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Abstract The formation of smng and potentially singular fronts in a two-dimensional quasi- 
geostrophic active scalar is studied here through the symbiotic interaction of mathematical theory 
and numerical experiments. This active scalar represents the temperature evolving on the two 
dimensional boundary of a rapidly rotating half space with small Rosshy and Ekman numbers 
and canstant potential vorticity. The possibility of hntogenesis within this approximation is 
an important issue in the context of geophysical Rows. A striking mathematical and physical 
analogy is developed here between the structure and formation of singular solutions of this 
quasigeostrophic active scalar in two dimensions k d  the potential formation of finite time 
singular solutions for the 3-D Euler equations. Detailed mathematical criteria are developed as 
diagnostics for self-consistent numerical calculations indicating strong front formation. These 
self-consistent numerical calculations demonstrate the necessity of nontrivial topology involving 
hyperbolic saddle points in the level sets of the active scalar in order to have singular 
behaviour; this numerical evidence is strongly supported by mathematical theorems which 
utilize the nonlinear structure of specific singular integrals in special geometric eon6gmtions 
to demonstrate the important role of nontrivial topology in the formation of singular solutions. 

AMS classification scheme numbers: 76L05,35L65,3SB40, 3SA40 

1. Introduction 

We study the detailed nonlinear behaviour of strong and potentially singular front formation 
in solutions of a two-dimensional quasi-geostrophic active scalar through the symbiotic 
interaction of mathematical theory and numerical experiments. Our motivation for this 
study is generated from two distinct sources. One motivation involves actual geophysical 
flows in the atmosphere and the important issue of frontogenesis, the formation of strong 
fronts between masses of hot and cold air, within quasigeostrophic approximations without 
explicitly incorporating ageostrophic effects [ 11. Frontogenesis is the tenrhology used 
by atmosphere scientists for describing the formation in finite time of a discontinuous 
temperature front The second motivation, developed in detail in section 2 of this paper, is 
the striking physical and mathematical analogy between the behaviour of strongly nonlinear 
solutions of these equations in two dimensions and the behaviour of potentially singular 
solutions for the Euler equations of 3-D incompressible flow [2] -an outstanding unsolved 
problem in the theoretical turbulence community. In this second instance, the problem 
studied here in two dimensions is simpler than 3-D Euler, both numerically and analytically, 
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yet retains a large number of crucial features which are analogous to the behaviour in 3-D 
Euler. 

The equations studied here are given by 

DO ae - -_  - + u . V B = O  
Dt at 

where the two-dimensional velocity, U = ( V I ,  UZ) is determined from 0 by a stream function 

(1.3) 

3) is determined through the Fourier 

We comment briefly on the derivation of the nonlinear equations in (1.1)-(1.3). The variable 
0 represents the potential temperature, U is the fluid velocity, and the stream function @ 
can be identified with the pressure. These equations are derived from the more general 
quasigeostrophic approximation [l] for nonhomogeneous fluid flow in a rapidly rotating 
three-dimensional half-space with small Rossby and Ekman numbers; for the case of special 
solutions with constant potential vorticity in the interior and constant buoyancy frequency 
(normalized to one), the general quasigeostrophic equations reduce to the evolution equations 
for the temperature on the two-dimensional boundary given in (1.1)-(1.3). The statistical 
turbulence theory for these special quasigeostrophic flows has been studied earlier by 
Blumen [3] and more recently by Pierrehumbert et ai [4] while some qualitative features 
of the solutions of these equations in a geophysical context are developed by Held et ai 
[SI. The equations in (l.lH1.3) are an important example of a two-dimensional active 
scalar [6], the themi guasigeosfrophic active scalar, with a specific structure most closely 
related to the 3-D Euler equations (see section 2). A brief preliminary study of potential 
singular solutions for these equations has been developed recently by the authors [7]. Next 
we present an outline of the remainder of this paper. 

