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Abstract A data-driven procedure is developed to compute the optimal map be-
tween two conditional probabilities ρ(x|z1, ..., zL) and µ(y|z1, ..., zL), known only
through samples and depending on a set of covariates zl. The procedure is tested
on synthetic data from the ACIC Data Analysis Challenge 2017 and it is ap-
plied to non-uniform lightness transfer between images. Exactly solvable examples
and simulations are performed to highlight the differences with ordinary optimal
transport.

Keywords Optimal transport, conditional average treatment effect, uncertainty
quantification, color transfer, image restoration.

1 Introduction

Optimal transport seeks the mass preserving map T between two probability distri-
butions that minimizes the expected value of a given cost function, the transporta-
tion cost between a point and its image under T [9]. The corresponding minimal
cost defines a metric in the space of probability distributions, the Wasserstein
distance for cost functions of the form c(x, y) = ‖y − x‖p. Beyond providing a
metric, the optimal map T itself has broad applicability, which this article extends
through the development of conditional optimal transport.

Consider as a specific example the evaluation of the effects of a long-term
medical treatment (alternatively of a habit, such as smoking or dieting). Opti-
mal transport can be used to quantify changes in the probability distribution of
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quantities that characterize the health state of a person (blood pressure, blood
sugar level, heart beat rate) between scenarios with and without treatment. Data
typically consist of independent measurements of these quantities in treated and
untreated populations. Yet more often than not, the distribution of these quan-
tities depends on many covariates beyond the presence or absence of treatment,
such as age, weight, sex, habits. Hence one should refine the search, looking for
the effect of the treatment as a function of these covariates.

Motivated by this and similar applications, this article develops a data driven
procedure to compute the optimal map T (x, z) between two conditional probabil-
ity densities ρ(x|z1, ..., zL) and µ(y|z1, ..., zL), with covariates zi. In the example
above, y = T (x, z) estimates the value y that the quantity of interest would have
under treatment if, without treatment, its value were x, under specific values of the
covariates zl. The procedure is data driven, as it uses only samples

{
xi, zi1, . . . , z

i
L

}
and

{
yj , zj1, . . . , z

j
L

}
from ρ and µ. Notice that we do not seek a pairwise match-

ing between
{
xi, zi1, . . . , z

i
L

}
and

{
yj , zj1, . . . , z

j
L

}
: typically these two data sets do

not even have the same cardinality. Instead, we work under the hypothesis that
these samples are drawn from smooth conditional densities ρ(x|z) = ρ(x, z)/γx(z),
µ(y|z) = µ(y, z)/γy(z) and covariate distributions γx(z) and γy(z), and hence we
seek a map y = T (x, z) that is a smooth function of its arguments.

The need for conditional optimal transport is particularly apparent when the
distributions for the covariates z for the source and target distributions are un-
balanced, i.e. when γx and γy differ. Consider as a particularly telling example
a situation when the treatment has no effect, i.e. ρ(x|z) = µ(x|z), so the “true”
answer should be y = x, yet the covariates are unbalanced, i.e. γx 6= γy. For
concreteness, suppose that

ρ(x|z) = µ(y|z) = N(z, 1), γx(z) = N(−1, 1), γy(z) = N(1, 1),

where N(a, b) denotes the 1d normal distribution with mean a and variance b.
Then

ρ(x) =

∫
ρ(x|z)γx(z) dz = N(−1, 2), µ(y) =

∫
µ(y|z)γy(z) dz = N(1, 2).

It follows that, if one would not look at the covariate z, one would infer incorrectly
that y = x+ 2, i.e. that the treatment does have a significant effect. We will see in
section 4.1 an instance of this phenomenon appearing in the more complex setting
of a biomedical application, where conditional transport provides critical aid.

