (p, u) € V* x H-3 (T),
and let V be identified with its topological dual V*. Then,

F (=N (p, ) = sup { (= A*(, 1), W)y y — F(¥)]

yeyY

= sup {( — AP Y)y.y (M Yy v + (Fy)a+ (&, Ty)rn} :
S
rNyfégo on I'c

Proceeding the calculation analogously to Section 1.4 of Chapter 4 shows that
F*(=A*(p, n)) equals +oc unless

(5.10) ~Divp = £.
We now suppose that (5.10) holds. Then, with ¥ =T, UT,, we have that

FH (=N (p, 1))

= su { — TP, T _1 1 — (T +(t, T n}
sup (—7p y>H002 . (. Try) + (& Try)r
wYy—d<0on I'.

This is +o00 except that
(5.11) 7p=1tin L*(T,) and wpp+p=0in H 3(T,).
Thus,

—(mvp,d),.  if (5.10), (5.11) hold,
F*(=A*(p, p)) = and 7yp < 0 in H3(T,),

o0 else.
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We now turn to the calculation of G*(p, p).

G*(p, 1) = sup {(1_9, Qo+ (v, 1), —G(a, V)}
(g.v)EVXH (T.)

1
= sw {(z_vag)a+<vau>rc—gfﬂgrcgdfv—<59all'/||>pc}

(g,u)erH% (Te)

(5.12)  =sup {(2, q) — %/Qg: Cq d:v} + sup {(u, /J,>FC — {3y, ||u||>FC}

qcv veH?(T,)

It is easy to verify that

1 1
sup{(g,g)—ﬁ/gg:(ngx}25/9((3_12:1_76&5.

gev

To calculate the second supremum in (5.12) we distinguish two cases. Clearly, if
(39, ||V||>F - <V,ll>r >0 forall v e H%(FC), then

sup {(uu)n — (9, ||V||>FC} = 0.
I/EH?(FC)
However, if there exists v* € Hz(I',) such that g, v 1), — (v p),. <0,
then for every ¢ > 0 the element tv* € H2(I',) and

<tV*7 ”>rc B <39’ ||ty*||>rc - t<V*7 ”>FC B t<397 ||V*||>I‘C’
and thus
sup { (v, )y, — (5o, vy, | = oo
veH? (I.)

Summarizing our results we get that

1 _ : 1
- _ 5/9@ 'p:pdz if (3y, ||1/||>F - <V,[,I,>I,C > 0 for all v € H2(T',),
(p. 1)

00 else.

The next lemma summarizes the above results for the dual of (P) in the general
case that g € H™2(T,).

LEMMA 5.1. The dual problem corresponding to (P) is given by

1
(P*) Sup —3 / Cl'p:pds+ (myp.d), .
(pn)EVXH/2(T,) Q c

s.t. (5.10), (5.11), 7y p<0 in H=1/2(I,),

and (FaIvll), —(vom),, >0

for all vEH/2(T,).
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Existence of a solution to (P*) follows from standard arguments in duality
theory (see Theorem 2.5). Uniqueness holds due to the uniform convexity of the
cost functional in (P*).

Next we evaluate the extremality conditions for (P) and the dual (P*). These
conditions that characterize the solution variable y of the primal problem and
(p, ) of the dual problem also relate the primal and dual solution variables.
Let us first focus on the extremality condition —A*(p, u) € dF(y). From the
definition of the subdifferential one gets B

Fly) = F(z) < (- N(p.w)y—2)y.y

= (p, —€(y — 2))o + (B, —Tr(y — 2));.
for all z € Y. Using the definition of F, this is equivalent to y € d + K and
(5.13) (p.e(z—y) — Lz —y) + {p, 7r(z — y)>rc >0 for all z € d+ K.
Next we turn to the condition (p, ) € 0G(Ay). By the definition of G we get

1

G(Ay) — G(A2) = Saly,y) - 5a(2.2) + (50, oyl — 2],

(5.14)
< /Qz_v re(y — z)do+ (pu, Tr(y — 2));,

for all z € Y. Restricting ourselves to z € Y with 702z = 77y on T, (5.14)
shows that

5 [ (Cew) )i swdo < | [ (Ce(a) - 20 e(e)

2 Q

Thus, y minimizes the above functional over all {z € Y : 702 = 77y}. The
first-order necessary condition for this convex minimization problem implies that

(5.15) p = Ce(y),

i.e., the dual variable p at the solution coincides with the stress tensor o(y)
corresponding to the primal solution variable. Plugging (5.15) into (5.14) shows
that

1
(5:16)  sa(y = 2,y = 2) = @9, [ITryl = lrrzl)r. + (. 7oy — 2));, 20

for all z € Y. We next aim to derive an interpretation for (5.16). Therefore, let
us take z* € Y arbitrarily. Setting z :=y+t(z*—y) € Y fort € (0,1) in (5.16)
results in

.tQ
oy = 2%y = 2") = &0 |rryll = [rr(y + 1z = v))l)y,

+H(p, Tr(y — 27)). > 0.

(5.17)
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Since Fg is a nonnegative functional we can utilize the convexity of the Euclidean
norm || - || and y + (2" —y) = (1 — t)y + tz* to obtain

Bg. llrr(y +t(z" —y)ll = llTryl)y,
< (89, (1 = Dllrryll + tirrz"ll = Irryl)y,

=13y, [lTr2"ll = [ITryl}),. -

Hence, (5.17) becomes
t2 k k * k
(5:18) Zaly =2,y —2) +1(§g, [lTr2"|| = [[Tryl), + 8w, Tr(y—2");, > 0.

Dividing (5.18) by ¢ and then letting ¢ — oo shows that
(519) <gg’ ||TTy||>FC - <u’ TTy>FC < <gg’ ||TTZ||>FC - <u7 TTZ>FC

for all z € Y, where we return to the notation z instead of z*. Together with
the constraint

(5.20) (39.Iwll)y.. — {m.v), >0 forall v € H¥(T,)
in (P*), inequality (5.20) implies that
(5.21) &9, ITryll)r, — (s Try)p, =0

Thus, the unique solution y of the primal problem (P) and the unique solution
(p, ) of the dual problem (P*) are uniquely characterized by the conditions
(5.13), (5.15), (5.20), (5.21). As in the case of the contact problem without
friction one can introduce a Lagrange multiplier A for the inequality (5.13). The
extremality conditions obtained with this additional multiplier are summarized
in the next lemma.

LEMMA 5.2. The solution § € d + K of (P) and the solution (p,f) €
V x H™:(T,) of (P*) are characterized by o(y) = p and by the existence of
Xe H 2(T,) such that

(5.22a) a(y,z) — L(2) + (p, Trz), + (N wz), =0foralze,
(5.22b) <X,¢Nz>rc <0 for all z € K,

(5.22¢) A\ wg —d). =0,

(5.22d) (39, IWll)y. — (B, V), >0 for allv € H2(T,),

(

5.22¢) (39. llTryl)y, — (B 779),, = 0.

Recall that according to (5.11) and (5.15), for the multiplier fz corresponding
to the non-differentiability of the primal functional .J(-) we have the mechanical
interpretation

(5.23) o= —ory.
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Similarly as in the case for the contact problem without friction one finds a
mechanical interpretation for the above introduced multiplier A corresponding to
the contact condition. Following (4.15), the multiplier ) is the negative stress in
normal direction, i.e.,

(5.24) A= —0NY.

We now investigate the case that the given friction obeys more regularity.

The case g € L*(T'.). We now comment on the dual problem for (P) and
the corresponding extremality conditions in case that the given friction coefficient
g € L*(T,). This additional regularity allows us to replace the space Hz(I,) in
the definition of G and A in (5.8), (5.9) by L?(T.) and to replace the corresponding
duality products by L%-scalar products. We can now identify L?(T,) with its dual
and follow the same arguments as before. This shows that the Lagrange multiplier
[t belonging to the non-differentiability of the cost functional admits the higher
regularity g € L?(T.), compared to the discussion before, where g € H_%(FC)
only. Thus, the constraint on fz € L*(T,) in (P*) becomes

(5.25) (39, Iv|) — (@, v)r, > 0 for all v € L*(T,),
and can be simplified to
(5.26) ]| < Fg a.e. on ..

To verify this equivalence we first observe for arbitrary v € L?(T'.) from the
inequality

&9, lwDr. = (1, v)r. = @9, [IwlDr. = (el 7).
= (&g — llall, lv[)r.
that (5.26) implies (5.25). Conversely, assume that (5.26) does not hold, i.e.,
S:={zxel.:Fg—||p|] <0ae}

has positive measure. To infer from this assumption a contradiction to (5.25) we
choose v* € L%(T,) with

v (x) =

p(zr) on S,
0 onT'.\ S.
This leads to

&g, v ) — (., v*) = (Fg — el ell) o
= — (89— llell, 89 — |all) s + (min(0,§g — ||&])), F9)

<~ [ o= lal)?ar <o,
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which is a contradiction to (5.25). Hence, we have shown the equivalence between
(5.25) and (5.26). This allows us to write the dual problem for g € L*(T,) as
follows:

1
(5.27) sup — / C'p:pde+ (myp.d), .
(p,w)EV xL2(Tc) 2 Jg - - ¢
s.t. (5.10), (5.11), myp<0 in H—1/2(T,),
and ||p||<Fg a.e. on T..

Utilizing the relation between primal and dual variables, in particular (5.15) and
(5.24), one can transform (5.27) into

(

1

— o omin o sa(yy s Ya) (N D)
A>0 in H_I/Q(FC) 9 (y)\,# y/\,y,) < >Fc
[|]|<Tg a.e. on T

(5.28) <
where y, , satisfies

\ a(y/\,;u z)— L(z) + <>\, TNZ>F + (p, 7r2z)r, =0forall z€ Y.

Note that problem (5.28) is an equivalent form for the dual problem (5.27), now
written in the variables A and p. The primal variable y, , appears only as
auxiliary variable determined from A and .

In the case that g € L?(T',), the extremality conditions corresponding to (P)
and (5.27) can be written more explicitly. As shown above, (5.22d) is equivalent
to

(5.22d") ]| < Fg a.e. on ..

Let us turn to condition (5.22¢). From the inequality

(5.29) 0=, lTrgl)r. — (B, Tr@)r. = g = Bl [T7l)r. = 0
it follows that

(5.30) (89 — |zl |IT7y|l = 0 a.e. on L,

and thus, for almost all x € T'. either 7ry(xz) = 0 or ||p(x)| = F(x)g(x). The
latter equality implies together with (5.29) that

| @) |[|Trg(@)]l = B(z) Try(z),
which holds if and only if there exists o > 0 such that
p(z) = o(z)Try(2).

Utilizing ||(z)|| = F(x)g(x) one gets that o(z) = F(x)g(z)/||7ry(z)||. Thus, we
have shown that (5.22e) is equivalent to

= 99 Try =0 or
(5.22¢) Try # 0 and po = §g 1Y

llrrgll”
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Provided §g > 0, conditions (5.22d") and (5.22¢') can equivalently be expressed
as

(5.31)  Fglop+ Try) — max(Fgo, |[op + Try||)p = 0 for arbitrary o > 0.

To prove the above equivalence we start with showing that (5.31) implies (5.22d’)
and (5.22¢’). From (5.31) it follows that

op+Try
max(Fgo, |[op + T7y||)’

P =3y
which immediately implies (5.22d"). To prove (5.22¢’) we distinguish the cases

(5.32) Sgo > |lop + Tyl and Fgo < |lop + 71yl

In the case that the first inequality in (5.32) holds true, we get from (5.31) that
Sg9lop + T7y) — Sgop = 0, and thus 77y = 0, i.e., we have found the upper
case in (5.22¢'). If we are in the case of the right inequality in (5.32), it first
follows that 774 # 0, since assuming the opposite leads, together with the right
inequality in (5.32) to §g < ||@]|, which is a contradiction. Furthermore, (5.31)
yields

(5.33) S9(op+T7y) = [lop + Tyl @,
and it follows that

(5.34) S9rry = (lop + Tryl| — Sg0) 1 = ope

with ¢ := ||ofp+777|| —Fgo > 0. Considering the norms in (5.33) and (5.34), we
find that o = ||779|| 'S¢ and thus we are in the lower case in (5.22¢'). Hence, we
have shown that (5.22d") and (5.22¢’) follow from (5.31). Verifying the converse
implication can be done easily by distinguishing the two cases in (5.22¢’).

1.4. Weak formulation of the contact problem with Coulomb fric-
tion. Having the results from the previous section available we can now give a
weak formulation of the contact problem with Coulomb friction that circumvents
the problems mentioned in Chapter 1.1, namely the lack of regularity of oyy
in (5.4). The formulation given below utilizes the contact problem with given

friction g € H_%(FC) and a fixed point idea. We define the cone of nonnegative
functionals over Hz(T,):

HA(T,) = {6 € HH(T.) : (€.n),, > 0 forall y € H3(I),n > 0},
Then we consider the following mapping
Vi HA(T) — H 2 (T))
defined by
U(g) = Ay,
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where ), is the unique multiplier for the contact condition in (5.22) for the
problem with given friction g. Due to the fact that

H:(T,) = {mz:2z€Y}

1 1
property (5.22b) implies that \, € H, *(T,) for every g € H, *(T'.), which shows
that U is welldefined. This allows us, having (5.24) in mind, to call y € Y weak
solution of the Signorini problem with Coulomb friction if its negative normal
boundary stress —oyy is a fixed point of the mapping ¥. In general, such a
fixed point for the mapping ¥ does not exist, i.e., the Coulomb friction problem
admits a solution only under certain conditions. In the next section we briefly
summarize existence results for the static contact problem with Coulomb friction.

1.5. Existence results for the contact problem with Coulomb fric-
tion. Much effort was necessary to gain conditions that guarantee the existence
of a solution to the contact problem with Coulomb friction. Generally, it can
be said that the problem admits a (weak) solution if the friction coefficient §
is sufficiently small, see, e.g., [40, 53,62, 72,90], the survey article [5] and the
references given therein. To be precise, in [40] it is shown that a weak solution
to the Coulomb frictional contact problem exists if

V3 —4v

53 for n = 2,
—2v
(5.35) 3(z) <
3—4v ¢ _ 3
T orn =3,

for all x € I'., where v denotes the Poisson ratio and n the dimension of ). Less
recent contributions prove the existence of a solution under stronger conditions
on the friction coefficient §, see [72,90]. The latter contributions apply fixed point
ideas, whereas in [40] a penalization method combined with a priori estimates is
used.

2. The Regularized Contact Problem with Tresca Friction

In this section we introduce and analyze a regularized version of the contact
problem with given friction that allows the application of infinite-dimensional
semi-smooth Newton methods. We discuss the primal and dual as well as the
extremality conditions for the regularized problem. Furthermore, we shall in-
vestigate the behavior of the solutions as the regularization parameters tend to
infinity.

