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Abstract. The formation of strong and potentially singular fronts in a two-dimensional quasi-
geostrophic active scalar is studied ber through the symbiotic interaction of mathematical theory
and numerical experiments. This active scalar represents the temperature evolving on the two
dimensional boundary of a rapidly rotating half space with small Rossby and Ekman numbers
and constant potential vorticity. The possibility of frontogenesis within this approximation is
an important issue in the context of geophysical flows. A striking mathematica] and physical
analogy is developed here between the structure and formation of singular solutions of this
quasigeostrophic active scalar in two dimensions and the potential formation of finite time
singular solutions for the 3-D Euler equations. Detailed mathematical criteria are developed as
diagnostics for self-consistent numerical calculations indicating strong front formation. These
self-consistent numerical calculations demonstrate the necessity of nontrivial topology invelving
hyperbolic saddle points in the level sets of the active scalar in order to have singular
behaviour; this numerical evidence is strongly supported by mathematical theotems which
utilize the nonlinear structure of specific singular integrals in special geometric configurations
to demonstrate the important role of nontrivial topology in the formation of singniar solutions.

AMS classification scheme numbers: 76105, 35165, 35B40, 35A40

1. Introduction

We study the detailed nonlinear behaviour of strong and potentially singular front formation
in solutions of a two-dimensional quasi-geostrophic active scalar through the symbiotic
interaction of mathematical theory and numerical experiments. Qur motivation for this
study is generated from two distinct sources. One motivation involves actual geophysical
flows in the atmosphere and the important issue of frontogenesis, the formation of strong
fronts between masses of hot and cold air, within quasigeostrophic approximations without
explicitly incorporating ageostrophic effects [1]. Frontogenesis is the terminology used
by atmosphere scientists for describing the formation in finite time of a discontinuous
temperature front. The second motivation, developed in detail in section 2 of this paper, is
the striking physical and mathematical analogy between the behaviour of strongly nonlinear
solutions of these equations in two dimensions and the behaviour of potentially singular
solutions for the Euler equations of 3-D incompressible flow [2] — an outstanding unsolved
problem in the theoretical turbulence community. In this second instance, the problem
studied here in two dimensions is simpler than 3-D Euler, both numerically and analyticaily,

0951-7715/94/061495+39519.50 (© 1994 IOP Publishing Ltd and LMS Publishing Lid 1495



1496 P Constantin et al

yet retains a large number of crucial features which are analogous to the behaviour in 3-D
Euler.
The equations studied here are given by

D 36 ) ) o C ’
—_— = -V = .
Dr 3!'+v 0 . (1.0

where the two-dimensional velocity, v = (v1, v2) is determined from # by a stream function

(1, va) = (—% f’i) (1.2)

3JC2 ! 8x1

and the stream function y satisfies
(=AY =—8 . (1.3)

With x = (x1, x2), the nonlocal operator (—A)é, in (1.3) is determined through the Fourier
transform

¥() = f ek (k) dk
by
(=AY = j ek k| (k) dk . (1.4)

We comment briefly on the derivation of the nonlinear equations in (1.1)-(1.3). The variable
@ represents the potential temperature, v is the fluid velocity, and the stream function
can be identified with the pressure. These equations are derived from the more general
quasigeostrophic approximation [1] for nonhomogeneous fluid flow in a rapidly rotating
three-dimensional half-space with small Rossby and Ekman numbers; for the case of special
solutions with constant potential vorticity in the interior and constant buoyancy frequency
{normalized to ong), the general quasigeostrophic equations reduce to the evolution equations
for the temperature on the two-dimensional boundary given in (1.1)<(1.3). The statistical
turbulence theory for these special quasigeostrophic flows has been studied earlier by
Blumen [3] and more recently by Pierrehumbert et i [4] while some qualitative features
of the solutions of these equations in a geophysical context are developed by Held e af
[5]. The equations in {1.1)(1.3) are an important example of a two-dimensional active
scalar [6], the thermal quasigeostrophic active sealar, with a specific structure most closely
related to the 3-D Euler equations (see section 2). A brief preliminary study of potential
singular sclutions for these equations has been developed recently by the authors [7]. Next
we present an outling of the remainder of this paper.

In section 2, we develop the striking physical and mathematical analogies between the
quasigeostrophic active scalar in (1.1)-(1.3) and the 3-D Euler equations for incompressible
flow. One simple physical example of this analogy in section 2 is that level sets of solutions
of the quasigeostrophic active scalar correspond to vortex lines in the 3-D Euler equations—
both types of curves move with the flow and the nonlocal equation for evolution of the
tangent vectors to the level sets is completely analogous to the equation of vortex stretching
for the vorticity, which is tangent to vortex lines, This mathematical analogy is also
exploited in section 2 where the authors develop precise mathematical criteria to characterize



Quasigeostrophic front formation 1497

the fashion in which smooth solutions of the equations in (1.1)-(1.3) can become singular.
The simplest result of this type is the analogue of the well known characterization for
singular solutions for 3-D Euler in [8], namely,

[0, T..) with T, < oo is a maximal interval of existence 'of a smooth
solution for the 2-D'quasigeostrophic active scalar if and only if

T
fo V6|, (s)ds > o0 as T 7 T, (1.5)

where | F ] feo = MaXzeg? | I (x)[. More refined criteria of this sort involving the rate of
increase of the length of level sets for the active scalar are also developed in section 2.

In section 3, numerical experiments are presented where the refined mathematical
criteria developed in section 2 are utilized as diagnostics for self-consistent numerical
solutions predicting strong front formation and potentially singular behaviour in a sequence
of calculations with finer resolution ranging from 2562 to 5122 to 1024% with a pseudo-
spectral method and periodic boundary conditions. Three types of initial data are considered
in section 3. The first experiments involve a hyperbolic saddle in the initial level sets of
temperatare in the regime of strong nonlinear behaviour—the numerical solutions indicate
strong nonlinear front formation and potentially singular behaviour. The second series of
experiments involves initial data which globally is very similar to that in the first set of
experiments, but the geometry in the vicinity of the strongest nonlinear region is different
and involves elliptic Ievel sets in 8—the numerical solutions in this case initially behave
nonlinearly as in the first set of experiments but self-consistently saturate to exponential
growth of gradients without singufar behaviour. Finally, in the third set of experiments
reported in section 3, more general initial data is considered which indicates the robust
features of strong front formation documented in the numerical experiments reported earlier
in the section.

The first two series of numerical experiments from section 3 demonstrate the important
role of the geometry of the level sets of the active scalar in strongly nonlinear and potentially
singular behaviour. In section 4, such a geometric scenario is developed in detail once
again through the symbiotic interaction of mathematical theory and numerical experiments.
In particular, mathematical theorems for solutions of the quasigeostrophic active scalar
are stated in section 4 with the following basic theme: if the geometry of the level sets
of the active scalar is simple and does not contain a hyperbolic saddle in the region of
strongly nonlinear behaviour, then no singular behaviour is possible, In particular, the
mathermatical theory necessarily implies that no fronts with simple regular level set topology
in the temperature field, 8, can become singular in finite time. In other words, classical
frontogenesis i.e., the finite time development of a shock-like discontinuous thermal front, is
impossible for solutions of the quasigeostrophic active scalar, but as documented in section
3, strong nonlinear front formation with a nontrivial hyperbolic saddle in the & level sets
is possible within the quasigeostrophic approximation. More data from the two numerical
experiments in section 3 involving the role of geometry and strongly nonlinear behaviour
are also presented in section 4; these data corroborate the mathematical theory presented
earlier in section 4.

