
Spring 2019: Advanced Topics in Numerical Analysis:
High Performance Computing

Cross-listed as MATH-GA 2012.001 and CSCI-GA 2945.001

Number of Blue Gene/Q cores

   16,384    32,768    65,536   131,072   262,144   524,288 1,048,576

B
il

li
o

n
s 

D
O

F
 /

 s
 p

er
 G

M
R

E
S

 i
t.

10
-1

10
0

10
1

10
2

1,572,864

0.98

0.99

1.03
1.03

1.03
0.98

0.97

0.98

0.99

1.03

1.03

1.03
0.98

0.96

Solver scalability

Full code scalability

Ideal scalability

Vulcan Sequoia

Figure 5: Weak scalability results on Vulcan and Sequoia from 1 to
96 racks. Performance is normalized by time and number of GMRES
iterations. Numbers along the graph lines indicate efficiency w.r.t.
ideal speedup (efficiency baseline is the 1 rack result). We report both
the weak scalability for the linear solver only (red) and for projected
total runtime of a nonlinear solve (green). The largest problem size
on 96 racks has 602 billion DOF.

account the setup time of the problem, including I/O of
input data and solver setup time, we would still arrive
at a weak scalability efficiency of 96% (green curve) for
total runtime of a nonlinear simulation, demonstrating the
negligibility of I/O and setup time. The I/O for writing
output data has to be performed only once at the end of
a nonlinear solve. The problem sizes used in the weak
scalability runs would produce ⇠8.5 GBytes of output
per BG/Q I/O node. With an I/O bandwidth of 4 GBytes/s
we can also consider the writing of the output to be
negligible for overall runtime (note that we did not output
solution fields, since the full nonlinear simulation could
not be run to completion due to limited access). The
negligible time for I/O and problem setup stem from the
advantages of adaptive implicit solvers: adaptivity results
in the problem itself being generated online as part of
the solver; implicit means that fewer outputs/checkpoints
would be required.

In Figure 6, we show strong scalability results for
a mantle convection simulation with 8.3 billion DOF.
Starting from one rack with 16,384 cores (granularity
of 506K DOF/core), we achieve a 32-fold speedup
on 96 racks with 1,572,864 cores (granularity of 5K
DOF/core), indicating 33% solver efficiency in strong
scalability, an impressive number considering the coarse
granularity of the largest problem.

Contrary to conventional wisdom, this shows that
algorithmically optimal implicit finite element solvers
for severely nonlinear, ill-conditioned, heterogeneous,
indefinite PDEs can be designed to scale to O(106) cores.

B. Node performance analysis

The performance results on BG/Q compute nodes fur-
ther support our scalability results. The top pie charts of

Number of Blue Gene/Q cores

   16,384    32,768    65,536   131,072   262,144   524,288 1,048,576

S
p
ee

d
u
p

   1

   2

   4

   8

  16

  32

  64
  96

1,572,864

1.03

1.00

0.88

0.76

0.61
0.43 0.33

1.03

1.00

0.88

0.76

0.61
0.43 0.32

Solver speedup

Full code speedup

Ideal speedup

Vulcan Sequoia

Figure 6: Strong scalability results on Vulcan and Sequoia from 1
to 96 racks. Numbers along the graph lines indicate efficiency with
respect to ideal speedup (efficiency baseline is the 1 rack result). We
report both the strong scalability for the linear solver only (red) and
for projected total runtime of a nonlinear solve (green).

Figure 7 decompose the overall runtime into the largest
contributors. We can observe that the (highly optimized)
matrix-free apply routines dominate with 80.6% in the
1 rack case. Furthermore, their portion remains very
stable with 78% on 96 racks. This result demonstrates
a key component of a highly scalable, parallel multigrid
implementation. The percent runtime for intergrid trans-
fer operations is low compared to MatVecs and stays
low even at 1.5 million cores. Hence, we have achieved
a balance between MatVecs and intergrid operations that
results in nearly optimal scalability.

MatVecs represent the portion of the code where the
maximal performance in terms of flops can be achieved.
With their dominance in runtime we are able to increase
total performance close to its maximum. That way our
implementation is performing at the limits of the roofline
model as predicted in Figure 4b, and this is achieved even
at extreme scales of O(106) cores.

C. MPI communication analysis

Figure 8 summarizes MPI communication time mea-
sured during weak and strong scalability runs: tasks
with minimum, median, and maximum communication
time are displayed. Indeed, for weak scalability, we
clearly observe that percentage of time spent in MPI
communication remains nearly constant relative to run-
time (Figure 8a). This contributes to the nearly perfect
scalability results presented in Figure 5. The increase
in median and maximum communication time in the
64 racks case can be justified by the lack of 5-D
torus connectivity in that particular configuration (due to
specific job partitioning). Another reason can be found
in a more aggressive repartitioning of coarser multigrid
levels, which leaves a greater amount of cores idle during
a short period of time in the V-cycle. This is suggested by
the higher percentage of MPI_Waitall time on 64 racks in

Lectures: Monday 5:10–7:00pm, WWH 1302

Website: https://nyu-hpc19.github.io/

Instructors: Georg Stadler, Dhairya Malhotra,
WWH #1111 WWH #1008
E-mail: stadler@cims.nyu.edu E-mail: dm4340+hpc19@nyu.edu

Description: This class is an introduction to the fundamentals of parallel scientific computing.
We will establish a basic understanding of modern computer architectures (CPUs and accel-
erators, memory hierarchies, interconnects) and of parallel approaches to programming these
machines (distributed vs. shared memory parallelism). Issues such as load balancing, com-
munication, and synchronization will be covered and illustrated in the context of numerical
algorithms. Since a prerequisite for good parallel performance is good serial performance,
this aspect will also be addressed. Along the way you will be exposed to important tools for
high performance computing such as debuggers, schedulers, visualization, and version control
systems.

Prerequisites: Prerequisites for the course are some (serial) programming experience with C,
C++ (we will mostly use C and some basic C++ in class) or FORTRAN, some familiarity
with numerical methods and knowledge of basic UNIX commands. In case of doubt, please
come by or send an email to the instructors.

Required work: This will be a hands-on class, with several parallel (and serial) computing
assignments. Your active participation is crucial since you will have to explore material by
yourself and try things out. There will be individual larger final projects at the end, which
you can tackle by yourself or with a partner. Students who have code they want to parallelize
or speed up can use that for their final project.

Intended topics: Algorithms (matrix-matrix and matrix-vector multiplication, sorting, tree al-
gorithms, Jacobi smoothing and multigrid); Computer architectures (CPUs, accelerators,
memory hierarchy, parallel programming models, networks); Programming (single-core per-
formance optimization, OpenMP, MPI, Cuda); Tools (make, git, valgrind, shell scripting,
visualization).

Literature and Organization: We will regularly post links to online reading material and re-
sources which you are required to study. The class will be organized using Slack. If you are
signed up for the class you will get an invitation for the Slack group, if you are auditing let
us know and we will add you.

https://nyu-hpc19.github.io/
stadler@cims.nyu.edu
mailto:dm4340+hpc19@nyu.edu