2.1. Regularized primal and dual problems. In this section we assume
that the given friction g € L?(I'.). Motivated from the previous chapters we start
our consideration with a regularized version of the dual problem (5.27) written



2. THE REGULARIZED CONTACT PROBLEM WITH TRESCA FRICTION 95

in the form (5.28). For this purpose, we define for 4;,7v, > 0, given A € L2(T,)
and g € L*(T,) the functional J* _ : L*(T.) x L*(T'.) — R by

V1,72

X 1 1 .
‘]71’72()" IJ’) ::ia(y/\,w y/\,u) + ()‘a d)Fc + 2—%“)\ - )‘”%C

1 1 < 1
+5—llp = alE, - s—IAR — 5—lalE,
sl — Al — IR, — 5,
where y, , € Y satisfies
(5.36) a(Yy . 2) — L(z) + (N, w2)r, + (1, 7rz)r, =0 for all z € Y.

Now, the regularized dual problem with given friction can be written in compact
form as

12 — min JE (A ).

( 71”2) A>0, ||p||<Tg ae. on Te 71”2( 2
Obviously, the last two terms in the definition of . are constants and can thus
be neglected in the optimization problem (2*. ). However, they are introduced

Y12

with regard to the primal problem corresponding to (R7,,), which we turn to

next. We define the functional .J,,, : Y — R by
1
‘]71,72 (y) = _a(y: y) - L(y)

2

1 ) 1 )
4ol max(0. 5+ 1wy — DI+ [ hlrry. i) da,
T Y2

c

where h(-,-) : R" x R* — R is defined as follows:

1 .
Zgllvex + aof — 53292 if  |vex + af > Fy.

(5.37) h(z,a) := .

§||72515+04||2 if |2z + o < Fg.
Then, the primal problem corresponding to (B7,,) is
(Bu) Join T, (y).

It is easy to see that the problems (B,,,) and (R}, ,) admit unique solutions y., .,
and (Ayyq,, M., ), Tespectively. It seems noteworthy that the regularization turns
the primal problem into the unconstrained minimization of a continuously differ-
entiable functional, while the corresponding dual problem is still the constrained
minimization of a quadratic functional.

To shorten notation we henceforth mark all variables of the regularized prob-
lems only by the index ‘v’ instead of ‘yy,7’. Then, provided that Fg > 0 almost

everywhere, it can be shown that the extremality conditions relating (R,,,) and
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.,) are

(P
(5.38a) a(y,.z) — L(2) + (B, T72)r, + (A, w2)r, =0 forall z € Y,
(5.38b) Ay — max(0, A + 7 (wy, —d))=0 onT,,

(

5.38¢) 39(veTry, + ) — max(Fg, [[12Try, + pl])p, =0 on L.

2.2. Convergence as 7,7, — oo. In this section we investigate the con-
vergence of the primal variable y. as well as the dual variables A,, ., as the
regularization parameters 7;,7, tend to infinity. We therefore denote by y the
solution of (P) and by (A, ) the solution to (P*).

THEOREM 5.3. For all A\ € L2(T,), jr € L2(T,) and for a given friction
g € L*(T,), the primal variable Y., converges to y strongly in Y and the dual
variables (A, p,) converge to (X, ) weakly in H2(I,) x L%(T,) as y, — oo and
Yo — OQ.

Proor. Parts of the proof for the above theorem are similar to the proof
for Theorem 4.6. However, for the reader’s convenience we repeat these parts
in shortened form. Recall that both, (y., ), u,) and (g, A, ;) satisfy (5.22a).
Plugging z := y, — g in (5.38a) gives
(5-39) aly,, y, —9) = Ly, —9) + Ay, w (Y, = 9)r + (1, Tr(y, = Y))r. = 0.
First we estimate the term (A, 7w (y, — ¥))r.:

()\’Ya ™~ (yfy - y))Fc = ()\fya INYy — d)I‘C - ()\7, Y — d)rc

> 97 (A A+ vy, — d))re =217 (A s
where (A, 7wy — d)r, < 0 was used. Thus,

~

(Ays v (Y = B))re = 71 (Mg max(0, A+ 71 (vy, — d)r. =71 (A M,

(5.40) =3 IR, = 77 (s Ve

1 X 1 1< 1 ¢
5.41 = —M = A2 4+ —IIMIE = —IME = ——]| AR
(5.41) ol = R, + 5, = 5 IR, 2~ AT,

Next, we focus on (u.,, 77(y., — ¥))r,:

(o, Tr(y, — Y))r. < B9, [I77(¥ — y,)|Dr.
(5.42)

< all3gllrlly =y, llv,

with some ¢; > 0 from the trace theorem. Equations (5.39) and (5.40) imply
that

1
a(y,,y,) + 7—|
(5.43) !

_ 1 Q _ _
a(y,,y) + %(M, Mr. + Ly, —9) — (1, 77(y, — Y))r.-
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Using (5.42), the coercivity (with constant ¢ > 0) and the continuity (with a
constant C' > 0) of a(-,-) in (5.43) results in

1
clly, I3 + —lIMIE,
Y1

~

A

< Clly, Ivlglly + (Il ey )+ allSgllr.) r.J Al
which shows that

1
(5.44) clly,lly + aHMHrc

) 1
Y, —ylly + =1\
4!

is uniformly bounded with respect to ;1 > 1. Hence y, is bounded in Y and A,

in H2(T,) from (5.38a). Consequently, there exist (g, A) € Y x H 2(I,) and a
sequence 7y, with limy_, . vx = oo such that

(5.45) Y, — Y weakly in’ Y and A, — \ weakly in H_%(FC),

where the latter convergence follows from (5.38a), if only those z € Y with
Trz = 0 are inserted. Since ||, || < g a.e. on I for all v, > 0, there exists
f¢ and a subsequence vy, of ~y;, such that

(5.46) ft,,, — B weakly in L%(T,),

and, since the set {& € L*(T.) : ||€]| < Fg} is convex, also the weak limit g
satisfies ||ft]] < Fg almost everywhere. In the sequel we dismiss the subscript k;
with v;,. Due to the definition of A,

1
(5.47) - | A,
Since the expression in (5.44) is uniformly bounded with respect to v;, the above
inequality implies that

(5.48) | max(0, LA+ mvy, — d)|If, =0

2
Ter

%C = v1|| max(0, %)\ + WY, — d)

as v, — oo. Since H2(I,) embeds compactly into L%(T',), (5.45) and (5.48) show
that vy, converges to Tyy almost everywhere on I'.. Thus, (5.48) implies that
wy — d < 0 almost everywhere on I',, i.e., y € d + K. B
Subtracting equation (5.22a) for (y.,, A,, p.,) from the same equation for (y, A, ut)
and setting z := y, — g yields
(549) a(y'y - g? yfy - g) = _<)\’Y - j\a TN(yfy - g)>1"c - (l“"'y - ﬂa TT(yfy - '!_J))FC-
Let us now estimate the term
(5.:50)  —(pby — 4, T7(Yy, — Y))r. = (B — B, TTY)T, + (B — Wy TTY, )T, -
From (5.22¢) one deduces

< (lpes |l = 89, [ 7rgl)r. <0
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as estimation for the first term on the right hand side of (5.50). To get an
estimation for the last term in (5.50) we distinguish two cases. Firstly, we consider
sets where

N YoTTY, + [
1V2Try, + ]| > Fg and thus p., = Fg LA
|27y, + f|
Then we have the pointwise estimates
_ 1 [ 39 ) )T L
T
— TTY, = — — ~ TrY, + TTY, + 1 —
(H Nw) TY, 72 (H ||727'qu+/1/||(72 TYy H) (72 TY, + K u)
Lyt . .
= %{M (VeTry, + B) — F9lleTry, + A
Y T ST
+ - (VQTTywru)Tu—uTu}
veTry., + A

1 R TN
< ~ {Sallll + Nl mlll] 2]}
Let us turn to the case that

[veTry, + Bl <Fg and p, = »Try, + M.

Then, pointwise almost everywhere holds
_ T _ AN T
(B —mp,) Try, = (B —%Try — ) TrY,
., . .
< =Ty, [l + %II;u — Bl[(Sg + [ &l)-

Combining the above estimates shows that

_ _ ...
(5.51) —(py =, T7(y, — Y))r. < %K(u, 1),
where K (f1, pt) is independent of vq, 7s.
Using (

i
A1), (5.49), (5.51) and the coercivity of a(-,-) imply that
0 <limsupcly, — 9|y

V1,200

t)

T 1,200

. . ) 1T 1.
< lim {(\w(y,—9)+—K(@, ) +—||A
V2 94!

= lim {<5\,TN3~;—d>—<5\,TN’y—d>}

Y1,Y2—00
= lim (A gy —d) <0,
Y1,72—00
where 7wy —d < 0 on I', was used. From the above estimate follows that Yy, >y
strongly in Y and thus y = y.
Passing to the limit in

a(y,,z) — L(z) + (A, wz)r, + (1), Trz)r, =0 forall z € Y
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yields

(5.52) a(y,z) — L(z) + <5\,7Nz>rc + (o, 7r2)r, =0 forall z € Y.
Comparing (5.52) with (5.22a) and taking into account that

(5.53) Hi(T,)={mz:2€Y} and H2(T,) = {rr2: 2 € Y}

yields that A = X and 2 = . Thus, every sequence 7, with 4, — oo for n — oo
contains a subsequence Vo, such that

Yy, HynY, A, ~— A in H_%(FC) and p, ~— pin L*(T,).

! l !

This implies, due to the uniqueness of the solution variables g, A, i that the
whole family {(y., A,, u,)} converges as stated in the theorem. O

2.3. Discussion of (5.38¢). In this section we focus on equation (5.38¢c),
i.e., on

(5.54) §9(veTry, + ) — max(§g, ||v2Try, + ), = 0.

Observe that this equation involves nonlinearities of rather different nature: the
max-operator and the product between the Euclidean norm and p.,. In the case of
plane elasticity, i.e., in the case where the dimension of  is 2, the function (5.54)
can be simplified significantly. To be precise, we can eliminate the absolute value
function and the product between 77y, and p.. This can be seen as follows.
Obviously, in plane elasticity the tangential component 77y, is always of the
form (77y,)t, with ¢ denoting the unit tangential vector (i.e., the unit outward
normal vector rotated in the mathematically positive direction) Let us suppose
that also fu is chosen such that g = it with g € L?(T.). Then, equation (5.54)
implies
89(v2rry,, + 1)t — max(§y, [[y27ry, + All)p, =0,
and thus p = tp, with some p, € L*(T;). This yields that

(5.55) S9(very,, + 1) — max(Fg, [verry,, + ] ), = 0.
Distinguishing the cases

| < d N B 12

1verry, + (1] < Fg and yorry, + i < 30

it is easy to show that (5.55) is equivalent to

(5.56) S9(verry, + i — py) — max(0, 27y, + i — Fg)py
' + min(0, Y77y, + ft + Fg)py = 0,

and, for instance by a direct calculation, one can verify that this, again, is equiv-
alent to

(5.57) Yorry., + fi — py — max(0, yo7ryY.,, + i — Fg) —min(0, Y277y, + 1+ Fg) = 0.
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Note that the formulation (5.57) was also used as reformulation of the extremality
conditions of the simplified friction problem, see Chapter 3. The discussion for
this model problem showed that, from an algorithmic point of view, it may
be advantageous to introduce & € L*(T,.) and consider instead of (5.57) the
equivalent

(5 58) ’72(57_7—Ty7)+/1fy_ﬂ:07

& — max(0,&, + o(py — §g)) — min(0, &, + oy +Fg)) =0
for arbitrary o > 0. Recall that (5.57) results from (5.58) by means of setting
o =~ and substituting the upper line from (5.58) into the lower.

An interesting aspect of (5.57) and (5.58) compared to (5.56) is that these
equations also apply in case that on some part of I'. holds §¢g = 0. Then,
(5.57) and (5.58) enforce the correct ., = 0, which is not necessarily the case
for (5.56). Another advantage of (5.57) and (5.58) compared to (5.56) is that
(5.57) and (5.58) only involve one type of nonlinearity, namely the max- and min-
function, whereas (5.56) involves additional nonlinearities. Thus, the formulation
(5.57) and (5.58) might be advantageous for the linearization in Newton-type
approaches and might lead to better numerical results.

3. Algorithms for Contact Problems with Tresca Friction

In this section we propose algorithms for the solution of the contact problem
with Tresca friction (P) (with dual (P*)) and its regularized versions (R,,,) (with
dual (B},,)). Our iterative methods treat both, contact and friction condition
together. The approach is motivated from our investigation of the Signorini
elasticity problem in Chapter 4 and our results for the simplified friction problem,
see Chapter 3.

Firstly, we present a semi-smooth Newton method that applies for any di-
mension n > 2. Then, we focus on a semi-smooth Newton method based on
a different NC-function that applies only for planar elasticity i.e., for the case
n = 2. The latter leads to a Newton method which has the form of an active set
strategy. Then, an exact as well as an inexact first-order augmented Lagrangian
method for the solution of the Tresca friction contact problem are presented and
analyzed.

3.1. A semi-smooth Newton method for arbitrary dimension n > 2.
In this section we derive a generalized Newton method for the solution of contact
problems with given friction in arbitrary dimension n > 2. We assume the given
friction ¢ to be an element in L?(T'.) and consider the optimality system (5.38),
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which, for the reader’s convenience, we recall below.

(5.59a) a(y..z) — L(z) + (p,, Tr2)r, + (A, w2)r, = 0 for all z € Y,
(5.59Db) A, — max(0, A + Y (wy, —d)) =0 on [,
(5.59¢) 89(2Try, + B) — max(Fg, [[v27ry, + @l)p, =0 on L.

We henceforth consider a reduced version of (5.59), where the variable y. is
eliminated from the system using the linear equation (5.59a). For this purpose,
we introduce some notation. We denote by y the solution to the variational
equality
a(y,z) —L(z) =0 forallzeY.
e L

Furthermore, we denote by B;' (L*(T.),Y) the solution mapping for the

variational equality
a(y,z) — (A, wz)r, =0 forallzeY,
for given A\ € L?(T,). Similarly, given u € L?(T.), we denote by By'm the
solution to
a(y,z) — (u, 7rz)r, =0 forallz €Y,
i.e., By' € L(L*(T,),Y). To shorten the notation we further introduce
(560) QN = TN@? QT = TTga
and the linear operators
Cy =B ' € L(L*(T.), L*(T.)),
Dy =By € L(L*(T.), L*(T.)),
Cr = 1B, ' € L(L*(T.),L*(T.)),
Dy :=7rB;' € L(L*(T,),L*(T.)).

Given A € L*(T'.) and p € L?(T'.), and utilizing the notation introduced above,
for given (A, p) € L*(T) x L*(T;) the solution y, ,, to
a(y,z) — L(z) + (A, wz)r, + (@, 77z)r, =0 foralzeY

can be written as

(5.61) Yau=9—B'A\-B

The corresponding normal and tangential components of the trace of y, , are
(5.62) WYr, = Yn — OnA — Dy p,

(5.63) TrYy, = Y7 — OrA — Drp.

The next lemma summarizes basic properties of the mappings defined above.

LEMMA 5.4. The linear mappings Cn, Dy, Cr, Dy defined in (5.62) and (5.63)
are selfadjoint, positive semi-definite and compact.