The proofs of the mathematical results from section 4 are given in section 5. These
proofs utilize the nonlinear structure of specific singular integrals acting on functions in
special geometric configurations. Similar results for the 3-D Euler equations have been
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announced in [6] and will appear in a forthcoming paper of C Fefferman and two of the
authors [9]. The mathematical theory presented below is for all of space while the numerical
simulations involve periodic geometry. We do not repeat the analogous theoretical results in
a periodic setting since the proofs are somewhat easier but leave them as a simple exercise
for the interested reader.

2. Analogies between the 2-D guasigeostrophic active scalar and the 3-D Euler
equations

The 3-D incompressible Euler equations in vorticity-stream form [2, 6] are given by

Dw

B (Vv)co 2.1)

where bD—‘ = air' + vV, v= (U, 1w, vs) is the three-dimensional velocity field with div
v =0, and @ = curl v is the vorticity vector.

We begin dur list of physical, geometric, and analytic analogies between the 2-D
quamgeostrophnc active (QG) scalar in (1.1)~(1.3) and the 3-D Euler equations from (2 1)

by mtroducmg
vio = (- ez Bx,) - » (2.2)

We claim that the vector field, V*8, has a role for the 2-D QG active scalar in (1.1)-(1.3)
completely analogous to the vorticity in 3-I) incompressible fluid flow, i.e.

Ve s 0. A (23
By differentiating the equation in (1.1), we obtain the evolution equation for V4@ given by

DV49
Dt

= (Vu)Vie 2.4)

with D = -|- v-Vand v = V¢ so that div v = 0. With the identification in {2.3), the
evolutxon equauon in (2.4) for V8 clearly has, at the outset, a similar superficial structure
resembling the equation for vorticity in (2.1). Next we show that this analogy extends
considerably beyond this superficial level to detailed analytic and geometric properties of
solutions.

2.1. The analytic analogy with vortex stretching

We begin by demonstrating that the equations in (2.1) and (2.4) are remarkably similar in
their analytic structure. The velocity v in (2.1) is determined from t,he vorticity @ by the
familiar Biot-Savart law [2, 6],

v(x) = L (V ,1!) X o+ ¥dy (2.5)
R3 ,

and the strain matrix, S, which is the symetric part of the velocity gradient,

=1 ((¥) + (Vo)*)
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is given in terms of the vorticity by the strongly singular integral,
; 3. : . d
S(x) = 4—p_v_f M (3, o+ y)) I—)I% . (2.6)

In (2.6) the matrix M is a function of two vanables the first a unit vector, the second a
vector and is given by the formula

MG o)=ie@xa)+ P xa)®F] @en
with a ® & = (g;b;) the matrix formed by the-tensor product of two vectors. Clearly the
right hand side of (2.1) can be written in terms of only the strain matrix, §, and . For the

2-D QG active scalar, thc equatlons in (1.3} and (1.4) are g1ven through the explicit mtegral
formula

vx) = ﬁe(x + )y | 2.8

so that with v = V41, we obtain

__ [ 1w
v = ./;-azi lV (x -+ y)dy . (2.9)

Next, we compute the symmetric part of the matrix, Vv, from (2.4} defined by
. -S{xy = 3 (Vo + (Vo)) .
Wlth (2.9) we calculate that the matrix S(x) has-the smguIar integral representation

S(x)=P.V. fR N (3, (VEo)(x + y)) e (2.10)
where § = T;ﬁ and N is a function of two variables, the first a unit vector in R? and the
second a vector with

NG &) =i 0w +ut ). (2.11)
The function N has mean zero on the unit circle for fixed w and thus, the operator in (2.10)
is a legitimate strongly singular integral. As in the situation for 3-D fluid flow, we will see
below that for the equation in (2.4), only the symmetric part, S(x), contributes to strong and

_potentially singular front formation. We have displayed only the formula for the symmetric
part of Vv for simplicity in the exposition.
With the formulae in (2.5)<2.11), we develop the analytic analogy between the
equations in (2.1) and (2.4). From (2.5) and (2.9}, the velocity is given in terms of w,
either @ or V1@ respectively in 3-D or 2-D, by

v =f Ki(y)w(x + y)dy
Rd

where K;(y) is homogeneous of degree 1 —d in R ford =2, 3, i.e. Ky(y) = AR (y)
for A > 0. Furthermore, from (2.7) and (2.10) '
*
Vv +2(Vv) — S5

has a representation formula in terms of w(x + y) via a strongly singular integral operator
defined through a kernel homogeneous of degree —d, in RY, for d = 2,3 with specific
cancellation properties; also the geometric formulae for these strongly singular operators
given in (2.7) and (2.11) are very similar in structure. Thus, with the identification of
V49 and vorticity, the evolution equation for V*¢ from (2.4) has a completely parallel
analytic structure in 2-D as the equation for the evolution of vorticity, @, in (2.1) for 3-D
incompressible flow.
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2.2. The geometric analogy with vortex lines

The analogy in (2.3) extends much farther beyond the detailed analytic structure in (2.1) and
(2.4). From (1.1} it follows that the level sets, 8 = caonstant, move with the fluid flow and
V14 is tangent to these level sets; these facts are analogues for the 2-D QG active scalar
of the well-known facts for 3-D incompressible fluid flow that the vorticity by definition is
tangent to vortex lines and vortex lines move with the fluid. Thus,

for the 2-D QG active scalar, the level sets of
# are analogous to vortex lines for 3-D Euler. (2.12)

The infinitesimal length of a vortex line is given by the magnitude of w, [w|, and it follows
readily from (2.1) (see [6]) that the evolution of this infinitesimal length is given by

D|w| _

o = o|w| (2.13)
with

alx,ty=S(x,nDE-E. . (2.14)

Here S(x,t) is the symmetric matrix defined in and above (2.6) and £(x,t) is the unit

direction of the vorticity vector, i.e. £ = I%E;_:%I' Similarty, for the 2-D QG active scalar

the infinitesimal length of a level set for € is given by |V*@| and from (2.4), the evolution
equation for the infinitesimal arc length is given by

DIVYe| ‘
on = | V44| (2.15)
with
ax, 1) =S, 0§ (2.16)

Here S(x,?) is the symmetnc matrix defined in and above (2.10) and £(x, #) is the unit

direction of V*8, i.e. £ = ‘v‘rre“ With the analogy in (2.12) between level sets for the 2-D
QG active scalar and vortex Imes, the similar eguations in (2.13) and(2.15} and also the
paralle]l formulae in (2.6) and (2.10) for the stretching factor ¢, it should be evident to the
reader that there is a powerful geometric-analytic analogy between these two problems in
2-D and 3-D respectively.

2.3. Conserved quantities

The 2-D QG active scalar in (1.1)—(1.3) obviously has the quantities conserved in time for
solutions given by

f G(@)dx (2.17)
R

for any function G(Q) With the Fourier transform deﬁned in (1.4), it follows that
B(k) = VEy (k) = ¥=k:4) Bk so that by Plancherel’s formula,

! 24, _ 1 2
5 [ dx_zfﬂz|9|dx. (2.18)
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The facts in (2.17) with the special choice G{#) = -%62 combined with (2.18) establishes the
conservation of kinetic energy for the 2-D QG active scalar. This conservation of energy
is analogous to that for the 3-D Euler equations.

However, there are additional quantities conserved in time for the 2-D QG active scalar
beyond the kinetic energy—for example, all of the quantities listed in ¢2.17). In addition,
the reader can verify readily that the quantity

H) = —fm Yodx = fRz ((—A)-%s) fdx (2.19)

is conserved by solutions of the QG active scalar. This is an additional positive definite
conserved quantity without a direct analogue for the 3-D Euler equations. Other more
geometric conserved quantities for the QG active scalar are presented in section 2.5 below.

