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Abstract. Preliminary work is presented on halo current simulations in ITER. The first step
is the study of VDE (vertical displacement event) instabilities. The growth rate is consistent with
scaling inversely proportional to the resistive wall penetration time. The simulations have self
consistent resistivity proportional to the —3/2 power of the temperature. Simulations have been
done with temperature contrast between the plasma core and wall of 100, to model the vacuum
region between the core and resistive shell. Some 3D simulations are shown of disruptions competing
with VDEs. The toroidal peaking factor can be as high as 3.

I. Introduction

Preliminary work is presented on halo current simulations in ITER. The first step
is the study of VDE (vertical displacement event) instabilities. The growth rate is
consistent with scaling inversely proportional to the resistive wall penetration time.
The simulations have self consistent resistivity proportional to the —3/2 power of
the temperature. Simulations have been done with resistivity contrast between the
plasma core and wall of 1000 times, to model the vacuum region between the core
and resistive shell. Some 3D simulations are shown of disruptions competing with
VDEs. Toroidal peaking factors are up to about 3.

The M3D (Multi-level 3D) project [1, 2] carries out simulation studies of plasmas
using multiple levels of physics, geometry, and grid models. In the present study is
done with a resistive MHD model. M3D combines a two dimensional unstructured
mesh with finite element discretization in poloidal planes [3], with a pseudo spectral
representation in the toroidal direction. The unstructured mesh used in the calcula-
tions is shown in Fig.1. The part of the mesh adjacent to the outer wall (the ITER
- FEAT first wall) was made using the ellipt2d package [4], which incorporates the
Triangle mesh generation code.

The code includes a temperature equation, with thermal conduction along the
magnetic field modelled by the artificial sound method [7]. The resistivity is propor-
tional to 732, where T is the temperature. The halo region between the plasma
core and the wall is modelled as a cold resistive plasma. Simulations have been done
with core temperature 100 times the halo temperature, for a resistivity contrast of
1000.



The M3D code includes resistive wall boundary conditions, which match the so-
lution inside the resistive wall to the exterior vacuum solution. The exterior problem
is solved with a Green’s function method, using A. Pletzer’s GRIN code [5].

I1. Resistive Wall Boundary Conditions

The plasma is bounded by an inner, thin, resistive wall. Surrounding this is an
outer vacuum region, which can contain external current sources.

Represent the vacuum field as

B, = Vi), x Vo + VA + [,V (1)

Here I is a constant which is equal to the constant part of I in the plasma. Setting
V x B, =0 gives
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which can be satisfied if 9, is a function only of R, Z but not ¢, i.e. only the n =0
toroidal harmonic is included.
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To satisfy V- B, =0,
VA =0 (3)

On the resistive wall boundary, integrating V - B across the thin shell gives
n-[[B]] =0

where the double bracket indicates a jump across the thin wall, and 7 is the outward
normal from the plasma. In order that the normal component of the magnetic field
be continuous, for the axially symmetric part of the solution,

/I/}U = wp'
For the toroidally varying part, we require
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where B? is the magnetic field in the plasma. These boundary conditions determine
the vacuum field.

The vacuum field is solved by the GRIN code. For an axially symmetric wall, the
vacuum field is first Fourier expanded:
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From Green’s identity one has an integral equation relating A, to given 0\, /0n
on the boundary contour [6]
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where G,,(R, Z; R'Z") is the nth harmonic of the Green’s function.

When discretized, this becomes a matrix equation relating the values of A\, and
0\, /On at the dicrete mesh points of the boundary. Given a set of boundary points,
R;, Z; and the values v,; on the boundary, the ¢ indendendent, n = 0 part of the
solution is
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The source term S in (5) can be obtalned from the applied external currents, or
else using the “virtual casing” method. In this method we first perform an ideal
equilibrium calculation, with ¢ = 0 on the boundary. The source term is found from
0
S = i
on
where the right side is obtained from the ideal equilibrium.
The n > 0 part of the solution is
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Now the magnetic field components in the plasma have to be matched using
resistive evolution at the inner boundary, which is a thin resistive shell of thickness ¢
and resistivity 7,,. The boundary conditions are

A x [[B]) =

where E = nJ. In the wall,
1
J= Sﬁ’ x [[B]]-

Ohm’s Law at the resistive wall is

0A Mo o
N =Vo+ — 5" x [[B]].