102 CHAPTER 5. FRICTIONAL CONTACT PROBLEMS

PrRoOOF. The proof for the above assertion in similar to that of Lemma 3.14
in Chapter 3. O

The above definitions allow one to state a reduced version of the optimality
system (5.59). We henceforth assume that there exists a constant go > 0 such
that g > go almost everywhere. Then we can define F' : L?(T.) x L*(T'.) —
L2(T) x L*(T,) by

F()\,p,) = p—3g VZ(QT_CT)\_DTM)—F[]’
max(§g; ||72(yr — CrA — Drp) + fl])

Our goal is now to apply a generalized Newton method for the solution of the
nonlinear equation F'(A\,u) = 0, with F defined above. For this purpose we
denote by F} and F; the first and second component of F', respectively. The
generalized derivative of F' is denoted by G = (Gp,, GF,), where as derivative
for the max-function we utilize (2.10). This leads, for (d,,d,) € L*(T'.) x L*(T,)
to

(5.64) Gy (A, 1) (03, 0p) = 0x + 11Xa, (Cnox + Dyép),
where
(5.65) Ac={z €Te: A+ 7 (Jy — OxA — Dyp — d) > 0}

and xs denotes the characteristic function for a set S C I'.. To derive a gener-
alized derivative for the second component F; of F' we use the concise TTYp
instead of Yy, — CrA — Dpp and again the generalized derivative of the max-
function as given in (2.10). Then, one derives that

Gry (A, 1) (0x, 0)

S9
max(Fg, ||v2Tryy,. + &)

39(V2T1Yy . + )" (Crox + Drdy,)

=0, + V2 (Créx+ Drdy,)

- — T + [

(566) /YQXAf ||'72TTy)\’“ i l»l/||3 (’72 Ty)\,p, l’l’)
=0u + V2X1, (Créx+ Drd,) + V2 XAy 89 -
[v2TrYy, + £l
T + ) (T +4)"
. {I — ey, + #)0 TI:U/\’QM A) } (Créx+ Drdy,),
V2T rY ), + Al

where
(5.67) Ap={z €Te: ||p+ 1Yy — CrA — Drp)|| > §g},

Iy ={z € Lot ||p + 7 (Yr — CrA — Drp)|| < Fg}-



3. ALGORITHMS FOR CONTACT WITH TRESCA FRICTION 103

Above, I denotes the n x n identity matrix and (a'b)c = (ca’)b for all a, b, c €
R™ is used. We next summarize the semi-smooth Newton method for the reg-
ularized contact problem with Tresca friction, where here and in the sequel we
dismiss the subscript ‘¢’ for the iterates, i.e., the k-th iterates are denoted by
PLNTLE
Algorithm: (FC-SS)
(1) Initialize (A%, p%) € L*(T,) x L?(T.), and set k := 0.
(2) Determine
A ={z €To: A 71(gy — Cx N — Dyp* — d) > 0},
At ={z e T : |+ %2(9r — OrX* — Druh)|| > Fg}.
II;H ={z e Te: |t + 797 — CrA* = Drp®)|| < Fg}.

(3) Perform a semi-smooth Newton step, i.e., solve

GF()‘k:l'l' )(6k (5k) F()‘kau'k)

AV
with Gr = (G, GR,) as given in (5.64) and (5.66) and the active sets
from Step 2.
(4) Update
A= 2 6}
= k4 gt
: e

k := k + 1 and, unless an appropriate stopping criterion is met, go to
Step 2.

In order to address the solvability of the linearized system in Step 3 of (FC-SS),
we calculate a different form for the semi-smooth Newton step. This form only

involves yy*, 7ry"* and Ty y* !, 7ry**! that can be uniquely derived from \*, pu*
and A1 pk*1 by means of (5.62) and (5.63). We consider

(5.68) Gr(\", w)(0},0,) = —F (A", p")

AV

with 6§ = MHT— \F 6k = ph*!t — k. Similarly as in the case of pure contact we
get

ol 0 on ZF+1
(5.69) AR )
Ay (wy*tt —d)  on AL
For the second component in (5.68) we find, using (5.66) that
YVorry* 4 1 on T+,
W (") (arry* ™ + ) + w(y®) (rarry* + @) on AT,

(5.70) prt! = {
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where

(5.71) W(y) = — 59 {[ _ ey + Ty )" }
[v2Try + ff| erry + fi]|?

and

_ S9 (vaTry + 1) (Yorry + o)
ey + il [rarry + p]]?

Equivalently to Steps 3, 4 that are written in the dual variables A, p one can
solve a variational equality in the (primal) variable y only, namely

(5.72)  a(y**' z) — L(z) + N\ v z)p, + (T 1oz)r, =0 forall z € Y,
k+1

w(y)

where \**1 p*+1 are eliminated using the right hand side expressions in (5.69)
and (5.70). The resulting equation involves as variable only y**! and, provided
(5.72) admits a solution, the dual iterates A*™! and p**! can be uniquely derived
by means of (5.69) and (5.70). The next lemma addresses the unique solvability
of the system in Step 3 of (FC-SS).

LEMMA 5.5. For all iterates (\*, u*) € L*(T,) x L2(T,) the system in Step 3

of (FC-SS) admits a unique solution (5%, 4%,).

ProoF. Following the above discussion it remains to show that (5.72) admits
a unique solution. Fur this purpose, we characterize y**' as solution of an
unconstrained uniformly convex minimization problem. This implies that y**!
always exists and is unique, which carries over to A**! and p**!' by means of
(5.69) and (5.70), yielding the assertion of the lemma.

We start by showing that W (y) is symmetric and positive semi-definite for
each y € Y on the subset of I, where ||y277y + || > 0. Symmetry is clear and
since the first multiplicative term in W (y) is a positive constant, we only have
to consider for arbitrary z € R"

ST {[ _ (erry(@) + @) (erry(e) + )7 } .
lvaTry + £

|(erry + 1) T 2|2

> |lz||* - —
= B T

> 0.

Hence, W(y) is positive semi-definite for all y € Y on the subset of I'., where
27y + 1] > 0 holds. It follows that for every y € Y there exists Wi(y)
such that Wi(y)"Wi(y) = W(y). We can now consider the following auxiliary
problem:

(5.73)

1

1 ~
. k
min Sa(y, y) — L(y) + (w(y®), Try) 4, + 2—%”A +m(wy — d)|

2
Ac

1 1
k 0 2 o2
+ 2—%||W1(y )Ty + B)|%, + 2—72||727'Ty + iz,
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Clearly, the above minimization problem admits a unique solution. Calculating
the corresponding first-order necessary optimality conditions leads to the varia-
tional equality

(5.714)  a(y,z) — L(z) + My 2)p, + (Y, 1r2)r, =0 forall z € Y,

with A¥f1 and p**! as defined in (5.69) and (5.70). The equations (5.74), (5.69)
and (5.70) also characterize y**! as solution of (5.73). This shows that y**! is
uniquely determined. By means of (5.69) and (5.70) this also holds true for \f*1
and pf*! and ends the proof. O

Next we turn to the convergence analysis for algorithm (FC-SS). Exploiting
the properties of semi-smooth Newton methods results in the following local
convergence result.

THEOREM 5.6. Suppose that ||\° — \,||r, and ||u® — p.||r, are sufficiently

small. Then, for all \, i € L2(T,) x L2(T,) the iterates (A, u*) of (FC-SS)
converge superlinearly to (A, ) in L*(Tc) x L*(T).

Proor. To prove local superlinear convergence we use properties of semi-
smooth Newton methods. First, note that the mapping Fj is Newton differen-
tiable, since inside the max-function the variables A and g only appear under
smoothing operators, namely under C'y and Dy. To be precise, using embedding
theorems for Sobolev spaces [1] implies the continuous embeddings

Ow(LA(T.)) < LY(T,) and Cp(L*(T,)) < LY(T,)

for any ¢ < oo if the dimension n of 2 is 2 and for ¢ = 2(n — 1) /(n — 2) > 2 if
n > 3. This guarantees the norm gap required for Newton differentiability of the
max-function. Thus, Fj is Newton differentiable.

To argue Newton differentiability of F, we introduce some notation. We
denote b := ft + %Yy € L4(T.), C := %Cr and D := v Dp. Moreover, we
introduce the mapping

@l{L%R)xUﬂQ — ILA(T,),
(A, 1) = max(Fg, |b— CA = Dpl]).

Note that O(A, ) > go forall (A, ) € L*(T.)xL*(T.). From the same arguments
as for F} it follows that © is Newton differentiable and we denote its generalized
derivative by Gg. Next we show that

LQ(FC) X LQ(FC) — LQ(FC),
T b—CA—Dpu
A, >
O n) max(39. 1o — C — Dl
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is Newton differentiable as well. For this purpose we consider for \,h € L*(T,)
and p, k € L*(T,)

E(\ h, p, k)
_b=CA+h)—Dp+k) b—CX—Dp
T O\ +hp+k) o0\ 1)
+G@(>\+h,u+k)(h,k)(b—0)\—Du) _ —Ch—Dk
@()‘7 H)2 @()\, [1,)
:(b_c)\_Du)@()\all)—9()\+hau+k)+Ge()\+h,u+k)(h,k)

O\ O+ h, i+ k)
GoA+h, p+k)(hk){ON+h p+k)—O(\p)}
O\, pu)?O(N+ h, p+ k)
OA+h,p+k)—O(A p)
O\, )OO+ h, p+ k)

+(b—C\—Du)

+ (Ch + Dk)

=: (I) + (II) + (II1).
We now derive the following estimates for the L?-norms of the above introduced
expressions (I), (II) and (III):
1
< a(h, k) (||hlIr, + ll&[r.),

with a(h, k) — 0 as ||h
is used. For (II) we find

r, + ||k

r, — 0. Here, the Newton differentiability of ©

1
0
< b(h, k) (|IblIr. + [IKlIr.),

with b(h, k) — 0 as ||h||rC + ||ki r. — 0, where ||G®()\7u)||£(L(FC)xL(FC),L(FC)) S 1
for all (\, u) € L*(T.) x L*(T.) was used. Finally,

1
[(AD]Jr, < ?H{@(A +h,p+ k) — OO\, ) HlrICh + Dk,
0

< c(h. k) (|hlr, + 1K),

where ¢(h, k) — 0 as ||h
T, and thus of F5.

In order to apply Theorem 2.9 that assures superlinear convergence of the
iterates, it remains to show that the family {Gr(\, u) : (\, u) € L*(I'.) x L3(I'.)}
has uniformly bounded inverses. For this purpose we choose arbitrary (h, k) €

r. + [k

r, — 0. This proves Newton differentiability of
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L*(T.) x L?(T,) and consider the equation
GF()\a l“") (5)\a 6#) = (h” k)

Similarly as in the proof of Lemma 5.5 one can introduce an auxiliary variable
8, corresponding to 8,4, by &, := —B; '8y — B, '6,. Using this new variable,
one derives from (5.64) and (5.66) that

o =h+ X4 W0y,
(5.75)

O = k + 72Xz, 0y + Yoxa, W (Y)dy,
where y = § — B, '\ — By'u, W(y) is defined as in (5.71) and the active and
inactive sets are those from (5.65) and (5.67). Using (5.75) and &, := —B; '8, —
B; 15,“ it is not difficult to verify that d,, is the unique solution to

- 1
min J(8) = 5a(8,8) + (h, w)r. + (k, 716)r. + Lo,

V2 2
+ o, + 2w ) rrol,.

where W, is defined as for (5.73). From the coercivity of a(-,-) and the fact that
J(6y) < 0 we conclude that

clloylly < Ihlralidylly + [[Fllrlly -
Combining this with (5.75) shows that there exists a constant C' > 0 such that

10xlr. + 118ullr. < C([Allr, + [I&[r.)-

This yields that ||GF()\7”)_1||L(L2(FC)XLQ(FC),L2(FC)) S C for all ()\,u) € L2(FC) X
L?(T,) and ends the proof.
U

Let us point out that, differently from the generalized Newton methods for
the solution of the Signorini contact problem, the function F' involves two non-
linearities. The max-function, which corresponds to an active set strategy in the
generalized Newton method, and the quotient between a vector and its norm,
which entails that the Newton method cannot fully be interpreted as active set
strategy as for the pure contact problem. In the case of planar elasticity (i.e., for
n = 2) this can be overcome by exchanging the complementarity function (5.59¢).
Doing so leads to a semi-smooth Newton method that can be seen from an active
set perspective. We point out that (FC-SS) applies for arbitrary dimension, i.e.,
it can also be used for frictional contact problems in planar elasticity.

3.2. A different semi-smooth Newton method for plane elasticity.
Here we present a slightly different generalized Newton method for the solution of
the problems (B,,,) and (R%,,) in case of plane elasticity, i.e., in case that n = 2.
As observed in Section 2.3, in the 2D—case one can replace (5.59¢) by a different
function that involves as nonlinearities only the min- and max- operator. Aside

from the fact that this can be advantageous for a numerical algorithm, another
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advantage of this formulation (and the resulting algorithm) is that it can handle
the case that g = 0 on some set of positive measure as well. This case causes
difficulties for (FC-SS), for this reason we had to assume that g > go > 0. The
application of the semi-smooth Newton method to the modified NC-function
leads to an iterative strategy that allows an interpretation as active set strategy.
For the close relationship between active set strategies and a specific application
of the semi-smooth Newton method see also [58].

According to the discussion in Section 2.3, in particular to equation (5.58), in
the case of planar elasticity we are concerned with the solution of the system

(5.76a)  a(y,,z) — L(z) + (pt, Tr2)r, + (A, w2)r, =0 forallz €Y,
(5.76b) A, — max(0, A + Y (wy, —d)) =0 on T,

(5.76¢) { Yo (&) — TTyv) + piy — 1 =0,
' & —max(0, &, + o(py — Fg)) — min(0, & + o(py +39)) =0

on I'c, where &, € L*(I'.), and (7py,)t = 77y, (t denoting the unit outward

tangential vector along I'.), furthermore ~;, v, > 0, 5\, it € L*(T,) are given and
o > 0 is arbitrary. Compared to the Newton method from the previous section
that applies in the general case n > 2, the algorithm below is related closer to
the methods investigated for the Signorini contact problem (Chapter 4) and the
simplified friction problem (Chapter 3). We shall now present our algorithm,
where for the iterates we again drop the index ‘v’

Algorithm: (FC-SS2D)

(1) Choose (A%, &% u° y°%) € L3(T,) x L*(T.) x L*(T,) x Y, o0 > 0 and set
k:=0.
(2) Determine

.AICC-H = {1‘ el,: 5\ +’Yl(TNyk - d) > 0},
Z’C+1 — Fc \ Ak-l—l

A ={z eT.: & +o(u" +Fg) <0},
A'}jjrl ={zel.: & +o(pf —3g) >0},
B (A5 U AR

(3) If k> 1, AFFL = AF, AT = AF and ATH' = AL | stop, else
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(4) Solve
a(y*™ z) — L(z) + ("t 7r2)p, + (N mw2)p, =0 forall z € Y,
A 0 on T AL = A4 (v — d) on AR

Mk+1 — = ’YQTTyk+1 =0 on I]}H,

§ET = —Fg on AEFL pk = g on AKHL

(5) Set

NH = At (v = d) on AFT,

Pt = 4 eyt on I’;J’l,
Y+ (+Fg)  on AT
= QY 40y (= 8g)  om AR

0 on 1’;3“,

k:=k+ 1 and go to Step 2.

