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CLUSTERING AND CLASSIFICATION THROUGH NORMALIZING
FLOWS IN FEATURE SPACE∗
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Abstract. A unified variational methodology is developed for classification and clustering prob-
lems and is tested in the classification of tumors from gene expression data. It is based on fluid-like
flows in feature space that cluster a set of observations by transforming them into likely samples
from p isotropic Gaussians, where p is the number of classes sought. The methodology blurs the
distinction between training and testing populations through the soft assignment of both to classes.
The observations act as Lagrangian markers for the flows, comparatively active or passive depending
on the current strength of the assignment to the corresponding class.
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1. Introduction. Some classification problems require few input variables. In
clinical diagnosis, for example, patients with active infections may be easily identified
by the sole presence of an elevated count of white blood cells in the circulation,
while patients with advanced liver failure can be detected by measuring the ammonia
levels in the blood. If data from a large enough training population are available,
these variables can be calibrated so as to produce the desired classification when a
new testing sample becomes available. In the simplest scenario, this calibration may
produce a table of possible ranges of the combined input variables—or features—from
which to read off the output, or a formula for the output, with parameters fitted to the
training data. A more thorough approach may be to estimate a probability density
in the space of features associated with each class and use it to infer the likelihood
that the new sample belongs to each of the classes [1].

Yet such a combination of few required input variables and large training popu-
lations is often unavailable. This is the case when one studies exceptional situations,
such as a rare illness, when observations are difficult or costly, and when the fun-
damental causes underlying the separation into classes—which presumably link the
classes to a few well-defined observables—are not thoroughly understood, as is often
the case in complex systems: the human body, our planet’s climate, the financial
world. Modern technology offers us a way to compensate for this lack of understand-
ing: the possibility to monitor not a few, but myriads of variables loosely associated
with the classification sought, such as the expression level of genes, the sea-surface
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temperature throughout the globe, and the prices of options. Presumably, we can
balance with quantity of data the missing well-defined causal links to a few.

There is a problem though. Consider, for instance, the simplest procedure of
compiling a table. Since the number of entries required grows exponentially with
the dimension of the feature space, the size of the training population required to
fill the table soon becomes unrealistic (billions of patients, of temperature monthly
averages, of daily returns). In building a parametric formula, this problem translates
into overfitting: one can always find parameters that provide a perfect fit to the
training population, but which may yield meaningless results on new samples.

Similarly, for density estimation, one needs a number m of training samples that
grows exponentially with the dimension n of the space; this is the “curse of dimension-
ality.” For simple illustration, consider the situation when m < n. Since all training
points lie on a hyperplane of dimension m, they do not tell us how to estimate the
probability density away from this hyperplane. Yet, with probability one, when a
testing sample arrives, it will not lie on the hyperplane; how can one then say any-
thing meaningful about its likelihood? The planar geometry of this illustration is not
essential: the crucial point is that almost all points in phase space are far from the
observations—“not in the table”—so their estimated density is not reliable.

This problem seems insurmountable; yet there is something counterintuitive about
it. Since the classification problem appears challenging, we gather more information;
can this extra information hurt us? Attempting to diagnose a patient’s ailment, we
are provided with extra clinical results: should we throw them away unread, lest they
confound our judgment? Clearly, if there is a problem, it resides not in the availability
of additional data, but in our way of handling it. In this article, we propose to bypass
this problem through a general methodology for classification and clustering.

The general principle is quite straightforward. We worry that the testing points
may lie far from the training observations, and so their probability density in each
class may be poorly estimated. Yet we have observations lying precisely on the testing
points: the testing points themselves! Of course, we do not know a priori to which class
they belong—that is what we would like to unfold from the data—but we do know
that they belong to one of them. This knowledge can be used to provide a robust
classification scheme. Such use of unlabeled data for classification lies at the core
of semisupervised learning [2] and transductive inference [12]. This methodological
direction blurs the distinction between the training and testing populations. One can
pursue this idea further to establish a general methodology that does not distinguish
between problems in classification and in clustering; the latter do not have a training
population at all.

Our proposal, which builds on a density estimation algorithm developed in [11],
is based on a set of fluid-like flows that transform the observations into realizations of
p isotropic Gaussian processes. The flows use the observations as active Lagrangian
markers, which guide the descent of the Kullback–Leibler divergence [10] between the
current distributions and the target Gaussians. All observations guide all p flows,
but, as some become more firmly assigned to individual classes, they become more
active in the flows associated with these, while behaving more and more as pas-
sive Lagrangian markers for the others. This procedure allows us to integrate the
expectation-maximization methodology into a natural descent framework.

