
7 Laplace and Poisson equations

In this section, we study Poisson’s equation

�u = f(x). (152)

When f = 0, the equation becomes Laplace’s:

�u = 0. (153)

More often than not, the equations will apply in an open domain ⌦ of Rn, with
suitable boundary conditions on �⌦. These boundary conditions are typically
the same that we have discussed for the heat equation: Dirichlet, Neumann or
mixed (Newton’s), though without any reference to time.

7.1 Motivation

These are the first equations that we study where time plays no role. Even
though one might be tempted to think that “time” is just a suggestive name
placed on an otherwise undistinguishable independent variable, models of time-
evolution, such as the wave and heat equation, display phenomena very di↵erent
from those where time is either absent or plays only a parametric role. We will
observe some of this di↵erent phenomenology in the examples of this chapter,
and build it later into a general classification of partial di↵erential equations
using characteristics.

Regarding physical instances of the equations, it is clear that they will show
up whenever an evolution modeled by the heat equation reaches a steady state.
All phenomena modeled by forced wave equations also include a Poisson com-
ponent, corresponding to their time-independent solutions. Unlike the heat
equation though, that dissipates the energy in all unsteady modes, the wave
equation will typically “radiate” these out of the domain. Also, we saw in
homework 5 that a reduced wave equation, very similar in form and spirit to
Laplace and Poisson’s, shows up in the study of monochromatic waves.

We noticed before that the Laplacian is the variational derivative of the L
2

norm of the gradient. Hence Laplace and Poisson’s equations appear in the
description, for instance, of surfaces with minimal area, such as soup bubbles.
This was in fact one of Richard Courant’s main areas of research. We will study
this variational view of the equations as we move along.

On a more purely mathematical line, Laplace’s equation appears prominently
in the theory of complex variables and in connection with issues of analyticity
and smoothness. Part of our study here will elucidate how a regularity gain

associated with the equations comes along.

7.2 The one-dimensional case

In one dimension, both Laplace and Poisson’s equations are ODEs, not PDEs.
Yet it would be a mistake to skip them just out of formal purism: in their
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simplicity, these one-dimensional cousins reveal most clearly much of what their
higher-dimensional relatives are about. Laplace’s equation, for starters, becomes
the humble ODE

u
00(x) = 0,

with general solution
u = ax+ b.

Then the only solution bounded on the whole real line is a constant, and the
solution satisfying the Dirichlet boundary conditions

u(xl) = ul, u(xr) = ur

is the straight segment

u(x) = ul + (ur � ul)
x� xl

xr � xl
. (154)

This makes sense from the variational viewpoint: we know that u(x) minimizes
the norm of u0(x):

I(u) =

Z xr

xl

(u0(x))
2
dx.

Problem: Show by induction on the cardinality of the partition of (xl, xr) into
sub-segments, that the straight segment (154) minimizes I over all continuous
piecewise linear functions satisfying the boundary conditions.

More generally, for small smooth variations ⌘(x) with ⌘(xl) = ⌘(xr) = 0,

I(u+ ⌘)� I(u) ⇡ 2

Z xr

xl

u
0(x)⌘0(x) dx = �2

Z xr

xl

u
00(x)⌘(x) dx.

Therefore, if u00(x) is continuous and u
00(x) 6= 0 at any point x = x0, we can

always find an ⌘(x) with support concentrated near x0, in such a way that
I(u + ⌘) < I(u). It follows that, if there is a minimum for I(u) among those
functions with continuous second derivatives, it needs to satisfy Laplace’s equa-
tion u

00(x) = 0.
Let us now move on to the one-dimensional Poisson problem:

u
00(x) = f(x), u(xl) = ul, u(xr) = ur.

By sustracting the solution above to Laplace’s equation, we can limit ourselves
to the consideration of homogeneous boundary conditions:

u(xl) = u(xr) = 0.

We could solve this problem by integrating f twice, and fit the constants of
integration to the boundary conditions. However, it is more illuminating to
introduce the Green’s functions G(x, y), satisfying

Gxx = �(x� y), G(xl, y) = G(xr, y) = 0. (155)

67



Then u(x) is the result of the superposition

u(x) =

Z xr

xl

f(y) G(x, y) dy.

