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ABSTRACT

Steady scale-invariant solutions of a kinetic equation describing the statistics of oceanic internal gravity
waves based on wave turbulence theory are investigated. It is shown in the nonrotating scale-invariant limit
that the collision integral in the kinetic equation diverges for almost all spectral power-law exponents. These
divergences come from resonant interactions with the smallest horizontal wavenumbers and/or the largest
horizontal wavenumbers with extreme scale separations.
A small domain is identified in which the scale-invariant collision integral converges and numerically find

a convergent power-law solution. This numerical solution is close to the Garrett–Munk spectrum. Power-law
exponents that potentially permit a balance between the infrared and ultraviolet divergences are investigated.
The balanced exponents are generalizations of an exact solution of the scale-invariant kinetic equation, the
Pelinovsky–Raevsky spectrum. A small but finite Coriolis parameter representing the effects of rotation is
introduced into the kinetic equation to determine solutions over the divergent part of the domain using
rigorous asymptotic arguments. This gives rise to the induced diffusion regime.
The derivation of the kinetic equation is based on an assumption of weak nonlinearity. Dominance of the

nonlocal interactions puts the self-consistency of the kinetic equation at risk. However, these weakly non-
linear stationary states are consistent with much of the observational evidence.

1. Introduction

Wave–wave interactions in continuously stratified fluids
have been a subject of intensive research in the last few
decades. Of particular importance is the observation of
a nearly universal internal-wave energy spectrum in the
ocean, first described by Garrett and Munk (Garrett and
Munk 1972, 1975; Cairns and Williams 1976; Garrett and
Munk 1979). However, it appears that ocean is too com-
plex to be described by one universalmodel.Accumulating

evidence suggests that there is measurable variability
of observed experimental spectra (Polzin and Lvov 2010,
manuscript submitted to Rev. Geophys., hereafter PL).
In particular, we have analyzed the decades of obser-
vational programs, and we have come to the conclusion
that the high-frequency–high-wavenumber part of the
spectrum can be characterized through simple power-
law fits with variable exponents.
It is generally thought (Müller et al. 1986; Olbers 1974,

1976; PL) that nonlinear interactions significantly con-
tribute to determining the background oceanic spectrum,
and this belief motivates the investigation of spectral
evolution equations for steady balances. A particularly
important study in this regard is the demonstration that
the Garrett–Munk (GM) vertical wavenumber spectrum
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is stationary and supports a constant downscale energy
flux (McComas and Müller 1981) associated with reso-
nant interactions. The accumulating evidence alluded to
above suggests there is more to the story.
The purpose of the present study is to lay down a firm

theoretical framework that allows a detailed analysis of
power-law spectra of internal waves in the ocean. We
investigate the parameter space of the possible power
laws with a specific focus on extreme scale-separated in-
teractions and their role in dominating spectral transfers.
We then use this theoretical framework to interpret the
observed oceanic variability.

Because of the quadratic nonlinearity of the under-
lying fluid equations and dispersion relation allowing
three-wave resonances, internal waves interact through
triads. In the weakly nonlinear regime, the nonlinear
interactions among internal waves concentrate on their
resonant set and can be described by a kinetic equation,
which assumes the familiar form (Caillol andZeitlin 2000;
Hasselmann 1966; Kenyon 1966, 1968; Lvov and Tabak
2001, 2004; McComas and Bretherton 1977; Milder 1990;
Müller and Olbers 1975; Olbers 1974, 1976; Pelinovsky
and Raevsky 1977; Pomphrey et al. 1980; Voronovich
1979; Zakharov et al. 1992)
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Here np 5 n(p) is a three-dimensional (3D) action
spectrum [see Eq. (16)] with wavenumber p 5 (k, m):
that is, k and m are the horizontal and vertical compo-
nents of p. Action or wave action can be viewed as
‘‘number’’ of waves with a given wavenumber. The fre-
quency vp is given by a linear dispersion relation (12)
below. Consequently, wave action multiplied by fre-
quency vpnp can be seen as quadratic spectral energy
density of internal waves. Note that the wavenumbers
are oppositely signed variables, whereas the wave fre-
quencies are always positive. The factor Vp

p1p2
is the in-

teraction matrix element describing the transfer of wave
action among the members of a triad composed of three
wave vectors p 5 p1 1 p2.
Following Kolmogorov’s viewpoint of energy cascades

in isotropic Navier–Stokes turbulence, one may look for
statistically stationary states using scale-invariant solutions
to the kinetic Eq. (1). The solution may occur in an in-
ertial subrange of wavenumbers and frequencies that
are far from those where forcing and dissipation act
and also are far from characteristic scales of the system,
including the Coriolis frequency resulting from the rota-
tion of the earth, the buoyancy frequency due to stratifi-
cation and the ocean depth. Under these assumptions, the
dispersion relation and the interaction matrix elements
are locally scale invariant. It is natural, therefore, in this
restricted domain, to look for self-similar solutions of
Eq. (1), which take the form

n(k,m)5 jkj!ajmj!b. (2)

Values of a and b for which the right-hand side of Eq. (1)
vanishes identically correspond to steady solutions of

the kinetic equation and we hope also to statistically
steady states of the ocean’s wave field. Unlike Kolmo-
gorov turbulence, the exponents that give steady solu-
tions cannot be determined by the dimensional analysis
alone (see, e.g., Polzin 2004). This is the case because
of multiple characteristic length scales in anisotropic
systems.
Before seeking steady solutions, however, one should

find out whether the improper integrals1 in the kinetic
Eq. (1) converge. This is related to the question of
locality of the interactions: a convergent integral char-
acterizes the physical scenario where interactions of
neighboring wavenumbers dominate the evolution of
the wave spectrum, whereas a divergent one implies
that distant, nonlocal interactions in the wavenumber
space dominate.
In the present paper, we demonstrate analytically that

the internal-wave collision integral diverges for almost
all values of a and b. In particular, the collision integral
has an infrared (IR) divergence at 0 (i.e., jk1j or jk2j/ 0)
and an ultraviolet (UV) divergence at infinity (i.e., jk1j
and jk2j / ‘). Thus, IR divergence comes from inter-
actions with the smallest wavenumber, and UV diver-
gence comes from interactions with the largest horizontal
wavenumber. There is only one exception where the in-
tegral converges: the segment with b5 0 and 7/2 , a, 4.
The b5 0 line corresponds to wave action independent of

1 Improper integrals have the form lim
b!‘

Ð b
a f (x) dx, lim

a!!‘

Ð b
a f (x)dx,

lim
c!b!

Ð c
a f (x)dx, or lim

c!a1

Ð b
c f (x)dx. When the limit exists (and is

a number), the improper integral is called convergent; when the
limit does not exist or is infinite, the improper integral is called
divergent.
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vertical wavenumbers, ›n/›m 5 0. Within this segment,
we numerically determine a new steady convergent so-
lution to Eq. (1), with

n(k,m)} jkj!3.7. (3)

This solution is not far from the large-wavenumber form
of the GM spectrum (Garrett and Munk 1972, 1975;
Cairns and Williams 1976; Garrett and Munk 1979),

n(k,m)} jkj!4. (4)

Alternatively, one can explore the physical interpre-
tation of divergent solutions. We find a region in (a, b)
space where there are both IR and UV divergences
having opposite signs. This suggests a possible scenario
where the two divergent contributions may cancel each
other, yielding a steady state. An example of such a case
is provided by the Pelinovsky–Raevsky (PR) spectrum
(Pelinovsky and Raevsky 1977),

nk,m } jkj!7/2jmj!1/2. (5)