Many of the topics discussed in this paper have points in common with themes in
the literature; our contribution provides novel ingredients, but also a unified method-
ology and viewpoint. A central role is played by the expectation maximization
(EM) framework [4], for which we provide an alternative derivation in classification-
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clustering settings. The Gaussianization procedure for density estimation was origi-
nally developed in [11], but shares some traits with one developed in [3], in the general
context of exploratory projection pursuit [6]. Variable selection is a broad field (see [8]
for a general review); we use a cluster assessment criterion for variable selection that
fits loosely within those based on information theory [5]. Our main innovation is the
use of smooth, gradual flows as a clustering technique.

The paper is structured as follows. After this introduction, section 2 presents
a general, unified formulation of classification and clustering in the EM framework.
Section 3 introduces the flows in feature space, the centerpiece of the methodology
proposed. Section 4 extends the methodology to cluster assessment, with focus on
its application to the selection of observables for classification. Section 5 illustrates
the procedures discussed in the context of a medical application, the classification
of tumors, using data from two published sources: one concerning small round blue
cell tumors of childhood [9], and the other two classes of acute leukemia [7]. Finally,
section 6 closes the paper with some concluding remarks.

2. Clustering and classification: A unified formulation. The clustering
problem consists of the following: given a matrix Z of m observations zj of n variables
zi, one is asked to partition the observations into p clusters Ck with common traits.

By contrast, in a classification problem, one is asked to assign testing observations
yj to the class Ck, k ∈ (1, . . . , p), with which each has the most traits in common.
To identify these traits, one is told the classes to which a set of training observations
xj belong. A prior belief πj

k on the attribution of each testing observation may

be provided as additional input; πj
k represents the probability, before observing any

feature, that the jth sample belongs to the kth class.

The classification problem can be generalized and softened, regarding both the
goal sought and the input required. One may seek, instead of a rigid assignment, a
probability pjk that the testing observation yj belong to the class Ck. Also, one may

be provided with just a soft assignment of the training population: the probability pjk
that xj is in Ck. The clustering problem can be generalized in a similar way: one may
seek a soft partition, in which each observation zj has probability pjk of belonging to
the cluster Ck.

It should be clear at this point that the two problems, clustering and classification,
in their generalized formulation, can be posed in a unified way: given a matrix X of
m observations xj of n variables xi, and, for a subset Jtrain of the observations, the
probability pjk that the observation xj is in class Ck, one seeks the corresponding

posterior probabilities pjk for the remaining observations, j ∈ Jtest, for which we only

have a prior, πj
k. The only difference between the two problems in this formulation is

that, for pure clustering, Jtrain is empty.

Notice too that one recovers the “hard” version of the two problems if the training
observations have probabilities pjk that are either zero or one; a rule is established
to assign a testing observation xj to a class, such as choosing the class Ck with
maximal pjk.

2.1. Clustering and classification through density estimation. How can
one characterize the “common traits” that define each class Ck? The most natural
and general way is through a probability density ρk(x), which specifies how likely it
is to find a sample with observables x in the class Ck. Given one such probability
density for each class, the posterior probability pjk that the observation xj belongs to
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the class Ck follows from Bayes’ formula,

(1) pjk =
πj
k ρk(x

j)∑
q π

j
q ρq(xj)

.

Assume that we are in possession of a density-estimation algorithm that, given a
set of m observations yj of n variables, produces an estimate for the underlying prob-
ability density ρ(y). The way density estimation is usually applied to classification
problems involves estimating the distributions ρk(x) from the training data, and then
applying (1) to each member xj of the testing population, to infer the probability
that it belong to each class k.

Yet this procedure does not use all the information at our disposal. This leads
to problems when, as is often the case, one has observations of many variables and
a relatively small training population. (For instance, in microarray-based diagnosis,
one may have records of the expression level of tens of thousands of genes, from a
training population of a few hundred patients.) In classical procedures, such as linear
regression, this yields the problem of overfitting: with so many variables at one’s
disposal, one can produce a perfect fit of the training data, yet obtain poor results on
the tests.

In procedures based on density estimation, this problems manifests itself as under-
sampling: one needs to estimate a probability density in a high-dimensional space from
only a handful of observations. Clearly, any such density estimation is necessarily
poor. When the testing observations become available, they are likely to be far from
all training observations, and hence assigned an inaccurate probability density in each
class.

Rephrasing this, we say that a problem arises in density-based classification, be-
cause the probability densities of some or all classes may be underresolved at the
testing points due to the lack of training samples nearby. Yet we do have informa-
tion located precisely at the testing points: the testing samples themselves! We do
not know to which class they belong—that’s precisely the point of the classification
exercise—but we do know that they belong to one class. Hence at least one of the p
distributions ρk should be nonzero at each testing point.