In section 2, we develop the striking physical and mathematical analogies between the 
quasigeostrophic active scalar in (l.lH1.3) and the 3-D Euler equations for incompressible 
flow. One simple physical example of this analogy in section 2 is that level sets of solutions 
of the quasigeostrophic active scalar correspond to vortex lines in the 3-D Euler equations- 
both types of curves move with the flow and the nonlocal equation for evolution of the 
tangent vectors to the level sets is completely analogous to the equation of vortex stretching 
for the vorticity, which is tangent to vortex lines. This mathematical analogy is also 
exploited in section 2 where the authors develop precise mathematical criteria to characterize 

' I 
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the fashion in which smooth solutions of the equations in (l.lj(1.3) can become singular. 
The simplest result of this type is the analogue of the well known characterization for 
singular solutions for 3-D Euler in 181, namely, 

[O, T,) with T* < 00 is a maximal interval of existence .of a smooth 
solution for the 2-D'quasigeostrophic active scalar if and only if 

where l f lLm = maxzEp I f ( x ) l .  More refined criteria of this sort involving the rate of 
increase of the length of level sets for the active scalar are also developed in section 2. 

In section 3, numerical experiments are presented where the refined mathematical 
criteria developed in section 2 Ne utilized as diagnostics for self-consistent numerical 
solutions predicting strong front formation and potentially singular behaviour in a sequence 
of calculations with finer resolution ranging from U$ to 512' to 1024' with a pseudo- 
spectral method and periodic boundary conditions. Three types of initial data are considered 
in section 3. The first experiments involve a hyperbolic saddle in the initial level sets of 
temperature in the regime of strong nonlinear behaviour-the numerical solutions indicate 
strong nonlinear front formation and potentially singular behaviour. The second series of 
experiments involves initial data which globally is very similar to that in the first set of 
experiments, but the geometry in the vicinity of the strongest nonlinear region is different 
and involves elliptic level sets in 6 - t h e  numerical solutions in this case initially behave 
nonlinearly as in the first set of experiments but self-consistently saturate to exponential 
growth of gradients without singular behaviour. Finally, in the third set of experiments 
reported in section 3, more general initial data is considered which indicates the robust 
features of strong front formation documented in the numerical experiments reported earlier 
in the section. 

The first two series of numerical experiments from section 3 demonstrate the important 
role of the geometry of the level sets of the active scalar in strongly nonlinear and potentially 
singular behaviour. In section 4, such a geometric scenario is developed in detail once 
again through the symbiotic interaction of mathematical theory and numerical experiments. 
In particular, mathematical theorems for solutions of the quasigeostrophic active scalar 
are stated in section 4 with the following basic theme: if the geometry of the level sets 
of the active scalar is simple and does not contain a hyperbolic saddle in the region of 
strongly nonlinear behaviour, then no singular behaviour is possible. In particular, the 
mathematical theory necessarily implies that no fronts with simple regular level set topology 
in the temperature field, 6,  can become singular in finite time. In other words, classical 
frontogenesis i.e., the finite time development of a shock-like discontinuous thermal front, is 
impossible for solutions of the quasigeostrophic active scalar, but as documented in section 
3, strong nonlinear front formation with a nontrivial hyperbolic saddle in the 8 level sets 
is possible within the quasigeostrophic approximation. More data from the two numerical 
experiments in section 3 involving the role of geometry and strongly nonlinear behaviour 
are also presented in section 4; these data corroborate the mathematical theory presented 
earlier in section 4. 

The proofs of the mathematical results from section 4 are given in section 5. These 
proofs utilize the nonlinear structure of specific singular integrals acting on functions in 
special geometric configurations. Similar results for the 3-D Euler equations have been 
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announced in [6] and will appear in a forthcoming paper of C Fefferman and two of the 
authors [9]. The mathematical theory presented below is for all of space while the numerical 
simulations involve periodic geometry. We do not repeat the analogous theoretical results in 
a periodic setting since the proofs are somewhat easier but leave them as a simple exercise 
for the interested reader. 

2. 
equations 

The 3-D incompressible Euler equations in vorticity-stream form [2, 61 are given by 

Analogies between the 2-D quasigeostrophic active scalar and the 3-D Euler 

where $ = $ + U . V , U = (UI,'U~, us) is' the three-dimensional velocity field with div 
U ='O, and o = curl U is the vorticity vector. 