Note that a solution to the system in Step 4 exists and is unique, since it rep-
resents the necessary and sufficient optimality conditions for the equality con-
strained auxiliary problem

min T (A pt),

A=0 on Ierl, 2

k k
u=—3g on -Afila u=38g on -Afj,l

with % as defined in (5.36). One can prove the following lemma that justifies

the stopping criterion in Step 3 of Algorithm (FC-SS2D).

LEMMA 5.7. If Algorithm (FC-SS2D) stops, the last iterate y* is the solution

to (Rys.) and the pair (\F, i*t) solves (PX,,).

PrOOF. The proof relies on the fact that, if the active sets coincide for two
consecutive iterations, the iterates satisfy the complementarity conditions (5.76b)
and (5.76¢). Since the proof is very similar to those for Lemma 3.12 and Lemma
4.7, we omit the details. ]

Provided we choose o = ~; ', the above algorithm can be interpreted as
a semi-smooth Newton method in infinite-dimensional spaces. To prove this
assertion, we consider a reduced system instead of (5.76). Thereby, as in the
dual problem (737’;72), the primal variable y only acts as an auxiliary variable that
depends on the dual variables (), ). The reduction to the variables A, g can be

done in a similar fashion as in the previous section, therefore we omit the details.
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We introduce the mapping F : L*(T.) x L*(T'.) — L*(T.) x L*T,) by

A — max(0, A+ ’Yl(TN’y)\’M —d))

(5.77)  F(A\p) = YaTrYy, + i — pp— max(0, v27ryy , + 4 —Fg) ... |-
e min(oa fYQTTy)\,/_L + [J’ + gg)

where, for given A and p we denote by y, , the solution to
(5.78) a(y,z) — L(z) + (pt,772)r, + (A, wz)r, =0 for all z € Y.

Since vy € H3(I',) and 7oy € H2(I,), we observe the norm gap required for
Newton differentiability of the max- and min- functional in (5.77). Thus, we
can apply the semi-smooth Newton method from Section 2, Chapter 2 to the
equation F'(A, ) = 0. Calculating the explicit form of the Newton step leads
to Algorithm (FC-SS2D) with o = 75 '. This close relationship between active
set strategies and a specific application of semi-smooth Newton methods, first
observed in [58], leads to the following local convergence result for Algorithm
(FC-SS2D).

THEOREM 5.8. Suppose that there exists a constant go > 0 such that Fg >
9o, further that o > ;" and that [|X° — A\ ||r,, [|[1® — p,|lr. are sufficiently
small. Then the iterates (\¥, &%, u* y*) of (FC-SS2D) converge superlinearly to
(Ays &y gy y,) in LP(Te) x L*(T) x L*(T) x Y.

PRrROOF. The proof consists of two steps: First we prove the assertion for
o =, " and then we utilize this result for the general case o > 7, *.
Step 1: For ¢ = ;' (FC-SS2D) can be interpreted as semi-smooth Newton
method for the equation F'(X, 1) = 0 (F as defined in (5.77)). We already argued
Newton differentiability of F'. To apply Theorem 2.9 it remains to show that the
generalized derivatives have uniformly bounded inverses. This can be done in a
similar fashion as in the proof of Theorem 3.15 and the proof for Theorem 2.2 in
[69]. Hence, we can apply Theorem 2.9 to obtain superlinear convergence of the
iterates (\¥, u*) in L*(T.) x L*(T.). Clearly, this convergence carries over to the
variables ;% and y*.
Step 2: For o > 7;' we cannot use the above argument directly. Neverthe-
less, one can prove superlinear convergence of the iterates by showing that in a
neighborhood of the solution the iterates of (FC-SS2D) with o > 7, coincide
with those of (FC-SS2D) with o = v, '. The argumentation for this fact exploits
the smoothing properties of the Neumann-to-Dirichlet mapping for the elasticity
equation: First, we again consider the case o = v;'. Clearly, for all & > 1 we
have \¥ — A=t € L%(T,) and p¥ — p*~1 € L*(T,). The corresponding difference

y*® — y*~! of the primal variables satisfies

a(y* —y* ™ 2) + (W — it Tr2), + (N = My 2)n, =0 forall z €Y.
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From regularity results for systems of elliptic variational equalities (see [13]) it
follows that there exists a constant C' > 0 such that

(5.79) 1y = y* ooy < CUN = X Hie, + (16" = 1M lr,).
We now show that (5.79) implies
(5.80) Af At = A ATt =9

provided that [[\° = \,[Ir, and [|u® — p,||r, are sufficiently small. If B:= A% N
A’;j_f # 0, then it follows that y*~! + 5 (i + Tg) < 0 and y* + 5, (1 — Fg) > 0
on B, which implies that y* — "' > 27;'Fg > 27;'Fgo > 0 on B. This
contradicts (5.79) provided that [[A\° — A\, ||, and [[u® — u,||r, are sufficiently
small. Analogously, one can show that A'J‘i, LN A’;f_l = ().

We now choose an arbitrary o > 7, ' and assume that (5.80) holds for (FC-
SS2D) if o was chosen v, '. Then we can argue that in a neighborhood of the
solution the iterates of (FC-SS2D) are independent of ¢ > v, . To verify this
assertion we separately consider the sets I’fc, A’})_ and Alfe’ 4+ On I’; we have that
€% = 0 and thus o has no influence when determining the new active and inactive
sets. On the set A’})_ we have that ¥ = —Fg. Here, we consider two types of sets:
Firstly, sets where £ < 0 belong to A’;j“_l for the next iteration independently
from o. And, secondly, if £¥ > 0 we have

& +o(u* —Fg) = " — 20Fy.
Sets where £¥ — 20Fg < 0 are transfered to Z;i“, and those where 0 < &F —
20Fg < €8 — 2757 'Fg belong to A’;ff for the next iteration. However, the case
that =z € A’},, N AIJ‘Z’T cannot occur for o > 75", since it is already ruled out by
(5.80) for o =7, *.
This shows that in a neighborhood of the solution the iterates are the same

for all ¢ > 75!, and thus the superlinear convergence result from Step 1 carries
over to the general case o > 75 ', which ends the proof. 0

In the numerical realization of the algorithm (FC-SS2D) it turns out that
choosing small values for ¢ may not be optimal, since it can lead to the following
behavior: Points that are active with respect to the upper bound become active
with respect to the lower bound in the next iteration, and vice versa. This
may lead to cycling of the iterates. Such undesired behavior can be overcome
by choosing larger values for o, e.g., 0 = 1. The above theorem proves local
superlinear convergence of the iterates for all o > ~, ', though only the choice o =
75 ' allows interpretation as semi-smooth Newton method in infinite dimensions.

3.3. Exact and inexact augmented Lagrangian methods. There are
several possibilities to utilize a sequence of solutions for the regularized problem
with Tresca friction (R,,,) for the solution of the original problem with Tresca
friction (P). Clearly, one approach is, letting the regularization parameters tend
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to infinity. Then, Theorem 5.3 guarantees that the regularized solution vari-
ables converge to the solution of the original problem. One disadvantage of this
method is that large regularization parameters may lead to illconditioned sys-
tems. A different approach utilizes the first-order augmented Lagrangian method
that is based on an update strategy for the dual variables. This method is related
to the Uzawa algorithm, a commonly used method for the treatment of saddle
point problems. The augmented Lagrangian approach applies for the solution of
contact problems with given friction in infinite dimensions provided that the so-
lution variables (), 1) € L?(T',) x L%(T'.). Assuming that this regularity holds, we
present an exact as well as an inexact augmented Lagrangian method for the so-
lution of (P) and (P*). For the application of the method we can exploit the fact
that the auxiliary problems in every iteration step of the augmented Lagrangian
method coincide with the regularized problems discussed in the previous sections.
The main advantage of the augmented Lagrangian compared to the pure penalty
approach is that the penalty parameters can be chosen small, nevertheless the
method converges to the solution of the original problem. This circumvents the
usage of large penalty parameters and may thus be advantageous in numerical
practice. The methods presented in this section apply for the solution of the
contact problem with Tresca friction regardlessly of the dimension of €.

Augmented Lagrangian method. In this and the following section we as-
sume that A\ € L?(T,), i.e., the multiplier corresponding to the contact condition
in (P) is square integrable. For the pure contact problem Section 4.1 gives con-
ditions that guarantee this regularity. Note that in Section 1.3 it is shown that
L?-regularity always holds true for g provided g € L*(T.), which we henceforth
assume.

As the Uzawa algorithm, the augmented Lagrangian method is an update
strategy for the dual variables in (P) and (P*). It can be considered as an implicit
version of Uzawa’s algorithm (cp. [67]). Its main advantage compared to the
latter strategy is its unconditional convergence for all penalty (or regularization)
parameters 7y, 7, > 0, whereas Uzawa’s method only converges for sufficiently
small (and possibly very small) penalty parameters, which may lead to extremely
slow convergence. However, a drawback of the methods presented here is that
every iteration step requires to solve a nonlinear problem compared to the linear
auxiliary problem in the Uzawa algorithm. Since this nonlinear problem is exactly
of the form (Pﬁm), we can use the strategies presented in the previous sections
for the solution of this auxiliary problem. The first-order augmented Lagrangian
method is specified next.

Algorithm: (FC-ALM)

(1) Choose (A\°, u%) € L*(T.) x L?(T,) and set [ := 0.
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(2) Choose 71, 4L*1 > 0, and solve (R,,,) with A := X and 1 = g, i.e,
determine (y"1, A p!t) € Y x L3(T,) x L*(T,) such that

a(y™, z) — L(z) + N 7w 2)p, + (u 7r2)r, =0 forall z € Y,
MNF = max(0, M + " (yy"™! — d)) on T,
Fg(rarry'™ + p') — max(Fg, [rorry'™ + p' )™ =0 on L.

(3) Update [ := 1+ 1 and go to Step 2.

For the following convergence proof we denote by y and (\, i) the solutions of
(P) and (P*), respectively. Then the following global convergence result (i.e.,
convergence from arbitrary initialization) holds true.

THEOREM 5.9. For every choice of parameters 0 < v <~ <~ < ... and
0 <) <y <A%< ... the iterates (N, u') of (FC-ALM) converge weakly to
(A, i) in L3(T,) x L2(T.). In addition, the corresponding iterates y' converge
strongly to g in Y.

ProOOF. The proof follows from results of the next section. O

Let us briefly comment on the role of the parameters 7!~ in (FC-ALM).
One may start with moderate values in Step 2 of (FC-ALM) and increase these
values during the iteration. However, the iterates of (FC-ALM) converge without
requiring that 7%, v tend to infinity which is a strong difference to penalty meth-
ods. Next we turn to a generalized version of (FC-ALM) that allows a certain
inexactness in the bilinear from a(-, ).

Inexact augmented Lagrangian methods. The inexact version of the
augmented Lagrangian method presented in this chapter is motivated from in-
exact versions of the Uzawa algorithm [19,25-27]. On the one hand it provides
a convergence result for a preconditioned version of the augmented Lagrangian
method, on the other hand it is of interest with respect to the stability of nu-
merical implementations of the first-order augmented Lagrangian method.

Let a(-,-) be a scalar product that approximates a(-,-) in the sense that there
is an w > 1 such that

(5.81) a(z,z) < a(z,z) <wa(z,z) forall z €Y.

This approximation property can be discussed analogously as for the pure contact
problem, see page 70. We now specify the inexact augmented Lagrangian method
for the contact problem with Tresca friction.

Algorithm: (FC-IALM)
(1) Choose (\°, u°) € L*(T.) x L*(T.) and set [ := 0.



114 CHAPTER 5. FRICTIONAL CONTACT PROBLEMS

(2) Choose v:*!, 45"t > 0 and determine (y*+!, A1, ut*1) such that
a(y™' z) —a(y', 2)

+ {a(’yl; z) — L(z) + ()\Hl; wWZ)r, + (MZH, TTZ)I'C} =0forall z €Y,
A1 = max(0, X+ 4 (g — d)) on T,

S9(erry™ + p') — max(Fg, |v2rry" + p' )t =0 on T

(3) Update [ := 1+ 1 and go to Step 2.

Provided the scalar product af(-, -) is a sufficiently good approximation for a(-, -),
we can prove convergence of the iterates of (FC-IALM) from any initialization.
Observe that for a(-,-) = a(-, ), the above algorithm coincides with (FC-ALM).
Hence, by proving the next theorem we are also proving Theorem 5.9. Again we

denote by g and (), i) the solutions of (P) and (P*), respectively.

THEOREM 5.10. Suppose that (5.81) holds for some w < 5. Then for every
choice of parameters 0 < 72 < v < < ...and 0 < ) < vy < 92 < ...

the iterates (\', u') of (FC-IALM) converge weakly to (\, iz) in L*(T,) x L2_(Fc).
Moreover, the corresponding iterates y' converge strongly to i in Y.

PROOF. Let us denote 5;/ =y —yeY, s =N-X\eL¥T,) and 5L =
p' — p € L*(T,), where g and (A, ) denote the solution variables of (P) and
(P*), respectively. Since (g, \, j1) satisfies (5.22a), we have for [ > 1 that

(5.82) a(g,8,") — L(6,") + A\, wd, e, + (B, 716, ), =0,
and from step 2 in (FC-IALM) we obtain
(Y — g 0 aly 0L — LG5,
O et )+ (Tl ), = 0.
Subtracting (5.82) from (5.83) results in
0=a(y"" — ', o) +a(y' —g,0")

(5.83)

+ ()\H_1 - 5\, TN5ZZI+1)FC + (II:H—I - ﬂ, TT(%H)FC

(584) = d(é?lfl — (5;, 5;+1) —+ a(éé, 5;+1) -+ ((SE\JFI, TN(S?Z;FI)FC -+ ((SLJrl, TTéglfl)Fc.
Due to Step (2) of (FC-TALM), (5.22b) and (5.22¢) we have

(5.85) AL =P (N + A vy ™ = d), A =Pi(A+ 7wy — d)),
(5.86) ptt =Py(p + 5 eyt and o =Py(p+ 5t Trg),

where P, : L*(T,) — L?(I".) denotes the pointwise projection onto the convex set
K, ={¢e L*T,):€&£>0ae}, and P, : L*(T,) — L*(T,) the projection onto
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the convex L2-ball Ky = {¢€ € L*(T,) : ||€]| < 3¢ a.e.}. From the properties of
projections onto convex sets, in particular (2.2), one gets

(A=A N+ vy = d) = A = (A1 vy — d) = V), 20,
e N

(1 p*th) = (B + 5t Trg — ), > 0.