Consider density-estimation algorithms based on the maximization of the likeli-
hood of the data,

ρ = arg

(
max

ρ
(L[ρ])

)
,

where L is the logarithm of the likelihood function,

(2) L[ρ] =

m∑
j=1

log
(
ρ
(
yj
))

,

and the maximization is carried over a proposed set of permissible distributions ρ(y).
The standard procedure would perform this maximization over each class in the train-
ing population, and then infer the probabilities for the testing population from Bayes’
formula (1). For each class, we would maximize

(3) Lk =

j∈Ck∑
training

log(ρk(x
j)).



1788 AGNELLI, CADEIRAS, TABAK, TURNER, VANDEN-EIJNDEN

Yet this likelihood function does not take into the account the testing observations, in
particular, the fact that each must belong to one of the classes. Since the probability
density for a testing observation xj is

(4) ρ(xj) =
∑
k

πj
k ρk(x

j) ,

where πj
k is the prior probability that the jth sample belongs to the kth class, the

complete log-likelihood for all observations involves now a sum over all classes,

(5) L =
∑

training

∑
k

pjk log(ρk(x
j)) +

∑
testing

log

(∑
k

πj
k ρk(x

j)

)
,

where pjk is one if the jth training observation belongs to the class k, and zero other-
wise.

Consider the derivative of the testing component of the likelihood function with
respect to ρjk = ρk(x

j):

(6)
∂

∂ρjk
log

(∑
k

πj
k ρ

j
k

)
=

πj
k∑

k π
j
k ρ

j
k

=
pjk
ρjk

,

where pjk is the posterior probability from (1). Notice that this is the same as the
partial derivative of the weighted log-likelihood

(7)
∑
k

pjk log(ρjk)

if the posteriors pjk are kept fixed. Then the complete log-likelihood (5) has the same
partial derivatives with respect to the densities as the sum

(8) L =
∑
k

Lk , where Lk =
∑
j

pjk log(ρk(x
j)) ,

where the only difference between the training and testing populations is that the
priors πj

k of the former are typically far more biased, possibly all the way to Kronecker
deltas, as in the derivation above.

Initially, the probabilities pjk can be taken equal to the priors πj
k. Maximizing

the Lk’s with fixed pjk gives rise to a set of estimated densities ρ0k(x). Then, in
an expectation maximization (EM) approach, we can iterate the procedure with the
probabilities pjk now given by the posterior from (1), and hence update the ρtk(x)’s
into ρt+1

k (x)’s, until convergence. Notice that this procedure remains unchanged when
the training population is only softly assigned to their classes; then the provided
pjk are not Kronecker deltas, but more general discrete probabilities. Finally, the
procedure applies also when the training population is empty, yielding a methodology
for clustering.

To fix ideas, we re-enunciate the procedure more formally below. If a parametric
density estimation procedure is provided, then, given

• a matrix X of m observations xj of n variables xi,
• a number p of classes Ck,
• a prior probability πj

k that each observation j belongs to class Ck,



CLUSTERING AND CLASSIFICATION 1789

• a family of probability distributions ρ(x;α),
we perform an iterative procedure that computes, at each step t ≥ 0, an estimated
probability P j

k [t] that each observation j is in class Ck, and, for t > 0, a set of
estimated probability densities ρtk(x) describing each class Ck, as follows:

• Set the initial probabilities at their prior values, P j
k [0] = πj

k.
• For all steps t > 0,

– compute ρtk(x) by maximizing over the parameters α the expected value
of the log-likelihood,

(9) Lk =
∑
j

P j
k [t− 1] log(ρtk(x

j)) , ρtk(x) ∈ ρ(x;α) ,

for each class Ck;
– update the probabilities P j

k through Bayes’ formula,

(10) P j
k [t] =

πj
k ρ

t
k(x

j)∑
q π

j
q ρtq(x

j)
,

until a convergence criterion is satisfied.
(When performing pure clustering—i.e., when the priors πj

k do not depend on j—we
need to break the symmetry between classes in order to start the algorithm. This can
be achieved by making some of the initial assignments P j

k [0] slightly different for the
various samples j.)

3. A normalizing flow. The procedure above seeks, for each class k, a fit to a
parametric family of distributions, ρk(x;α). Here we propose an alternative, in which
each of these distributions is characterized by a map yk(x) and a common target
distribution μ(y), so that

(11) ρk(x) = Jk(x)μ(yk(x)) ,

where Jk(x) is the Jacobian of the map x → yk. If the maps yk(x) are described
in terms of a set of parameters α, this appears to be just a convoluted rewriting of
the parametric proposal ρk(x;α). Yet we shall see that not only is such a rewriting
natural, giving rise to a geometric, “dual” view of the clustering-classification problem,
but also that it provides a full class of novel, effective algorithms for implementing its
solution.