We begin our list of physical, geometric, and analytic andogies between the 2-D 
quasigeostrophid:active (QG) scalar in (l.lH1.3) and the 3-D Euler equations from (2.1) 
by introducing , 

vJ-e~= l(-exz,ez,) . (2.2) 

We claim that the vector field, V'e, has a role for the 2-D QG active scalar in (l.1)-(1.3) 
completely analogous to the vorticity in 3-D incompressible fluid flow, i.e. 

, .  

VJ-e H 0. (2.3) 

By differentiating the equation in (U), we obtain the evolution equation for V'lg given by 

DV'e 
Dt 
- = (vu)v'e (2.4) 

with $ = f + U . V and U = VL@ so that, div U = 0. With the identification in (2.3). the 
evolution equation in (2.4) for VJ-0 clearly has, at the outset, a similar superficial smcture 
resembling the equation for vorticity in (2.1). Next we show that this analogy extends 
considerably beyond this superficial level to detailed analytic and geomettic properties of 
solutions. 

2.1. The analytic analogy with vortex stretching 

We begin by demonstrating that the equations in (2.1) and (2.4) are remarkably similar in 
their analytic structure. The velocity U in (2.1) is determined from the vorticity w by the 
familiar Biot-Savart law [2, 61, 

and the strain matrix, S, which is the symmetric part of the velocity gradient, 

s =-+((vu) + (Vu)') 
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is given in te rm of the vorticity by the strongly singular integral, 

S(x)  = -P .V .  M (9, w(x + y ) )  7 dy 
4x 3 .  ' s, IYI 

In (2.6) the matrix M .is a function of two variables, the first a unit vector, the second a 
vector and is given by the formula 

M ( 9 . w )  = f [ j @  (9 X 0) + 8 X w )  @ 9 ] ~  (2.7) 
with a @ b = (a&) the matrix formed by  the^ tensor product of two vectors. Clearly the 
right hand side of (2.1) can be written in terms of only the strain matrix, S, and ,U. For the 
2-D QG active scalar, the equations in (1.3) and (1.4) are given through the explicit integral 
formula 

so that with U = V1@, we obtain 

Next, we compute the symmetric part of the matrix, Vu, from (2.4) defined by 
~ S ( X )  = f (Vu + (VU)*) . 

With (2.9) we calculate that the matrix S(x)  has~the singular integral representation 

(2. IO) 

where 9 = f and N is a function of two variables, the first a unit vector in R2 and the 
second a vector with 

(2.11) 
The function N has mean zero on the unit circle for fixed w and thus, the operator in (2.10) 
is a legitimate strongly singular integral. As in the situation for 3-D fluid flow, we will see 
below that for the equation in (2.4), only the symmetric part, S(x ) ,  contributes to strons and 
potentially singular front formation. We have displayed only the formula for the symmetric 
part of Vu for simplicity in the exposition. 

With the formulae in (2.5)42.11), we develop the analytic analogy between the 
equations in (2.1) and (2.4): From (2.5) and (2.9), the velocity is given in terms of U), 
either w or VIB respectively in 3-D or 2-D, by 

YI  

N ( j , ( j )  = f (y@ w'+ U'@ 9 1 ) .  

= Ld Kd(Y)w(x + y)dy 

where &(y) is homogeneous of degree 1 -d in Rd ford = 2,3,  i.e. &(Ay) = A!-dKd(y) 
for A > 0. Furthermore, from (2.7) and (2.10) 

has a representation formula in terms of w(x + y )  via a strongly singular integral operator 
defined through a kernel homogeneous of degree -d, in F d ,  for d = 2,3 with specific 
cancellation properties; also the geometric formulae for these strongly singular operators 
given in (2.7) and (2.11) are very similar in structure. Thus, with the identification of 
V'e and vorticity, the evolution equation for V1e from (2.4) has a completely parallel 
analytic structure in 2-D as the equation for the evolution of vorticity, w,  in (2.1) for 3-D 
incompressible flow. 
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2.2. The geometric analogy with vortex lines 