2.4. Analogies and the characterization of singular solutions for the 2-D QG active scalar

One of the main themes of this paper is the use of the 2-D QG active scalar as a simpler but
analogous model problem for formation of singularities for the 3-D incompressible Euler
equations. Here we develop precise mathematical criteria which characterize the fashion in
which smooth solutions of the equations in (1.1)—(1.3) can become singular in finite time.
These precise mathematical criteria are used as self-consistent diagnostics for namerical
experiments in section 3 of this paper; furthermore, these conditions are analogous to
similar results [2, 6, 8, 9] for the 3-D Euler equations.

We utilize the Sobolev spaces of functions in H¥(R?) so that f belongs to H5(R?) for
a positive integer S if the following norm is finite:

HEEDS fRz |D® fAdx . (2.20)

x| <8

It is not difficult to prove a local existence theorem for solutions of (1.1) — (1.3) in a standard
fashion and to obtain the following result (see chapter 2 of {10] for this type of proof which
in this case, is left as an exercise for the interested reader):

If the initial value 9| = By(x) belongs to the Sobolev space,

H*(R?) for some integer &,k > 3, there is a smooth solution

6(x, ) of the 2-D QG active scalar belonging to H*(R?)

for each time, ¢, in a sufficiently small time interval, 0 < ¢ < T,,.

Furthermore, if T,, the maximal interval of smooth existence is finite,

ie. T« < co, then T, is characterized by the property that

Ne¢. Ol > coast /T . (2.21)

With this preliminary information, it is not difficult to prove the following precise
characterization of the fashion in which smooth solutions of the 2-D QG active scalar
can become singular in finite time:
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Theorem 2.1, Consider the unique smooth solution of the 2-D QG active scalar with initial

data, 8o(x) € H*(R?) with & > 3. The following are equivalent:

(1) The time interval, 0 < t < T, with T, < o¢ is a maximal interval of H* existence for
the 2-D QG active scalar. '

(2) The quantity ]\7—‘-9] 1 () accumulates so rapidly that

T R
f [V8|,(s)ds > 00 as T /T (2.22)
0

(3) Let o*(2) = max,p2(SE - £) = maxX, ez c(x, f) where § and ¢ are defined in (2.10),
(2.15), (2.16), then

T
f a*(s)ds o0 as T T,.. (2.23)
0

In particular, if either of the quantities in (2.22) or {2.23) remains finite as ¢ /' T, the
solution remains smooth beyond the time 7.

Proof of theorem 2.1. With the analogy between V-8 and vorticity o, we see that the fact
that (1) and (2) are equivalent is the analogue of the well-known criterion established in {8];
in fact, with the equation in (2.4) and the analogous formulae in (2.9) and (2.10) for v and
Vv in terms of V48 for the QG active scalar, the proof that (1) is equivalent to (2) requires
only minor changes in the argument from [8]; this is left for the interested reader to verify.
It rernains to establish that (3) is equivalent to (1). With the fact that #(k) = i-’; k)6 (%)

and Sobolev’s lemma we have the estimates,
*() < C|V|()rmizey < ClIVOIle—i (0)
£ C|vllx(2) = ClI91]e @)

for any fixed X 2 3 where C in (2.24) is an apriori constant varying from inequality to
inequality. Therefore if we assume (2.23), it follows from integrating the inequality in
(2.24) that

(2.24)

r
f 8|laés)ds > 00 as T T,
o
so that [0, T.) with T, < oo is a maximal interval of smooth existence for 8(x,t). To

complete the proof of theorem 2.1, we utilize the fact that 1) and 2) are equivalent and
prove that if we assume that

T.
f e Fds s M <0
1]
then necessarily
T ,
f [V48), (5)ds < M| Vig ., < o0 (2.25)
]

The identity in (2.15) for the rate of change of arc length along level sets together with
Gronwall’s inequality and the definition of «* in 3) above guarantee that

%WLe [Lo(®) S @[V, @ _ (2.26)
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By integrating (2.26) we-deduce the estimate claimed-earlier in (2.25). This completes our
sketch of the proof of theorem 2.1.

There is a refined criterion bayond that in (3) of theorem 2.1 which yields a useful
additional diagnostic for the numerical simulations described in the next sections. To state
this criterion, we consider the simplified situation where by hypothesis there is an isolated
absolute maximum for !V‘LG[ achieved along a smooth curve x(f) for 0 < £ < T, Le.,

[V8|,.(t) = |V*8|(x(®), 9 . (2.27)

There might be several such isolated global maxima but for simplicity we consider only
one of them. We consider the level set stretching rate o, defined in (2.15), (2.16), restricted
. to this curve where IVGI is a maximum i.e. we define &(z) by .

() = a(x(),1) . (2.28)

Intuitively, we expect that no singular behaviour can occur in the solution of the QG active
scalar on the interval [0, T,) unless &(r) — co as.z  T,. This expectation is confirmed
by the following

Proposition 2.1. With the additional geometric hypothesis described in (2.27), the three
conditions in theorem 2.1 are equivalent to the (apparently weaker) condition that

; :
f &ndt Ao as T A T,. (2.29)
[0

The proof of proposition 2.1 is simple. Since &(t) satisfies &(z) < o™(), if (2.29) is
valid it follows that necessarily (2.23) is valid. On the other hand, assume that

..
f GHde < M . (2.30)
[}

Let ¢ denote the Lagrangian marker at ¢ = 0 associated with the particle trajectory equation
so that

dXx
-a't_'(Qs t) = U(X(Q! t), t)

{2.31)
X(g. 0l o=19 -
In Lagrangian coordinates, the formula from (2.15) becomes
d
371 V501 D = a(X(g,, 0| V:0](g, 2) (2.32)

where [V&0](g,2) = |V10|(X(g,?),#). Under the hypothesis in (2.27) and with g(¢)
defined by X{g(®), = x(®)

d d d d
G171 91un0 = 5 (92010 0) = (G19591) Ltn + %29 L 3

d,, .
= (E [0 I) Loy = ED[ Vx| @) - (2.33)
In the third equality in (2.33), we utilized the fact that |V+@| has a maximum in g at g(f)

while we used (2.32) in the fourth equality. With (2.30) and (2.33), we achieve the a priori
bound in (2.25). This completes the proof of proposition 2.1.
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Remark 2.1. We utilize proposition 2.1 in the numerical sections of this paper where the
additional hypothesis from (2.27) is satisfied empirically. With a more lengthy proof, the
same result remains true without the hypothesis in proposition 2.1. We omit this proof here.

Remark 2.2. The perceptive reader will note that analogous refined criteria for singular
solutions for the 3-D Euler equations are valid, as given in (3) of theorem 2.1 and also
proposition 2.1, with virtually the identical praofs ntilizing (2.13), (2.14) rather than (2.15),
(2.16}. Since we discuss the 2-D QG active scalar in this paper, we have chosen to emphasize
the analogous criteria for that equation here. In the context of the 3-D Buler equations, the
proof which we have presented for (3) of theorem 2.1 constitutes a substantial refinement
with a vastly simpler proof of a result of Ponce [11] which followed the ideas from [8] and
characterized the potential singular solutions of 3-D Euler through the blow up of the strain
matrix.

2.5. Theoretical predictions for strong front formation in the QG active scalar

Recently, one of the authors (see [6] and references therein) has derived and applied
interesting equations for the convective derivative of the direction field £ where £ = 'I%i' for

3-D Buler and & = &r%; for any active scalar. In particular, if k = (§ - V£) - £* denotes
the curvature of a level set of an active scalar, one identity developed on page 89 of [6] is
the following:

2. (¢v46)) = (v%0- V) g (2.34)

where g = (V&) - &1 .