The duality comes about from looking at the proposal (11) from two alternative
perspectives: given a sample of x, we seek either the density ρ(x) that best represents
it or the map y(x) that best transforms it into a sample from the known density
μ(y). We have developed such an approach to density estimation in [11]; in the
classification-clustering context of this article, each map yk(x) acquires an extra degree
of signification, as it either “absorbs” or “rejects” each observation into the geometric
cluster of its corresponding class.

We may, as in [11], introduce an “algorithmic time” t and think of the maps yk(x)
as terminal points of flows zk(x; t), with

zk(x; 0) = x, zk(x;∞) = yk(x).

At each time t, we have a current estimate for the probability density in each class,

(12) ρtk(x) = Jk(x; t)μ(zk(x; t)) .
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These densities, in turn, determine the soft assignments P j
k [t] from (10), and hence

the compounded log-likelihood

(13) L =
∑
k,j

P j
k [t] log(ρ

t
k(x

j ; t)) .

Following the EM-like algorithm of the prior section, one could, in each time step,
maximize L over the parameters in the densities, with the assignments P j

k [t] fixed,
and then update these using Bayes’ formula. Yet, because the densities are defined
by flows zk(x; t), we can switch from discrete to continuous times t and evolve the
flows through their corresponding velocity fields uk = ∂

∂tzk(x; t), computed by ascent
of the log-likelihood L:

uk ∝ δL

δuk
,

where the variations are taken with P j
k fixed, from the argument in the previous

section extended to the continuous scenario.
In the presence of infinitely many observations, the log-likelihood (13) adopts the

form

(14) L =
∑
k

∫
Pk(x; t) log(ρ

t
k(x; t)) ρk(x) dx,

where ρk(x) is the actual probability density for the class k evaluated at the point x,
ρtk(x; t) is given by (12), Pk(x; t) by

(15) Pk(x; t) =
πk(x) ρ

t
k(x)∑

q πq(x) ρtq(x)
,

and the flow zk(x; t) satisfies the system of integrodifferential equations

(16)
∂

∂t
zk(x; t) =

δL

δzk
,

where again the variations are taken with Pk(x; t) fixed:

(17)
δL

δzk
= Pk(zk)Jk(x)

(∇zkμ(zk)

μ(zk)
ρk(zk)−∇zkρk(zk)

)
.

Here

ρk(zk(x)) =
ρk(x)

Jk(x)

is the current probability density of the zk’s and Pk(zk) is shorthand for Pk(x), with
zk = zx(x).

In this expression, it is only the Jacobian Jk(x) that keeps track of the original
observation x where the flow started. Here is where the dual view of the flow becomes
useful: if, instead of performing density estimation, i.e., finding ρk(x), we were nor-
malizing x through a map zk(x; t) converging to a yk(x) with μ-statistics, there would
be no need, at each time, to remember with which x we began: the present values
of z are all we need to continue deforming them into a sample of μ. Then, adopting
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this dual view, we can remove the Jacobian Jk(x) from the dynamics, turning the
equations memoryless, with all times formally identical to t = 0.

The resulting algorithm is a blend of the normalizing ideas developed in [11] and
the clustering and classification through EM and soft assignments of section 2. As
before, we start with a matrix X of m observations xj of n variables xi, and a prior
probability πj

k that observation j belongs to class Ck, k ∈ 1, . . . , p. Then we follow p
flows zk(x; t) through the following procedure:

• Preconditioning: In a first, preconditioning step, one considers each class
k, with all observations xj softly assigned to it according to their prior πj

k.
Computing the weighted mean

x̄k =

∑
πj
kx

j∑
πj
k

and average standard deviation

σk =

√∑
πj
k‖xj − x̄k‖2
n
∑

πj
k

,

one obtains, for each flow, the particles’ centered and normalized initial po-
sitions:

(18) zjk = zk(x
j ; 0+) =

xj − x̄k

σk
.

The corresponding initial Jacobians of the flow are given by Jj
k = σ−n

k .
• Flow: For all (discretized) steps t > 0, do the following:

1. Compute the soft assignments,

(19) P j
k =

πj
k ρ

j
k∑

q π
j
q ρ

j
q

,

where

(20) ρjk = Jj
k μ(z

j
k) .

2. Perform a normalizing step in each class. Following the procedure devel-
oped in [11], we propose for target distribution the isotropic Gaussian

μ(y) =
1

(2π)
n
2
e−

1
2 |y|2.