The analogy in (2.3) extends much farther beyond the detailed analytic structure in (2.1) and 
(2.4). From (1.1) it follows that the level sets, 8 = constant, move with the fluid flow and 
VLS is tangent to these level sets; these facts are analogues for the 2-D QG active scalar 
of the well-known facts for 3-D incompressible fluid flow that the vorticity by definition is 
tangent to vortex lines and vortex lines move with the fluid. Thus, 

for the 2-D QG active scalar, the level sets of 
e are analogous to vortex lines for 3-D Euler. (2.12) 

The infinitesimal length of a vortex line is given by the magnitude of U ,  101, and it follows 
readily from (2.1) (see [6]) that the evolution of this infinitesimal length is given by 

(2.13) 

(2.14) 

Here S(x ,  t )  is the symmetric matrix defined in and above (2.6) and c(x ,  t )  is the unit, 
direction of the vorticity vector, i.e. = s. Similarly, for the 2-D QG active scalar 
the infinitesimal length of a level set for 0 is given by lVJ-6'l and from (2.4), the evolution 
equation for the infinitesimal arc length is given by 

(2.15) 

with 

a ( x ,  t )  = S(x, t ) $ .  e. (2.16) 

Here S ( x ,  t )  is the symmetric matrix defined in and above (2.10) and e ( x ,  t )  is the unit 
direction of @e, i.e. = s. With the analogy in (2.12) between level sets for the 2-D 
QG active scalar and vortex lines, the similar equations in (2.13) and(2.15) and also the 
parallel formulae in (2.6) and (2.10) for the stretching factor 01, it should be evident to the 
reader that there is a powerful geometric-analytic analogy between these two problems in 
2-D and 3-D respectively. 

2.3. Conserved quantities 

The 2-D QG active scalar in (1.1)<1.3) obviously has the quantities conserved in time for 
solutions given by 

(2.17) 

for'any function G(6'). With the Fourier transform defined in (1.4), it follows that 
h 

C ( k )  = VLq(k) = 8(k) so that by Plancherel's formula, ' 

(2.18) 
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The facts in (2.17) with the special choice G(0)  = ;ez combined with (2.18) establishes the 
conservation of kinetic energy for the 2-D QG active scalar. This conservation of energy 
is analosous to that for the 3-D Euler equations. 

However, there are additional quantities conserved in time for the 2-D QG active scalar 
beyond the kinetic energy-for example, all of the quantities listed in (2.17). In addition, 
the reader can verify readily that the quantity 

(2.19) 

is conserved by solutions of the QG active scalar. This is an additional positive definite 
conserved quantity without a direct analogue for the 3-D Euler equations. Other more 
geometric conserved quantities for the QG active scalar are presented in section 2.5 below. 

2.4. Analogies and the characterization of singular solutions for the 2-0  QG active scalar 

One of the main themes of this paper is the use of the 2-D QG active scalar as a simpler but 
analogous model problem for formation of singularities for the 3-D incompressible Euler 
equations. Here we develop precise mathematical criteria which characterize the fashion in 
which smooth solutions of the equations in (1.1)<1.3) can become singular in finite time. 
These precise mathematical criteria are used as self-consistent diagnostics for numerical 
experiments in section 3 of this paper; furthermore, these conditions are analogous to 
similar results [2, 6, 8, 91 for the 3-D Euler equations. 

We utilize the Sobolev spaces of functions in H s ( R z )  so that f belongs to Hs(R2)  for 
a positive integer S if the following norm is finite: 

(2.20) 

It is not difficult to prove a local existence theorem for solutions of (1.1) - (1.3) in a standard 
fashion and to obtain the following result (see chapter 2 of [IO] for this type of proof which 
in this case, is left as an exercise for the interested reader): 

If the initial value 

H y ( R 2 )  for some integer k, k > 3, there is a smooth solution 

O(x,  i )  of the 2-D QG active scalar belonging to H k ( R Z )  

for each time, t ,  in a sufficiently small time interval, 0 < t < T,. 
Furthermore, if T,, the maximal interval of smooth existence is finite, 

i.e. T, < 00, then T, is characterized by the property that 

= & ( x )  belongs to the Sobolev space, 

IleC, t) l lx  -+ 00 as t /” T. . (2.21) 
, .  