This solution, however, is only one among infinitely
many. The problem at hand is a generalization of the
concept of principal value integrals: for a and b, which
give opposite signs of the divergences at zero and in-
finity, one can regularize the integral by cutting out
small neighborhoods of the two singularities in such a
way that the divergences cancel each other and the re-
maining contributions are small. Hence, all the expo-
nents that yield opposite-signed divergence at both ends
can be steady solutions of Eq. (1). As we will see below
this general statement helps to describe the experimental
oceanographic data that are available to us. The nature of
such steady solutions depends on the particular truncation
of the divergent integrals.
So far, we have kept the formalism at the level of the

self-similar limit of the kinetic Eq. (1). However, once
one considers energy transfer mechanisms dominated
by interactions with extreme modes of the system, one
can no longer neglect the deviations from self-similarity
near the spectral boundaries: the inertial frequency
due to the rotation of the earth at the IR end and the
buoyancy frequency and/or dissipative cutoffs at the
UV end.
For example, we may consider a scenario in which

interactions with the smallest horizontal wavenumbers
dominate the energy transfer within the inertial sub-
range, either because the collision integral at infinity
converges or because the system is more heavily truncated

at the large wavenumbers by wave breaking or dissi-
pation. We will demonstrate that the IR divergence
of the collision integral has a simple physical inter-
pretation: the evolution of each wave is dominated
by the interaction with its nearest neighboring verti-
cal wavenumbers, mediated by the smallest horizon-
tal wavenumbers of the system. Such a mechanism
is called induced diffusion (ID) in the oceanographic
literature.
To bring back the effects of the rotation of the earth

in Eq. (1), one introduces the Coriolis parameter f there
and in the linear dispersion relation. Because we are
considering the evolution of waves with frequency v
much larger than f, f can be considered to be small.
However, because the interaction with waves near f
dominates the energy transfer, one needs to invert the
order in which the limits are taken, postponing making
f5 0 to the end. This procedure gives rise to an integral
that diverges like f raised to a negative power smaller
than 21 but multiplied by a prefactor that vanishes
if either 9 2 2a 2 3b 5 0 or b 5 0. These are the
induced diffusion lines of steady-state solutions, found
originally in McComas and Müller (1981) as a diffusive
approximation to the kinetic equation. This family of
stationary states does a reasonable job of explaining the
gamut of observed variability. The rigorous asymptotic
analysis presented here clearly implies the induced
diffusion family of stationary states makes sense only in
the IR divergent subdomain of (a, b) space, and we find
that the data are located in this subdomain.
The present paper investigates in detail the param-

eter space (a, b) of a general power-law spectrum (2),
compares this parameter space to the ocean observa-
tions, and gives possible interpretation. Furthermore,
the present study places the previously obtained ID
curves (McComas and Müller 1981) and Pelinovsky–
Raevsky spectrum (Pelinovsky and Raevsky 1977) into
a much wider context. Finally, we present a general
theoretical background that we are going to exploit for
future studies.
The paper is organized as follows: Wave turbulence

theory for the internal wave field and the correspond-
ing kinetic equation are briefly summarized in section 2
along with the motivating observations. We analyze the
divergence of the kinetic equation in section 3. Section 4
includes a special convergent power-law solution that
may account for the GM spectrum. In section 5, we in-
troduce possible quasi-steady solutions of the kinetic
equation that are based on cancellations of two singu-
larities. Section 6 shows that the IR divergence is dom-
inated by induced diffusion, and we compute the family
of power-law solutions that arises from taking it into
account. We conclude in section 7.
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2. Wave turbulence theory for internal waves

a. Background and history

The idea of using wave turbulence formalism to de-
scribe internal waves is certainly not new; it dates back
to Kenyon (1966, 1968), with calculations of the kinetic
equations for oceanic spectra presented in Olbers (1976),
McComas and Bretherton (1977), and Pomphrey et al.
(1980). Various formulations have been developed for
characterizing wave–wave interactions in stratified wave
turbulence in the last four decades (Y.V. Lvov, K. L.
Polzin, and N. Yokoyama 2007, unpublished manu-
script, hereafter LPY; for details, see Caillol and Zeitlin
2000; Hasselmann 1966; Kenyon 1966, 1968; Lvov and
Tabak 2001, 2004; McComas and Bretherton 1977;
Milder 1990; Müller and Olbers 1975; Olbers 1974, 1976;
Pelinovsky and Raevsky 1977; Pomphrey et al. 1980;
Voronovich 1979). We briefly discuss the derivation of
the kinetic equation and wave–wave interaction matrix
elements below in Eq. (15).
The starting point for the most extensive investigations

has been a noncanonical Hamiltonian formulation in
Lagrangian coordinates (McComas andMüller 1981) that
requires an unconstrained approximation in smallness
of wave amplitude in addition to the assumption that
nonlinear transfers take place on much longer time
scales than the underlying linear dynamics. Other work
has as its basis a formulation in Clebsch-like variables
(Pelinovsky and Raevsky 1977) and a non-Hamiltonian
formulation in Eulerian coordinates (Caillol and Zeitlin
2000). Here, we employ a canonical Hamiltonian rep-
resentation in isopycnal coordinates (Lvov and Tabak
2001, 2004), which, as a canonical representation, pre-
serves the original symmetries and hence conservation
properties of the original equations of motion.
Energy transfers in the kinetic equation are character-

ized by three simple mechanisms identified by McComas
and Bretherton (1977) and reviewed by Müller et al.
(1986). These mechanisms represent extreme scale-
separated limits. One of these mechanisms represents
the interaction of two small-vertical-scale, high-frequency
waves with a large-vertical-scale, near-inertial (frequency
near f) wave and is called induced diffusion (ID). The
IDmechanism exhibits a family of stationary states: that
is, a family of solutions to Eq. (2). A comprehensive in-
ertial-range theory with constant downscale transfer of
energy can be obtained by patching these mechanisms
together in a solution that closely mimics the empirical
universal spectrum (GM; McComas and Müller 1981).
A fundamental caveat from this work is that the
interaction time scales of high-frequency waves are
sufficiently small at small spatial scales as to violate the
assumption of weak nonlinearity.

In parallel work, Pelinovsky and Raevsky (1977) de-
rived a kinetic equation for oceanic internal waves. They
also have found the statistically steady-state spectrum
of internal waves, Eq. (5), which we propose to call the
Pelinovsky–Raevsky spectrum. This spectrum was later
found in Caillol and Zeitlin (2000) and Lvov and Tabak
(2001, 2004). It follows from applying the Zakharov–
Kuznetsov conformal transformation (Zakharov et al.
1992), which effectively establishes a map between
the very large and very small wavenumbers. Making
these two contributions cancel pointwise yields the
solution (5).
Both Pelinovsky and Raevsky (1977) and Caillol and

Zeitlin (2000) noted that the solution (5) comes through
a cancellation between oppositely signed divergent con-
tributions in their respective collision integrals. A funda-
mental caveat is that one cannot use conformal mapping
for divergent integrals. Therefore, the existence of such
a solution is fortuitous.
Here, we demonstrate that our canonical Hamiltonian

structure admits a similar characterization: power-law
solutions of the form (2) return collision integrals that
are, in general, divergent. Regularization of the integral
allows us to examine the conditions under which it is
possible to rigorously determine the power-law expo-
nents (a, b) in Eq. (2) that lead to stationary states. In
doing so, we obtain the ID family.
The situation is somewhat peculiar: We have assumed

weak nonlinearity to derive the kinetic equation. The
kinetic equation then predicts that nonlocal, strongly
scale-separated interactions dominate the dynamics.
These interactions have less chance to be weakly non-
linear than regular, ‘‘local’’ interactions. Thus, the der-
ivation of the kinetic equation and its self-consistency
are at risk. In our subsequent work (LPY), we provide
a possible resolution of this puzzle. However, as we will
see below, despite this caveat, the weakly nonlinear
theory is consistent with much of the observational
evidence.

b. Experimental motivation

Power laws provide a simple and intuitive physical
description of complicated wave fields. Therefore, we
assumed that the spectral energy density can be repre-
sented as Eq. (2) and undertook a systematic study of
published observational programs. In doing so, we were
fitting the experimental data available to us by power-
law spectra. We assume that the power laws offer a good
fit of the data in the high-frequency, high-wavenumber
parts of the spectrum.We do not assume that spectra are
given by Garrett–Munk spectrum.
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Inmost instances, vertical wavenumber and frequency
power laws were estimated by superimposing best-fit
lines on top of one-dimensional spectra. The quoted
power laws are the asymptotic relations of these best-fit
lines. Fits in the frequency domain included only pe-
riods smaller than 10 h, thereby eliminating the inertial
peak and semidiurnal tides from consideration. For one-
dimensional spectra, there is an implicit assumption
that the high-frequency–high-wavenumber spectra are sep-
arable. Because both 1D spectra are red, frequency spectra
are typically dominated by low-vertical-wavenumber mo-
tions, and vertical wavenumber spectra are dominated by
low frequencies. Care should be taken to distinguish these
results from the high-wavenumber asymptotics of truly
two-dimensional spectra. We have included two realiza-
tions of two-dimensional displacement spectra in isopycnal
coordinates [the Patches Experiment (PATCHEX2) and
the SurfaceWaveProcess Program (SWAPP)]. The quoted
power laws in these instances were estimated using a
straight edge and x-by-eye procedure.
Below we list extant datasets with concurrent vertical

profile and current meter observations and some ma-
jor experiments utilizing moored arrays, along with our
best estimate of their high-wavenumber, high-frequency
asymptotics:

d Site-D (Foffonoff 1969; Silverthorne and Toole 2009):
energy spectra are m22.0 and v22.0;

d theFrontalAir-Sea InteractionExperiment (FASINEX;
Weller et al. 1991; Eriksen et al. 1991): energy spectra
are m22.3 and v21.85;

d the Internal Wave Experiment (IWEX; Müller et al.
1978): energy spectrum is 2k22.460.4v21.75;

d the Salt Finger Tracer Release Experiment (SFTRE;
Schmitt et al. 2005)/Polymode IIIc (PMIII; Keffer
1983): energy spectra are m22.4 and v21.9;

d the North Atlantic Tracer Release Experiment
(NATRE; Polzin et al. 2003)–subduction (Weller et al.
2004): energy spectra are m22.55 (observed: NATRE1)
or m22.75 (minus vortical contribution: NATRE2) and
v21.35;

d PATCHEX1 (Gregg et al. 1993; Chereskin et al. 2000):
energy spectra are m21.75 and v21.65 2 v22.0;

d PATCHEX2 (Sherman and Pinkel 1991): energy spec-
trum is m21.75v21.65 2 m21.75v22.0;

d the SWAPP experiment (Anderson 1992): energy spec-
trum is m21.9v22.0.

d the StormTransfer andResponse Experiment (STREX;
D’Asaro 1984)/Ocean Storms Experiment (OS;
D’Asaro 1995): energy spectra are m22.3 and v22.2;

d the Midocean Acoustic Transmission Experiment
(MATE; Levine et al. 1986): energy spectra are2m22.1

and v21.7; and

d the Arctic Internal Wave Experiment (AIWEX; Levine
et al. 1987; D’Asaro and Morehead 1991): energy spec-
tra are m22.25 and v21.2.