Thus, we obtain

(5E\+1’ TN(S;;FI)I‘C + (5L+1’ TTéglfl)Fc

= ()T A =X A T vy = d) = AT (g - D),

+ (AT (T = o (T Yt — (AT

2 TT’Q)FC
— ()T = AN = M, = (BT T (W = e — ),
> ()TN = N2 — ()T = XA = M),
+ (ATt = )2 -

c

(AN (e = ! — @),

(5.87) > 51

1
2 1
. ||5)\
2,}/{+1

o+

1
2 l
2 — 6
2,.)/%4»1 iz

i+

||5l+1
2,yé+1 I

2
r.-
o S(slHl _slosll I §lH
Let us now turn to the estimation of a(d,"" — d,,0,"") + a(d,,d,"").
a(obtt — ol ol + a(s, 6,

vy %y

—a(eah— ot Lt sty LG sy pa g
T \9y Ty 9ty Ty 4 VY y ¥y
> a(lél _ gt 151 — 5y — ﬂa(éz 5y + a(sl, 81
- 2°Y Yy 797y Y 4 Y vy Y vy
w

1
= Za(ag,dg)m(é;“,d;“)— 4a(5l o)

YUy

4(1 — w)a(éf}, 5;) + a(5§}+1, 5;“).

Utilizing the above estimate, (5.84) and (5.87) yield that
1

51-1—1 2 + 5l+1 2
Sl IR, + ol
< BB + el 2, + S (w — Da(dl, 6L) — a(6l, 61,
271 2’72 4

Introducing the auxiliary variable

/ﬁ}l'

1
=5l
M

1
9 1
r. t 2—%||5#

2 +a(d,0),
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the above estimate implies

1 1 1
K< 1637, + = I0,I1F, + 7 (w — Da(dy, 6,)

= 9 240+ 1 y> %y
1
I I sl I sl
< k' —a(d,,d,) + Z(w — 1)a(d,,,)
1
— L gl
=K + Z(w —5)a(é,,6,),

where 7} < 4! and 94 < 45T were used. Since 1 < w < 5, the sequence

k! is monotonically decreasing, it is obviously bounded from below, and thus

convergent. Hence,

(5.88) lllr(r)loa(éé, 5,) =0,
resulting in y' — g strongly in Y. From Step 2 of (FC-TALM) follows that
A — X weakly in L?(T,) and p! — @ weakly in L2(T,.). O

4. The Contact Problem with Coulomb Friction

In this section we presents results on the contact problem with Coulomb fric-
tion. Firstly, a regularized Coulomb friction problem is discussed, and existence
of a solution for this problem is proved. Then, possible generalizations of this
approach for the Coulomb friction problem without regularization are discussed.
In the preceding section we briefly state the fixed point algorithm for the nu-
merical realization of the regularized Coulomb friction problem that makes use
of solutions of the contact problem with Tresca friction. Moreover, an algorithm
that combines the fixed point idea and the augmented Lagrangian update for the
solution of the Coulomb friction problem is proposed.

4.1. A regularized Coulomb friction problem. We now state a regular-
ized version of the contact problem with Coulomb friction. The regularization
in the Coulomb problem corresponds to the regularization in (B,,,) and (B7,,)
for the problem with given friction. We first formulate the smoothed Coulomb
friction problem as variational inequality and derive equivalent ways to state this
problem. The smoothing leads to a welldefined problem that does not face the
difficulties of (5.5), we refer to the discussion at the end of Section 1.1. The

variational formulation of the problem to be considered is

oy, z —y) + (max(0, A + 7 (wy — d)), (2 — ), — L(z —y)
+/F F max(0, A+ y(mwy —d)){h(Ttrz,t) — h(Try, ft)} dx >0

for all z € Y, with A(-,-) as defined in (5.37). The variational inequality (5.89)
shows, that v = y is the solution to the problem

(5.90) Hél‘I{l a(y,v) + (A, wv), — L(v) —|—/ S\, h(Trv, o) dz,
v c r,

(5.89)
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where A\, = max(0, A+ 71 (mvy — d)). Due to the differentiability of A(-,-) with
respect to the first variable (we denote the derivative by A'(-,-)), the first-order
necessary conditions for the minimization problem (5.90) lead to a variational
equality, namely to

a(y, z) + (max(0, A + 71 (vy — d), wz), — L(2)

5.91 .
(55D +/ Fmax(0, A+ v (wy — d)h (rrz, ) de = 0.

Thus, we have found an equivalent way to characterize the solution of (5.89).
In what follows, we derive a third possibility to characterize the solution of the
regularized Coulomb friction contact problem. Similarly as in Section 1.4 for the
original Coulomb friction problem, one can obtain the solution for the regularized
Coulomb friction problem by means of a sequence of regularized Tresca friction
problems. We introduce the cone of nonnegative L2-functions

L2(T.):={¢€ L*T,):£>0ae}
and the mapping
W, 2 L3 (Te) — L3(T)
defined by
\Ifw(g) = )‘%
where ), is given by

Ay = max(0, A + v (mwy, — d))

with y. denoting the unique solution of the regularized contact problem with
friction g € L3 (T.). Then, it can be verified easily that the variable y. corre-
sponding to a fixed point of the mapping ¥, solves (5.89).

It is the aim of this section to prove that the regularized problem with
Coulomb friction (5.89) admits a solution. This is achieved by characterizing
the solution as fixed point of the mapping V¥,. In a first step, we investigate the
mapping
(5.92) ®,: L% () —Y,

that maps a given friction g € L3 (T';) to the corresponding solution y., of (B,,,).
In the next lemma we show that the mapping ®, is Lipschitz-continuous.

LEMMA 5.11. For every vi,72 > 0 and X € L2(I'.), i1 € L2(I.) the mapping
., defined above is Lipschitz-continuous with constant
18 llooct

5.93 e =
(593) —

where ||F||e denotes the essential supremum of §, k the coercivity constant of
a(-,+) and ¢1 a constant from a trace theorem. In particular, the Lipschitz con-
stant £ does not depend on the regularization parameters 7y, Y.
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PROOF. Let us fix 71,72 > 0 and choose g,§ € L2 (T.). NWe denote the

solution variables belonging to g and g by (y, u, A) and (g, f1, \), respectively,
i.e., for simplicity of the notation we omit the index ‘¢’ that indicates that we
are dealing with the solution of the regularized problem with Tresca friction.
Subtracting equation (5.38a) for (g, ft, A) from the same equation for (y, @, \)
and setting z := y — y yields

(594) aly—3.y—9)+ -1y -9+ A=Ay — §)r. =0.

Utilizing (5.38b) one can interpret A as orthogonal projection of A1 (vy —d)
onto L7 (I'.), and similarly for A. This implies, using (2.2), that

A=Ay —9)r. = %<A AQ+WNmy—@)—@+mﬂmQ—@DHZO.

Using the above estimate and (5.94), one deduces that
(5.95) W(y—9,y-9) < (u— 70y —y)r,

In the remaining part of this proof we establish pointwise almost everywhere
estimates for the right hand side in (5.95). We introduce the notation £ :=

Yorry + fu and € := Y77y + i1 that leads to Tr(y —y) = 72_1(5 —£&). We now
distinguish several cases that originate from the max-function in (5.38c¢).

(1) 11€]l < Fg, IE]l < Fg: Tt follows that
=) el —y) = (€~ E-9 <0
(2) I€]] = B9, |I€]] = Jg: In this case we get
(w— ) 70(7 — y)

R WA Sy | _
=2, (o =3 ||s||) €-9

1 e L/ & €3\ ,:
=%(s<g—g>m) (’5‘9*%(39(@‘@)) ¢

1 "
< —Flg — gl = &
Y2

=3lg = dlllrr(y — 9.
(3) 11€]] < B9, |I€]] = 3. We start our estimates for this case with

q
PR & —_ 2 —_ 0 ¢ a
< — (1elél = 1il® - sl + salel)

(b—p)'ro(y—y) = — (6 §g—= ¢ ) (E-9)
(5.96) T2
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and continue separately with four cases.
(@) 1€l <37, |€]l < Tg. The above inequalities imply that

(5.97) €Nl < g < [I€]l < Sg.
By (5.97) we obtain
2 = (llgll = 11D + (llell - 39)° = (€]l - 89)* = .
Utilizing Z > 0 and (5.96), we obtain after a small calculation that
(b= )" Tr(y—y)
1 . . e z
< — LlElliel 1€l = sali€l +gliéll + =
72
=0.

(b) [I€]l > 3, €]l > g. In this case we obtain the following chain of
inequalities:

59 < 1€l < 39 < 1€,
and thus
Z = (1€ = 11E* + (II€]l = 59)” = (€]l = 39)* = 0.

Similarly to the case discussed above we obtain

)TTT('[J )

(b—p

1 ~ ~ zZ

< = (1ellél - el - salél + salel + £)
V2
1 o

= L5(o - 91l - lel)
1 B ~

< %3(9 - PlE =&l

= 5o~ dll ey - 9.

(c) I€ll > 33, |I€]l < §g. These inequalities imply, together with those
in Case (3) that

(5.98) §g < min([€]]. [1€]1), max(ll¢]l, [1€]] < Sg-



120 CHAPTER 5. FRICTIONAL CONTACT PROBLEMS

Utilizing [[€]|[[€]] < 5(I€]|* +11€]]*) one obtains

(e — I:L)TTT(@ )

1 /1 1., - - -
< = (Sheli = 31€I° - 531l + sale))
1 ~ - = -
< 5(lell - IEl)lell - 33+ éll - 59

1 ~ N
< %IIS —¢|18(9 — 9)

=3lg = glllrr(y -9l
(d) 11€]l < 33, lI€]l > Sg. In this last case we obtain the following
relations:
€]} < min(Fg, 39), max(3g,59) < [I€]-
This shows that

Z = (JlEll = lIE? + (1€l = §9)* = (1€l = §9)* > 0.
Thus, we get
)T

(w—p) ' (g —y)

IN

1 ~ ~ Z
— (vetnen - el - salél + salel + 2 )
V2

1 _ ~
< -89 = a1 €1~ Dl

< &lg = glllTr(y — )|

(4) [|€]l > Fg, |I€]] < §g. This case is analogous to Case (3).
The above pointwise estimates show that

(u—nmﬂ@—m»gg/sm—mWTw—QWMa
e

and furthermore that

(n=p, 70y —y)r. <[5 = Plrllrry —9)|r.
< all3lleollg = dllr.lly — yllv-
Utilizing (5.95) and the coercivity of a(-, ), this shows
(5.99) ily — 9% < aly— 9.y — 9) < all§ll«llg - gllr.lly — 9llv
and concludes the proof of the lemma. O

In the next lemma we address properties of the mapping ¥.,.
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LEMMA 5.12. For every 71,7, > 0 and A € L*(T,), i1 € L2(T,) the mapping
W, : L2(T,) — L% (T.) is compact and Lipschitz-continuous with constant

cy
£ = —|I3ll
K
where ¢ is a constant resulting from trace theorems.

PRrROOF. We consider the following chain of mappings.

3, e T
100y LAl — Y = LX) — L)
g = oy = vy = max(0, A+ v (wy — d))
From Lemma 5.11 we already know that @, is Lipschitz-continuous. The map-

ping O consists of the linear trace mapping from Y into H3 (T,) and the compact
embedding of this space into L?(T'.). Therefore, it is compact and linear, in par-
ticular Lipschitz-continuous with a constant we denote by ¢ > 0. Finally, since

(5.101) || max(0, A+ 7 (€ — d)) — max(0, A+ 71(5— d)llr. < nll§ ~£

for all £,€ € L*(T.), the mapping Y is Lipschitz-continuous with constant 7.
From the fact that W, is the composition of the mappings T, ©, ®,, namely

UV, =T000d,,

Te

we can conclude that W, is Lipschitz-continuous with constant

C1C2M1

£=——[8le
K

where ¢y, ¢y are constants from trace theorems. Concerning the compactness, we
clearly have that the composition of © and ®, is compact. It remains to show
that L?-convergent sequences remain L?-convergent under the mapping Y. This
follows immediately from (5.101), which ends the proof. O

We now easily obtain an existence result for the contact problem with Cou-
lomb friction.

THEOREM 5.13. The mapping V. admits at least one fized point, i.e., the reg-
ularized Coulomb friction problem (5.89) or equivalently (5.91) admits a solution.
If ||3]l0o is sufficiently small, the solution is unique.

PROOF. We apply the Leray-Schauder fixed point theorem (see [45, p. 222])
to the mapping ., : L*(I'.) — L*(T'.). Using Lemma 5.12 it suffices to show
that A is bounded in L?(T'.) independently of g. This is clear taking into account
the dual problem (2. ). Indeed,

Y1372

. * . *
min J. A < min J. A0) < oo
A>0, [|p||<3g a.e. on T, 71’72( B) < A>0 “’7‘-’( 0) ’

since the neglect of the constraint on p leads to the contact problem without fric-
tion, which admits a solution independent from Fg. Hence, the Leray-Schauder
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theorem guarantees the existence of a solution to the regularized Coulomb friction
problem. Uniqueness of the solution holds if § is such that
cc
A e < 1
K
due to the fact that in this case ¥, is a contraction. U

L=

In the next section we comment on the methods utilized in this section for
proving existence of a solution for the Coulomb frictional contact problem with-
out regularization.

4.2. Remarks on the Coulomb friction problem without regulariza-
tion. In this section we briefly address the question, which methods utilized in
the previous section also apply in the case of Coulomb friction without regulariza-
tion and which do not. Firstly, we are interested in an analogue to Lemma 5.11
in the case without regularization. As observed above, the Lipschitz-constant
in Lemma 5.11 is independent of 7;, v, which suggests that the result does not
require any regularizing term. To verify this conjecture we define the mapping

(5.102) ®: L% () — Y,
that maps a given friction g € L% (I';) to the corresponding solution y of (P). In
the next lemma we show that the mapping & is Lipschitz-continuous.

LEMMA 5.14. The mapping ® defined above is Lipschitz-continuous with con-
stant

o I8leer

K
where ||F||e denotes the essential supremum of §, k the coercivity constant of
a(-,+) and ¢y a constant from a trace theorem.

