## Introduction to PDEs 2018, seventh assignment, due Monday November 5th

Consider the following stochastic process in the interval $x \in[0,1]$ :

1. Divide the interval into $n$ equal segments of size $\Delta x=\frac{1}{n}$, and introduce the points $x_{i}=i * \Delta x$, for $i=0,1, \ldots n$. Similarly, introduce the times $t_{j}=j * \Delta t$, with $\Delta t=\frac{1}{n^{2}}$.
2. Assign to each $x_{i}$ a number of particles $n_{i}^{0}=\left[n * f\left(x_{i}\right)\right]$, where the brackets stand for rounding off to the nearest integer, and $f(x)=\sin \left(\frac{\pi}{2} x\right)$. Call $N$ the total number of particles assigned, i.e. $N=\sum_{i} n_{i}^{0}$.
3. Each particle $k$ starts at position $X_{k}^{0}$ given by its assignment above, and then, for each $j$, it has $X_{k}^{j+1}=X_{k}^{j}-\Delta x$ with probability $\frac{1}{2}+\frac{1}{n}$ and $X_{k}^{j+1}=$ $X_{k}^{j}+\Delta x$ with probability $\frac{1}{2}-\frac{1}{n}$. If particle $k$ arrives at $X_{k}^{j+1}=-\Delta x$, it is eliminated. If it arrives at $X_{k}^{j+1}=1+\Delta x$ instead, it is reassigned to $X_{k}^{j+1}=1$.
4. Count the number of particles $n_{i}^{j}$ at position $x_{i}$ at time $t_{j}$.
1) As $n$ grows, $n_{i}^{j}$ approaches $p\left(x_{i}, t_{j}\right)$, where $p(x, t)$ is a smooth function. Which equation, with which boundary conditions and initial data does $p$ satisfy?
2) Simulate the process for $n=50$ and $n=100$ and plot your results for $t=0$, $t=0.1$ and $t=0.3$, as well as the trajectories up to $t=0.3$ (or up to their disappearance) of 5 particles for each of the two values of $n$. Make sure that at least one of the 10 particles chosen makes it to time 0.3 !

A little Matlab hint: the instruction

$$
r=\operatorname{rand}(1, m)>p r
$$

generates $m$ independent random numbers $r$ that are 1 with probability $1-p r$ and 0 with probability $p r$.
3) If you eliminate the drift terms $\pm \frac{1}{n}$ from the stochastic process, then the model that you derived in part 1) reduces to one with a very simple exact solution. Compare it to the simulation of part 2) (repeated without drift) by superimposing the corresponding plots.