An equiilibrium, with “virtual casing” source terms in the boundary conditions,
is shown in Fig.2. The poloidal flux + is shown in Fig.2(a) and the toroidal flux
I in Fig.2(b). The temperature is shown in Fig.3(a), and the toroidal current in
Fig.3(b). A velocity perturbation is added to the equilibrium, with resistive boundary
conditions, to obtain a VDE.

IV. VDE Simulations



The VDE instability growth rate is inversely proportional to the wall resisitive
penetration time, or 7,,. This scaling is consistent with simulations, as will be shown
below. To get the scaling it seems necessary to be in a regime in which

Te > Tw > Th-

Here 7, = S74, and 7, = (T},/T.)%?7., where 7, is the Alfvén time, S = 10* in
the simulations, T}, = 10727}, where T}, and T, are halo and core temperatures, and
Tw = Ow/€ta,ST4. We have chosen paramters in the regime
1>101>25102>103="2
TC TC
It is not easy to get the VDE growth rate, even if the inequality is well satisfied.
In Fig.4 are shown the growth rate as a function of time, for the case 7,/d, =
(a) 0.01, and (b) 0.005. In Fig.4(a), the growth rate is large for small time as the
equilibrium adjusts, and increases for large time as the VDE nonlinearly accelerates.
For 3574 < t < 4574 there is a linear regime with v = 0.05. In Fig.4(b), the linear
regime lasts longer, but the growth rates oscillates, about a mean of about 0.0025.
For an order of magnitude variation in 7,,/d,, the growth rate of the VDE scales
as

¥ = 5.01y /0.

The growth rate v as a function of 7,,/d, is shown in Fig.5.

The nonlinear stage of the VDE is shown in Fig.6. The poloidal flux % is shown
in Fig.6(a) and the toroidal flux I in Fig.6(b). The temperature is shown in Fig.7(a),
and the toroidal current in Fig.7(b).

V. Disruption Simulations

In three dimensional simulations, disruptions can occur. In one scenario, a dis-
ruption causes a thermal quench, which in turn causes a current quench. This is
accompanied by a VDE.

The following calculation is an example of this scenario. The time history of
the toroidal peaking factor is shown in Fig.8(a), and the normalized peak current
and peak temperature in Fig.8(b). The toroidal peaking factor almost reaches 3,
but most of the time oscillates around 2. Fig.8(b) shows the current, plotted with
a dashed line, which declines in value more slowly than the temperature, shown as
a solid line. The temperature quench proceeds the current quench. The timescale
is artificially rapid. In this simulation S = 30,000. Fig.9 shows the poloidal flux
1 at times ¢t = 71,87,12674. The early nonlinear stage of an internal kink occurs
at time t = T174. The disruption occurs at the intermediate time ¢ = 8774. The
VDE occurs at the later time, ¢ = 12674. The temperature is shown at the same
times in Fig.10. In the intermediate time, the peak temperature is about 0.65 of the
initial peak temperature, and at the later time, it is about 0.1 times the initial peak
temperature. The toroidal flux is shown in Fig.11. There is significant intersection of
the toroidal flux contours with the wall, indicating the flow of halo current. The halo



current in this case is small. Fig.12 shows the electrostatic potential, which which
is approximately the streamlines of the incompressible part of the flow. In Fig.12(a)
the potential is typical of an internal kink, and is similar during the disruption phase
of Fig.12(b). In the VDE phase of Fig.12(c) the flow has changed into a vertical flow
into the divertor.
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Figure 1: Mesh in poloidal plane
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Figure 2: (a) Poloidal Flux (b) Toroidal Flux at t = Ot4
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Figure 3: (a) Temperature (b) Toroidal current at t = 0t 4
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Figure 4: Growth rate vs. time of VDEs for n,/d,, = (a) 0.0005 (b) 0.00025
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Figure 5: Growth rate of VDEs vs. 1y,/0,
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Figure 6: (a) Poloidal Flux (b) Toroidal Flux at t = 103t,4
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Figure 7: (a) Temperature (b) Toroidal current at t = 103t4
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Figure 8: (a) toroidal peaking factor (tpf) vs. time (b) normalized peak toroidal
current (dotted line) and peak temperature vs. time
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Figure 9: Poloidal Flux at ¢
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Figure 10: Temperature at ¢
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Figure 11: Toroidal Flux at ¢t = (a) 71t4 (b) 87t4 (c) 126t4
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Figure 12: Electrostatic
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Potential at t = (a) 7T1ta (b) 87ta (c) 126t4