The integral of «| V0| on a closed level set of 8 is the rotation number of that level set.
If we integrate the gquantity, fc[VJ-el, between two level sets, from (2.34), we obtain a
geometric constant of motion which is completely different from those discussed earlier in
2.3; this constant is the ‘sum’ of the rotation numbers of the level sets contained in the
region. Thus, by inlegrating (2.34), over such a region, we obtain that

d

g k|vtojdx =0. (2.35)
dr {xlclgs(x.:)scz}

‘We can use these conserved quantities in (2.35) to make a prediction about the geometric

nature of strongly nonlinear regions in solutions for the QG active scalar. In such strongly
nonlinear regions, according to theorem 2.1, we necessarily have [VJ'B[ > 1. Thus,

under the hypothesis that the curvature does not oscillate

wildly, it follows from the conserved quantities in (2.35) that 236
necessarily the curvature satisfies [¢| < 1, ie. '

necessarily straightening of the level sets must oceur,

This theoretical prediction is confirmed in all the numerical experiments presented next in
section 3 where we always observe general level set flattening in  in the regions with the
most nonlinear behaviour where {V18] is largest and changing most rapidly. It is worth
emphasizing again that such a straightening effect of level sets applies to any 2-D active
scalar in regions of high gradients provided that the curvature does not oscillate wildly.
Wild oscillation could occur with the quantity in (2.35) remaining conserved if locally the

curvature, &, behaved like f (x, f, 2%:‘)) where €(t) tends rapidly to zero as ¢ increases. In

all of our numerial experiments, we find no evidence for such oscillations.
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3. Numerical simulations with strong front formation in the QG active scalar

Here we present the results of systematic numerical simulations for solutions of the QG
active scalar together with detailed numerical diagnostics involving the theoretical criteria
developed in theorem 2.1 and proposition 2.1—these diagnostics are used both as self-
consistent checks of the numerical solutions under refinement and also to monitor the
self-consistent potential for singularity formation in a given initial data. We report on
numerical simulations with three different initial data here: the first yields strong front
formation as predicted theoretically in (2.36) and continued nonlinear development toward a
potentiaf singular solution; the second initial data, with a different topology for the & - level
sets, has temporal behaviour with front formation as predicted in (2.36) which satorates
rapidly to mildly nonlinear and non-singular behaviour on the time interval computed
here. Connections between the topology of 8-level sets and potential singular behaviour
confirming these different numerical results are developed in section 4 of this paper. Finally,
a third more general initial data is utilized to demonstrate the robustness of flattening of
level sets associated with strong gradients as predicted theoretically in (2.36).

3.1. The basic numerical method and diagnostics

We solved the equations in (1.1}(1.3) numerically on a 2w-periodic box with a spectral
collocation method, which involves computing v(f) in Fourier space and the product v - V8
in physical space, with an exponential filter of high frequencies, and time stepping through
a fourth-order Runge—Kutta method. This numerical method is basically the one developed
by E and Sha [12, 13] for incompressible flow with minor modifications to incorporate the
change in physics in (1.1) —(1.3). As a numerical check on the accuracy of the basic scheme
and the time stepping procedure, we monitored the two positive definite conserved quantities
described in section 2.3 involving the kinetic energy (see (2.18)) and the pseudo energy,
H(8) (see (2.19)). In the simulations reported below, these quantities were conserved to
five significant figures. As diagnostics for the resolution with various numbers of Fourier
modes ranging from (256)% and (512)% to (1024)%, we monitored the angular averaged
energy spectrum. The diagnostics in thecrem 2.1 and proposition 2.1 for potential singular
behaviour were implemented through straightforward evaluation involving post-processing
of the numerical solution.

3.2. Case 1: strong and potentially singular front formation with a hyperbolic saddle in the
active scalar topology

In this first case, we considered the simplest initial data with
f{x, 0) = sin(x;) sin(xy) + cos(xg) . (3.1

Eigenmodes of the Laplacian define temperature fields which are steady solutions of (1.1}
{1.3). The initial data in (3.1) is a linear combination of the two lowest eigenmodes and
represents the simplest type of smooth initial data with nonlinear behaviour.

In figure 1, we present the numerical solution with this initial data at the times,
t =0, 2, 4, 6 with a resolution of (512)2 Fourier modes. The initial data for the temperature
field, 6p(x), clearly has a hyperbolic saddle and the numerical solution develops a strong
front as time evolves. We are interested in determining whether the front depicted at time
t = 6 is well-resolved with this method and also whether the numerical solution, resolved
on 2 finer mesh, continues to develop nonlinear and potentially singular structure as time



Figure 1. Case 1. Evolution of # and 1 between + = 0 and ¢ = 6, exhibiting the initial stages
in the development of strong, potentially singular fronts. Both ¢ and v have saddle points at
the centre of the grid. (a) Contours of 8. (&) Contours of 1,

evolves. To determine the numerical resolution, we give plots of the energy spectrum in
figure 2 at time, ¢ = 6, with (512)% Fourier modes and also the same plots at times ¢ = 7
and ¢ = 7.5 with the higher resolution, (1024)% modes. ‘ :

These three plots indicate a progressive build up of energy in the higher modes,
characterized by an evolving bump in the specttum. The graph in figure 2(a) indicates
that at time r = 6, we are near the limit of resolution with (512)* Fourjer modes while
figures 2(b, ¢) demonstrate that we reach the limit of resolution with (1024)? modes near
t =77.5 but have adequate resclution until that time.

In figures 3-5 we plot the level sets of the temperature field and the stream function,
Y, for the velocity field at the times ¢ = 6,7,7.5 with the numerical resolution of the
preceding paragraph. It is evident from these graphs that the transfer of energy to high
wave numbers depicted in figure 2 is associated with the nearly self-similar development
of a strong temperature front with a cusp. This cusp ig clearly displayed at time 7 = 6 in
figure 6 where a three-dimensional local graph of 8 is presented.

To present further evidence for the roughly self-similar behaviour of the cusped thermal
front, in figures 3-5, we have marked the spatial locations where IV—"9| and the stretching
factor er(x, £) from (2.15) and theorem 2.1 achieve their maxima; clearly, they are converging
to the centre of the hyperbolic saddle in the 8-level sets as time evolves.

Is the roughly self-similar steepening of the cusped thermal front associated with a
strongly nonlinear and potentially singular event for the 2-D quasigeostrophic active scalar?
Here we utilize thecrem 2.1 and proposition 2.1 as refined diagnostics to provide insight
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into this basic issue. In figure 7 we present log-log plots of max IVJ-QI versus time for
three different numerical simulations with resolutions of (256)2, (512)2, and (1024)2.

As indicated in figure 7, all three curves agree unfil the time, ¢ = 5.5, where the
calculation with (256)> modes has lost resolution; self-consistently, the calculation with
(512)* modes agrees with the finer resolution calculation until roughly time ¢ = 6 where
adequate resolution with (512)? modes has been lost (recall figure 2a)). The best linear fit
of the curve in figure 7 yields a slope of —1.66 and a potential blow up time T, with value
roughly, 7. = 8.25, ie., a singular behaviour for | V14| like (7, — £)~1%; these values for
a potential singularity are consistent with the requirements of rigorous theory from (2) of
theorem 2.1.