As for G, it solves Laplace’s equation and one boundary condition on each side
of x = y, so

G(x, y) =

⇢
a (x� xl) for x < y

b (x� xr) for x > y
.

Continuity of G at x = y implies that

a (y � xl) = b (y � xr) ,

and the jump in Gx: Gx(y+, y)�Gx(y�, y) = 1, brought about by the �-function
on the right-hand side, implies that

b� a = 1.

It follows that

G(x, y) =

(
(xr�y)(xl�x)

xr�xl
for x < y

(y�xl)(x�xr)
xr�xl

for x > y
, (156)

a function displayed in figure (12). Notice the somewhat unexpected symmetry:

G(x, y) = G(y, x). (157)

In words, the e↵ect of a force at point y over the solution u at point x is the
same as that of a force at point x over the solution at point y. In the engineering
literature, this is known as Maxwell’s reciprocity principle.

We do not need the exact formula (156) to derive this principle; we could
have derived it directly from the problem (155) defining the Green’s functions.
For this, we need a particular instance of the divergence theorem: for any two
functions u(x) and v(x),

Z xr

xl

(u v
00 � v u

00) dx = (u v
0 � v u

0)
���
xr

xl

, (158)

which follows from simple integration by parts. Applied to

u(x) = G(x, y), v(x) = G(x, z),

this yields
G(z, y)�G(y, z) = 0,

the principle we wanted to prove. The identity (158) is nothing but the proof
that the 1d-Laplacian operator with homogeneous boundary conditions is self-
adjoint under the canonical inner product. Hence Maxwell’s reciprocity principle
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Figure 12: Green’s function for the unit segment; here y=0.75.

(157) applies to far more general scenarios than 1d Poisson: if L is a self-adjoint
operator, i.e. Z

⌦
u L(v) dx =

Z

⌦
v L(u) dx,

and
L[G(x, y)] = �(x� y),

then G(x, y) = G(y, x). The space where the functions u, v and G above
live is typically -but not necessarily- defined by homogeneous conditions on the
boundary �⌦.

Thinking in terms of adjoints brings to mind the issue of solvability. Consider
the 1d Poisson equation with homogeneous Neumann boundary data:

u
00(x) = f(x), u

0(xl) = u
0(xr) = 0.

Does it have a unique solution? The Fredholm alternative would ask us to look
at the homogeneous adjoint problem

v
00(x) = 0, v

0(xl) = v
0(xr) = 0.

Since this has the nontrivial solution

v = 1,

the original problem will have solutions only if f(x) is orthogonal to v = 1:

Z xr

xl

f(x) dx = 0.
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Moreover, the solution u(x), if it exists, is not unique, since we can add to it
any multiple of v (i.e., any constant.) 4

The linear algebra behind the Fredholm alternative is clear: if

L(u) = f and L
⇤(v) = 0,

then
(v, f) = (v, L(u)) = (L⇤(v), u) = 0.

The physics is also clear, in terms for instance of the heat equation: a problem
with insulating boundaries can only have a steady solution is there is no net
generation of heat within the domain, i.e. if

R
f dx = 0.

Questions: Are there similar constraints on existence of solutions and lack
of uniqueness for 1-d Poisson with homogeneous Dirichlet data? And for non-
homogeneous Neumann data?

7.3 Multidimensions

Most of what we have said about 1-d Poisson extends immediately to the mul-
tidimensional scenario, except for the readily availability of exact solutions. Let
us summarize the results here. If u solves the Poisson problem with Dirichlet
boundary data

�u = f(x) in ⌦, u(x) = ub(x) on �⌦,

we can think of u as a superposition of two solutions,

u = u1 + u2,

where u1 satisfies Laplace’s equation

�u1 = 0 in ⌦, u1(x) = ub(x) on �⌦,

and u2 satisfies Poisson’s with homogeneous boundary data,

�u2 = f(x) in ⌦, u2(x) = 0 on �⌦.

To find u2, we introduce the Green’s functions G(x, y), satisfying

�xG(x, y) = �(x� y) for x 2 ⌦, G(x, y) = 0 on �⌦.

In terms of these,

u2(x) =

Z

⌦
G(x, y) f(y) dy.