Conditional transport provides a very flexible toolbox for data analysis, as the
choice of which variables are conditioned to which others is left at the discretion
of the analyst. In anticipation of the application of this principle to color transfer
problems in section 4.3, we illustrate it here with a simple example. Consider a
covariate z ∼ N(0, 1) and two dependent variables x ∼ N(z, 1) and y ∼ N(−z, 1)
(see Figure 1 for a sketch relative to this problem). Since the marginals ρ(x) and
µ(y) are identical, performing optimal transport between them yields the identity
map y = x, while conditioning to z yields y = x − 2z, effectively rotating the
joint distribution ρ(x, z) clockwise. For a third alternative, consider performing
regular two dimensional transport between ρ(x, z) and µ(y, z), which yields an
irrotational map [9]. Finally, if in a thought experiment we would identify x and
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y and switch the roles of dependent and independent variables, conditioning the
transport in z-space to x, we would obtain z2 = z1 − 2x, effectively rotating the
joint distribution ρ(x, z) counter-clockwise.
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Fig. 1: Upper row: source (left) and target (right) distributions. Lower left: optimal
transport of x conditioned on z. The arrows indicate that the lower left branch
and the upper right branch of the source distribution are mapped respectively to
the upper left branch and the lower right branch of the target distribution. Lower
right: optimal transport of z conditioned on x. In this case, it is the upper right
branch of the source distribution that is mapped to the upper left branch of the
target distribution.

The plan of this article is as follows: after this introduction, section 2 formu-
lates the conditional optimal transport problem in an adversarial framework con-
ducive to effective computation. This minimax formulation involves two players:
one with strategy T (x, z), the cost-minimizing map, and one with strategy g(y, z),
a test function that discriminates between the target µ(y|z) and the push-forward
T#ρ(x|z) via a variational formulation of the relative entropy between the two.
Section 3 describes some alternative ways to parameterize these two strategies.
Section 4 illustrates the procedure through real examples of practical and concep-
tual relevance: the determination of the effect of a medical treatment, lightness
transfer: given two photographs of different objects under different lightness condi-
tions, render the first under the lightness condition of the second, and “automatic
restoration”: given a painting that has deteriorated over time and one that has
not, “restore” the first to its likely original condition. Finally, some conclusions
and directions of further research are summarized in section 5.
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2 Conditional optimal transport

Conditional optimal transport between two conditional distributions ρ(x|z) and
µ(y|z) can be defined simply as the map T (x, z) that performs optimal transport
between them for each value of z: min

T (:,z)

∫
c(T (x, z), x)ρ(x|z)dx

T#ρ(: |z) = µ(: |z),
(1)

where c(x, y) represents the cost of moving a unit of mass from x to y and the
symbol # indicates the push forward of probability measures, i.e. if x has distri-
bution ρ(x|z) then y = T (x, z) has distribution µ(y|z) = T#ρ(: |z). Since T (:, z)
decouples under different values of z, we can multiply the cost by the distribution
γx(z) ≥ 0 of the covariates z in the source and integrate over z, yielding min

T (:,z)

∫
c(T (x, z), x) ρ(x, z) dxdz

∀z T#ρ(: |z) = µ(: |z),
(2)

where ρ(x, z) = ρ(x|z)γx(z) is the joint distribution of x and z.

We need to reformulate this problem in a way that is implementable in terms
of samples

{
xi, zix

}
and

{
yj , zjy

}
. As is stands in (2), two immediate problems

emerge: there are not enough samples for each value of z, typically none or one for
continuous covariates, to characterize the corresponding conditional distributions,
and it is not clear how to enforce the push forward condition. The first problem
is at the very heart of the need for conditional optimal transport: even though
the objective functions for each value of z decouple, one assumes a commonality
across z that makes samples from each conditional distribution be informative on
the others. In the case of continuous covariates z, this can be posed as a smoothness
(in z) condition on ρ(x|z).

In order to address the second problem, we interpret the push forward con-
dition in terms of relative entropy. Recall that the relative entropy between two
distributions ρ1 and ρ2 is given by

DKL (ρ1||ρ2) =

∫
ρ1(x) log

ρ1(x)

ρ2(x)
dx ≥ 0,

which vanishes only when ρ1 and ρ2 agree almost everywhere. Hence the push
forward condition T#ρ = µ can be restated as DKL(µ||T#ρ) = 0. Yet the relative
entropy is not a robust quantifier of the difference between distributions, as it
is bounded only when the first distribution is absolutely continuous with respect
to the second. To resolve this issue, we replace the second distribution by an
interpolation between T#ρ and µ:

DKL

(
µ
∣∣∣∣∣∣1

2
(T#ρ+ µ)

)
= 0,

so that the absolute continuity requirement is automatically satisfied.