In figure 8, we plot o*(z), the maximum of the stretching factor over the entire periodic
box defined earlier in (3) of theorem 2.1, and also é&(¢), the value of the stretching factor at
the location of the maximum for |V18] with (1024)* modes. According to (3) of theorem
2.1 and proposition 2.1, nonlinear growth in either «*(¢) or «(f) is a signature of strongly
nonlinear interaction and growth of gradients (far beyond constant exponential growth!)
and divergent behaviour in time for both of these quantities is the signature of a singular
solution. First, we discuss the graph of o*(f); the quantity o*(¢) reflects the global rate of
increase of arc length of level sets; the graph of a*{(f) is roughly constant until the time
t =17, and a*(¢) exhibits strongly nonlinear growth after ¢+ = 7. The quantity &(z) gives a
more accurate measure of the local nonlinearity in the system at the location of the Jargest
gradient; the behaviour of &(z) is strongly nonlinear until the time ¢t = 7; beyond ¢ = 7, the
curve &(¢) lies below «*(z). According to the data presented in figures 3-5, the locations
of the maximum of & yielding o*(#) and the location of the mazimum magnitude for the
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Figure 1. (Continved)
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= Figure 2. Case 1. Logarithmic plots of the spectrum of &,
= E averaged over angles. A wave-like propagation toward the
3 0y high modes takes place in Fourier space; its sharply defined
5"5 front allows us to decide which size of grid is required at
£ E each time. At¢ = 6 we switched from a grid with 512x 512
104k points to gne with 1024 x 1024, The decay to the left
of the front is slower than exponential, suggesting that a
singularity is being formed. (@) ¢ = 6, front in Fourier
" space mear |k] = 200, (b) ¢+ = 7, front in Fourier space
10 0o near |k| = 350. (¢} t+ = 7.5, front in Fourier space near

[&] = 400.

gradient yielding &(f) converge rapidly and nearly coincide around the time, ¢ = 7. In
the regime with 7 € ¢ € 7.5, near the limits of resolution on 2 fixed mesh (see figure
2} with strong nonlinear growth, the maximum gradient of the actual solution is probably
lying between mesh points. Thus, with this rough reascning, beyond the time, r = 7,
we take the maximum of the two curves in figure 8 as a measure of the nonlinearity in
the system. Thus, this second refined set of mathematical diagnostics indicates continued
nonlinear growth consistent with the behaviour presented earlier in figure 7.

To summarize, we have presented numerical evidence, consistent with refined
mathematical diagnostics for strongly nonlinear and potentially singular behaviour of the
solution of (1.1) — (1.3} with the initial data in (3.1). While the strongly nonlinear behaviour
of this cusped thermal front has been established, caution is needed regarding the potential
finite time singularity in such a front—even with a resolution of (1024)2 on a Cray C90
supercomputer, from figure 7, we see that the value of the gradient has only amplified by
a factor of 30 by the time, ¢ = 7.5 where resolution is lost. Obviously, there is a need for
a carefully designed new adaptive numerical method to give additional insight, With the
theoretical results in [8, 11], mathematical diagnostics for potential singular solutions for
the 3-D Euler equations predicted by numerical methods have been used since that time; -
a review of these efforts until 1991 is presented in [2] and very interesting high quality
numerical simulations which systematically utilize such diagnostics in different contexts are
presented in [13~15]. Our use of the refined diagnostics involving o*(z) and &(#) from
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Figure 3. Case 1. Contours of § and ¥ at 7 = 6. From about this time on, the formation of the
front follows a seemingly self-similar pattern. (a) Contours of &, where we have marked the
location of maximum [V8| (denoted ‘~") and maximum strain « (denoted “¥’). (») Contours of

.

theorem 2.1 and proposition 2.1 is the first attempt to utilize the most refined mathematical
diagnostics in a numerical study.

3.3. Case 2: Nonsingular front formation with an elliptic centre in the active scalar topology

Here we present the results of numerical simulations with the simple initial data given by
8(x, 0) = — (cos(2x;) cos(xz) + sin(x) ) sin(xz)) 3.2)

In figure 9, we present snapshots of the 8-level sets of the numerical solutions at the
" times ¢ = 0, 1.5,3.0, and 4.5 with a resolution of (512)* Fourier modes. As in case 1 and
according to the theoretical prediction in section 2.5, a strong front with nearly planar level
sets develops in time. In contrast to case 1 described earlier, the strong front forms in the
vicinity of an elliptic centre in the 8-level sets rather than a hyperbolic saddle. We will
present further numerical evidence below that the behaviour associated with the solution in
case 2 is not strongly nonlinear and far from singunlar behaviour for this interval of time. In
sections 4 and 5, we will present mathematical evidence supporting these numerical results,
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Figuare 3, (Coaotinued)

In figure 10 we present the spectrum at time ¢ = 4 with (512)? modes and at time ¢ = 5
with (1024)* modes. figure 10 indicates adequate numerical resolution at these times. These
graphs also reveal a transfer of energy to high wave pumbers in case 2 but, in contrast to the
data presented in figure 2 for case 1, the amplitudes are slightty smaller and the pronounced
bump in the spectrum is absent.

In figures 11(a) and 11(b) we give contour plots for the active scalar, @, at the times,
t =4, and ¢ = 5 with the numerical resolution described above. Also on these graphs are
marked the spatial locations of the maximum of ]Vl9| and the maximum of the stretching
factor, @*. In confrast to the results in figures 3-5 for case 1, these locations remain
distinctly separated as time gvolves, This behaviour suggests that the strong front that has
formed in case 2 is not a strongly nonlinear event as time evolves. In figure 12, we plot
log (| V46| ,.) as a function of time for 0 < ¢ < 5-—as indicated in figure IO(b), we are at
the limits of resolution with (1024)> modes at time ¢ = 5.

The graph in figure 12 has a pronounced constant slope for times, ¢, with 3.75 < ¢ £ 5.
According to the mathematical criterion in (2) of theorem 2.1, this constant slope is the
signature of mildly nonlinear exponential growth of the magnitude of |V*@| in contrast to
case 1 and this is very far from singular behaviour. In figure 13 we graph the temporal
behaviour of the quantities a*(¢) and &(#) utilized in the refined diagnostics in (3) of theorem
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x*¥
Figure 4. Same as previous figure, at + = 7. Observe how the location of the points with

maximum gradient and strain have nearly converged to the centre of the grid. (@) Contours of
8. (b) Contours of v ‘

2.1 and proposition 2.1. Both of these quantities exhibit mild growth through their history
and the more sensitive diagnostic for strongly nonlinear behaviour in the vicinity of the
maximum gradient, &(z), is leveling off and is nearly flat for ¢ with 3.75 < 7 < 5.00.
Thus, all of the mathematical diagnostics presented in figures 12 and 13 provide self- -

consistent evidence that the front formation depicted in figures 9 and 11 is only mildly
nonlinear and very far from a potentially singular event. Mathematical evidence giving
further support for this behaviour is presented in section 4. Here in section 3.3, we have
utilized the mathematical diagnostics from theorem 2.1 and proposition 2.1 together with
numerical experiments to exclude strongly nonlinear and potentially singular behaviour in a
certain geometric configuration for the level sets of the active scalar—despite the fact that
visually a strong front has formed.

3.4. Case 3: front formation with general initial data

Here we briefly present the results of our numerical simulations with the more general initial
data, ‘

8(x, 0) = cos(2x;) cos x3 + sin x; sinxy + cos(2x;) sin(3x,) . (3.3)
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Figure 4. (Continued)

In figures 14 and 15 we present graphs with the active scalar level sets in a numerical
simulation with (1024)® Fourier modes at the times ¢ = 0 and ¢ = 3 respectively. These
plots clearly indicate that the large scale straightening of level sets in regions with large
eradients is occurring with this general initial data. This confirms once again, our theoretical
prediction from (2.36).