Then each step starts with a random unitary transformation,

zjk → Ukz
j
k,

followed by n one-dimensional, near-identity transformations (one per
dimension i),

zjk(i) → F i
k(z

j
k(i))

Jj
k → d

dz
F i
k(z

j
k(i))J

j
k ,
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that moves its marginal distribution toward Gaussianity. The transfor-
mation F i

k is selected from a parametric family F (z;α), with F (z; 0) = z,
by ascent of the log-likelihood:

(21) α = γ∇αLi |α=0 ,

where

γ =
ε√

ε2 + ‖∇αLi‖2
,(22)

Li(α) =

m∑
j=1

P j
k

[
log
∣∣∣Fz

(
zjk(i);α

)∣∣∣+ logμ
(
F
(
zjk(i);α

))]
,

and μ(z) is the one-dimensional normal distribution. The choice of the
learning rate ε is a matter of considerable interest permeating all descent
procedures; in the examples below, we have made the simplest choice of
adopting a constant ε = 0.02.

The flows zk(x; t) and their Jacobian need only be computed on the observations
xj . If there are other points x̃ where the density ρ is sought, these can be carried
passively by the algorithm, without affecting the log-likelihood. In regular classifi-
cation, the xj ’s are the observations in each class, and the x̃’s those in the testing
population. In the unified framework for classification and clustering presented here,
all observations constitute “active” markers for all classes, with their contributions to
the log-likelihood corresponding to class k weighted by the probabilities P j

k .
This is an effective algorithm that converges typically even faster than just one

full density estimation with fixed attributions P j
k . The reason for this bonus is also

the algorithm’s possible pitfall: making the attributions follow the evolution of the
density estimates through (19) reinforces any bias that the estimation may have at its
initial stages. Thus, the algorithm converges rapidly to a local maximum of the log-
likelihood, even though this maximum may not be global. In particular, because of the
Gaussian preconditioning step, the algorithm would be biased toward the attributions
resulting from this very simple, linear preprocessor, thus potentially defeating the
purpose of the more sophisticated, nonlinear procedure.

A way to reduce the effect of this original bias is to implement a more gradual
version of the attribution to go alongside the density estimation by ascent, replacing
(19) in step 1 above by

(23) P j
k → P j

k + ε

(
πj
k ρ

t
k(x

j ; t)∑
q π

j
q ρtq(x

j ; t)
− P j

k

)
,

where ε is the same learning rate used for the ascent of the log-likelihood. This way,
the soft attributions P j

k have a relaxation time 1
ε of the same order as the density

estimation, so they will not instantly reinforce any bias associated with the initial
guess for the density. Notice that with this modification the initial attributions P j

k [0]
are no longer the result of the preprocessing step but equal the externally provided
priors πj

k. This is the procedure followed in the examples below.

4. Cluster assessment and variable selection. The methodology developed
above, which follows flows zk(x; t) in phase space in order to softly assign a set of
observations to classes, can be used to address the reciprocal problem: to assess how
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well a set of variables x supports a given clustering, i.e., a distribution of a population
into classes with probability qjk. This includes as a particular case the hard attribution

qjk = δkkj
, where kj is the class assigned to the jth observation.

There are a number of situations where a clustering assessment criterion is useful.
The one that motivates us here is the problem of variable selection. When the number
of observed variables greatly exceeds the number of independent observations, one
may want to use only a subset of these variables. It is natural then to pick those that
“best” cluster the data. In classification problems, for instance, one may choose the
variables that optimize the clustering of the training data given by its actual class
attribution.

A natural measure of how well the variables xi support a clustering qjk is provided
by the negative of the cross-entropy:

(24) M =
∑
k,j

qjk log
(
pjk

)

(the minus arising because we seek to discriminate among classes, i.e., order, not
disorder). Here the probabilities pjk are the ones implied by the observed variables xi

under the given clustering; they follow from Bayes’ formula (1), where the densities
ρk(x) maximize the log-likelihood functions

(25) Lk =
∑
j

qjk log(ρk(x
j)) .

The densities ρk can be computed by the same flow methodology described above,
with the qjk’s either provided—as when hard assignments into classes are known for the

training population—or equated to the posterior assignments pjk. In the latter case,
the procedure is identical to the one for clustering, except for a matter of emphasis:
the quantity sought is not the set of assignments pjk or densities ρk(x), though these
are computed in the process, but the negative cross-entropy M .

Since the measure in (24) agrees, up to a sign and an additive constant, with the
Kullback–Leibler (KL) divergence [10] of q and p,

(26) DKL(q, p) =
∑
k,j

qjk log

(
qjk
pjk

)
,

the maximum possible value of M is achieved when pjk = qjk, i.e., when the variables
xi yield precisely the attribution provided. Then DKL(p, p) = 0, and M becomes the
negative entropy derived from the observations,

(27) M =
∑
k,j

pjk log
(
pjk

)
,

a meaningful measure of the effectiveness of the underlying variables for clustering.
To better understand the meaning of the attributions qjk, let us consider some

typical applications to the selection of a subset i ∈ I of variables from a larger set IT .
• Classification problem (first approach): In the classification problem, we typ-
ically have a training population for which the classes are known. We can
then select those variables xi that maximize M on the training population,
where qjk = δkkj

. In this case, the measure M represents the log-likelihood of

the posterior probabilities pjk under the observed attributions.
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• Clustering: For clustering, one does not know the attributions qjk beforehand.
Then we must adopt qjk = pjk, i.e., perform a clustering procedure from the
variables xi and assess its performance by its own implied negative entropy.
Since M ≤ 0, its maximum possible value is zero. This is achieved when
the pjk are sharp ones and zeros, corresponding to clustering with complete
certainty.