Two estimates of the NATRE spectrum are provided:
NATRE1 represents the observed spectrum, andNATRE2

represents the observed spectrum minus the quasi-
permanent finestructure spectrum identified in Polzin
et al. (2003). The residual (NATRE2) represents our
best estimate of the internal-wave spectrum. Two estimates
of the PATCHEX spectrum are provided: PATCHEX1

combines free-fall vertical profiler data from Gregg et al.
(1993) and long-term current meter data from Chereskin
et al. (2000), and PATCHEX2 is an estimate from a two-
dimensional displacement spectrum appearing in Sherman
and Pinkel (1991). Further details and a regional char-
acterization of these data appear in PL. Finally, power
laws of a two-dimensional vertical wavenumber–frequency
spectrum, e(m,v)}v2cm2d, correspond to the power laws
of a three-dimensional vertical wavenumber–horizontal
wavenumber action spectrum n(k,m) } k2am2bwith the
mapping,

a5 c1 2 and b5 d! c.

Figure 1 suggests that the data points are not ran-
domly distributed but have some pattern. Explaining the
location of the experimental points and making sense
out of this pattern is the main physical motivation for
this study.

c. Hamiltonian structure and wave turbulence theory

This subsection briefly summarizes the derivation in
Lvov and Tabak (2001, 2004); it is included here only
for completeness and to allow references from the core
of the paper.
The equations of motion satisfied by an incompress-

ible stratified rotating flow in hydrostatic balance under
the Boussinesq approximation are (Cushman-Roisin
1994)

›

›t

›z

›r
1$ " ›z

›r
u

% &
5 0,

›u

›t
1 fu? 1u " $u1 $M

r0
5 0,

›M

›r
! gz5 0. (6)

These equations result frommass conservation, horizontal-
momentum conservation, and hydrostatic balance. The
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equations are written in isopycnal coordinates with the
density r replacing the height z in its role as independent
vertical variable. Here u 5 (u, y) is the horizontal com-
ponent of the velocity field; u?5 (2y, u);$5 (›/›x, ›/›y)
is the gradient operator along isopycnals; M is the
Montgomery potential,

M5P1 grz;

f is the Coriolis parameter; and r0 is a reference den-
sity in its role as inertia, considered constant under the
Boussinesq approximation.
The potential vorticity is given by

q5
f 1 (›y/›x)! (›u/›y)

P
, (7)

where P 5 r/g›2M/›r2 5 r›z/›r is a normalized dif-
ferential layer thickness. Because both the potential
vorticity and the fluid density are conserved along par-
ticle trajectories, an initial profile of the potential vor-
ticity that is a function of the density will be preserved by
the flow. Hence, it is self-consistent to assume that

q(r)5 q0(r)5
f

P0(r)
, (8)

where P0(r) 5 2g/N(r)2 is a reference stratification
profile with constant background buoyancy frequency,
N 5 (2g/(r›z/›rjbg))1/2, independent of x and y. This
assumption is not unrealistic: it represents a pancake-
like distribution of potential vorticity, the result of its
comparatively faster homogenization along than across
isopycnal surfaces.
It is shown in Lvov and Tabak (2001, 2004) that the

primitive equations of motion (6) under the assumption
(8) can be written as a pair of canonical Hamiltonian
equations,

›P
›t

5!dH
df

and
›f

›t
5

dH
dP

, (9)

where f is the isopycnal velocity potential and the
Hamiltonian is the sum of kinetic and potential en-
ergies,

H5
ð
dxdr !1

2
[P0 1P(x, r)] $f(x, r)1

f

P0

=?D!1P(x, r)

''''

''''
2

1
g

2

ðr
dr9

P(x, r9)
r9

''''

''''
2

( )
. (10)

Here, =? 5 (2›/›y, ›/›x), D21 is the inverse Laplacian,

and r9 represents a variable of integration rather than

perturbation.
Switching to Fourier space and introducing a complex

field variable cp through the transformation

fp 5
iN

ffiffiffiffiffiffi
vp

p
ffiffiffiffiffi
2g

p
kj j

(cp ! c!p* ),

Pp 5P0 !
NP0 kj j

ffiffiffiffiffiffiffiffiffiffiffi
2gvp

q (cp 1 c!p* ), (11)

FIG. 1. The observational points. The filled circles represent the
PR spectrum [(a, b)5 (3.5, 0.5)], the convergent numerical solution
determined in section 4c [(a, b)5 (3.7, 0.0)], and the GM spectrum
[(a, b)5 (4.0, 0.0)]. Circles with stars represent estimates based on
1D spectra from the western North Atlantic south of the Gulf
Stream (IWEX, FASINEX, and SFTRE/PMIII), the easternNorth
Pacific (STREX/OS and PATCHEX1), the western North Atlantic
north of the Gulf Stream (Site-D), the Arctic (AIWEX), and the
eastern North Atlantic (NATRE1 and NATRE2). There are two
estimates obtained from 2Ddatasets from the easternNorth Pacific
(SWAPP and PATCHEX2) represented as circles with crosshairs.
NATRE1 and NATRE2 represent fits to the observed spectra and
observed minus vortical mode spectra, respectively. Therefore
NATRE2 represents the best estimate of the NATRE internal-
wave spectrum. To conclude, 12 observational points from 10 ob-
servational programs are shown (because 2 programs produced 2
points each). Note that PATCHEX1 is indistinguishable from
SWAPP. Also note that one of the three filled circles (GM) co-
incides with the experimental point from Site-D.
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where the frequency v satisfies the linear dispersion
relation2

vp 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2 1
g2

r20N
2

kj j2

m2

s

, (12)

the equations of motion (6) adopt the canonical form

i
›

›t
cp 5

dH
dcp*

, (13)

with Hamiltonian

H5
ð
dpvpjcpj

2 1
ð
dp012[dp1p11p2

(Up,p1,p2
cp*cp1

*cp2
*1 c.c.)1 d!p1p11p2

(Vp
p1,p2

cp*cp1
cp2

1 c.c.)]. (14)

This is the standard form of the Hamiltonian of a system
dominated by three-wave interactions (Zakharov et al.
1992). Calculations of interaction coefficients are te-
dious but straightforward tasks, completed in Lvov and
Tabak (2001, 2004). These coefficients are given by

Vp
p1,p2

5
N

4
ffiffiffiffiffi
2g

p 1

kk1k2
(Ip,p1,p2

1 Jpp1,p2
1Kp,p1,p2

),

(15a)

Up,p1,p2
5

N

4
ffiffiffiffiffi
2g

p 1

3

1

kk1k2
(Ip,p1,p2

1 J!p
p1,p2

1Kp,p1,p2
),

(15b)

Ip,p1,p2
5!

ffiffiffiffiffiffiffiffiffiffiffi
v1v2

v

r
k2k1 " k2 ! [(0, 1, 2) ! (1, 2, 0)]

! [(0, 1, 2) ! (2, 0, 1)], (15c)

Jpp1,p2
5

f 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vv1v2

p k2k1 " k2 ! [(0, 1, 2) ! (1, 2, 0)]
)

! [(0, 1, 2) ! (2, 0, 1)]g, and (15d)

Kp,p1,p2
5!if

ffiffiffiffiffiffiffiffiffiffiffi
v

v1v2

r
(k2

1 ! k2
2)k1 " k

?
2 1 [(0, 1, 2)

(

! (1, 2, 0)]1 [(0, 1, 2) ! (2, 0, 1)]

)
, (15e)

where [(0, 1, 2) / (1, 2, 0)] and [(0, 1, 2) / (2, 0, 1)]
denote exchanges of suffixes and, for two dimensional
vector k 5 (kx, ky), k