Data Driven Conditional Optimal Transport 5

In order to incorporate the dependence on the covariate z, we replace the
relative entropy by its conditional counterpart:

DKL(ρ1(x|z)||ρ2(x|z)) =

∫
γ1(z)

∫
log

(
ρ1(x|z)
ρ2(x|z)

)
ρ1(x|z) dxdz,

the conditional Kullback-Leibler divergence between ρ1 and ρ2 ([2]). Since this is
non-negative, we can rewrite the problem in (2) as

min
T (:,z)

max
λ≥0

[∫
c(T (x, z), x)ρ(x, z) dxdz + λDKL

(
µ
∣∣∣∣∣∣1

2
(T#ρ+ µ)

)]
.

Instead of maximizing over λ, it will be convenient to fix a value of λ large enough
that the push forward condition can be considered satisfied for all practical pur-
poses. (It is straightforward to prove that, as λ → ∞, the solution with fixed λ
converges to the true minimax solution. In our implementation below, λ grows at
each step of the algorithm.) Then the problem above becomes

min
T

[∫
c(T (x, z), x)ρ(x, z) dxdz + λ DKL

(
µ
∣∣∣∣∣∣1

2
(T#ρ+ µ)

)]
, λ� 1.

For any ρ1(x, z) = γ1(z)ρ1(x|z) and ρ2(x, z) = γ2(z)ρ2(x|z), the following “chain
rule” for relative entropy holds [2]:

DKL(ρ1(x|z)||ρ2(x|z)) = DKL(ρ1(x, z)||ρ2(x, z))−DKL(γ1(z)||γ2(z)).

Since the map T acts only on x, it has no effect the last term of this expresion, so
we can write

min
T

[∫
c(T (x, z), x)ρ(x, z) dxdz + λDKL

(
µ(x, z)||1

2
(T#ρ(x, z) + µ(x, z))

)]
.

This formulation improves over the one in (1) by consolidating an infinite set
of problems, one for every value of z, into a single one. Yet it is not clear yet how
to enforce the push forward condition in terms of samples, as the definition of the
relative entropy involves evaluating logarithms of ρ and µ. To address this, we
invoke a variational formulation of the relative entropy between two distributions
[3]:

DKL(ρ1||ρ2) = max
g

[∫
g(x, z)ρ1(x, z)dxdz − log

(∫
eg(x,z)ρ2(x, z) dxdz

)]
,

(3)
which involves ρ1 and ρ2 only in the calculation of the expected values of g and eg,
with a natural sample-based interpretation as empirical means. Then our problem
becomes

min
T

max
g

∫
c(T (x, z), x)ρ(x, z)dxdz + λ

[ ∫
g(y, z)µ(y, z)dydz

− log

(
1

2

∫
eg(y,z)µ(y, z)dydz +

1

2

∫
eg(T (x,z),z)ρ(x, z)dxdz

)]
(4)
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or, in terms of samples,

min
T

max
g

1

N

N∑
i=1

c(T (xi, zix), xi) + λ

[
1

M

M∑
j=1

g(yj , zjy)

− log

 1

2M

M∑
j=1

eg(y
j ,zjy) +

1

2N

N∑
i=1

eg(T (xi,zix),z
i
x)

].
This adversarial formulation has two players with strategies T and g, one min-

imizing the cost and the other enforcing the push forward condition, providing an
adaptive “lens” that identifies those places where the push-forward condition does
not hold: for any T , the optimal g in (4) is given by

g = log

(
µ(y, z)

µ(y,z)+T#ρ(x,z)
2

)
= log

(
(1 + w(z))µ(y|z)

w(z)µ(y|z) + T#ρ(x|z)

)
+ log

(
2w(z)

1 + w(z)

)
,

where w(z) = γy(z)/γx(z), and the first term is furthest from zero in those places
where T#ρ(x|z) and µ(y|z) differ the most.

It is interesting to notice a feature in the solution g(x, z) to the variational
formulation (3) for the relative entropy involving conditional distributions. The
optimal g is given by

g(x, z) = log

(
ρ1(x, z)

ρ2(x, z)

)
= log

(
ρ1(x|z)γ1(z)

ρ2(x|z)γ2(z)

)
.

Consider a situation where we have already performed conditional optimal trans-
port, so that ρ1(x|z) = ρ2(x|z). If the distributions for z in source and target are
unbalanced, the corresponding optimal g will be a nonzero function of z alone:

g(x, z) = log

(
γ1(z)

γ2(z)

)
= w(z), (5)

in contrast to the situation in regular optimal transport between the joint distri-
butions ρ1,2(x, z), where the final optimal g(x, z) equals zero.

