
Introduction to PDEs 2018, seventh assignment,

due Monday November 5th

Consider the following stochastic process in the interval x ∈ [0, 1]:

1. Divide the interval into n equal segments of size ∆x = 1
n , and introduce

the points xi = i ∗ ∆x, for i = 0, 1, . . . n. Similarly, introduce the times
tj = j ∗∆t, with ∆t = 1

n2 .

2. Assign to each xi a number of particles n0
i = [n∗f(xi)], where the brackets

stand for rounding off to the nearest integer, and f(x) = sin
(
π
2x
)
. Call

N the total number of particles assigned, i.e. N =
∑
i n

0
i .

3. Each particle k starts at position X0
k given by its assignment above, and

then, for each j, it has Xj+1
k = Xj

k−∆x with probability 1
2+ 1

n and Xj+1
k =

Xj
k + ∆x with probability 1

2 −
1
n . If particle k arrives at Xj+1

k = −∆x, it

is eliminated. If it arrives at Xj+1
k = 1 + ∆x instead, it is reassigned to

Xj+1
k = 1.

4. Count the number of particles nji at position xi at time tj .

1) As n grows, nji approaches p(xi, tj), where p(x, t) is a smooth function. Which
equation, with which boundary conditions and initial data does p satisfy?

2) Simulate the process for n = 50 and n = 100 and plot your results for t = 0,
t = 0.1 and t = 0.3 , as well as the trajectories up to t = 0.3 (or up to their
disappearance) of 5 particles for each of the two values of n. Make sure that at
least one of the 10 particles chosen makes it to time 0.3!

A little Matlab hint: the instruction

r = rand(1,m) > pr;

generates m independent random numbers r that are 1 with probability 1− pr
and 0 with probability pr.

3) If you eliminate the drift terms ± 1
n from the stochastic process, then the

model that you derived in part 1) reduces to one with a very simple exact
solution. Compare it to the simulation of part 2) (repeated without drift) by
superimposing the corresponding plots.