? 5 (2ky, kx).
3 We stress that the

field Eq. (13) with the three-wave Hamiltonian [(12),
(14), and (15)] is equivalent to the primitive equations
of motion for internal waves (6). The approach using

a Lagrangian coordinate system is based on small-
amplitude expansion to arrive at this type of equation.
In wave turbulence theory, one proposes a perturba-

tion expansion in the amplitude of the nonlinearity,
yielding linear waves at the leading order. Wave am-
plitudes are modulated by the nonlinear interactions,
and the modulation is statistically described by a kinetic
equation (Zakharov et al. 1992) for the wave action np
defined by

npd(p! p9)5 hcp*cp9i. (16)

Here h"i denotes an ensemble averaging: that is, aver-
aging over many realizations of the random wave field.
The derivation of this kinetic equation is well studied
andunderstood (Zakharov et al. 1992; Lvov andNazarenko
2004). For the three-wave Hamiltonian (14), the kinetic
equation is the one in Eq. (1), describing general internal
waves interacting in both rotating and nonrotating
environments.
The delta functions in the kinetic equation ensures

that spectral transfer happens on the resonant manifold,
which is defined as

(a)
p5 p1 1 p2

v5v1 1v2

(

, (b)
p1 5 p2 1 p

v1 5v2 1v

(

,

(c)
p2 5 p1 p1

v2 5v1v1

(

. (17)

Now let us assume that the wave action n is inde-
pendent of the direction of the horizontal wavenumber
and is symmetric with respect to m / 2m change,

np 5 n( kj j, mj j).

Note that value of the interaction matrix element is in-
dependent of horizontal azimuth because it depends only
on the magnitude of interacting wavenumbers. There-
fore, one can integrate the kinetic Eq. (1) over horizontal
azimuth (Zakharov et al. 1992), yielding

2 This dispersion relation is written in the isopycnal framework.
In the more familiar Eulerian framework, the dispersion relation
transforms into vp 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1 (N2k2/m2

*)
q

, where m*, the vertical
wavenumber in z coordinates, is given by m*5 2(g/r0N

2)m.
3 We note that these are correct expressions, which coincidewith

those given in Lvov and Tabak (2004), apart from a few ½ factors.
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›np
›t

5
2

k

ð
(R0

12 ! R1
20 ! R2

01) dk1 dk2 dm1 dm2,

R0
12 5 f pp1p2

jVp
p1p2

j2dm!m1!m2
dvp!vp1

!vp2

kk1k2/S
0
1,2. (18)

Here, S01,2 appears as the result of integration of the
horizontal-momentum conservative delta function over
all possible orientations and is equal to the area of the
triangle with sides with the length of the horizontal
wavenumbers k5 jkj, k1 5 jk1j and k2 5 jk2j. This is the
form of the kinetic equation that will be used to find
scale-invariant solutions in the next section.

3. Scale-invariant kinetic equation

a. Reduction of kinetic equation to the resonant
manifold

In the high-frequency limit v # f, one could con-
ceivably neglect the effects of the rotation of the earth.
The dispersion relation (12) then becomes (Lvov and
Tabak 2001)

vp [ vk,m ’ g

r0N

kj j
mj j

, (19)

and, in this limit, the matrix element (15) retains only its
first term, Ip,p1,p2

.

The azimuthally integrated kinetic Eq. (18) includes
integration over k1 and k2, because the integrations over
m1 and m2 can be done by using delta functions. To use
delta functions, we need to perform what is called re-
duction to the resonant manifold. Consider, for exam-
ple, resonances of type (17a). Given k, k1, k2, andm, one
can find m1 and m2 satisfying the resonant condition by
solving simultaneous equations

m5m1 1m2 and
k

mj j
5

k1
m1

'' '' 1
k2

m!m1

'' '' . (20)

The solutions of this quadratic equation are given by

m1 5
m

2k
k1 k1 1 k2 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k1 k1 1 k2)

2 ! 4kk1

q" #

m2 5m!m1

and

8
<

:

(21a)

m1 5
m

2k
k! k1 ! k2 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k! k1 ! k2)

2 1 4kk1

q" #

m2 5m!m1

.

8
<

:

(21b)

Note that Eq. (21a) translates into Eq. (21b) if the in-
dices 1 and 2 are exchanged. Indeed, exchanging indices
1 and 2 in Eq. (21a) we obtain

m91 5m!m92 5m! m

2k
k1k1 1k2

"

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k1 k1 1 k2)

2 ! 4kk2

q #
,

which simplifies then to m1 of Eq. (21b).
Similarly, resonances of type (17b) yield

m25!m

2k
k!k1!k21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k!k1!k2)

214kk2

q" #

m15m1m2

and

8
<

:

(22a)

m2 5!m

2k
k1 k1 ! k2 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k1 k1 ! k2)

2 1 4kk2

q" #

m1 5m1m2

,

8
<

:

(22b)

and resonances of type (17c) yield

m15!m

2k
k!k1!k21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k!k1!k2)

214kk1

q" #

m25m1m1

8
<

: and

(23a)

m1 5!m

2k
k! k1 1 k2 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k! k1 1k2)

2 1 4kk1

q" #

m2 5m1m1

.

8
<

:

(23b)

After this reduction, a double integral over k1 and k2 is
left. The domain of integration is further restricted by
the triangle inequalities

k , k1 1 k2, k1 , k1 k2, and k2 , k1 k1. (24)

These conditions ensure that one can construct a tri-
angle out of the wavenumbers with lengths k, k1, and k2
and determine the domain in the (k1, k2) plane called the
kinematic box in the oceanographic literature.
Numerical evaluation of the collision integral is a

complicated but straightforward task. Interpretation
of the results, though, is more difficult, mostly because
of the complexity of the interaction matrix element
and the nontrivial nature of the resonant set. Starting
with McComas and Bretherton (1977), therefore, pre-
dictions were made based on a further simplification.
This simplification is based on the assertion that inter-
actions between wavenumbers with extreme scale sep-
aration contribute mostly to the nonlinear dynamics.
Three main classes of such resonant triads appear, char-
acterized by extreme scale separation. These three main
classes are as follows:
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d The vertical backscattering of a high-frequency wave
by a low-frequency wave of twice the vertical wave-
number into a second high-frequency wave of op-
positely signed vertical wavenumber: this type of
scattering, as in Eqs. (25a), (27b), (29a), and (30a)
below, is called elastic scattering (ES).

d The scattering of a high-frequency wave by a low-
frequency, small-wavenumber wave into a second,
nearly identical, high-frequency, large-wavenumber
wave: this type of scattering, as in Eqs. (25b), (27a),
(29b), and (30b) below, is called induced diffusion.

d The decay of a small-wavenumber wave into two
large-vertical-wavenumber waves of approximately
one-half the frequency: this type of scattering, as in
Eqs. (26a), (26b), (28a), (28b) below, is called para-
metric subharmonic instability (PSI).

To see how this classification appears analytically,
we perform the limit of k1 / 0 and the limit k1 / ‘
in Eqs. (21)–(23). We will refer to the k1 or k2 / 0
limits as IR limits, whereas the k1 and k2 / ‘ limit
will be referred as a UV limit. Because the integrals
in the kinetic equation for power-law solutions will
be dominated by the scale-separated interaction, this
will help us analyze possible solutions to the kinetic
equation.
The results of the k1 / 0 limit of Eqs. (21)–(23) are

given by

m1 ! 2m, m2 ! !m

v1 $ v, v2 ;v
,

*
(25a)

!m1 $ m, m2 ;m

v1 $ v, v2 ;v
,

*
(25b)

m1 $ m, m2 ;!m

v1 ; 2v, v2 ;v
,

*
(26a)

!m1 $ m, m2 ;!m

v1 ; 2v, v2 ;v
,

*
(26b)

!m1 $ m, m2 ;m

v1 $ v, v2 ; v
,

*
and (27a)

m1 ! !2m, m2 ! !m

v1 $ v, v2 ;v
.

*
(27b)

We now see that the interactions (25a) and (27b) cor-
respond to the ES mechanism, that the interactions
(25b) and (27a) correspond to the ID, and that the in-
teractions (26a) and (26b) correspond to the PSI.
Similarly, taking the k1 and k2/‘ limits of Eqs. (21)–

(23), we obtain

m1 # m, !m2 # m

v1,v2 ;v/2
,

*
(28a)

!m1 # m, m2 # m

v1,v2 ;v/2
,

*
(28b)

m1 ;m/2, m2 ;!m/2

v1,v2 # v
,

*
(29a)

!m1 # m, !m2 # m

v1,v2 # v
,

*
(29b)

m1 ;!m/2, m2 ;m/2

v1,v2 # v
,

*
and (30a)

!m1 # m, !m2 # m

v1,v2 # v
.