3 Parametrization of the flows

In order to complete the problem formulation in (5), we need to specify the family
of functions over which the map T (x, z) and the test-function g(y, z) are optimized.
These families should satisfy some general properties:

1. Be rich enough that g can capture all significant differences between ρ(x|z)
and µ(y|z) and T can resolve them.

2. Not be so rich as to overfit the sample points
{
xi, zix

}
,
{
yj , zjy

}
. For instance,

a g with arbitrarily small bandwidth would force the sets
{
T (xi, zix), zix

}
,{

yj , zjy
}

to agree point-wise, an extreme case of overfitting that is not only
undesirable but also unattainable when their cardinality differs. More gener-
ally, the dependence of the functions on z should be such that, with a finite
number of samples, it should still capture the assumed smoothness of ρ(x|z):
functions that are too localized in z space effectively decouple the transport
problems for every value of z, for which there are not enough available sample
points.
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3. Be well-balanced: if one of the two players has a much richer toolbox than
the other, the game would be “unfair”, leading to a waste of computational
resources and possibly to instability and/or inaccuracy.

4. Be apt to robust and effective optimization.

These conditions leave space for many proposals. For instance, we could define
both T and g through neural networks. Instead, the examples in this article are
solved with the two implementations detailed below. Both share the feature that
T is built on map composition: at each step n of the mini-maximization algorithm,
an elementary map En is applied not to the original sample points

{
xi
}

, but to
their current images:

Tn(xi, zix) = En
(
Tn−1(xi, zix), zix

)
.

This way, simple elementary maps E depending on only a handful of parameters
can give rise through map composition to rich global maps T . The two proposals
differ in that one builds nonlinear richness through evolving Gaussian mixtures,
while the other builds complex z-dependence through an extra compositional step.
In this article, the first method is applied to a lightness transfer problem, and the
second to the effect of a medical treatment, as the latter is linear in x but has
complex, nonlinear dependence on many covariates z.

3.1 Evolving Gaussian mixtures

We adopt as elementary map the gradient of a convex potential function: E(x, z) =
∇xΦ(x, z), chosen from a family that includes the identity map. Convexity of the
potential guarantees that the resulting elementary map is one-to-one. The poten-
tial Φ is built from a quadratic form in x with coefficients that depend on z, plus a
combination of Gaussians in (x, z) space, and similarly for the test function g. By
having the centers and amplitudes of these Gaussians evolve, we can approximate
quite general functions Φ and g.

In order to guarantee the convexity of Φ, notice that the gradient of a radial
basis function kernel with bandwidth d,

Gd(x, x′) = exp

(
−||x− x

′||2

2d2

)
,

is bounded by ± 1
d exp(1/2) , and its second order derivatives by 2

d2 exp(3/2) <
1

2d2 .

It follows that 1
2d2
||x||22

2 ±Gd(z,mzi)Gd(x,mi) is convex, so we propose

Φ(x, z) = (cT0 +zT c1)x+
1

2
xTC2(z)x+

K∑
i=1

a2i

(
||x||22
4d2

−Gd(z,mzi)Gd(x,mi)

)
+

∑
i

b2i

(
||x||22
4d2

+Gd(z,mzi)Gd(x,mi)

)
, C2(z) = CT

2,0C2,0 + zTCT
2,1C2,1z,

with C2,0,C2,1 lower triangular. Notice that, if ai = bi, the Gaussians cancel each
other, and we are left with a purely quadratic potential. Therefore, in order to



8 Esteban G. Tabak et al.

start the map at every step at the identity, the initialization must satisfy

C2,0(i, i)2 +
K∑
i

1

4d2
(a2i + b2i ) = 1, a2i = b2i ,

so we propose

a2i = b2i =
4d2δ

2K
, C2,0(i, i) =

√
1− δ, δ =

1

2
,

with all other parameters starting from zero. The bandwidth d is chosen via d =
quantile(pdist([y; z]), 1/K), where pdist is the pairwise distance function. With
this choice there are approximately 1/K points in the effective support of each
Gaussian.

For the test function, we propose

g(x, z) =
K∑
i=1

αiGd(z,mzi)Gd(x,mi) + (βT0 + zTβ1)x + xT (β2 +
∑
i

β3,izi)x,

with each iteration starting at the parameter values from the previous step. The
Gaussian centers are treated differently in the test function g, where they are extra
parameters to ascend, and in the potential Φ, where they are fixed at their values
from g in the prior step. The underlying notion is that g locates those areas where
the distributions do not agree, and then T corrects them.