• Classification problem (refined approach): When the training population is
small and the testing one large, one might be tempted to use the clustering
approach above rather than the one suggested for classification. In fact, one
should always do this: using the training population alone for the assessment
misses the information available in the observed values of x in the testing
population. The best approach, then, uses the full combined population,
with the known values of qjk for the training observations, and the posteriors

qjk = pjk for the testing ones.

Selecting a subset I ⊂ IT of the variables involves a combinatorial search, which
can be prohibitively expensive when the cardinalities of I and IT are large. Moreover,
each density estimation can involve a significant amount of work. Simple practical
strategies to reduce this work come in two flavors:

• Not to test all of I at once, but instead smaller subsets. In the simplest case,
one computes the performance of each individual variable acting alone and
selects those that rank at the top.

• Not to perform a full-blown density estimation for the ρk’s, but a straight-
forward one, such as simple parametric estimation to an isotropic Gaussian.

Clearly, more sophisticated searches can be devised. The right balance depends on
the significance of the variable reduction and the resources available. If the number of
variables is being reduced just to make the problem more tractable, then the simplest
strategy may be used. If the goal is to identify key variables, such as sets of genes
related to a particular disease, a more thorough search is indicated. In the clinical
examples below for tumor classification from microarray data, we have adopted the
simplest approach of assessing each variable individually through a density estimation
based on isotropic Gaussians, with very good results.

5. Clinical examples: Classification of tumors. In order to illustrate the
use of the methodology proposed here, we applied it to two well-characterized data
sets available in the literature, both concerned with the diagnosis of tumors from
gene expression. The first data set [9] has the expression level of 2308 genes from
tumor biopsies and cell lines of 83 patients with one of four types of the small, round
blue cell tumors of childhood: neuroblastoma (NB), rhabdomyosarcoma (RMS), non-
Hodgkin’s lymphoma (NHL), and the Ewing family (EWS). The second set [7] has
the expression level of 6817 genes from bone marrow and peripheral blood samples, of
72 patients with one of two classes of acute leukemia: acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML). These two data sets are qualitatively
different, as will become apparent in the plots below. We attribute this difference
mainly to the fact that the 2308 genes in [9] are a subset from a total of 6567, filtered
so that they all have at least a minimal level of expression. By contrast, the 6817
genes in [7] are unfiltered, which results in many genes having a uniform expression
level in many of the samples. We shall see that the methodology proposed works well
with both filtered and unfiltered data.
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Fig. 1. Raw data in the plane of two genes, selected because they ranked first in their ability
to cluster the population. To make the selection procedure expedient, each gene was only considered
individually, and the associated density estimation was reduced to its preconditioning step, which
consists only of a rigid displacement and an isotropic linear rescaling. In the plot, the training
population is colored according to class. The testing sample in green was chosen for this illustration
because, lying on the outskirts of the clusters, it is among the most challenging to classify.

5.1. Diagnosing one sample at a time. We first concerned ourselves with
classification. In a first set of experiments, we picked each sample in turn as a testing
case and used the remaining ones for training, with the goal of diagnosing the type
of cancer of the test. This involves the following steps:

• Assigning a prior probability πj
k that sample j belongs to the kth class. We

used a uniform πj
k = 1

4 for the four childhood tumors and πj
k = 1

2 for the two
lymphomas. Notice that these priors are assigned to the training population
too, as they are needed for gene selection.

• Selecting a subset of genes. We rank the genes by the measure (27), where the
P j
k are the posteriors computed by the clustering algorithm using one gene

at a time, the Qj
k are ones or zeros for the training population, and Qj

k = P j
k

for the tests. Then we pick the n top-ranking genes.
• Classifying the testing samples (one in this case). Using the selected genes,
we compute the posterior P j

k for each test and assign it to the class with
largest posterior.

When the number n of selected genes is large enough, just the preconditioning step
of the algorithm scores a nearly perfect performance. Thus, with n ≥ 20, all 83 cases
with the round blue cell tumors are classified correctly, as are all but two of the 72
cases with acute leukemia with n ≥ 10. The nonlinear steps allow us to further reduce
the number of required genes for a correct diagnosis.