4. The topology of level sets for the active scalar and strong front formation

Cases 1 and 2 of the numerical study presented in section 3 indicate that there is a very
interesting connection between the topology of the level sets for the active scalar in the
region of initially evolving strong gradients and the formation of strong nonlinear and
potentially singular fronts. In case 1 with the initial data in (3.1), the developing region
with large gradients for 8 impinges on a hyperbolic saddle point in the scalar level sets
and in section 3.2, we carefully documented subsequent strongly nonlinear behaviour with
a potentially singular thermal front forming in finite time. In case 2 with the initial data in
(3.2), the developing region with large gradients for # impinges on an elliptic centre in the
active scalar level sets and we documented through the diagnostics in section 3.3 that there
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Figure 5. Same as before, at ¢+ = 7.5. Although the points of maximum gradient and strain
appear to have separated slightly since the previous smap-shot, we attribute this to their failure
to lie exactly on grid points. (@) Contours of 8. (&) Contours of ¢

is substantial depletion of local nonlinear interaction without the possibility of a singular
front forming in finite time. These two examples demonstrate the crucial role of the local
topology of level sets in the formation of strong and potentially singular fronts, Here we
continue the symbiotic interaction of mathematical theory and numerical simulation utilized
throughout this paper by providing an explanation through mathematical anatysis of the role
of topology of the scalar level sets in strong front formation. Qur intention in this section of
the paper is to provide an expository account of these matters without technical details—the
mathematical details are presented in section 5.

4.1. Classical frontogenesis with trivial active scalar topology is impossible

Classical frontogenesis in geophysical fluid dynamics is the rapid temporal development of
a sharp front between warm and cold masses of air. In some simplified semi-geostrophic
approximations in meteorology incorporating ageostrophic effects beyond (1.1)—(1.3), the
formation of these sharp fronts corresponds to a finite time singularity (see [1] and references
there); the physical picture is much like the formation of shock waves in compressible fluid
flow [10]. In case 1 from section 3, we presented numerical evidence for the possibility



1514 P Constantin et al

i paore D P S A I 4] ;'{b]vﬂ-". - .

e

of nonclassical frontogenesis involving fronts with cusps (figures 3-6) completely within
the quasigeostrophic approximation and without incorporating any ageostrophic effects;
however, a hyperbolic saddle in the scalar topology played a crucial role. Here we study
whether classical frontogenesis with trivial topology is possible within the quasigeostrophic
equations in (1.1)-{1.3).

For the purposes of exposition, we consider a simplified scenario for classical
frontogenesis with trivial topology. To do this, we consider a smooth curve in the plane,
the front curve, written as a graph

x2 = f(x1). ‘ (4.0

We consider a smooth function of one variable, F{s) with the properties that F(s) = 1 for
523, Fs)=0fors <1 and F'(s) > 0 for all s. We agsume a simplified ansatz for
classical frontogenesis with trivial topology where the thermal 2-D quasigeostrophic active
scalar has the form

8x,ty=F (

Y TR

Figure 5. (Continued)

xz —-f (x1)) 42)

8
where for some critical time, T, > 0
S(ty—0 a t AT, . (4.3)
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t=0, detail of the cusp in theta

Figure 6. Case 1, t = 6. Detail of the cusp developing in 8. The nature of this front differs
significantly from the ‘shock-like’ front of classical frontogenesis. It is analogous though to the
configuration with potentially collapsing nearly antiparallel vortex tubes in 3-D Euler.,

550

max lgrad 61versus 8.25 ~ t; N =256 (-.}, 512 (= =), 1024 {s0lid), slope =-1.66

3501

max |grad 9!

4.5F

Figure 7. Log-log depiction of the growth of max |V8(, Three runs with different resolution
are superimposed, showing their tendency to align with a straight line, comesponding to the
development of a singularity near + = 8.25. The times at which each run departs from this
straight line correspond roughly to those at which their resolution fails, at ieast for computing
maxima adequately.

With the properties for the functions, f, F, described above (4.1), the form for the active
scalar in (4.2) models classical frontogenests with trivial level set topology for @ with
a potential singularity forming at the time, £ = T,. At the time, T,, the scalar becomes
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Figure 8, Case 1, Evolution of the strain, computed where it is maximum (o) and where
the maximum gradient of @ is maximum (). The latter gives a better diagnostic for nonlinear
behaviour at the early stages of front formation, when o™ is nearly constant. After the two nearly
collide and the grid starts being insufficient for computing maxima and their precise location,
however, o* appears to display nonlinearity more consistently.

discontinuous across the curve x; = f(x;) with different limiting values for the temperature
on each side of the front, i.e. classical frontogenesis potentially occurs at ¢ = T,. However,
despite this potential singularity formation, the direction field § = i%% remains smooth
throughout this process; in fact, the direction fleld is time independent and is given explicitly
by

) 1 1
) = (ré) &4

In thecrem 3.1 of section 5, we state and prove a general theorem with the following
intuitive context:

If locally the direction field £(x, t) remains smooth

(in a very weak sense) as t T, then no finite time (4.5)

singularity is possible as ¢ /T, .
An immediate corollary of theorem 5.1 is that the classical frontogenesis scenario with
trivial topology described in (4.2) and (4.3) above is impossible for any function §(z) with
8(t) — Qast 7 T, since the direction field £(x, #) as computed in (4.4) remaing smooth
on the closed time interval, 0 < ¢t £ Te.

4.2, A singular thermal ridge with trivial active scalar topology is impossible

_ In case 1 from section 3, as documented in figures 3-6, the numerical evidence suggests
nonclassical frontogenesis through the formation of a thermal ridge with a critical role for a
hyperbolic saddle in the scalar topology. Here we consider the possibility of singular front
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Figure 9. Case 2. Contours of & between t = 0 and ¢ = 4.5 showing front formation. In this

case, d has an elliptic point at the centre of the grid. This will exclude the possibility of singular
behaviour. -

(&}

50

20 B0 20

Figure 10. Case 2. Logarithmic plots of the spectrum of theta, averaged over angles. In this
case, the decay of energy is exponential, which seems to exclude 2 tendency toward singular
behaviour. The front itself is not as clearty marked as in case 1, We switched from a grid with
512 x 512 points to one with 1024 x 1024 at ¢ = 4. (@) f = 4, front near [k =230. (&)t =5,
front near |k| = 400.
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Figure 11. Case 2. Snap-shots of ¢ at ¢ = 4 and r = 3, exhibiting strong—but not singuiar—
front formation. As time progresses, the configuration looks more and more like that of a
pair of perfectly antiparallel vortex lines, since there is no saddle in @ to preserve the two-
dimensionality. The points of maximum |V8| and & remain at distinct, distant positions. (a)
t=4.)t=3

s

formation through a thermal ridge with trivial topology {no hyperbolic saddle, etc) in the
scalar level sets.

For the purposes of exposition, as in section 4.1 we consider a simplified scenario. We
consider a smooth curve in the plane as described in (4.1) and utilize the same ansatz as in
(4.2) so that there is trivial scalar level set topology. However, here we take a completely
different profile function, F(s), which corresponds to a thermal ridge. Thus, we assume
that F(s) is a non-negative smooth bump function with F(s) identically zero for 5 < 1 and
fors 23, Flis)>0forl <5 <2, and F'(s) < 0 for 2 < ¢ < 3, With this choice of F
ang the ansatz in (4.2), as ¢ converges to the candidate singular time, T, the solution looks
like a thermal ridge as in figure 6 from section 3 with the crucial difference that the level
set topology for @ is completely trivial here. In contrast to the case studied in section 4.1,
as ¢t A T, the direction fleld £(x, ¢) = giz is no longer smooth in the limit, in fact the

direction field is discontinuous at the limiting time, ¢ = T, and is givén by
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Figure 11. (Continued)

1
£(s) = sign(xz — f(x1)) m (ff(lxl)) . 4.6)
1

This behaviour with a discontinuous limiting direction field as ¢ 7 T, with the ansatz in
(4.1) and (4.2) is a special example of what we call regularly directed behaviour in section
5. In theorem 5.2 of section 5, we prove a result which guarantees that no singularities in
finite time are possible for regularly directed limiting behaviour in a very precise sense. In
particular, at the end of section 5, we present detailed calculations which verify this theorem
for the thermal ridges described in this section. Thus, the mathematical theory in section 5
implies that

thermal ridges with trivial level set topology as described in
this section can never become singular in a finite time, T, forany  (4.7)

arbitrary scaling function §(t) with §(t) } Oast — 7. .