*
(30b)

We now can identify the interactions (28a) and (28b) as
being PSI, the interactions (29a) and (30a) as being ES,
and the interactions (29b) and (30b) as being ID.
This classification provides an easy and intuitive tool

for describing extremely scale-separated interactions.
We will see below that one of these interactions, namely
ID, explains reasonably well the experimental data that
is available to us.

b. Convergences and divergences of the kinetic
equation

Neglecting the effects of the rotation of the earth
yields a scale-invariant system with dispersion relation
given by Eq. (19) and matrix element given only by the
Ip,p1,p2

in Eq. (15). This is the kinetic equation of Lvov
and Tabak (2001), Lvov et al. (2004), and Lvov and
Tabak (2004), describing internal waves in hydrostatic
balance in a nonrotating environment.
Proposing a self-similar separable spectrum of the

form (2), one can show from the azimuthally integrated
kinetic Eq. (18) that (Zakharov et al. 1992)

›n(ak,bm)

›t
5a4!2ab1!2b ›n(k,m)

›t
(31)

for constants a and b. To find a steady scale-invariant
solution for all values of k andm, it is therefore sufficient
to find exponents that give a 0 collision integral for one
wavenumber. One can fix k andm, adopting for instance
k 5 m 5 1, and seek 0 of the collision integral (repre-
sented as C below) as a function of a and b,

›n(k5 1, m5 1)

›t
[ C(a, b). (32)
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Before embarking on numerical or analytical integra-
tion of the kinetic Eq. (18) with scale-invariant solu-
tions (2), it is necessary to check whether the collision
integral converges. Appendix A outlines these calcula-
tions. The condition for the scale-invariant collision in-
tegral (32) to converge at the IR end, k1 or k2 / 0, is
given by

a1 b/2! 7/2, 0 and !3, b, 3, (33a)

a! 4, 0 and b5 0, (33b)

a! 7/2, 0 and b5 1, (33c)

a1 b! 5, 0 and b. 3, or (33d)

a! 5, 0 and b,!3. (33e)

Similarly, UV convergence as k1 and k2 / ‘ implies
that

a1 b/2! 4. 0 and !2,b, 2, (34a)

a! 7/2. 0 and b5 0, (34b)

a! 3. 0 and b. 2, or (34c)

a1 b! 3. 0 and b,!2. (34d)

The domains of divergence and convergence are shown
in Fig. 2.
Figure 2 also displays the classes of triads dominating

the interactions. Knowing the classes of interactions that
lead to the divergences of the kinetic equation allows
us to find possible physical scenarios of the convergent
solutions or to find a possible physical regularization of
the divergences.
Note that, in addition to the two-dimensional domain

of IR convergence [the regions (33a), (33d), and (33e)],
there are two additional IR convergent line segments
given by Eqs. (33b) and (33c). These two special line
segments appear because of the b(b 2 1) prefactor to
the divergent contributions to the collision integral (A3).
Similarly, for the UV limit, in addition to the two-
dimensional region of convergence [(33a), (34c), and
(34d)], there is an additional special line segment of
b 5 0 [(34b)].
We see that these domains of convergence overlap

only on the segment

7/2 , a , 4 and b5 0. (35)

This result contradicts the one in Lvov et al. (2004),
where a coding error led us to believe that the integrals
converge and that GM is an exact steady-state solution
to the scale-invariant kinetic equation. Note that b 5 0

corresponds to wave action independent of vertical
wavenumbers, ›n/›m 5 0. Existence of the b 5 0 line
will allow us to find novel convergent solution in section
4. We also note that the IR segment on b 5 0 coincides
with one of the ID solutions determined in section 6. The
other segment on b 5 1 does not coincide with the ID
solution in section 6, because the scale-invariant system
has higher symmetry than the system with Coriolis effect.

4. A novel convergent solution

To find out whether there is a steady solution of the
kinetic equation along the convergent segment (35), we
substitute the power-law ansatz (2) with b 5 0 into the
azimuthally integrated kinetic Eq. (18). We then com-
pute numerically the collision integral as a function of
a for b 5 0. To this end, we fix k 5 m 5 1 and perform
a numerical integration over the kinematic box (24),

FIG. 2. (a) Convergence and (b) divergence due to (a) IR
wavenumbers and (b) UVwavenumbers. The integral converge for
the exponents in the shaded regions or on the segments (b5 0, 7/2 ,
a, 4) and (b5 1, 3, a, 7/2). Dashed lines distinguish the domains
where the indicated named triads dominate the singularity.
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reducing the integral to the resonant manifold as de-
scribed in section 3a.
The result of this numerical integration is shown in

Fig. 3. The figure clearly shows the existence of a steady
solution of the kinetic Eq. (18) near a ffi 3.7 and b 5 0.
This is, therefore, the only convergent steady solution

to the scale-invariant kinetic equation for the internal-
wave field. It is highly suggestive that it should exist so
close to the GM spectrum, a 5 4 and b 5 0 for large
wavenumbers, the most agreed upon fit to the spectra
observed throughout the ocean. It remains to be seen
whether and how this solution is modified by inclusion of
background rotation.

5. Balance between divergences

The fact that the collision integral C diverges for al-
most all values of a and b can be viewed both as a chal-
lenge and as a blessing. On one hand, it makes the
prediction of steady spectral slopes more difficult, be-
cause it now depends on the details of the truncation of
the domain of the integration. Fortunately, it provides
a powerful tool for quantifying the effects of funda-
mental players in ocean dynamics, most of which live on
the fringes of the inertial subrange of the internal-wave
field: the Coriolis effect, as well as tides and storms, at
the IR end of the spectrum and wave breaking and
dissipation at the UV end. The sensitive response of the
inertial subrange to the detailedmodeling of these scale-
separated mechanisms permits, in principle, building
simple models in which these are the only players, by-
passing the need to consider the long range of wave scales
in between.
At the IR end, the resonant interactions are domi-

nated by the ID singularity for23, b, 3 (Fig. 2). The
sign of the divergences is given by2b(b2 1) [Eq. (A3)].

Similarly, at the UV end, resonant interactions are
dominated by the ID singularity for22, b, 2 (Fig. 2).
The sign of the divergence is given by b [Eq. (A4)]. At
the UV end for b . 2, where ES determines the di-
vergences, the sign of the singularity is given by2b: that
is, the sign is negative [Eq. (A5)]. Figure 4 shows the
signs of the divergences where both the IR and UV
contributions diverge: the left sign corresponds to the
IR contribution, and the right sign corresponds to the
UV contribution.
Hence, in the regions,

7, 2a1 b , 8 and !2, b, 1 or (36a)

7, 2a1 b, a, 3, and b. 2, (36b)

the divergences of the collision integral at the IR and
UV ends have opposite signs. Then formal solutions can
be constructed by having these two divergences cancel
each other out.
This observation justifies the existence of the PR so-

lution (5). Indeed, the PR spectrum has divergent power-
law exponents at the both ends. One can prove that the
PR spectrum is an exact steady solution of the kinetic
Eq. (1) by applying the Zakharov–Kuznetsov conformal
mapping for systems with cylindrical symmetry (Zakharov
1968, 1967; Kuznetsov 1972). This Zakharov–Kuznetsov
conformal mapping effectively establishes a map between
the neighborhoods of zero and infinity. Making these
two contributions cancel pointwise yields the solution (5).
For this transformation to be mathematically applicable,
the integrals have to converge. This transformation leads
only to a formal solution for divergent integrals. Some
other transformation, as we explain below, may lead to
completely different solutions.

FIG. 3. Value of the collision integral as a function of a on the
convergent segment, b 5 0.

FIG. 4. Signs of the divergences where the both IR and UV
contributions diverge. The left symbols show the signs due to IR
wavenumbers and the right symbols show the signs due to UV
wavenumbers.
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The PR spectrum was first found by Pelinovsky and
Raevsky (1977). However, they realized that it was
only a formal solution. The solution was found again
in Caillol and Zeitlin (2000) through a renormalization
argument and in Lvov and Tabak (2001, 2004) within an
isopycnal formulation of the wave field.
The idea of a formal solution, such as PR, can be

generalized quite widely: in fact, any point in the regions
with opposite-signed divergences can be made into a
steady solution under a suitable conformal mapping that
makes the divergences at zero and infinity cancel each
other, as does the Zakharov–Kuznetsov transformation.
Such generalized Zakharov–Kuznetsov transformation
is an extension of the idea of principal value for a di-
vergent integral, whereby two divergent contributions
are made to cancel each other through a specific rela-
tion between their respective contributions.
Indeed, in the ocean internal waves cannot have zero

horizontal wavenumber. Rather, a smallest horizontal
wavenumber exists, which corresponds to largest hori-
zontal scales of internal waves. The largest wavenumber
that was observed is on the order of thousands of kilo-
meters. On larger scales, b effects become important,
and they prevent wavenumbers to achieve even smaller
scales. Other effects possibly affecting small wavenumbers
include ocean storms, interactions with large scale vorti-
ces and shear, and ocean boundaries. Similarly, there is
no infinitely large wavenumber for internal waves, but
rather there is possibly large horizontal wavenumber that
is affected by wave breaking, interaction with the turbu-
lence, and other processes.
The idea of a generalized Zakharov–Kuznetsov trans-

formation leading to an infinite number of steady states
provides a possible explanation for the variability of the
power-law exponents of the quasi-steady spectra: in-
ertial subrange spectral variability is to be expected when
it is driven by the nonlocal interactions. The natural local
variability of players outside the inertial range translates
into a certain degree of nonuniversality. Such players
include storms and tides, as well as possible geometrical
constrains and interactions with large-scale shear and
vortices. Investigation of the nature of possible balances
between IR and UV divergences is outside of scope of
the present paper.