3.2 Extended map composition

This second methodology considers maps given by rigid translations and test func-
tions that capture the conditional mean x̄(z):

T (x, z) = x+ U(z), g(y, z) = V (z)y +W (z), x ∈ R,

with general, nonlinear dependence on z. Notice that the y independent function
W (z) is required, from (5), to handle a possible unbalance between γx(z) and
γy(z). We will build U , V and W through generalized flows in z space, through
the composition of function of the form

F (a, z, v, u) = (a10 +
L∑
i=1

a1i zi + a1L+1u) + (a20 +
L∑
i=1

a2i zi + a2L+1u)v.

Then we define the map T = x+ U(z) at time n+ 1 via the recursion

Tn+1(Tn, z) = Tn + un+1, un+1 = F (α, z, un, vn).

and the test function via

gn+1(y, z) = vn+1y + wn+1, vn+1 = F (β, z, vn, un), wn+1 = F (η, z, wn, 0).

Notice that the T -independent function W (z) evolves on its own, while U(z) and
V (z) depend on the prior values of each other, as they compete through the min-
imax formulation.

These maps are initialized at u0 = v0 = w0 = 0. Before each step, α is set to
0 (as T is reinitialized every step to the identity), and so are β and η, except for
β2
0 = η20 = 1, which makes g evolve from its value at the previous step.
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4 Examples

We illustrate the procedure with two applications: determination of the effect of a
medical treatment and lightness transfer. In order to solve the mini-maximization
problem (5) we use the general procedure described in [4].

4.1 Effect of a Treatment

We apply conditional optimal transport to determine the response to a treatment
of a diagnostic variable x ∈ R in terms of covariates z. As described in the introduc-
tion, given a set of available samples from the treated and untreated populations,
we seek to infer the effect of the treatment. We propose to model this as a map
y = T (x, z) yielding the state y under treatment of a patient that, with covariates
z, would have state x without treatment.

The data created for the ACIC data analysis challenge 2017 [5] (https://
arxiv.org/pdf/1905.09515.pdf) is particularly well-suited to test our approach.
For concreteness, we consider the first of their 32 generating models, which includes
8 covariates: 6 binary and 2 continuous. We divide the data set into two groups:
the untreated (x) and treated (y) patients, with samples drawn from distributions
ρ(x, z) = γx(z)ρ(x|z) and µ(y, z) = γy(z)µ(y|z), having the property that

µ(y|z) = ρ(y − τ(z)|z), γx(z) 6= γy(z).

The function τ(z) represents the Conditional Average Treatment Effect (CATE).
It will be important for the analysis below to know that, in the model under con-
sideration, τ depends only on the binary covariates, but the marginals γ(z) depend
also on the continuous ones [5]. The data is provided in 250 batches, each referring
to the same 4302 patients, i.e. the same values of zi under different realizations
of the noise. We use only the first of these batches to compute the optimal map
T (x, z), reserving the other 249 to validate our results. In this first batch there is
no repeated patient, so each patient is either treated or not-treated. This invali-
dates the use of regular regression, which would require pairs (x, y) for the same
patient with and without treatment. Our distribution-based methodology, on the
other hand, does not require the availability of such pairs.

The middle panel of Figure 2 displays the untreated values xi as a function of
the expected value that they would have under treatment given the values zis of
their covariates in the source distribution corresponding to the untreated patients:

E(x|zs, 1) =

∫
(x+ τ(zs)) ρ(x|zs) dx,

while the right panel displays similarly the treated values yi. The 1 above refers
to the situation under treatment, while a zero would denote the absence of treat-
ment. An exact quantification of the effect of the treatment would recover the
map T (x, z) = x + τ(z). The left panel of Figure 3 displays the map T (xi, zi)
obtained using only the discrete covariates, which are the ones that the true T of
the underlying model depends on. However, because of the unbalance between γx

and γy (see the left panel of Figure 2 for γ(z7)), the results are biased, much as
in the synthetic example in the introduction. The middle panel shows that, when
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all covariates are considered, this biased is resolved. The right panel compares the
application of the map T (x, z) to all untreated instances of one specific patient in
the full 250 batches, to the histogram of the response y for all treated instances
of the same patient. The prediction agrees very accurately with the underlying
model, even though the patient appeared only once in the batch used for training.
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Fig. 2: Left panel: Unbalance in the distribution of z7 between the source and
the target data set. Center: Response variable x for patients before the treatment
plotted as a function of the theoretical expected value that the same patients
would have if they would undergone the treatment. Right: Response variable y of
the treated patients as a function of the theoretical expected value of the same
patients.