4.3. Detailed behaviour of level sets in cases I and 2

Here with the theoretical facts mentioned in sections 4.1 and 4.2, we examine the behaviour
of the level sets of the active scalar in more detail for the npmerical solutions with the
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Figure 12. Case 2. Logarithmic plot of the growth of max 1V, Notice the fast convergence
te a straight line, corresponding to exponential growth,
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Figure 13. Case 2. Evolution of ¢* and &. As the locations with maximum gradients and
strains remain clearly distinct, the comresponding values of & do not meet, nor does either show
strongly nonlinear growth,

initial data for case [ and case 2 from sections 3.2 and 3.3 respectively. For case 1 with
the initial data in (3.1), in figures 16 and 17, we plot the evolution of selected equispaced
level sets for the active scalar at the times, t =0, 4, 6.

The plots in figure 18{(g, b, c) involve eleven equispaced contours on the outside of
the hyperbolic saddle as time evolves while those in figure 17(a, b, ¢) involve equispaced
evolving contours inside the hyperbolic saddle. In order to contrast the behaviour in these
two different situations, in figures 18 and 19, we present similar plots for the initial data
for case 2 in (3.2) at the times ¢ = 0.3, and 4.5 where the initial nonlinear development
impinges on an elliptic centre—the boundaries of the contours in this case extend outside
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Figure 14. Case 3. Initial condition, taken as representative of a ‘general’ large scale flow.

(figure 18) and inside (figure 19) the two heteroclinic stream lines which connect two distant
hyperbolic saddles and enclose the elliptic centre in the sealar level sets.

It is evident from the plots in figures 18 and 19 that for case 2 with the strong gradient
region impinging on an elliptic centre, the packing of level sets in the region near the
elliptic centre is almost completely one-dimensional. This behaviour is also evident in
the temperature contour plots for this case presented earlier in figure 11(g, b). With this
numerical evidence it is clear that the contours near the elliptic centre bekave like the
thermal ridge theoretical example discussed earlier in section 4.2. According to theorem
5.2, no finite time singularities can occur in a region wiih the trivial level set topology in
the thermal ridge and indeed our refined numerical diagnostics in figures 12 and 13 for case
2 confirm that strong nonlinearity has been depleted in this geometric configuration.

In contrast, the detailed behaviour of the level sets for case 1 depicted in figures 16, 17
where the region of strong gradients impinges on a hyperbolic saddle is quite different, It
is evident from figures 16(&) and 17(b) that at time ¢ = 4 strong gradients in & are created
which definitely are not quasi-one-dimensional because a two-dimensional behaviour is
always driven by the hyperbolic saddle in the temperature field which necessarily persists
for all time. This behaviour for the level sets with nontrivial topology involving a hyperbolic
saddle is confirmed by the detailed diagnostics in figures 7 and 8 which give evidence for
strongly nonlinear and potentially singular behaviour in case 1. However, our present
mathematical theory is unable to answer whether a finite time singularity actually occurs in
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Figure 15. Case 3, ¢+ = 3. Elongated fronts have formed at various locations. A detailed study
of the evolution of these fronts would require the use of grids with a prohibitively small mesh
size. This slightly under-resolved computation, however, should suffice to show that the strong
development of fronts is inberent to the equations, eccurring for a wide range of initial data.

case 1 or whether this is simply a strongly nonlinear but nonsingular event,

To summarize, the rigorous theorems mentioned in sections 4.1 and 4.2 above together
with the detailed nurnerical experiments and diagnostics presented here and in section 3 all
point to the following general principle:

If the level set topology in the temperature field for the 2-D

quasigeostrophic active scalar in the region of strong scalar 48
gradients does not contain a hyperbolic saddle, then no finite '

time singularity is possible.

Finally, we recall the analogy developed in section 2.2 between the level sets of the
thermal active scalar and the vorfex lines of a three-dimensional incompressible flow. With
this analogy, both case 1 and case 2 as well as the thermal ridge with trivial topology
discussed in section 4.2 correspond to the behaviour of anti-parallel vortex filaments in a
3-D incompressible flow. The behaviour in case 1 corresponds in this znalogy to similar
but more complex strengly nonlinear and potentially singular behaviour in the anti-parallel
pair documented by Kerr [14] in very interesting recent work; on the other hand, the
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Figure 16. Case 1. Evolution of eleven selected contour lines on the outside of the saddle,
showing the preservation of a two-dimensional pattern despite the fast elongation of the fronts.
Whether nonlinearity will or not survive depends on a crucial balance between the rate at which
the contours are packing and that at which the angle of aperture of the saddle is converging to
zero. (@) t = 0, a regular saddle point. (b) # = 4, start of the stretching of contour lines. (¢}
t =6, ‘mature’ front, with densely packed contours and very distorted saddle.

behaviour with different topology documented in case 2 and section 4.2 corresponds to
nonsingular behaviour in the antiparallel vortex pair with somewhat different initial data
(see the references in {2, 14] for this type of behaviour in 3-D incompressible flow).

5. Analytic and geometric constraints on singular solutions

Here we prove the precise mathematical theorems discussed in sections 4.1 and 4.2. At the
end of this section, we apply theorem 5.2 to the thermal ridge scenario described in section
42,

5.1. Precise statement of results

We consider a QG active scalar 8(x, t) with smooth initial data and suppose the scalar is



1524 P Constantin et af

t=6, ten contowrlines between 0.9 and

e

500

()

300+

Figure 16. (Continved)

defined and smooth for (x,#) € R? x [0, T). Recall from (2.31) the particle trajectories
X(g,1), which are solutions of

dx
= =u(X,t
5 v(X, 1)

Also recall that & = zj; is the direction field tangent to the level sets. We say that a set

§ is smoothly directed if there exists p > 0 such that

. .
sup [ |v(X(q, t), r)lzdt < 00 (5.1a)
gefly JO

T 2
sup Ve, D zeoca,cxiq,ondt < 00 (5.16)
gesty JO

where B,(X) is the ball of radius p centred at X and
Q5 = {g € Qu; |Vo(g)] 0} .

If §2¢ is a set we denote by £, its image at time ¢ under the particle trajectory map
€, =X (S, )

and by Or(£2;) the semi-orbit:
Or(Q) = {(x,0)[x € @, 02 < T}

Theorem 5.1. Assume £y is smoothly directed. Then

sup [V8(x,2)| < oo
Or (S0}
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Figure 17. Case 1. Evolution of eleven contours inside the saddle, showing the sucrvival of
nontrivial topology for all times. (g} =0. (Bt =4. ()1 =6.
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Fipure 18. Case 2. Evolution of eleven contours on the outside of the saddles between which
the elliptic region is being crushed. (¢} + = 0. (&) r = 3. (&) ¢t = 4.5. Near the centre of
the grid, where the gradients are largest, the configuration looks purely one-dimensional, the

analogue of two perfectly parallel vortex lines.

i.e. if the direction field is smooth locally on a set moving with the fluid in the precise
sense of (5.15), then no singolarity is possible in that set.

Next we state a general technical theorem which applies to the prototypical situation in
section 4.2 where the direction field is not smooth but the special structure of the singular
integral operators allows depletion of nonlinearity on special geometric configurations.
Related results for the 3-D Euler equations are presented in [6] and {9]. We say that

the set Qg is regularly directed if there exists p > 0 such that

T

sup K,(X(g,t))dt < oo
&85 /0

where

Kp(x) = f 15 E4COlEL () - £+ )] (x + )
Iyl<e -

dy
—=.
Iyl

In (5.3) and elsewhere in this section, we define A(x) to be A(x) = [v+4|.

