next up previous
Next: About this document ...

M3D Stellarator Simulations


H.R. STRAUSS
New York University, New York, NY, USA
L.E. SUGIYAMA
Massachusetts Institute of Technology, Cambridge, MA, USA
G.Y. FU, W. PARK, J.BRESLAU, D. MONTICELLO
Princeton Plasma Physics Laboratory, Princeton, NJ, USA


M3D code



Ideal and Resistive MHD



Figure 1: Growth rate $\gamma $ of Ideal and Resistive Mode vs. $\beta $
\begin{figure}
\centerline {\epsfig{figure=/home/strauss/meetings/cemm/cemm8-19-2/pixx/gam_stres1.eps,width=8cm,clip=t}}\end{figure}

Two fluid



Hall parameter

\begin{displaymath}H = {c \over \omega_{pi} R} \end{displaymath}


\begin{displaymath}\omega_* R/v_A = H n ({\beta_p a \over 2 q L_p})\end{displaymath}

where $n$ is toroidal mode number. Ideal modes are stable if

\begin{displaymath}\omega_* > \gamma_{MHD} \sim 0.1 v_A / R \end{displaymath}

can be stable, $\beta > 0.07, H = 0.02, n \ge 10$

Figure 2: Electrostatic potential for (a) MHD, $H=0$, (b) 2 Fluid $H=0.02$. In both cases, $\beta = 0.07, S=4 10^5, p_e = p_i,$ density = constant.
\begin{figure}
\centerline {\epsfig{figure=/home/strauss/meetings/stel02/pix/mhd...
.../strauss/meetings/stel02/pix/2f_4800_n4nn_u.epsi,width=6cm,clip}(b)}\end{figure}

TAE Modes




Growth rate $\gamma $ vs. hot particle $\beta $. Linear relation is characteristic of TAE.

\begin{figure}
\centerline {\epsfig{figure=/home/strauss/meetings/cemm/cemm8-19-2/pixx/qas2gvb.eps,width=8cm,clip=t}}\end{figure}

M3D - PIES Comparison




Figure 3: Poincare plots of a test case done with (a) PIES (b) M3D
\begin{figure}
\centerline{\epsfig{figure=/home/strauss/meetings/sherwood/sh03/p...
...meetings/sherwood/sh03/pix/4-16vbb-poin.epsi,width=3.7cm,clip=t}(b)}\end{figure}

Summary






next up previous
Next: About this document ...
Hank Strauss
2003-05-22