For illustration, we show the results of using just two genes to diagnose one partic-
ular patient with non-Hodgkin’s lymphoma. Figure 1 shows the raw data in the “gene
space” of the two genes selected by the algorithm based on the training population.
The various types of tumors are shown in different colors, and the patient to be diag-
nosed is shown in green, since the code is not informed of the actual diagnosis. This
patient tumor’s type (NHL) is colored in cyan.” Notice in this figure how well the two
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Fig. 2. Datapoints transformed according to class, with the testing point in green softly assigned
to the classes according to its posterior probability of belonging to each. The top panels display the
raw data in the plane of the two selected genes, as in Figure 1, sorted by class. The second row is
a rescaled and recentered version of the one above, corresponding to the preconditioning step. The
third and fourth rows are snapshots of the nonlinear normalizing map that the algorithm performs.
As each class approaches a Gaussian distribution, the testing point is either absorbed or rejected.

Fig. 3. Evolving assignment P [t]k that the testing sample belongs in each class. Even though
the initial trend assigns the sample incorrectly, as, after the linear rescaling, it is closest to the
center of class D, this is corrected as the normalizing procedure unveils more detailed structure of
the probability density of each class.

genes chosen by the algorithm cluster the four types of tumors. Figures 2 and 3 tell
graphically the story of how the diagnosis of this particular “green” patient evolves
as the iterations progress. In Figure 2, we see the transformed variables z = φt(x)
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Fig. 4. Same as Figure 1, but for the classification of lymphomas. Even though the samples are
shown in the plane of the first two-genes selected by their clustering capability, the actual number
of genes used is 13. Notice the presence, in this unfiltered dataset, of samples where the genes sit
at their nominal minimal level of expression, requiring more than two genes for sensible clustering
and classification. In particular, it would be impossible to classify correctly the test sample, plotted
in green, from these two genes alone.

for the four classes of tumors, including in each, through EM, the still undiagnosed
patient. The top row of panels represents the same data as in Figure 1, separated
by class. The second row shows the results of the preconditioning, which corresponds
simply to a displaced and rescaled version of the top panel. At this level, with zero
iterations, the code misassigns the patient to class EWS, since it is closer to its center
than to that of NHL. However, neither of the corresponding clusters corresponds yet
to an isotropic Gaussian. As the iterations progress in the next two rows of panels, we
see the clusters evolving toward Gaussianity, with the green point clearly included in
the cloud of NHL, and not in that of EWS. This evolution, at the level of the actual
diagnosis, can be seen in Figure 3, which displays the evolution of the assignment
P [t]k, which relaxes to the posterior probability pjk that the tumor belongs to each
of the four classes. Initially, all P [t]k’s are equal to 0.25—the prior—and, though
initially the probability of the wrong class (EWS) grows, it is eventually overcome
overwhelmingly by the probability of the correct diagnosis, NHL. An example from
the leukemia populations is depicted in Figures 4, 5, and 6. This particular diagnosis
was produced with 13 genes, though the plots show only the plane of the first two
genes at time t = 0, and of the first two components of z = φt(x) for later times. As
Figure 6 shows, the patient is diagnosed correctly with AML from time zero, but with
a probability only barely above 50%. As the iterations evolve, this probability reaches
one. Figure 5 shows this evolution in the space of the first two variables where, as the
clusters become more clearly Gaussian, the green point gets ejected from the wrong
cloud, ALL, and absorbed into the one of its true class, AML.

5.2. Multisample diagnosis. Given the success of the classification procedure
above, it is natural to ask whether we could have done as well with less information
at our disposal. In particular, can we achieve similar results inverting the ratio of
testing to training samples, i.e., using only a handful of training cases to diagnose
most of the population?
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Fig. 5. Same as Figure 2, for the two cases of acute leukemia. The evolution is displayed
in the plane of the first two variables, which correspond to two genes at the initial time. Yet the
algorithm works in a 13-dimensional space. It is out of the information in these 13 genes that the
procedure manages to identify the correct class and, in the plots displayed, “eject” the sample from
the Gaussian cluster of the incorrect class.

Fig. 6. Same as Figure 3, but for the evolving assignment of the testing sample to one of the
two classes of leukemia.

To address this question, we reduced the training set for the classification of the
four childhood tumors to only five samples per cancer type, and we used it to classify
all the remaining samples. The results were invariably very good: using 60 genes,
for instance, we classified correctly 95% of the samples. Similar results were obtained
from the leukemia samples: from a training set of just two patients per class, 110 genes
yielded 90% correct diagnoses. In all cases, the nonlinear component of the algorithm
was fundamental to its success: the linear preconditioning step alone yielded a poorer
outcome.