Figure 4 benchmarks the predicted CATE using conditional optimal transport
(right panel) versus nearest-neighbor estimation (left panel), which, given x and
the corresponding value of z∗, estimates τ(z) by the difference between the y with
closest z to z∗ and x. As can be observed, the estimate of τ obtained via conditional
optimal transport has a smaller variance than the one obtained using the nearest
neighbors in z space.

4.2 Lightness transfer

Next we apply conditional optimal transport to lightness transfer. Consider the
first column of Figure 5, corresponding to two flowers photographed under differ-
ent light conditions. We seek to transform the first photograph so as to present it
under the light conditions of the second. This goes beyond merely changing light-
ness uniformly, since for instance at sunset certain colors are perceived as having
become darker than others.

An image can be represented in the three dimensional CIELAB (L*a*b) space
whose coordinates are the lightness L, the red/green contrast A and blue/yellow
contrast B. The right column of Figure 5 shows the images of the flowers in this
L*a*b space, where each point corresponds to a superpixel, defined through a
clustering procedure to introduce information about the geometry of the image
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Fig. 3: Left: numerical value of the map T (xi, zi) obtained using only the discrete
covariates, which are the only ones that the true T depends on. The result is biased
due to the unbalance between γx and γy for γ(z7)). Middle: numerical value of
the map T (xi, zi) obtained using all the covariates. Right: comparison between the
application of the map T (x, z) to all untreated instances in the full 250 batches to
the histogram of the response y for all treated instances of the patient.
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(a) Benchmark: nearest neighbor in z
space
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(b) Conditional Optimal Transport

Fig. 4: Predicted CATE using benchmark (left) and conditional optimal transport
(right).

[7]. We follow [8] to define a similarity metric by means of a Gaussian kernel, map
the obtained superpixels through our procedure, and use a TMR filter after the
map to recover sharp details [6].

Figure 6 shows the results obtained by changing lightness through three dif-
ferent procedures. First (left column) we use one-dimensional optimal transport
(with quadratic cost) to map the L coordinate, ignoring the values of A and B.
The L*a*b diagram shows that this results in a nearly uniform shift of L towards
smaller values. The third column shows the effect of mapping the starting image
to the target image through 3d optimal transport in the full L*a*b space. In this
case the point clouds overlap to a much better degree, yet we observe that the
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color of the lotus has been changed too much towards the color of the poinsettia
in the target image. The second column is obtained performing optimal transport
of L conditioned on A and B. Contrasting to the other two results, here the lotus
has kept its original color, and the lightness has changed to a different degree for
the lotus than for the background leaves.

This is a general advantage of conditional optimal transport: unlike its uncondi-
tional cousin, it is not constrained to preserve total mass (in this case, transferring
fully one color palette to the other), but only the mass for each value of z. This
points to an additional application of conditional optimal transport: its capacity
to address possible unbalances between source and target by parameterizing the
transfer map by means of convenient labels z. In work in progress, we expand on
this notion, finding those latent covariates z that help resolve unbalances optimally.

4.3 Color contrast and Lightness transfer

In this section we show an example in which performing color transfer, in addition
to lightness transfer, can be used to simulate the effect of a restoration under
different conditions of lightness (L) and color contrast in the CIELAB space. We
present this example to display the broad set of options provided to the user by
condition optimal transport.

The source image represents Michelangelo’s Jesse spandrel in the Sistine Chapel
before the restoration that took place in the period 1984-1994. We chose this partic-
ular image because of the controversy that followed its restoration [1]. Comparing
the first and the last panels of the second row of Figure 7, representing the image
before and after the restoration respectively, one can notice the disappearance of
the eyes of Jesse and the loss of depth in his vest. In order to simulate a series of
possible effects of the restoration process, we perform lightness and color transfer
between the source image and two target images corresponding to two frescos dat-
ing back to roughly the same time period as the source image. These two frescos
have been chosen because they underwent a successful restoration process. In the
first row of Figure 7, we chose a fresco by Luca Signorelli (San Brizio Chapel -
Orvieto) and in the third row, a fresco by Michelangelo himself, the conversion of
Saint Paul in the Pauline chapel. The results obtained using these two frescos as
targets should be compared to the second row of Figure 7, where we use for target
the actual restored version of the source image, which corresponds to the colors
actually applied by Michelangelo, after eliminating those surface layers that have
deteriorated the most.