(5.2)

(5.3)
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t=4.5, ten cantours between 0.5615 and .6615

o0+

2001

100

Figure 18. (Continued)

Theorem 2. Assume that £y is regularly directed. Then

sup [VB(x,t)] < 00
Or ($20)

i.e. if a set moving with the fluid is regularly directed, there is depletion of nonlinearity

and no singularity is possible on that set.

5.2. The proafs of the theorems

The proofs of both theorems rely on special formulae for the level set stretching factor, «,
from (2.15), (2.16) together with a local version of the proof that we utilized in theorem 2.1
to demonstrate that (3} implies (2). We start by computing the full gradient of the velocity
field v from the formula in (2.8).

(Vo)(x) = ~V, I—I(VJ' 8)(x + y)dy

Differentiating under the integral sign we get
1
(Vn)(x) = — f ol (V,,V;‘:H) x + y)dy .

We write the integral as a limit as ¢ — 0 of integrals on |y] > ¢. Because the two gradients
applied to & commute, we can choose any one of them and integrate by parts. The limit of
the contributions from |y} = ¢ vanishes. In this fashion, we obtain two formulae:

@@ =-2.V. [ (7 8+ ) 5.4)

and

@@ =-rV. [ (Foa+mes) s - 55
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‘Figure 19. Case 2. Eleven contours inside the saddles surrounding the elliptic region. The
configuration at the centre of the grid converges to the regularly-directed scenario. (g} + = 0.
Bt=3 (t=45 _
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Writing

vio = Ag
and using the definition from (2.4} and (2.15) that

a(x) = (V)(x)EE) - §(x)

we deduce the two representations of «

w(x) = +P.V. f (G- E-@NEX +3) - () A(x+y>l s 5.6)

and

a(x) =—P.V. f((y ECNEE +y) - EENAK +y) (5.7

Hz'

Let us consider now a number p > 0 and decompose

a(x) = ain(x) + ctom(x)

Cfin(x)‘= PYV. j- X (%) e
out(x) = P.V.f (1 —x (%))

with x(r) a smooth non-negative function of one positive variable satisfying x{(r) =1 for
0<r<i, x(N=0forr21
It is easy to prove the estimate:

where

and

|orone (¥)] < Co72116) 12 - (5.8)

Indeed using any of the two representations, the fact that A# = V18 and integrating by
parts one obtains

lotoe®)] < o™ f b6 + -2 .
lylz4e [yl
Let us consider now the situation in which the direction field & is smooth in the
ball of centre x and radius p, corresponding to the smoothly directed case, We use the
representation in (5.6). Let us denote by G the maximum of the gradient of £ there:

G = sup |[VE(x + )| .
lylsp
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Clearly
[£x + y) - €4 (%)) < Gly]
for |y| < p. We deduce from (5.6) that

_ ¥l dy
la'm(x)IQGfx(p)A(x+ )= .

Now we use the fact that
A=§-(V0)

and integrate by parts:

|] dy L( (lyl) )
fx(p)Ac e fa(x+y)v s+ (2) ) oy

We carry out the differentiation and obtain three terms which we denote I, IT and IIL:

I~~f(\7’* E(x+)) 00 +»)x (iyi) o

__ e !Zl))_
o= fe(x+y)§'(x+y) Vy(x(p B

= P.V. f &0 +3) - F0G + Mx (m) 7

and

The first two can be estimated in a straightforward manner:

| <CoGloliLe
and
[ < ClBlizs.

We write in the third term £(x + 3} = E(x) + (E(x + ¥} — £(x)) and thcrefor_e

I = &(x) - P.V.f FLogx H)T_— + I

with
0| < € (G812 + 7 16ll2z) -

We observe that

P.V. f ""'9(x+y) = —v(x)

[y
thus’

(5.9)

|esn(®)| € CG[|ux)] + (PG + DBl + o7 B122] - (5.10)

Combining this with the estimate in (5.8) we proved:
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Lemma 5.1, Assume that x fs such that

G := sup |VEGx + p)f
1yi€e

and [v(x)| are finite. Then ‘rx(x)| is bounded by
e < C[Gl)] + (06 + 1) (GIFlli= + p~210112) ] -

Proof of theorem 5.1. I € is smoothly directed then we can apply lemma 1 with
x = X{g, 1), for any ¢ € £ and any ¢ € [0, T). Using the ordinary differential equation
from (2.15), (2.32),

d
E\VJ‘L‘?(X(Q, n,t| = a(X(g, 1), N]V-8(X (g, 1), 1)|

and the bound in lemma 1 we obtain

sup |Va(x, )] < eﬁsgplveul
Q

Or{Qy)
where
T
g=C supf E(s)de
qEl

E®) = [G0)|v(x)] + (0Gx) + 1) (G 6ol = + p2[60)22) ]

xr=X(g, 1)
and

G(x) = sup |VE|.
B, (x)

This completes the proof of theorem 5.1. In the above, we used the fact that ||6[|il(t) =
llﬂolﬁz for all times, ¢. The proof for theorem 5.2 is simpler and follows directly from the
identity for ¢(x) in (5.6) together with (5.8).

Lemma 5.2. Consider a point x € R? and assume that there exists p > 0 such that
Kew=[ s s*(x)l 60 £+ |4+ 90 < o
Yisp

Then
)| < Ko + 072 f6] ] (5.11)

The proof of the lemma follows immediately from (5.6) and (5.9). The proof of theorem
5.2 now follows from lemma 2 as the proof of theorem I followed from lemma 1. Note
that because £(x + v) |A(x + y)| == V14(x + y) there is no contribution to the mtegral from
points where A(x + ) =
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Proof that the thermal ridge from 4.2 is regularly directed, We check that the smooth ridge
is regularly directed. Thus, we consider a smooth function x; = f(x;) and a ridge profile
F as described in section 4.2 and form

e X2 Fx)
B(xl, x,ty)=F (———a(z) )

We fix x with lVJ-B(x)l # 0, choose p = O(1) and estimate K,(x). We note that for
any point z = (21, z2) with A(z) # 0 we have

s(z>=i—-—1-———( b )
1+ (Fepy \fa)

The sign is decided by which side of the ridge z belongs to. Irrespective of this jump
however,

[61() - £(x 4+ 9| < Ty
with " = sup | f*|. The bound
C
Ax+y) < 7
is obvious and unavoidable. Now the term |§ - £ (x)| is bounded by 1, but also by
]

ﬁ-. -L —
15-54()] gc[lyl +Tlyl] .

Indeed, this term is bounded by

1 ,
I—;I-}J’z — 3 F ()

and using the fact that both x and x + y must be in the support of 4 we have
|y2 4+ %2 — Flx1 + )] < C8
b2 — F1)| < €8

and hence
[32 =7 F )| < [Fl@+3) = FED) =3 f G|+ 5.

Let us break the integral defining K,(x) in two pieces: the contributions from [y[ <4
and those from | y| 2 8. In the first piece we use polar coordinates and obtain easily a

bound
[
E—f El“r:Ci”
3 o T

The outside piece is not suited for polar coordinates; there we use the fact that for a given
» the strip of allowed y2, > (1), has width of order C§ and obtain a bound

Efpdyf dy—l—(iwlyi)rlyl
I A R P ERNEY !

It foltows thus that
K,(x) £ CI'(1 + pT")

which verifies that the smooth ridge is regularly directed. Obviously, if " is a function of
time which diverges at the time of blow-up, for instance if the front itself forms a corner
or a cusp, then the possibility of a finite time singularity is not precluded by this argument.
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