From Green’s identity (an instance of the divergence theorem)
Z

⌦
(u�v � v�u) dx =

Z

�⌦
(urv � vru) · ~n dx, (159)

4We are using for this last statement the fact that the Laplacian is self-adjoint; otherwise,
the free solution to add would be a solution to the homogeneous version of the original problem,
not its adjoint.
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we infer Maxwell’s reciprocity principle (157), by setting u = G(x, y) and v =
G(x, z). It so happens that we can use the same Green’s functions to solve
Laplace’s equation with non-homogeneous boundary data. To this end, we can
invoke (159) again, but this time setting u = u1 and v = G(x, y). We obtain

u1(y) =

Z

�⌦
ub(x)rxG(x, y) · ~n dx.

Exchanging x and y for notational uniformity, and invoking Maxwell’s reci-
procity principle, we obtain

u1(x) =

Z

�⌦
ub(y)ryG(x, y) · ~n dy. (160)

Then the e↵ect of a boundary value at the point y on the solution to Laplace’s
equation at point x is given by the derivative of the Green’s function normal to
the boundary at y.

Question: What’s the intuition behind this fact? Hint: Work out what it
means in 1d.

As for the solvability of the Poisson problem with Neumann boundary data,
the reasoning and results are identical to those in one dimension.

7.4 Fundamental solutions

In the subsection above, we wrote most results in terms of the Green’s functions
G(x, y), but did not even attempt to find these. For general domains ⌦, there is
no closed formula for G. For some very symmetric domains though, the situation
is not so hopeless. Inspired by our previous work on the heat equation, we start
by solving the following equation in all of Rn:

�F = �(x).

Because of the invariance of the equation under rotations, the answer can only
depend on r, so �

r
n�1

F
0(r)

�0
= 0 for r > 0,

yielding

F = � 1

2⇡
log(r) for n = 2,

and
F =

cn

rn�2
for n > 2,

the fundamental solutions to Laplace’s equation, where the constants cn are
chosen so that �F integrates to one over a sphere centered at the origin; in
particular, c3 = 1

4⇡ . With these, we can already solve Poisson’s equation on all
of Rn,

�u = f(x),
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using as Green’s function G(x, y) = F (x� y).
Consider next the half-space x1 > 0. To satisfy the boundary condition

G(x, y) = 0 on x1 = 0, it is enough to add to the source at y an equivalent sink
at its image y

⇤, where y
⇤
1 = �y1 and y

⇤
j = yj for j 6= 1:

G(x, y) = F (x� y)� F (x� y
⇤).

This is the method of images, which can also be applied to compute the Green’s
function for the unit n-dimensional ball. To this end, we notice –or remember, if
we have studied some analytic geometry before . . . – that, for any point y inside
the ball, there is another point outside,

y
⇤ =

y

kyk2 ,

the image of y, such that, for all points x on the surface of the ball,

kx� y
⇤k

kx� yk =
1

kyk ,

a value independent of x (It is enough to see that this holds in 2d, since y, y⇤,
x and the center of the sphere all lie on the same plane.) Then

G(x, y) =
1

2⇡
log

✓
kykx� y

⇤

x� y

◆
for n = 2

and
G(x, y) = cn

h
kx� yk2�n � (kyk kx� y

⇤k)2�n
i
for n > 2

satisfy
�xG = �(x� y) for kxk < 1, G(x, y) = 0 for kxk = 1,

and so they are the required Green’s functions. The resulting formula (160) for
the solution to Laplace’s equation within a ball goes by the name of Poisson’s.
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7.5 Laplace’s equation mean-value properties

When we studied the heat equation, we noticed that the Laplacian operator �
could be thought of as modeling di↵usion, a process by which a field is rendered
more uniform through the local mixing brought about by a fluctuating field.
Then Laplace’s equation, that models the end product of this di↵usion, should
have solutions that are as well-mixed as can be. In particular, the solution
at each point within the domain should agree with the local average of the
solution nearby. This is the physical content of the mean-value property of
Laplace’s equation. As a result, we should not expect to find any irregularity in
the solution within the domain; not even smooth maxima or minima. Thus the
mean-value property can be used as a building block for a theory of regularity.

In one dimension, the solutions to Laplace’s equation are linear. Now, linear
functions can be characterized precisely by their mean-value property: the value
of the solution at each point is the average of the values at any two equidistant
points, one to the right and the other to the left. It is also the average of the
solution over any segment centered at the point. This suggests that not only
a mean-value property should hold for all solutions to Laplace’s equation, but
also that the property alone should su�ce to characterize these solutions.