6. Regularization by the Coriolis effect

Physically, the ocean does not perform generalized
Zakharov–Kuznetsov transformation. However, in the
ocean there are finite boundaries in the frequency do-
main. In particular, the inertial frequency f provides
a truncation for the IR part of the spectrum, whereas the

UV truncation is provided by the buoyancy frequencyN.
These two frequencies vary from place to place, giving
grounds for spectral variability. Consequently, the in-
tegrals are not truly divergent, but rather they have
a large numerical value dictated by the location of the
IR cutoff.
Note that the f / 0 calculations presented in this

section describe intermediate frequencies v such that
v # f . 0. Consequently, these intermediate frequen-
cies feel inertial frequency as being small. These cal-
culations will not be applicable for equatorial regions,
where f is identically zero.
Observe that all the experimental points are located

in regions of the (a, b) domain a. (2b1 7)/2 for which
the integral diverges in the IR region. Also note that 5
out of 12 experimental points are located in the region
where collision integrals are UV convergent: that is, in
a . 2b/2 1 4. The UV region is therefore assumed to
be either subdominant or convergent in this section,
where we study the regularization resulting from a finite
value of f.
We note that, because we consider scale-invariant

case only in the present paper, the IR cutoff can equiv-
alently be considered as k approaching smallest possible
value or equivalently when v approaches its smallest
value. Because the IR cutoff is given by f, a frequency,
it is easier to analyze the resulting integral in (v1, m1)
rather than in the more traditional (k1, m1) domain
utilized in Müller et al. (1986) and the previous sections.
We emphasize that the present paper concerns itself
with scale-invariant wave action spectrum (2). The scale-
invariant wave action can be translated from (k1, m1) to
(v1, m1) domain with out loss of generality. This state-
ment would not be true for the realistic Garrett–Munk
spectrum or any other oceanic spectrum because of the
non-scale-invariant form of the linear dispersion relation
(12). Such spectra will be analyzed in subsequent publi-
cation (LPY).
Therefore, to proceed, we assume a power-law spec-

trum, similar to Eq. (2), but in the (v, m) space,

nv,m } v~am
~b. (37)

We need to transform the wave action as a function of k
andm to a function of v andm. This is done in appendix
B. The relation between a, b and ~a, ~b reads as

~a5!a, ~b5!a! b.

Thus, we need to express both the kinetic equation
and the kinematic box in terms of frequency and vertical
wavenumber. For this, we use the dispersion relation
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(12) to express k in terms of v in the description of the
kinematic box (24),

v1 , E3(m1), v1 .E4(m1), v1 .E1(m1)

if m1 , 0, v1 .v; (38a)

v1 .E3(m1), v1 ,E4(m1), v1 ,E1(m1)

if m1 , 0, v1 , v; (38b)

v1 ,E2(m1), v1 .E2(m1), v1 .E4(m1)

if m1 . 0, v1 , v; and (38c)

v1 .E3(m1), v1 ,E1(m1), v1 , E2(m1)

if m1 . 0, v1 .v, (38d)

where we have introduced the four curves in the (v1,m1)
domain that parameterize the kinematic box,

E1(v1)5m
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!f 2 1v2

q
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
! f 2 1 (v! v1)

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!f 2 1v2

1

q
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!f 2 1 (v! v1)

2
q ,

E2(v1)5m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
! f 2 1v2

q
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!f 2 1 (v! v1)

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
! f 2 1v2

1

q
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!f 2 1 (v! v1)

2
q ,

E3(v1) 5m
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!f 2 1v2

q
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
! f 2 1 (v! v1)

2
q

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!f 2 1v2

1

q
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
! f 2 1 (v! v1)

2
q , and

E4(v1)5m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!f 2 1v2

q
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!f 2 1 (v! v1)

2
q

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!f 2 1v2

1

q
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
! f 2 1 (v! v1)

2
q .

The kinematic box in the (v, m) domain is shown in
Fig. 5. Note that the region (38b) and (38c) can be
transferred to each other by interchanging indices 1 and 2;
consequently, two disconnected v1 , v regions look like
mirrored and shifted copies of each other. To help in the
transition from the traditional kinematic box (24) to the
kinematic box in (v,m) domain, the following limits were
identified:

d ID1 is the ID limit of Eq. (25b) with indices 1 and 2
being flipped;

d ID2 is the ID limit of Eq. (27a) with indices 1 and 2
being flipped;

d ID3 is the ID limit of Eq. (25b);
d ID4 is the ID limit of Eqs. (29b) and (30b);
d PSI1 is the PSI limit of Eq. (28a);
d PSI2 is the PSI limit of Eq. (28b);
d PSI3 is the PSI limit of Eq. (26a);
d PSI4 is the PSI limit of Eq. (26b);
d ES1 is the ES limit of Eq. (25a);
d ES2 is the ES limit of Eq. (27b) with indices 1 and 2
being flipped;

d ES3 is the ES limit of Eq. (27b) with indices 1 and 2
being flipped; and

d ES4 is the ES limit of Eq. (29a).

An advantage of the (v, m) presentation for the kine-
matic box is that it allows a transparent reduction to
the resonant manifold. A disadvantage is the curvilin-
ear boundaries of the box, which requires more sophis-
ticated analytical treatment.
Equation (18) transforms into

›

›t
n[k(v,m),m]5

1

k

ð
dv1 dm1J

V0
12

'' ''2

S01,2
[n1n2 ! n(n1 1 n2)]

''
v25v!v1,m25m!m1

! 2

k

ð
dv1 dm1J

V1
02

'' ''2

S12,0

3 [nn2 ! n1(n1 n2)]jv25v1!v,m25m1!m. (39)

FIG. 5. The kinematic box in the (v1, m1) domain. Two discon-
nected regions wherev1,v depict regions with ‘‘sum’’ interactions:
namely,v5v11v2 andm5m11m2 types of the resonances. The
connected regions where v1 . v depict ‘‘difference’’ resonances,
v2 5 v1 2 v andm2 5m1 2m. The parameters are chosen so that
f/v 5 0.1. Frequency f is marked on the top of the graph, and fre-
quency N is outside of the region of frequencies shown on the
graph.
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We have used the dispersion relation ki 5 mi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
i ! f 2

q

and defined J as the Jacobian of the transformation from
(k1, k2) into (v1, v2) times the kk1k2 factor,

J5kk1k2
dk1
dv1

dk2
dv2

.

In Fig. 5, there are three ID regions (or corners) with
significant contribution to the collision integral in the IR
limit:

1) ID1 region: In this region, m1 is slightly bigger than
m, v1 is slightly smaller than v, and v2 and m2 are
both very small. This region can be obtained from the
region (38b) above by interchanging indices 1 and 2.
In this region, the wave action n2 is much smaller
than wave action n and n1:

n2 # n,n1.

2) ID2 region: In this region, v1 is slightly bigger than
v1 f, where v25v12 v is small andm25m12m is
negative and small. This is the region (38d). Also,

n2 # n,n1.

3) ID3 region: In this region, v1 is small andm1 is small
and negative. This corresponds to the region (38b),
where wave action obeys

n1 # n,n2.

Note that this region can be obtained from the region
ID1 by flipping indices 1 and 2. Consequently, only
one of the ID1 and ID3 should be taken into account,
with a factor of 2 multiplying the respective contri-
bution. This also can be seen from Fig. 5 as ID1 and
ID3 regions are shifted mirror images of each other.

Making these simplifications and taking into account
the areas of integration in the kinematic box, we obtain

›

›t
n[k(v,m),m]5

2

k

ð f1vs

f

ð ðE1(v1)

E3(v1)
dm1J

V0
1,2

'' ''2

S01,2
n1(n2 ! n) dv1 !

2

k

ðv! f

v! f!vs

dv1

ðE1(v1)

E3(v1)
dm1J

V2
1,0

'' ''2

S21,0
n2(n! n1)

(40)

where the small parameter vs is introduced to restrict
the integration to a neighborhood of the ID corners. The
arbitrariness of the small parameter will not affect the
end result below.
To quantify the contribution of near-inertial waves to

a (v, m) mode, we write

! ; f $ v5 1.