PROOF. The proof is similar to the one for (5.11), however, it turns out to
be significantly shorter, since we can spare considering the different cases for the
pointwise estimates. In the sketch that we give here the notation from the proof
for Lemma 5.11 is used. Similarly as done there, we derive from (5.22a) that

(5103) a(y— 9,y — )+ (b — . Tr(y — 9. + (A= A w(y - 9)) =0,

where < , ->F denotes the duality product. With y and y we again denote the
solutions corresponding to ¢ and g, respectively. Using (5.22b) and (5.22¢) we
derive that

<)‘ - 5‘aTN(y - g)>Fc = <)‘a (TNy - d) - (TNQ - d)>rc
—(\ (wy —d) — (g — ).
= —(Awg—dy, — Ay —d). >0.
From this estimate and from (5.103), one deduces that

(5.104) a(y—9.y—9) < (-7 —y))r..
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It remains to establish pointwise estimates for the right hand side in (5.104).
Recall that the equations (5.22d’) and (5.22¢’) hold for both, (y, u) and (y, f1).
To estimate (u — 1) "T7(y — y) we first consider the case that 77y # 0 and

Try # 0:

T B s I (T It

< Zgllrryll — Sgllrryll — 39l Tryll + Sl Tyl

< 8lg = glllrr(y — ).
Let us next consider the case that 70y = 0 and 77y # 0. Here we get

~ T
(- )@ — ) = (u - sgi) i
Trrdl

< [lelllrryl - 39llrryll

<3 —9lrrly -9l

where we used ||p]| < Fg. Obviously, for the case 77y # 0 and 77y = 0 one
obtains the same estimate. The remaining case 77y = 0 and 7y = 0 is trivial,
such that we obtain

(= o (@ — 9, < / 39 — il [l (y — 9)|] da,

and can proceed as in the proof of Lemma 5.11 to finish the proof. O

We can now discuss, which parts of Lemma 5.14 and Theorem 5.13 require
a regularization and which do not. Clearly, the mapping © that appears in the
proof of Lemma 5.14 is independent of any regularization. Let us now turn to Y.
This mapping is Lipschitz-continuous with constant ~;, which already indicates
that the regularization of the contact condition is required to obtain Lipschitz-
continuity. Indeed, for the problem (P), i.e., the problem without regularization,
we cannot even expect the multiplier A to be an element in L?(T',). This shows
that for the assertion of Lemma 5.12 the regularization with respect to the contact
condition is essential. Actually, this is not the case for the regularization of the
friction condition, since neither the mapping ®, nor © and Y involve 7,. Using
this observation and Lemma 5.14, one can verify that both, Lemma 5.12 and
Theorem 5.13 also hold true for the case that we apply a regularization only for
the contact condition, while leaving the non-differentiability in (P) unchanged.

4.3. Algorithm for the solution of the regularized Coulomb friction
problem. As mentioned before, the fixed point idea presented in Section 4.1
can be exploited numerically for the solution of the regularized Coulomb friction
problem. This idea and slight modifications of this idea are commonly used to
calculate the solution of the Coulomb friction problem by a sequence of Tresca
friction problems (see, e.g., [54,55,80]). We now specify the fixed point algorithm.
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Algorithm: (CFC-FP)

(1) Choose 71,72 > 0, A and fr. Initialize ¢° € L*(T.), and set m := 0.

(2) Determine the solution (A™, u™) to problem (B} ) with given friction
g™

(3) Update ¢! := A\ m := m + 1 and, unless an appropriate stopping
criterion is met, go to Step 2.

Provided that ||F||~ is sufficiently small, Lemma 5.12 leads to a convergence
result for the above algorithm.

THEOREM 5.15. Suppose that ||F||e is sufficiently small, then Algorithm
(CFC-FP) converges regardless of the initialization.

PROOF. The proof follows immediately from the fact that, provided ||F|| is
sufficiently small, the Lipschitz constant of the mapping W, is smaller that 1. [

One can consider various modifications of Algorithm (CFC-FP). In [54] a
splitting type algorithm, based on a finite dimensional dual formulation of the
Tresca friction problem is presented and the numerical performance is tested.
This approach is generalized to 3D in [55]. In [80] a GauB3-Seidel-like generaliza-
tion of (CFC-FP) in the framework of monotone multigrid methods is proposed,
and the author reports on favorable numerical results.

Here we propose a modification of (CFC-FP) that combines both the first-
order augmented Lagrangian update and the fixed point idea of Algorithm (CFC-
FP).

Algorithm: (CFC-ALM-FP)
(1) Initialize v}, 72 > 0, (A}, &) € L2(T',) x L%(T,) and ¢° € L*(T,), m := 0.
(2) Choose 7*,74* > 0 and determine the solution (A, u™) to problem
(P},,) with given friction g™ and A= A" o= g™,
(3) Update ¢+t := \m \m+l.= xm_ g™+ .— ymoand m = m + 1. Unless
an appropriate stopping criterion is met, go to Step 2.

For the following brief discussion of the above algorithm, we assume that a
solution to the Coulomb friction problem as defined in Section 1.4 exists and that
the solution variables are sufficiently smooth. To be precise, we assume that the
fixed point \* of the mapping ¥ (for its definition see page 93) is in L?(T,). The
variables y* € Y and p* € L?(T',) corresponding to \* satisfy

a(y*,z) — L(z) + (A, wz)r, + (u*, 7rz)r, =0 forall z € Y,
A" =max(0,\" + v (wy* —d)) on T,

SN (erry” + p°) — max (A, |[erry” + p)ut =0 on I,
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where v1,7v5 > 0. As can be seen easily, these conditions are also satisfied by
a fixed point of (CFC-ALM-FP), i.e., provided convergence of (CFC-ALM-FP)
the limit variables are the solution to the original (i.e., non-regularized) contact
problem with Coulomb friction. We point out that this convergence is achieved
without necessarily letting the penalty parameters tend to infinity. Choosing
moderate values for the parameters v, vy, avoids ill-conditioning of the systems
one has to solve.

Though at the moment we do not have any convergence results for algorithm
(CFC-ALM-FP), in numerical practice this method turns out to be reliable and
efficient, see Section 6.

5. Numerical Results for Contact with Tresca Friction

In this section we summarize our numerical findings for the contact problem
with given friction. Thereby we restrict ourselves to the case of planar elastic-
ity. After presenting our test examples and describing the implementation, we

report on tests, where, among others, the influence of regularization and grid are
addressed.

5.1. Examples and implementation.

Example 1. The geometry for this example is shown in Figure 1, where for
reasons of graphical presentation the gap function d was multiplied by a factor of
20. The data are as follows: 2 =[0,3] x [0,1],['. = [0, 3] x {0},[, = [0, 3] x {1}
and the elastic body is subject to homogeneous Dirichlet conditions with respect
to the horizontal displacement and homogeneous stress-free conditions with re-
spect to the vertical displacement along {0} x [0,1] U {3} x [0, 1]. Furthermore,

(8) on [0,1] x {1} U[2,3] x {1},

(_28> on [1,2] x {1}.

For our test runs we choose £ = 5000 and v = 0.4. The distance towards the
rigid foundation is given by d(z;) = 0.003(x; —1.5)2+0.001 and the given friction
g is 10 exp(—20(x; — 1.5)%).

This example is interesting for several reasons. Firstly, due to the fact that
+3¢g act as bilateral constraints for the dual variable u, the problem is a bot-
tleneck problem: Close to x; = 0 (and z; = 3) the distance between upper
and lower bound is nearly zero. Secondly, the geometry allows rigid motions of
the complete body in vertical direction, since the elastic body is nowhere fixed
with respect to the horizontal direction. Nevertheless, from the geometry it is
clear that these motions are excluded if the elastic body is in contact with the
foundation on some part of I'.. To discuss the performance of our algorithms for
this example we vary, among others, the values for v; and v, and report on the
number of iterations of the semi-smooth Newton method.
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FIGURE 1. Geometry for Example 1.

Ezxample 2. For this example we choose the same geometry and data as for
Example 1, but we take as given friction either ¢ = 1.5 or ¢ = 2.5. Note
that, compared to the previous example, the bounds for this example are not
bottleneck-like. In a first series of tests we report on the number of iterations
for various regularization parameters 71,7, > 0 and v = 0.4,0.49, i.e., we focus
on the convergence behavior of the algorithm in the case that v is close to 0.5.
Values close to v = 0.5 corresponds to an almost incompressible material. Recall
that for » = 0.5 the problem does not admit a solution. We focus on the local
convergence properties of the method for v = 0.4.

Example 3. The aim of this example is to investigate the influence of the given
friction on the deformation of the elastic body. The elastic body and the rigid
foundation are shown in Figure 2, where for reasons of graphical presentation
the gap function d = max(0.0015,0.003(z; — 1.5)? + 0.001) was multiplied by 20.
We choose the material parameters £ = 10000 and v = 0.45. In this example
we do not apply a traction force, rather we prescribe a nonzero deformation
along the Dirichlet part of the boundary. As before we have as contact region
. :=[0,3] x {0} and on T, := [0,3] x {1} U {0} x [0,0.2] U {3} x [0,0.2]
we assume traction free, i.e., homogeneous Neumann boundary conditions. On
Iy:={0} x[0.2,1]U {3} x [0.2,1] we prescribe the deformation as follows:

(0,0()_;),5‘100—4:52)) on {0} x [0.2, 1],

(™) 020

With this example we investigate the influence of the friction on the deformation
of the elastic body.

Implementation and setting of the parameters. For the discretization of the
elasticity problems P, and @) finite elements are used. The whole implemen-
tations is done in MATLAB on basis of the code published in [2]. This code
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FIGURE 2. Geometry for Example 3.

is modified and extended in such a way that it can also be applied for contact
problems with Tresca friction. The generalization to these problems is done such
that only in the initialization step the stiffness matrix and the right hand side
have to be assembled. Both, Dirichlet conditions and the constraints due to the
changing active sets in the iteration process are realized by adding or remov-
ing constraints to the free system. Thus, the solution of a linear saddle point
problem is, by far, the most time consuming part per iteration. The pointwise
inequality constraints are enforced on the nodes of the finite element mesh, which
corresponds to the choice of a Dirac-like basis for the discretization of the dual
variables (see also [54]). For discretizations utilizing mortar finite elements we
refer to [11,65,66,106].

Unless otherwise specified the linear systems are solved exactly using MAT-
LAB’s backslash that makes use of the properties of sparse, symmetric matrices.

In the semi-smooth Newton method (FC-SS2D) we always choose 0 = 1
and, unless otherwise specified, the method is initialized with the solution of the
unconstrained dual problem, i.e., the solution of (”ij%) neglecting the constraints.

Unless otherwise specified we use A = 0 and /i = 0 for (FC-SS2D) and initialize
the augmented Lagrangian methods with A = 0 and u® = 0. For the problems
with given friction, the friction coefficient can be incorporated into the given
friction, thus we always choose § = 1 in our examples.

5.2. Numerical results.

5.2.1. Results for Example 1. We now summarize the results of our testing
for Example 1 on a mesh of 120 x 40 finite elements. In a first attempt we choose
v = v = 108, The solution, obtained after 9 iterations, is depicted in Figure
3, where we show the deformed finite element mesh and the rigid foundation.
Here, we utilize gray tones to visualize the elastic shear energy density. The
dual variable i, the corresponding bounds £§¢ and the tangential displacement
are shown on the left of Figure 4. By inspection of the graphs one can verify
that the complementarity conditions hold. Recall that active sets correspond to
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FIGURE 3. Ezample 1: Deformed mesh (deformation multiplied by
20), gray tones visualize the elastic shear energy density, v, = o = 10%.
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FIGURE 4. Ezample 1: Left figure: dual variable p. (solid) with
bounds £§g (dotted) and tangential displacement Ty, (multiplied by
10*, dashed). Right figure: Multiplier A, (solid), rigid foundation (mul-
tiplied by 10*, dotted) and normal displacement NY, (multiplied by 104,
dashed), 41 = vo = 108,

parts of the boundary, where the elastic body is sliding in tangential direction,
while inactive sets correspond to sticky regions, i.e., to sets where 77y, = 0. The
main disadvantage of utilizing the Tresca friction law is, that stick may occur
on sets where the elastic body is not in contact with the rigid foundation, which
is clearly undesirable in modeling realistic physical phenomena. The right hand
side plot in Figure 4 depicts the rigid foundation, the displacement 7yy., and the
corresponding multiplier A,.

Let us now comment on the performance of the algorithm. To obtain conver-
gence of the method independently of the initialization, it seems to be crucial to
choose the parameter o (i.e., the parameter in the estimation of the active sets
corresponding to the friction condition) large enough, for instance, o = 1 (which
we use for our calculations). Setting o = v, ' as suggested by the interpretation
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of the algorithm as infinite-dimensional semi-smooth Newton method, leads to
problems in the convergence unless the initialization is already close to the solu-
tion. Using o = 1, the method converges for all initializations and, furthermore,
we observe locally fast convergence.

Since the elastic body is only fixed in horizontal direction, we cannot initialize
the algorithm with the solution of the state equation (5.38a) for p, =0, A, = 0.
Doing so would lead to a problem where both, friction and contact conditions, are
neglected. Since in the example under consideration the bilinear form a(-, -) is not
coercive over the set of admissible deformations, the problem without constraints
does not admit a solution. Therefore, we initialize the algorithm with the solution
of the problem without friction, but with forcing that 7yy., —d = 0 in the interval
[1.25,1.75]. We tested several other initializations including 7y y., —d = 0 on all of
['.. For all these initializations the method converges after at most 12 iterations.
The fact that the bounds for 11, behave bottleneck-like does not have any negative
influence on the performance of the algorithm. This remarkable stability is also
of interest when solving problems involving Coulomb friction by means of the
fixed point methods discussed in Section 4.3.

In the iteration process we usually observe a monotonicity of the active sets
for the contact condition, namely, beginning from the second iteration, the new
estimate for the active set is contained in the previous one. We do not observe a
similar behavior for the active sets corresponding to the friction condition. Gen-
erally, in this example the contact condition strongly dominates the convergence
behavior, in particular, the contact-active sets significantly influence the esti-
mated inactive and active sets for the friction condition. The converse influence
seems to be rather small.

5.2.2. Results for Example 2. For this example we document on the behavior
of the algorithm for various regularization parameters. For all tested material and
regularization parameters the algorithm converged. The dual solution variables
for v, = 5 = 10® are depicted in Figure 5. The deformed mesh looks very similar
to the one for Example 1 (see Figure 3). Table 1 displays the number of iterations
for v = 0.4, ¢ = 1.5 and for various 7;,7,. As can be seen from our tests, the
number of iterations depends only weakly on v, y,. The same test runs are also
performed for v = 0.49 and g = 2.5. The corresponding numbers of iterations are
shown in Table 2. Again we observe that the algorithm requires more iterations
for larger 1,7, and also slightly more iterations as for the parameter values
discussed before.

Next we investigate the speed of convergence for v = 0.4 and ¢ = 1.5. For

this purpose we report for £ = 1,2, ... on the discrete analogue of
1
pon T Y ) DR [ = i,
alyt —y,,yt —y.)? I =Xl ek = s I,
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TABLE 1. Ezample 2: Number of iterations for different values of vy
and 2, v = 0.4, g = 1.5.

V2
104 10° 108 107 10% 107
06 7 8 8 8 8
10°/06 8 8 9 9 9
v |10 7 8 12 12 13 13
077 &8 10 11 11 11
10 7 & 10 11 11 11
10 7 &8 10 11 11 11
TABLE 2. Same as Table 1, but with v = 0.49, g = 2.5.
V2
10 10° 10° 107 10® 10°
100 5 7 8 10 14 14
10°06 7 9 14 14 14
v |10 7 8 9 15 15 15
10708 8 9 14 13 13
10 8 &8 9 14 13 13
1008 8 9 14 13 13
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FIGURE 5. Ezample 2: Left figure: Dual variable p. (solid) with
bounds £Fg (dotted) and tangential displacement y., (multiplied by 10,
dashed). Right figure: multiplier Ay (solid), rigid foundation (multi-
plied by 10*, dotted) and normal displacement NY, (multiplied by 104,
dashed), y1 = v = 108, v = 0.4.
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TABLE 3. Ezample 2: Values for ¢* for vi = y9 = 10*, v = 0.4, g = 1.5.

