next up previous
Next: About this document ... Up: halo-6 Previous: halo-6

Bibliography

1
PARK, W., BELOVA, E.V., FU, G.Y., TANG, X.Z., STRAUSS, H.R., SUGIYAMA, L.E., ``Plasma Simulation Studies using Multilevel Physics Models" Phys. Plasmas 6 1796 (1999).

2
SUGIYAMA, L.E., PARK, W., STRAUSS, H.R., HUDSON, S.R, STUTMAN, D., TANG, X.Z., Studies of Spherical Tori, Stellarators and Anisotropic Pressure with M3D, Nucl. Fusion (2001).

3
STRAUSS, H.R. and LONGCOPE, W., An Adaptive Finite Element Method for Magnetohydrodynamics, J. Comput. Phys. 147, 318 - 336 (1998).

4
Pletzer, A., ``Python & Finite Elements", Dr. Dobb's Journal #334, p. 36 (March 2002) http://ellipt2d.sourceforge.net

5
http://w3.pppl.gov/rib/repositories/NTCC/catalog/Asset/grin.html

6
Chance, M., Phys. Plasmas 4, 2161 (1997).

7
PARK, W., MONTICELLO, D., STRAUSS, H., MANICKAM, Phys. Fluids 29 (1986) 1171.

Figure 1: Mesh in poloidal plane
\begin{figure}
\centerline {\large{\bf {ITER Equilibrium}}}\par\centerline {\eps...
...=/home/strauss/papers/halo/pix/1-29v4-mesh.epsi,width=7.0cm,clip=t}}\end{figure}

Figure 2: (a) Poloidal Flux (b) Toroidal Flux at t = $0 t_A$
\begin{figure}
\centerline {\epsfig{figure=/home/strauss/papers/halo/pix/1-29v4-...
...home/strauss/papers/halo/pix/1-29v4-si0.epsi,width=6.0cm,clip=t}(b)}\end{figure}

Figure 3: (a) Temperature (b) Toroidal current at t = $0 t_A$
\begin{figure}
\centerline {\epsfig{figure=/home/strauss/papers/halo/pix/1-29v4-...
.../home/strauss/papers/halo/pix/1-29v4-c0.epsi,width=6.0cm,clip=t}(b)}\end{figure}

Figure 4: Growth rate vs. time of VDEs for $\eta _w / \delta _w = $ (a) 0.0005 (b) 0.00025
\begin{figure}
\large {\bf\centerline {VDE Instability }}
\par\centerline {\epsf...
...ome/strauss/papers/halo/pix/1-29v10-gam.epsi,width=6.0cm,clip=t}(b)}\end{figure}

Figure 5: Growth rate of VDEs vs. $\eta _w / \delta _w $
\begin{figure}
\centerline {\epsfig{figure=/home/strauss/papers/halo/pix/vde_gam3.eps,width=9.0cm,clip=t}}\end{figure}

Figure 6: (a) Poloidal Flux (b) Toroidal Flux at t = $103 t_A$
\begin{figure}
\centerline {\epsfig{figure=/home/strauss/papers/halo/pix/1-29v4-...
...home/strauss/papers/halo/pix/1-29v4-si2.epsi,width=6.0cm,clip=t}(b)}\end{figure}

Figure 7: (a) Temperature (b) Toroidal current at t = $103 t_A$
\begin{figure}
\centerline {\epsfig{figure=/home/strauss/papers/halo/pix/1-29v4-...
.../home/strauss/papers/halo/pix/1-29v4-c2.epsi,width=6.0cm,clip=t}(b)}\end{figure}

Figure 8: (a) toroidal peaking factor (tpf) vs. time (b) normalized peak toroidal current (dotted line) and peak temperature vs. time
\begin{figure}
\centerline {\epsfig{figure=/home/strauss/papers/halo/pix/tpf.eps...
...gure=/home/strauss/papers/halo/pix/tpf_2.eps,width=6.5cm,clip=t}(b)}\end{figure}

Figure 9: Poloidal Flux at $t = $ (a) $71 t_A$ (b) $87 t_A$ (c) $126 t_A$
\begin{figure}
\centerline{\epsfig{figure=/home/strauss/papers/halo/pix/2-28n1-a...
...home/strauss/papers/halo/pix/2-28n1c-ah.epsi,width=4.5cm,clip=t}(c)}\end{figure}

Figure 10: Temperature at $t = $ (a) $71 t_A$ (b) $87 t_A$ (c) $126 t_A$
\begin{figure}
\centerline{\epsfig{figure=/home/strauss/papers/halo/pix/2-28n1-t...
...home/strauss/papers/halo/pix/2-28n1c-tm.epsi,width=4.5cm,clip=t}(c)}\end{figure}

Figure 11: Toroidal Flux at $t = $ (a) $71 t_A$ (b) $87 t_A$ (c) $126 t_A$
\begin{figure}
\centerline{\epsfig{figure=/home/strauss/papers/halo/pix/2-28n1-s...
...home/strauss/papers/halo/pix/2-28n1c-si.epsi,width=4.5cm,clip=t}(c)}\end{figure}

Figure 12: Electrostatic Potential at $t = $ (a) $71 t_A$ (b) $87 t_A$ (c) $126 t_A$
\begin{figure}
\centerline{\epsfig{figure=/home/strauss/papers/halo/pix/2-28n1-u...
...home/strauss/papers/halo/pix/2-28n1c-uh.epsi,width=4.5cm,clip=t}(c)}\end{figure}


next up previous
Next: About this document ... Up: halo-6 Previous: halo-6
Hank Strauss
2003-03-04