Subsequently, near the region ID3 of the kinematic box,
we write

v1 5 f 1 !,

whereas near the ID2 corners of the kinematic box we
write

v1 5v1 f 1 !.

We then expand the resulting analytical expression (40)
in powers of ! and f without making any assumptions
on their relative sizes. These calculations, including the
integration over vertical wavenumbersm1, are presented
in appendix C. The resulting expression for the kinetic
equation is given by

›

›t
n[k (v,m),m]5

p

4k
(~a! ~b)[~a ! 3(31 ~b)] 3 m512 ~bv!31~a! ~b

ðm

0
d!(!1 f )41~a1 ~b(!2 1 2! f 1 17 f 2). (41)

The integral over ! diverges at ! 5 0, if f 5 0 and if
61 ~a1 ~b.!1.4
However, if we postpone taking f5 0 limit, we see that

the integral is 0 to leading order if

~a! 3(31 ~b)5 0 or ~a! ~b5 0 (42)

or, in terms of a and b,

9! 2a! 3b5 0 or b5 0. (43)

This is the family of power-law steady-state solutions
to the kinetic equations dominated by infrared ID in-
teractions. These steady states are identical to the ID
stationary states identified byMcComas and Bretherton
(1977), who derived a diffusive approximation to their
collision integral in the infrared ID limit. Note that4 Naturally, this condition coincides with (33a).
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McComas and Müller (1981) interpreted b 5 0 as a
no-action flux in vertical wavenumber domain, whereas
9 2 2a 2 3b 5 0 is a constant action flux solution.
We note that one can use the eikonal approach to

describe these types of interactions (Flatté et al. 1985;
Broutman et al. 2004; Müller et al. 1986; Henyey et al.
1986). An advantage of the eikonal approach versus our
scale-invariant analysis is that it allows us to consider
not only scale-invariant interactions in separable spec-
trum. The possible disadvantage of the eikonal ap-
proach is that construction of a transport theory is far
less rigorous. For a more detailed discussion on the dif-
ferences between the resonant interaction approximation
and the eikonal approach, we refer the reader to Polzin
(2004).
What is presented in this section is a rigorous as-

ymptotic derivation of Eq. (43). These ID solutions help
us to interpret observational data of Fig. 1 that are cur-
rently available to us. The value added associated with
a rigorous asymptotic derivation is the demonstration
that the ID stationary states are meaningful only in the
IR divergent part of the (a, b) domain.

7. Conclusions

The results in this paper provide an interpretation
of the variability in the observed spectral power laws.
Combining Figs. 1, 2, and 4 with Eqs. (4), (5), and (43)
produces the results shown in Fig. 6.
A nonrotating scale-invariant analysis provides two

subdomains in which the kinetic equation converges in
either the UV or the IR limit (light gray shading), two
subdomains in which the kinetic equation diverges in
both UV and IR limits but with oppositely signed values
(dark gray shading) and a single domain with similarly
signed UV and IR divergences (black shading). In this
nonrotating analysis, a stationary state is possible only
for oppositely signed divergences: that is, within the
dark gray shaded regions. Six of the observational points
lie in IR and UV divergent subdomains, and a seventh
(Site-D) is on the boundary with the IR divergent–UV
convergent subdomain. Two of the observational points
lie in the domain of IR and UV divergence having sim-
ilar signs, which does not represent a possible solution
in the nonrotating analysis. These two points lie close to
the boundaries of the ‘‘forbidden’’ (black shaded) re-
gion, and subtracting the vortical contribution from one
(NATRE1) returns a ‘‘best’’ estimate of the internal-
wave spectrum (NATRE2) that lies outside of the for-
bidden region.
All the data lie in an IR divergent regime and hence

a regularization of the kinetic equation is performed by
including a finite lower frequency of f. This produces

a family of stationary states, the induced diffusion
stationary states. These stationary states collapse much
of the observed variability. The exception is the NATRE
spectrum.
Summarizing the paper, we have analyzed the scale-

invariant kinetic equation for internal gravity waves and
shown that its collision integral diverges for almost all
spectral exponents. Figure 6 shows that the integral
nearly always diverges at zero, at infinity, or at both
ends. This means that, in the wave turbulence kinetic
equation framework, the energy transfer is dominated by
the scale-separated interactions with large and/or small
scales.
The only exception where the integral converges is

a segment of a line, 7/2 , a , 4, with b 5 0. On this
convergent segment, we found a special solution, (a, b)5
(3.7, 0). This new solution is not far from the large-
wavenumber asymptotic form of the Garrett–Munk spec-
trum, (a, b) 5 (4, 0).
We have argued that there are two subdomains of

power-law exponents that can yield quasi-steady solu-
tions of the kinetic equation. For these ranges of expo-
nents, the contribution of the scale-separated interactions

FIG. 6. The observational points and the theories: The filled
circles represent the PR spectrum, the convergent numerical so-
lution determined in section 4c, and the GM spectrum. Circles with
stars represent power-law estimates based on 1D spectra. Circles
with crosshairs represent estimates based on 2D datasets. See Fig. 1
for the identification of the field programs. Light gray shading
represents regions of the power-law domain for which the collision
integral converges in either the IR or UV limit. The dark gray
shading represents the region of the power-law domain for which
the IR and UV limits diverge and have opposite signs. The region
of black shading represents the subdomain for which both the IR
and UV divergences have the same sign: that is, when large con-
tributions from interactions with very small and very large wave-
numbers have the same sign. Overlaid as solid white lines are the
ID stationary states.
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due to the IR and UV wavenumbers can be made to
approximately balance each other. The Pelinovsky–
Raevsky spectrum is a special case of this scenario.
The scenario, in which the energy spectrum in the

inertial subrange is determined by the nonlocal inter-
actions, provides an explanation for the variability of the
power-law exponents of the observed spectra. They are
a reflection of the variability of dominant players out-
side of the inertial range, such as the Coriolis effect,
tides, and storms.
This possibility was further investigated by introduc-

ing rotation and then pursuing a rigorous asymptotic
expansion of the kinetic equation. In doing so, we obtain
the induced diffusion stationary states that appear as
white lines in Fig. 6, which had previously been deter-
mined through a diffusive approximation. Much of the
observed oceanic variability lies about these stationary
states in the IR divergent subdomain.
A more detailed review of available observational

data used for this study appears in PL. Numerical eval-
uation of the complete non-scale-invariant kinetic equa-
tion of the Garrett–Munk spectrum is presented in LPY
in which we also consider waves that are slightly off res-
onant interactions. The theory, experimental data, and
results of numerical simulations in Lvov and Yokoyama
(2009) all hint at the importance of the IR contribution

to the collision integral. The nonlocal interactions with
large scales will therefore play a dominant role in form-
ing the internal-wave spectrum. To the degree that the
large scales are location dependent and not universal, the
high-frequency, high-vertical-wavenumber internal-wave
spectrum ought to be affected by this variability. Conse-
quently, the internal-wave spectrum should be strongly
dependent on the regional characteristics of the ocean,
such as the local value of the Coriolis parameter and
specific features of the spectrum, specifically for near-
inertial frequencies.
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APPENDIX A

Asymptotics of Collision Integral in Infrared
and Ultraviolet Limits

Let us integrate Eq. (18) over m1 and m2,

›np
›t

5
1

k

ð
(T0

1,2 ! T1
2,0 ! T2

0,1) dk1 dk2, T0
1,2 5 kk1k2jV

p
p1p2

j2 f pp1p2 ( g091,2
'' ''S01,2),

.

g091,2(k1,k2)5
dg01,2(m1)

dm1

'''''
m15m1*(k1,k2)

, g01,2(m1)5
k

m
!

k1
m1

'' ''!
k2

m!m1

'' '' . (A1)

Here, g091,2 appears because of dvp!vp1
!vp2

, and m1*(k1, k2)
is given by the resonant conditions (21)–(23).

a. Infrared asymptotics

We consider the asymptotics of the integral in Eq.
(A1) as k1 / 0. We employ the independent variables x
and y, where k1 5 kx, k2 5 k(1 1 y), x, y 5 O(!), x . 0,
and2x, y, x. In this limit of !/ 0, n1 # n, n2. In this
limit, Eqs. (21a) and (23b), Eqs. (21b) and (23a), and
Eqs. (22a) and (22b) correspond to ES [Eqs. (25a) and
(27b)], ID [Eqs. (25b) and (27a)], and PSI [Eqs. (25a)
and (27b)], respectively. Without loss of generality,m is
set to be positive.
Assuming the power-law spectrum of the wave action,

n(k,m)5 jkj2ajmj2b, we make Taylor expansion for the
integrand of the kinetic Eq. (A1) as powers of !: that is, x
and y. Then, we get Table A1, which shows the leading
orders of the each terms according to the asymptotics. The

leading order of the collision integral is given by ID when
23 , b , 3. Therefore, we are going to show the pro-
cedure to get the leadingorder of ID (21b) and (23a) below.