It is worth noticing that, when conditioning on lightness (third and sixth col-
umn of Figure 7), we obtain a figure that is less affected by the difference in color
density between the target and the source image. For instance, the target image
of the first row is characterized by a larger amount of vivid red that is not present
in the source image. This results in most of the transported images (second to
sixth columns) to be characterized by a shift in the red color. Similarly, the target
image of the third row is characterized by much more yellow/orange palette than
the source image.

Hence using lightness as a variable to condition over, has the effect of miti-
gating the presence of an unbalanced color palette between the source and the
target image. A possible reason is that lightness can often be used as as surrogate
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variable for the color label, as different colors are often attached to different values
of lightness. Therefore, conditioning on lightness has the effect of establishing a
correspondence between areas in the target and source image characterized by the
same colors, even if these areas do not have the same size.
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Fig. 5: Left column: initial (top) and target (bottom) image. Right column: L*a*b
coordinates for the initial (in red) and the target (in black) image

5 Conclusion

This work develops conditional optimal transport (COT), a variant of the classical
optimal transport problem where the distributions to match are conditioned to co-
factors. In particular, the data-driven case is considered, where the two conditional
probabilities ρ(x|z1, ..., zL) and µ(y|z1, ..., zL) are known only through samples. A
formulation is developed that integrates all conditional maps T (x, z) into a single
minimax problem, providing an adaptive, adversarial game theoretical framework
for the satisfaction of the push forward conditions.

Ignoring the dependence on cofactors can lead to wrong estimates for the map
for two reasons: the map may truly depend on these ignored covariates, as when the
effect of as treatment depends on the age of the patient, and/or the distributions of
the covariates may differ in the source and target distributions, as when comparing
hospitals which serve populations with different ratio of ethnicities. These two
effects appear prominently in our application of COT to the ACIC Data Analysis
Challenge 2017 data-set, where the effect of a medical treatment depends on a
set of discrete covariates, and the distributions of the diagnostic variable x in the
treated and untreated populations differ not only due to the effect of the treatment,
but also to the unbalance in a different set of continuous covariates.

COT provides a flexible tool for data analysis. For instance, in cases where there
are no explicit covariates, one can choose some of the variables x as covariates z.
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result (1D OT, TMR)
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(d) 1D OT result in LAB
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(e) COT result in LAB
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(f) 3DOT result in LAB

Fig. 6: Left Column: image obtained performing one dimensional optimal transport
for the Luminosity (L) coordinate ignoring the A and B coordinates. Second col-
umn: image obtained by performing optimal transport on luminosity conditioned
on color. Third column: plain three dimensional optimal transport in L*a*b space.

This choice may be driven by field knowledge and, when ambiguous, experiments
with COT may shed light on the effect of each particular choice. This is illustrated
through simple synthetic examples and through applications to lightness and color
transfer. The various choices can be used, for instance, to change the lightness
condition of an image, and to simulate the effect of the restoration of frescos
under different assumptions on the effect of the passing of time on color contrast
and lightness.
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Source 2D OT 2D COT 3D OT 1+2 OT OT + COT Target

Source 2D OT 2D COT 3D OT 1+2 OT OT + COT Target

Source 2D OT 2D COT 3D OT 1+2 OT OT + COT Target

Fig. 7: Three color transfers obtained with same source image and different tar-
get images, one for each row. 2D OT: two dimensional optimal transport in the
a*b space, independently from the value of L. 2D COT: two dimensional optimal
transport conditional on the value of L. 3D OT: 3 dimensional optimal transport
in the L*a*b space. 1+2 OT: One dimensional optimal transport performed on L
alone followed by two dimensional optimal transport in a*b space. OT + COT:
one dimensional optimal transport in the L space followed by two dimensional
optimal transport conditional on the value of L.

Still another use of COT, currently under development, would seek those hid-
den cofactors z under which the conditional transfer is optimal under a user-
determined criterion.
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