2 1 2 3 4
¢ [1.11e-0 8.64e-1 3.00e-1 0

TABLE 4. Ezample 2: Number of iterations on different grids and for
various reqularization parameters for symmetric initialization and non-
symmetric initialization (number in parentheses).

=2

grid 105 106 107 108 10°
60 x20 |6(8) 7(9) 9(12) 9(12) 9(12)
120 x 40 | 7(8) 9(11) 14(16) 13(18) 13(18)
240 x 80 | 7(9) 9(11) 16(18) 17(21) 17(21)

where (y.,, A, i1,) denote the solution variables and (y*, \*, 1i%) the iterates. The
result is shown in Table 3, where we observe that ¢* is monotonously decreasing,
which indicates superlinear convergence of the iterates. We also investigate the
rate of convergence of the iterates for other regularization parameters, and ob-
served that ¢* is more likely to decrease through the whole iteration process for
smaller v, ¥s, i.e., for more regularized problems.

We now report on the number of iterations of (FC-SS2D) for differently fine
discretizations. For this purpose we consider the case ¢ = 2.5 and v = 0.49.
Table 4 shows the number of iterations for various regularization parameters on
three different grids. Thereby, the first number corresponds to the standard ini-
tialization of the algorithm, i.e., setting 7wy® = d on [1.25,1.75]. The number
in the parentheses corresponds to the unfavorable nonsymmetric initialization
wy® = d on [0,0.5]. One observes that the algorithm behaves only moderately
mesh-dependent and that for all grids the number of iterations increases as i, ¥9
increase. Furthermore, for v; = 7, = 10°,10° we observe an almost mesh inde-
pendent behavior. A possible explanation for this remarkable result is that for
small regularization parameters the convergence region of the continuous method
is large, such that we can observe mesh-independence of the semi-smooth Newton
method (as analyzed [56,61]).

The above results motivate the application of a continuation procedure with
respect to the regularization parameter to reduce the overall number of itera-
tions. In this strategy we calculate the solution for moderately large regular-
ization parameters and utilize the obtained solution as initialization for larger
regularization parameters. The outcome for our problems is reported in Table
5. We observe that continuation with respect to v, and v, can be used to re-
duce the overall number of iterations on fine grids. Moreover, one observes that

the number of iterations is even more reduced for the case that a nonsymmetric
initialization for (FC-SS2D) is used.
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TABLE 5. Ezample 2: Number of iterations on different grids using
continuation w.r. to y1,7y2 (2nd and 3th column), the resulting overall
number of iterations () and the number without continuation strategy
(last column). The numbers in parentheses correspond to a nonsymmet-
ric initialization.

M=2 N ="
grid 10> — 107 > 107
60 x 20 | 6(8) +4 [10(11)| 9(12)
120 x 40 | 7(8)  +5 | 12(13) | 13(18)
240 x 80 | 7(9) 47 |14(16) | 17(21)

Finally, we report on tests of the augmented Lagrangian method for this
problem. We terminate the iteration if

(5.106) A= A= Nle, + 18— e, < 107"

where for A and & we take the solution for the regularized problem with 7 = v, =
10'°. Each iteration of (FC-ALM) is initialized with the solution variables of the
previous iteration. Applying the exact version of the method with v, = v, = 106,
12 iterations of (FC-ALM) and overall 36 steps of (FC-SS2D) are necessary,
until the method stops at d)’, =9.87e-5. For 71 = 7, = 107 only 2 (FC-ALM)-
iterations and 19 system solved are needed to get dy , =6.23e-5. To accelerate the
convergence, one can increase the regularization parameters by a factor of, e.g., 5
in every (FC-ALM)-iteration. When started with v, = v, = 108, this procedure
stops after 3 steps of (FC-ALM) and overall 19 linear solves at d3 =5.08e-6. If
1, Y2 are increased by 10 per iteration, the algorithm termlnates after 2 (FC-
ALM)-iterations and requires overall 16 linear solves until it terminates with
d?\,u =2.71e-5.

Next, we test an inexact version of the above method, namely we allow a
maximum of 4 (FC-SS2D) iterations in the inner loop of (FC-ALM), before we
update A and p. Applying this inexact strategy for the inner problem in (FC-
ALM) may lead to iterates ', u!, which do not satisfy \! > 0 and |y!| < Fg.
Thus, in the inexact strategy, we apply a projection of the dual variables in
order to make them admissible, before we perform the augmented Lagrangian
update. The results for the resulting test runs are summarized in Table 6, where
we also document the values for d} ,. It can be observed that for the first iterates
of (FC-ALM) with inexact solve of the auxiliary problem smaller regularization
parameters lead to better results, which is due to the smaller illconditioning of
the auxiliary problem. Thus, additionally to the augmented Lagrangian update
we increase y; and 79, which leads to a fast convergence to the solution of the
non-regularized contact problem with Tresca friction, see the last row of Table 6.

5.2.3. Results for Example 3. In the examples discussed so far the frictional
behavior only has a minor influence onto the deformation, in particular onto
the actual contact zone. Varying the function g we often could not observe any
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TABLE 6. Ezample 2: Tests for (FC-ALM) with inezact solve of the
auziliary problem, #iter denotes the number of inner iteration.

! 1 9 3 4 5 6
— ~ = 106 #iterss 4 4 3 3 2 3
n=n dy, 6.85¢-1 1.45e-1 2.73e-2 1.28¢-2 7.85¢-3 5.24¢-3
— vy =107 #iterss 4 4 4 4 2 2
n=n dy, 797e-1 1.80e-1 5.26e-2 1.52-2 1.74e-3 3.39e-4

; 1 1 1 2 2
— o~ — 104+ | Triterss
n="7=10 dy, 5.9%-1 1.43e-1 2.23e-3 3.15e-5 8.64¢-8
1k
0.8+
0.6
04+
0.2+ H
E_Egg
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-0.2 | | ] | i | I |
-0.5 0 0.5 1 1.5 2 2.5 3 3.5

FIGURE 6. Ezample 3: Deformed mesh, gray tones visualize the elastic
shear energy density, g = 1.

influence on the (discrete) active set A, at all. This example has been constructed
in order to investigate the convergence behavior of the algorithms for examples
where ¢ significantly influences the deformation of the elastic body.

For v, = 7, = 10® the semi-smooth Newton method detects the solution
after 7 iterations. The deformed mesh and the elastic shear energy density for
given friction of ¢ = 1 are shown in Figure 6. As expected, in a neighborhood
of the points (0,0.2) and (3,0.2), i.e., the points where the boundary conditions
change from Neumann to Dirichlet, we observe a stress concentration due to a
local singularity of the solution. We also observe a (smaller) stress concentration
close to the points where the rigid foundation has the kinks. On the left hand
side of Figure 7 we depict the rigid foundation, the normal displacement and
the corresponding multiplier. Magnifying the contact zone (see the plot in the
middle of Figure 7), one can observe that the body is not in contact with the
rigid foundation in the interval [1.3,1.7], i.e., here the constraint on the normal
deformation is inactive, which is also reflected in the fact that the corresponding
dual variable ), is zero in this interval. On the right hand side of Figure 7 we
show the tangential displacement, the multiplier 1, and the bounds +§g.

Next we investigate the influence of the given friction onto the deformation of
the elastic body. Note that g directly influences 1, while its influence on 7yy,,
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FIGURE 7. Ezample 3: Left figure: Multiplier A\, (solid), rigid foun-
dation (multiplied by 5 - 103, dotted) and normal displacement NY,
(multiplied by 5 - 103, dashed), Middle figure: Detail of the left plot,
Right figure: Dual variable pi, (solid) with bounds £8g (dotted) and
tangential displacement y, (multiplied by 5 - 103, dashed).

and )\, is only due to the connection of the variables by means of the elasticity
equation. We compare the normal displacement and the corresponding multiplier
Ay for ¢ =0,1,3,5,20,100. For g = 0 we get the pure contact problem (since
then p, = 0), i.e., the tangential displacement of the elastic body is unrestricted.
Choosing g = 100 the solution turns out to be fixed in tangential direction on all
of I'.. In Figure 8 we show the rigid foundation, the normal displacement and
the corresponding multipliers for various constant values of g. A magnification
of the contact zone for ¢ = 0,1,5 can be found in Figure 9. The table in Figure
9 displays the number of active points corresponding to ¢ = 0, 1, 3, 5, 20, 100 for
both the contact as well as the friction condition. Clearly, due to the symmetry
of the geometry and data the number of points where y, = —¢ and where p, = ¢
coincide (i.e., #A;_ = #A; ). For all values of g the algorithm finds the solution
after 7 or 8 iterations, which reflects a remarkable stability of the semi-smooth
Newton method with respect to the bounds +Fg for the dual variable ..

5.3. Summary of the numerical results. In our numerical tests we ob-
serve a remarkable efficiency and reliability of the algorithms discussed in this
chapter for the solution of 2D contact problems with Tresca friction. Let us first
focus on the semi-smooth Newton method (FC-SS2D). This algorithm that can
be seen as an active set strategy always detects the exact discrete solution after
only a few iterations. We observe — beginning from the second iteration — a
monotonicity of the active sets corresponding to the contact condition, namely,
the new active set is always a subset of the previous active set. For the active
sets for the friction condition we cannot observe a similar monotonicity.

The number of iterations of (FC-SS2D) turns out to be stable with respect
to the material parameters, the given friction, the mesh and the initialization.
Moreover, the regularization parameters 71,7, in (R}, ,) only have a minor influ-
ence on the number of iterations required to detect the solution. Usually, from
one iteration step to the next many points are changed from active to inactive
and vice versa. Only for a nearly incompressible material (i.e., v is close to the
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FIGURE 8. Ezample 3: Rigid foundation, normal displacement INY,
(both multiplied by 5-10%) and corresponding multiplier Ay for various
given friction. Upper row, from left to right: ¢ = 0,1,3, lower row,
from left to right: g = 5,20, 100.

g [ #A #A, #A
0 14 59 59
1 20 59 59
3 39 59 59
5 41 58 58
20 51 29 29
100 | 51 0 0

1 15 2

FIGURE 9. Exzample 3: Left: Magnification of the rigid foundation
(dotted) and Tny., for the problem without friction (solid), g = 1
(dashed) and g = 5 (dashdot) for Example 3. Right: Number of ac-
tive contact and friction points for various values of g.

threshold 0.5) and for large regularization parameters and fine grids this change
may become slow leading to a larger number of iteration. This can be efficiently
overcome by using a continuation procedure with respect to the regularization
parameters.
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While the convergence speed of standard algorithms for the solution of bound
constrained optimization problems (e.g., projected gradient or Newton algo-
rithms) decreases for bottleneck-like bounds, this does not affect the semi-smooth
Newton method (FC-SS2D) that can be seen to converge at a superlinear rate.

The efficiency of (FC-SS2D) is also interesting with respect to first-order
augmented Lagrangian methods. These methods are update methods for the
multipliers (or equivalently the dual variables), and require to solve an auxiliary
problem that is of the form of our regularized problem in every iteration step. If
this auxiliary problem in (FC-ALM) is solved exactly utilizing (FC-SS2D), the
overall number of linear solves in higher than if (FC-SS2D) is applied with large
penalty parameters. In case the auxiliary problem is only solved approximately,
the overall number of system solves reduces significantly and turns out to be
rather the same as for the semi-smooth Newton method with large penalty pa-
rameters. However, the iterates of (ALM) and its inexact versions converge to
the solution of the original dual problem without requiring that v, v, — oo.

6. Numerical Results for Contact with Coulomb Friction

In this section we summarize the numerical tests of our algorithms for con-
tact problems with Coulomb friction. Therefore, we reuse the test examples
from Section 5.1. In the experiments we address, among others, the influence

of the friction coefficient § on the solution and compare the performance of the
algorithms (CFC-FP) and (CFC-ALM-FP).

6.1. Example 1. Here we use the same geometry and data as in Example 2
of Section 5.1 with ¥ = 0.4 and report on tests performed for Algorithm (CFC-
FP) and (CFC-ALM-FP). These fixed-point-like algorithms are initialized with
the solution of the pure contact problem (and we set ¢° := 0). As in [80,85] the
outer (i.e., the fixed point) iteration is terminated if
lg

m _ ,m—1

g
| gm

where in our tests we utilize £ := 10~ 7. The solution variables for the Coulomb
friction problem with § = 0.3 are shown in Figure 10. Observe that the bounds
for the variable 11, in Coulomb’s friction problem are given by §\,, meaning
that these bounds are not independent of the solution, as in the case of Tresca
friction. Table 7 summarizes convergence results for (CFC-FP) with § = 0.3.
One observes that the fixed point iteration converges relatively fast.

Next we report on tests for (CFC-ALM-FP). Thereby, both the variables
(5\, [v) and the given friction g are updated. In every iteration step we only
have to solve a regularized problem with Tresca friction. In our tests we always
observed convergence of both (CFC-FP) and (CFC-ALM-FP). Recall that, pro-
vided regularity, the iterates of (CFC-ALM-FP) converge to the solution of the
original Coulomb friction problem, while the iterates of (CFC-FP) converge to
the solution of the regularized Coulomb friction problem. For both strategies

(5.107) dm = L

g <e¢

— b

re
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TABLE 7. Ezample 1: Tests for (CFC-FP): for outer iteration m, we
show the number of inner iterations #iter for y1 = o and the value for

dg' as defined in (5.107), § = 0.3, v = 0.4.

m |y = Hiter dy’
0 10° 7 1.00e0
1| 10° 6 6.12e-3
21 10° 2 8.26e-5
3| 10° 2 1.22e-6
4( 10° 2 3.78e-8

©

0.5 1 15 2 25 3

F1GURE 10. Ezample 1: Left: Multiplier Ay (solid), rigid foundation
(multiplied by 10*, dotted) and normal displacement INY~ (multiplied
by 10*, dashed), right: Variable p., (solid) with bounds £0.3)\, (dotted)
and tangential displacement y, (multiplied by 10*, dashed).

TABLE 8. Same as Table 7, but for (CFC-ALM-FP) and increasing

-8
[¢]

I I
0.5 1

Y1 = Y2

m |y =g Hiter dy’

0 10° 6 1.00e0
1 108 6 5.96e-2
21 107 2 4.43e-3
30 108 2 1.16e-4
4| 10° 2 2.28e-6
5[ 10 2 6.97e-8

overall about 20 linear solves were necessary, that is, the computational effort for
solving the Coulomb friction problem is comparable to the effort for the Tresca

friction problem.
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TABLE 9. Same as Table 7 but for v = 0.49.

m |y =1 Hiter dy’

0 10° 8 1.00e0
1| 10° 12 2.89e-2
2 10° 2 6.82e-4
30 10° 2 1.87e-5
4( 10° 2 6.32e-7
5 10° 2 5.07e-8

TABLE 10. Same as Table 8, but for v = 0.49.

m |y =g Hiter dy’
0 10° 6 1.00e0
1| 10° 8 8.17e-2
21 107 3 7.62e-3
30 108 2 1.49e-4
4( 10° 2 3.41e-6
5[ 10 2 1.20e-7
6| 104 2 7.27e-8

We now perform the same test of (CFC-FP) and (CFC-ALM-FP) as above,
but with v = 0.49. The results of these test runs are shown in the Tables 9
and 10. It can be seen that in the case of nearly incompressible material the
Algorithm (CFC-ALM-FP) gives slightly better results than the pure fixed point
iteration (CFC-FP).