TABLE A1. Asymptotics as k1 / 0. ES [(21a) and (23b)] gives
!2a15 because of the symmetry of y. ID [(21b) and (23a)] gives
!2a2(b27)/2 (!2a14) because of the second cancellation. PSI [(22a)
and (22b)] gives !2a2b15. The asymptotics for b 5 0 appear in
parentheses.

Eq. m1 m2 v1 v2 V
pi
p jpk

f
pi
p jpk

gi9j,k Ti
j,k

(21a) !0 !0 !1 !0 !1/2 !2a11 !0 !2a12

(21b) !1/2 !0 !1/2 !0 !1/4 !2a2(b21)/2

(!2a11)
!0 !2a2b//211

(!2a13/2)
(22a) !1 !0 !0 !0 !1 !2a2b !21 !2a2b13

(22b) !1 !0 !0 !0 !1 !2a2b !21 !2a2b13

(23a) !1/2 !0 !1/2 !0 !1/4 !2a2(b21)/2

(!2a11)
!0 !2a2b//211

(!2a13/2)
(23b) !0 !0 !1 !0 !1/2 !2a11 !0 !2a12
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As ! / 0, n2 / n for ID solutions. Therefore, the
leading order of f 01,2 ;n1(n2 ! n) and f 20,1; n1(n! n2)
is O(!2a2(b21)/2). The order O(!2a2b/2) is canceled as
! / 0. This is called the first cancellation. It must be
noted that the leading order when b5 0 is ½ larger than
that when b 6¼ 0 because ›n/›m 5 0. The leading orders
when b 5 0 are written in parentheses in Table A1.
The leading order of the integrand in Eq. (A1) is

written as

T0
1,2 ! T1

2,0 ! T2
0,1 } k!2a13m!2b11 x!a!(b11)/2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x1 y)(x! y)
p

3 f!2ay2 ! b[(1! b)y(x1 y)

! 2x(x! y)]1 b(b1 1)xyg. (A2)

Therefore, the integrand has O(!2a2(b25)/2). The term
that has O(!2a2b/212) is canceled because T2

0,1 ! T0
1,2

(and T1
2,0 ! 0) as !/ 0. This is the second cancellation.

Finally, we get the leading order of the kinetic equa-
tion after integration over y from 2x to x,

›np
›t

}!b(1! b)k4!2am1!2b

ð

0
x!a!(b!5)/2 dx. (A3)

The integral hasO(!2a2(b27)/2). Consequently, the inte-
gral converges if

a1 (b! 7)/2, 0 and !3b3.

The integral for the PR spectrum, which givesO(!21/4),
diverges as k1 / 0. However, the integral for the GM
spectrum converges because b 5 0 and the next order
is O(1).
It should be noted that the leading order when b 5 1

is ½ larger than that when b 6¼ 0, 1 because a balance
between first- and second-order derivative is made. The
leading order when b5 1 isO(!2a17/2). It is also helpful
to note that T0

1,2 ! T1
2,0 ! T2

1,0 5 O(«!a12) for ES be-
cause of no second cancellation. However, the collision
integral has O(!2a15) because of symmetry of y. There-
fore, the integral which is dominated by ES converges

a! 5, 0 and b ,!3.

Similarly, the integral that is dominated by PSI converges,

a1 b! 5, 0 and b. 3.

b. Ultraviolet asymptotics

Next, we consider the limit k1 / ‘. In this case, k2
also approaches infinity. We employ the independent

variables x and y as k1 5 k/2[1 1 (1/x) 1 y] and k2 5
k/2[11 (1/x)2 y], where x5O(!) and21, y, 1.Again,
m . 0 is assumed.
The leading orders are obtained by the similar manner

used in the IRasymptotic and are summarized inTableA2.
The leading order of the integral is given by ID, whose
wavenumbers are given by Eqs. (22b) and (23b), when
22 , b , 2. In this limit, no second cancellation is made.
As the result of the perturbation theory, we get the

leading order,

›np
›t

} k4!2am1!2bb

ð

0
xa1b/2!5 dx. (A4)

It has O(!a1b/224). Therefore, the integral converges if

a1 b/2! 4. 0 and !2, b, 2.

The integral for the PR spectrum, which givesO(!21/4),
diverges as k1 / ‘. The integral for the Garrett–Munk
spectrum, which gives O(!0), converges because b 5 0.
Similarly,

›np
›t

}!k4!2am1!2bb

ð

0
xa!2 dx (A5)

for ES, which is dominant for b . 2. Consequently, the
integral converges also if

a! 3. 0 and b. 2.

In the same manner, the convergent domain of the in-
tegral for PSI is given by

a1 b! 3. 0 and b ,!2.

APPENDIX B

Frequency–Vertical-Wavenumber and
Horizontal–Vertical-Wavenumber Spectrum

The theoretical work presented below addresses the
asymptotic power laws of a three-dimensional action

TABLE A2. Asymptotics as k1 / ‘. PSI [(21a) and (21b)] gives
!a1b23. ES [(22a) and (23a)] gives !a23. ID [(22b) and (23b)] gives
!a1b/224 (!a27/2). The asymptotics for b 5 0 appear in parentheses.

Eq. m1 m2 v1 v2 V
pi
p jpk

f
pi
p jpk

gi9j,k Ti
j,k

(21a) !21 !21 !0 !0 !0 !a1b !1 !a1b22

(21b) !21 !21 !0 !0 !0 !a1b !1 !a1b22

(22a) !0 !0 !21 !21 !21 !a !21 !a22

(22b) !21/2 !21/2 !21/2 !21/2 !21 !a1b/211

(!a13/2)
!1/2 !a1b/223

(!a25/2)
(23a) !0 !0 !21 !21 !21 !a !21 !a22

(23b) !21/2 !21/2 !21/2 !21/2 !21 !a1b/211

(!a13/2)
!1/2 !a1b/223

(!a25/2)
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spectrum. To connect with that work, note that a horizon-
tally isotropic power-law form of the three-dimensional
wave action n(k, m) is given by Eq. (2).
The corresponding vertical wavenumber–frequency

spectrum of energy is obtained by transforming nk,m from
wavenumber space (k, m) to the vertical wavenumber–
frequency space (v, m) and multiplying by frequency. In
the high-frequency, large-wavenumber limit,

E(m,v)}v2!am2!a!b.

The total energy density of the wave field is then

E5
ð
v(k,m)n(k,m) dk dm5

ð
E(v,m) dv dm.

Thus, we also find it convenient to work with the wave
action spectrum expressed as a function of v and m
Therefore, we also introduced (37). The relation be-
tween a, b and ~a, ~b reads as

~a5!a, ~b5!a! b.

APPENDIX C

Asymptotic Expansion for Small f Values

In this section, we perform the small f calculations of
section 6. We start from the kinetic equation written as
Eq. (40). There we change variables in the first line of
Eq. (40) as

m1 5E3(v1)1m[E1(v1)! E3(v1)]

and in the second line of Eq. (40) as

m1 5E3(v1)1m[E2(v1)! E3(v1)].

Then, Eq. (40) becomes the following form:

›

›t
n[k(v,m),m]5

2

k

ð f1vs

f
dv1

ð1

0
dmP1

!2

k

ðv! f

v! f!vs

dv1

ð1

0
dmP2. (C1)

Here, we introduced integrands P1 and P2 to be

P1 5 J
V0

1,2

'' ''2

S01,2
n1(n2 ! n)[E1(v1)! E3(v1)] and

P2 5 J
V0

1,2

'' ''2

S01,2
n2(n! n1)[E2(v1)! E3(v1)]. (C2)

Before proceeding, note the following symmetries:

E1(v1 5v! v91)5m! E2(v91),

E3(v1 5v! v91)5m! E3(v91), and

E4(v1 5v! v91)5m! E4(v91).

These symmetries explain why two disconnected regions
on Fig. 5 look like mirrored and shifted copies of each
other. These symmetries further allow us simplification
of evaluation of ID contribution by noticing that the
contribution from ID1 is equal to the contribution from
ID3. To quantify the contribution of near-inertial waves
to a (v, m) mode, we write

!; f $ v5 1.

Subsequently, in the domain ID3 we write

v1 5 f 1 !,

in P1 and in the domain ID2 we write

v1 5v1 f 1 !

in P2. Furthermore, we expand P1 and P2 in powers of !
and f without making any assumptions of the relative
smallness of f and !. We use the facts that

m. 0, !. 0, f . 0, and 0,m, 1.

Define

P1 5P1 1P2 and

P2 5P3 1P4.

This allows us to expand P1, P2, P3, and P4 in powers of
f and !. We perform these calculations analytically on
Mathematica software. Mathematica was then able to
perform the integrals of P1 and P2 over m from 0 to 1 in
Eq. (C1) analytically. The result is given by Eq. (41).
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