The weakest step of the procedure, when the training population is so small, is
not the classification itself, but the selection of the genes to use: it is difficult to
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assess which variables best cluster the various classes, when each class is severely
unrepresented. This is compounded by the fact that the gene selection process itself
is reduced to its bare essence: assessing one variable at a time, and just by linear
means. When we select the best set of genes using a larger training population, we
obtain a classification that is close to 100% correct, even when the training population
for the classification itself is reduced to just two samples per class. This will be more
thoroughly discussed in the subsection below in the context of clustering, where the
situation is even more extreme, with an empty training population.

5.3. Clustering (class discovery). We can carry the multisample idea to the
limit and get rid of the training population altogether. Here we cannot classify, since
there is no longer a name attached to the various classes. Yet we can see if the
clustering that the algorithm proposes agrees with the known classification by tumor
type. In the language of [7], this is the process of “class discovery”: patterns in the
gene expression suggest the existence of various underlying tumor types.

The steps are the same as in the procedures above, except that we need to break
the initial symmetry among classes. We do this by picking as initial soft assignments
Qj

k’s not the priors πj
k, but rather a small random perturbation,

(28) Qj
k = πj

k + rjk ,

where the rjk’s are small random numbers adding to zero over k.

However, the problem of gene selection, already present when the training popu-
lation was small, becomes acute when this vanishes completely. This is to be expected
even from a purely philosophical perspective: we are asked to figure out, from a set
of thousands of genes, which are the ones that best cluster a population of around a
hundred patients. Yet without a training population that weights the cancer type in,
the procedure may blindly cluster the datapoints from a different angle, be it by the
patient’s age, gender, ethnicity, blood type, or heart condition. Even random vari-
ations of the gene expression, not attributable to any specific biological cause, may
give rise to robust clusters when the ratio of candidate variables to patients is so big.

Therefore, in our experiments, we selected which genes to utilize by making use
of the diagnosis of all tumors, and only forgot these diagnoses when performing the
clustering itself. The success rate is huge, reaching 100% once enough genes are used:
for the childhood tumors, 70 genes are enough; for the two kinds of acute leukemia,
just 10 do the job. We illustrate this in experiments with a smaller number of genes.
Figure 7 shows the result of using 40 genes for clustering the childhood tumors: only
one sample is placed in the wrong class. Figure 8 uses 6 genes for clustering the
leukemia samples, discovering classes that agree with the type of leukemia in 93% of
the samples.

By contrast, Figures 9 and 10 show the results of the same procedure when the
gene-selection component is not informed of the actual class of any observation. Again
40 genes are used for the clustering of childhood tumors, and 6 genes for the clustering
the leukemia samples. However, these genes are the ones that rank highest not in
discriminating the tumor types, but in clustering the samples into four and two classes,
respectively. The figures contrast the results with those obtained before, displaying
them in the plane of the two top-ranking genes. The top panels, displaying the actual
classes, show how unnatural the real classification looks in the space of the blindly
selected genes, and, on the left, how natural it looks for the genes chosen in a more
informed manner. The bottom panels show how, accordingly, the two different sets of
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Fig. 7. Clustering of the samples of childhood tumors, performed with 40 genes, but displayed
in the plane of the first two. The top panel shows the actual tumor type, the bottom one the classes
discovered by the algorithm. Only one observation, shown circled, was incorrectly assigned to a
class.

Fig. 8. Same as Figure 7, but for the two types of acute leukemia, clustered using 6 genes.
Shown circled are the observations assigned to classes that do not agree with the type of leukemia.
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Fig. 9. Clustering of the samples of the childhood tumors, performed with 40 genes, but dis-
played in the plane of the first two. The top panel shows the actual tumor type, the bottom one
the classes discovered by the algorithm. The left panels display the results when the 40 genes were
selected for their potential to distinguish the tumor classes; the results on the right panels, on the
other hand, show genes selected only for their clustering potential using unlabeled observations.

Fig. 10. Same as Figure 9, but for the two types of acute leukemia, clustered using 6 genes.

genes lead to different classifications, only one agreeing robustly with tumor type. It
is not clear a priori that we should call the second classification “wrong” though: since
the types were not provided, the scheme might be classifying the tumors not by type
but, for instance, by state of development or any other unobserved characterization.



1802 AGNELLI, CADEIRAS, TABAK, TURNER, VANDEN-EIJNDEN

6. Conclusions. A general methodology was developed for classification and
clustering and demonstrated on two well-characterized clinical examples involving the
classification of tumors. The building block is a density-estimation procedure based
on joint, multi-Gaussianization of the variables through fluid-like flows, where the
observations play the role of active Lagrangian markers. As an observation becomes
more clearly assigned to one class, it plays a more active role in the corresponding flow,
while acting as a nearly passive marker for the others. The methodological framework
involves the blurring of distinctions between training and testing populations. This
serves the purpose not just of unifying the procedures for classification and clustering,
but also of palliating the curse of dimensionality in classification problems with high-
dimensional data through the use of unlabeled data.
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