For more motivation, consider the standard finite-di↵erence approximation
to the Laplacian in two-dimensions:

�du
j
i =

1

�x2

⇣
u
j+1
i+1 + u

j�1
i+1 + u

j+1
i�1 + u

j�1
i�1 � 4uj

i

⌘
.

Then �du
j
i = 0 states that the value of u at each point is the average of its

values over the four neighboring points on the lattice 5.
The mean-value properties in all of their generality are the following: if u(x)

is a solution to Laplace’s equation in ⌦ 2 R
n, then, for any interior point x and

any ball Br(x) lying entirely within the domain ⌦, the value of u at x is the
average of its values over both the surface �Br(x) of the ball and its interior
Br(x). To prove this, we introduce the average

ū(x, r) =

Z

�B1(x)
u (x+ r~n(s)) ds,

where ds is normalized so as to integrate to one over �B1(x). Then

d

dr
ū(x, r) =

Z

�B1(x)

�u

�n
(x+ r~n(s)) ds =

Z

B1(x)
�u dx = 0.

Since clearly limr!0 ū(x, r) = u(x), it follows that

u(x) = ū(x, r) (161)

5The same applies to any number of dimensions. Yet the statement is true only for equi-
lateral grids; if the grid cells were to be rectangular, the averaging procedure would have to
weight the various neighbors by their inverse square distance to the point.
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for all r > 0. The fact that u(x) is also the average over all of Br(x) follows
from integrating u over Br(x) along concentric spherical surfaces, and applying
the mean value property (161) to each of these.

To prove the converse of these properties, that a function u(x) with con-
tinuous second derivatives that satisfies (161) is necessarily harmonic –i.e., it
satisfies Laplace’s equation–, it is enough to notice that, if �u 6= 0 at some
point x, then one can always find a small enough radius r such that �u does
not change sign within Br(x). It follows from the divergence theorem then that
d
ds ū(x, s) 6= 0 for s  r, so ū(x, s) cannot possibly equal u(x), which does not
depend on s.

Tu summarize the results of this subsection, the following two statements
are equivalent: 1) u(x) satisfies Laplace’s equation in a domain ⌦; and 2) u(x)
has continuous second derivatives and satisfies the mean-value property (161)
within ⌦.

7.6 Some consequences of the mean-value properties

The mean-value properties above allow us to make quite strong statements about
the nature of harmonic functions. We survey here some of the most important
ones:

The maximum principle: A function u(x) harmonic in a connected domain
⌦ cannot achieve its maximum or minimum value in the interior of ⌦, unless u
is a constant: max⌦ u = max�⌦ u.
Proof: The average ū(x, r) cannot be bigger than the maximum value of u on
�Br(x), nor smaller than its minimum. Then, if u achieves its maximum value
umax on x 2 ⌦, u must equal umax in all balls Br(x) that fit within ⌦. Since
⌦ is connected, we can cover it with overlapping balls, so u must equal umax

everywhere, i.e. it must be a constant.

Uniqueness: The Dirichlet problem for Poisson’s equation,

�u = f(x) in ⌦, u(x) = ub(x) on �⌦,

has at most one solution.
Proof: The di↵erence w = u1 � u2 between two solutions, u1 and u2, satisfies
Laplace’s equation with homogeneous boundary data,

�w = 0 in ⌦, w(x) = 0 on �⌦.

Since w is bounded above and below from its values on �⌦, we conclude that w
is identically zero, and so u1 = u2.

When we studied the one-dimensional version of Laplace’s equation, we saw
that a harmonic function defined on the whole real line is linear, and so it cannot
be bounded unless it is a constant. This is a particular instance of the following
more general theorem:
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Liouville’s theorem: A harmonic function u(x) defined over all of Rn that is
bounded either above or below is necessarily a constant.
Proof: Denote the bound byD. If a function is harmonic, so is its first derivative.
Then, for any y 2 R

n and r > 0,

|ru(y)| =

�����
1

cnr
n

Z

Br(y)
ru dx

����� =

�����
1

cnr
n

Z

�Br(y)
u ~n(s) ds

����� 
����
n D

r

���� .

Leting r ! 1, we obtain that |ru(y)| = 0. It follows that u is a constant.
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