Finally, we show results obtained for two different friction coefficients, namely
for § = 0.1 and § = 1. The dual solution variable and the corresponding bounds
for these different values of § are shown in Figure 11.

6.2. Example 2. This example continues our tests concerning the influence
of the friction onto the deformation. The data are taken from Example 3, Section
5.1. In Figure 12 we depict the normal and the tangential displacement with
corresponding multipliers for § = 2,5,10. One observes that in this example
the friction coefficient significantly influences the deformation. For instance, in
the case § = 2 the elastic body is in contact with the foundation in the interval
[1.4,1.6], but it is not for § =5 and § = 10.

The solutions were obtained using the Algorithms (CFC-FP) and (CFC-ALM-
FP) with the stopping criterion (5.107) with ¢ = 107". The methods perform
comparably well and require overall between 20 and 25 linear solves to stop with
d;” <e.
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F1GURE 11. Ezample 1: Left: variables p (solid) with bounds A,
(dotted) and tangential displacement y., (multiplied by 10*, dashed) § =
0.1, right: same as left, but with § = 1.

6.3. Summary of the numerical results. The efficiency of the algorithms
for the 2D contact problem with Tresca friction carries over to contact problems
with Coulomb friction. To accelerate the convergence of the standard fixed point
iteration we combine the fixed point with the augmented Lagrangian update.
For our test examples, the pure fixed point iteration (CFC-FP) and the com-
bined method (CFC-ALM-FP) show a similar convergence behavior. However,
the advantage of (CFC-ALM-FP) compared to (CFC-FP) is that its iterates con-
verge to the solution of the original contact problem with Coulomb friction. We
also perform tests where the friction coefficient has a rather large influence onto
the deformation of the elastic body. Also for the numerical realization of these
examples our algorithms present a powerful tool.
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FIGURE 12. Ezample 2: First row, left figure: multiplier Ay (solid),
rigid foundation (multiplied by 5- 103, dotted) and normal displacement
Y., (multiplied by 5-103, dashed), Right figure: dual variable i, (solid)
with bounds £\, (dotted) and tangential displacement y-, (multiplied
by 5-103, dashed) for § = 2. Second row: same as first, but with § = 5.
Third row: same as first, but with § = 10.
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Conclusions and Outlook

In the present work, we have analyzed the application of Newton-type meth-
ods to friction and contact problems in infinite-dimensional Hilbert spaces. Ap-
plying the Fenchel duality theorem we derived dual formulations of the problems
under consideration. Using nonlinear complementarity (NC) functions the opti-
mality systems can be written as non-differentiable operator equations. A regu-
larization procedure that is closely related to augmented Lagrangians allows us
to apply and to analyze the semi-smooth Newton method for contact and friction
problems in a Hilbert space framework.

For the simplified friction problem, the Signorini problem without friction
and the 2D-Signorini problem with Tresca friction, the usage of certain NC-
functions leads to a generalized Newton iteration that allows interpretation as
an active set algorithm. For the 3D-Signorini problem with Tresca friction we
propose a generalized Newton algorithm as well. In this case, the NC-function
involves additional nonlinearities. In the corresponding iterative algorithm, this
implies that the iterates enter the derivatives explicitly, and not only by means
of estimating active sets.

Usually, in related work the system of PDEs together with the complemen-
tarity conditions are taken as starting points for the development and analysis
of algorithms for contact problems with and without friction. Here, whenever
convenient, primal and dual problem formulations are also used aside from the
original PDE system. This often enhances physical and mathematical insight
into the problem.

The tradeoff in formulating and analyzing all algorithms in infinite dimensions
is that one has to consider a family of regularized problems instead of dealing
only with the original problem. Smoothing properties of the solution mapping for
the elasticity equations can be exploited to obtain generalized differentiability of
the max- and min- operator in an infinite dimensional Hilbert space framework.
Combining the regularized problems with a first-order augmented Lagrangian
method results in the convergence of the solutions to the original problem.

We carried out comprehensive tests of our algorithms for contact problems
with and without friction in 2D. It turns out that semi-smooth Newton, possibly
combined with augmented Lagrangian methods, yield a remarkable efficiency
and reliability for the numerical realization of contact and friction problems in
elasticity. In our numerical tests, we discussed among others the dependence
on the regularization, on material parameters and the mesh. Furthermore, we
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could also confirm our theoretical findings such as superlinear convergence of
the iterates. For the simplified friction problem (Chapter 3) a time-dependent
version was briefly presented. Numerical tests confirmed that the algorithms can
also be utilized for the efficient solution of time-dependent problems.

We also proposed and analyzed generalized Newton methods for contact with
Tresca and Coulomb friction in 3D (or arbitrary dimension). From our knowledge
on the application of these methods in 2D, we expect favorable numerical results
for arbitrary dimension as well. Thus, it seems worthwhile to investigate the
numerical performance of these methods in future research.

The results obtained in this work for the minimization of non—differentiable
functionals involving the norm (or absolute value) functional may also be of in-
terest for other non-differentiable optimization problems, e.g., for total variation-
based (TV-based) image enhancement [95,105], Bingham fluids [39, 46] and the
minimization of a sum of Euclidean norms [3].



CHAPTER 7

Summary

In this thesis, friction and contact in elasticity are investigated and efficient
numerical methods for these phenomena are developed. The main difficulty of
these problems lies in the contact and friction conditions, which are inherently
nonlinear and require the treatment of non-differentiable functions; this makes
both theoretical analysis as well as reliable numerical realization truly challeng-
ing.

While in the engineering community finite-dimensional discretizations of con-
tact and friction problems are usually studied, this work focuses on their infinite-
dimensional counterparts. We apply a recently developed generalized differen-
tiability concept in function spaces for the soution of these problems. Such an
infinite-dimensional approach often provides insight into the problem structure.
This is not only of theoretical interest but also of significant practical impor-
tance since the performance of a numerical algorithm is closely related to the
infinite-dimensional problem structure.

The approach taken here is to a large extent based on writing the problems
under consideration as optimization problems. We derive the Fenchel dual prob-
lem (see [42]), which allows us to transform a non-differentiable minimization
problem into an inequality constrained maximization of a smooth functional.
Whenever possible, we also see the problems from the optimizational point of
view, i.e., aside from using just the first-order necessary conditions of the opti-
mization problem, which are usually the starting points of the analysis, we addi-
tionally use for our investigation alternately the primal and dual formulations of
the problem. Another important aspect of this work is the use of certain nonlin-
ear complementarity (NC) functions. These allow one to write complementarity
conditions as non-smooth operator equations and motivate the application of a
generalized Newton method in infinite-dimensional function spaces (see [58,104]).

This thesis consists of three main parts: In the first part (Chapter 3), a scalar
simplified friction problem is used as a model problem to investigate the phenom-
enon of friction. In the second part (Chapter 4), the Signorini contact problem in
linear elasticity is analyzed, where the frictional behavior in the contact zone is
neglected. In the third part (Chapter 5), the contact problem including friction
is discussed, taking into consideration both the Tresca as well as the Coulomb
friction law.

We start with a summary of the results obtained for the simplified friction
problem. This problem can be stated as minimization of the non-differentiable
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functional

1 %
J() = 319l + Slvla — (fv)a+g [ Iry()|de

(7.1) Iy

over the set Y := {y € H'(Q2) : 7y = 0 a.e. on [y},

where Q@ C R", Ty C T := 0% is a possibly empty open set, I'; := T\ Ty,
g>0,u>0,fe€ L*Q), 7 denotes the trace operator, and (-,-)q and || - [|q
denote the scalar product and norm in L?(f2), respectively. The problem can
equivalently be formulated as an elliptic variational inequality of the second kind.
We show by means of the Fenchel duality theorem that the dual problem of (7.1)
is the inequality-constrained maximization of a smooth functional, namely

sup  J*(A) = —3[[VyWIIG = Slly (WIS,

[A[<g a.e. on Iy

(7:2) where y(\) satisfies

a(y(\),v) = (f,v)a+ (A, 7v)r, =0 forallv €Y.

This dual formulation motivates the application of a semi-smooth Newton method
for the solution of (7.1). This method is based on a recent generalized differen-
tiability concept (see [58,104]) in function spaces. So far, it has only been applied
to constrained optimization problems such as (7.2) and not to optimization prob-
lems involving a non-differentiability (such as (7.1)).

To allow the proper statement and analysis of the method in infinite di-
mensions, we introduce a global regularization into the dual problem which, for
instance, can be motivated by augmented Lagrangians. In the corresponding
Fenchel primal problem the regularization results in a local smoothing of the
non-differentiability in the functional. The resulting set of optimality conditions
involves both primal and dual variables and can be reformulated using nonlinear
complementarity functions that involve the pointwise max- and min- operators.
Since the expressions under the max- and min- functional involve a smoothing
operator, we have the norm gap required for semi-smoothness of these nonlin-
earities (see [58,104]). We propose a primal-dual active set strategy as well as
the semi-smooth Newton method for the solution of these equations and discuss
the close relationship between these two approaches. We show local superlinear
convergence of both methods and conditional global convergence of the semi-
smooth Newton method. Applying a first-order augmented Lagrangian method
we obtain convergence to the solution of the original problems (7.1) and (7.2).
This dual method converges regardless of its initialization. By means of several
numerical tests, we discuss the influence of certain parameters and of the mesh on
the algorithm’s performance and compare the results with those obtained by the
Uzawa algorithm. The proposed methods yield a remarkable efficiency (usually
only 2-7 iterations are needed). Finally, the approach is also successfully applied
for a dynamical version of the simplified friction problem.
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FIGURE 1. Elastic body with rigid obstacle.

In the second part of this thesis we develop efficient primal-dual methods
for the Signorini contact problem in linear elasticity. In these problems, one is
concerned with the deformation of an elastic body whose surface or boundary
possibly hits a rigid foundation (see Figure 1). It is not known in advance which
part of the body’s surface will be in contact with the foundation. The main
difficulty in Signorini problems is to identify this contact zone. Then — provided
the material law is linear — the problem reduces to a linear one. The problems
discussed do not involve friction in the contact zone, i.e., the deformation in the
tangential direction is unrestricted.

The Signorini contact problem can be written as an inequality-constrained
optimization problem, namely as

(7.3) min 1/Q(O'y) : (ey) dx—/ﬂfyd:v—/nt‘rydx,

Ty=0on [y,

Tny<don ['¢
where 2 C R" is the bounded domain occupied by the elastic body in its initial
configuration and T',,T'y,T'. are disjoint parts of the boundary (see Figure 1).
Furthermore, f and ¢ denote an inner and outer force acting on the elastic
body, 7yy is the normal component of the trace 7 of the unknown deformation
y € (H'(Q))" and d denotes the gap between elastic body and rigid foundation.
Moreover, € and o denote the linear strain and stress tensors.

This problem can be written as an variational inequality of the first kind.
We derive the Fenchel dual of (7.3) and introduce a regularization that allows
algorithm statement and analysis in infinite dimensions. We present and analyze
a locally superlinearly convergent semi-smooth Newton method for the problem
and show that this method can be written as active set strategy. We combine
the approach with a first-order augmented Lagrangian method which results in
convergence to the solution of the original problem. The same holds true for an
inexact version of this method that is motivated by inexact Uzawa algorithms.
By means of several numerical examples in two dimensions we investigate the
influence of material parameters and the mesh on the algorithm’s performance.
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It turns out that the algorithms always detect the solution after few (usually
4-10) iterations and that the method shows a monotone convergence behavior.

Finally, we generalize our results obtained so far to the Signorini problem
with friction, where both the Tresca and Coulomb friction laws are considered.
While the Tresca law leads to a variational inequality, the Coulomb law results
in a quasi-variational inequality. This makes proving theoretical results difficult
(e.g., a solution to the problem only exists if the friction coefficient is sufficiently
small [40, 53]). Tresca friction is important in its own right; in addition, it is
the essential ingredient for an iterative realization of nonlinear friction laws such
as the Coulomb law. The contact problem with Tresca friction is obtained from
(7.3) by adding the non-differentiable term

(7.4) / S9llTry| dx
e

to the functional in (7.3), where || - || denotes the Euclidean norm, § the friction
coefficient and ¢ a given friction. By means of the Fenchel duality theorem we
transform the resulting problem into an inequality-constrained minimization of
a smooth functional, namely into

( 1
sup —5/(ay,\’u) : (ey,\’“) dx—/ Ad dx,
Q

A>0in HY/2(T.) .
(75) ] #eCRC s ae

where y, , satisfies
( a(Yyu 2) — L(2) + <)\,TNZ>F + (p, 7r2z)r, =0forall z €Y.

We intend to apply a semi-smooth Newton method to solve (7.5), or rather to
solve a regularized version of (7.5). In two dimensions, we can find an NC-
function that only involves the pointwise max- and min-function. Thus, many
techniques developed for the simplified friction problem and the pure contact
problem also apply for the 2D-Tresca friction problem. In arbitrary dimension,
the NC-function involves additional nonlinearities. Thus, the generalized Newton
method cannot be fully interpreted as active set strategy. However, we can prove
that it converges locally superlinear as well. Combining the algorithms with
an exact or inexact first-order augmented Lagrangian method results in global
convergence to the solution of the Tresca frictional contact problem without
regularization.

The results for the Tresca friction problem extend to the problem with Cou-
lomb friction. We prove existence of a solution to the (smoothed) problem with
Coulomb friction, uniqueness of the solution for small friction coefficients, and
discuss possible generalizations to the case without regularization. We state a
fixed point as well as a combined fixed point and augmented Lagrangian al-
gorithm for the numerical realization of the Signorini problem with Coulomb
friction. The fixed point algorithm is proved to converge provided the frictional
coefficient is small.
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Finally, using three numerical examples in two dimensions we investigate the
performance of the methods for various material parameters and grids. Further-
more, the influence of the frictional behavior on the deformation of the elastic
body is investigated. The semi-smooth Newton method always converges after
few (usually below 10) iterations and at a locally superlinear rate. We observe
monotonicity of the active sets for the contact condition, and an almost mesh-
independent behavior of the algorithm for moderate regularization parameters.
Using the augmented Lagrangian method with an inexact solution of the auxil-
iary problem, we obtain fast convergence to the solution of the non-regularized
problem with Tresca friction. The efficiency of the methods for the contact prob-
lem with Tresca friction carries over to the problem with Coulomb friction. The
proposed approach has proven to be highly efficient for the numerical realization
of 2D-contact problems with friction and one can expect favorable numerical
results in arbitrary dimension as well.
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