With this preliminary information, it is not difficult to prove the following precise 
characterization of the fashion in which smooth solutions of the 2-D QG active scalar 
can become singular in finite time: 
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Theorem 2.1. Consider the unique smooth solution of the 2-D QG active scalar with initial 
data, e&) E H y ( R 2 )  with k 2 3. The following are equivalent: 
(1) The time interval, 0 < t c T*, with T. < CO is a maximal interval of €Ik existence for 

(2) The quantity IVLOl,(t) accumulates so rapidly that 
the 2-D QG active scalar. 

1’ Ivel,,(w -, co as T 7 T,. (2.22) 

(3) Let a*@) = maxx&(Se . () = maxXGRz a ( x ,  t )  where S and a are defined in (2.10), 

pwfs-tm as 2-7 T,. (2.23) 

In particular, if either of  the quantities in (2.22) or (2.23) remains finite as t 7 T, the 
solution remains smooth beyond the time T,. 

(2.15), (2.16), then 

Proof of theorem 2.1. With the analogy between VLe and vorticity o, we see that the fact 
that (1) and (2) are equivalent is the analogue of the well-known criterion established in 181; 
in fact, with the equation in (2.4) and the analogous formulae in (2.9) and (2.10) for U and 
Vu in terms of VLO for the QG active scalar, the proof that (1) is equivalent to (2) requires 
only minor changes in the argument from 181; this is left for the interested reader to verify. 
It remains to establish that (3) is equivalent to (1). With the fact that $(k) = v ( k )  

and Sobolev’s lemma we have the estimates, 

(2.24) 

for any fixed k > 3 where C in (2.24) is an apriori constant varying from inequality to 
inequality. Therefore if we assume (2.23), it follows from integrating the inequality in 
(2.24) that 

~ ‘ i i e i i m ~ + m  as T + T ,  

so that [O, T.) with T* < 00 is a maximal interval of smooth existence for e ( x ,  t ) .  To 
complete the proof of theorem 2.1, we utilize the fact that 1) and 2) are equivalent and 
prove that if we assume that 

~=*cr*(s)ds Q M < CO 

then necessarily 

(2.25) 

The identity in (2.15) for the rate of change of arc length along level sets together with 
Gronwall’s inequality and the definition of a* in 3) above guarantee that 

(2.26) 
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By integrating (2.26) we~deduce the estimate claimed-earlier in (2.25). This completes our 
sketch of the proof of theorem 2.1. 

There is a refined criterion beyond that in (3) of theorem 2.1 which yields a useful 
additional diagnostic for the numerical simulations described in the next sections. To state 
this criterion, we consider the simplified situation where by hypothesis there is an isolated 
absolute maximum for IV'el achieved along a smooth cuwe x ( t )  for 0 i f < T,, i.e., 

/velL,(+= l v L e l ( m , t )  . (2.27) 

There might be several such isolated global maxima but for simplicity we consider only 
one of them. We consider the level set stretching rate IY, defined in (2.15), (2.16), restricted 
to this curve where IV6'1 is a maximum i.e. we define E$?) by 

G ( t )  = ( Y ( X ( f ) ,  t )  . (2.28) 

Intuitively, we expect that no singular behaviour can occur in the solution of the QG active 
scalar on the interval [O, T.) unless E(t )  --f 00 as.? f T,. This expectation is confirmed 
by the followin,. 

Proposition 2.1. With the addition& geometric hypothesis described in (2.27). the three 
conditions in theorem 2.1 are equivalent to the (apparently weaker).condition that 

l T & ( ? ) d t  f 00 as T 7 T, . (2.29) 

The proof of proposition 2.1 is simple. Since &(?) satisfies G(r) < a*@), if (2.29) is 
valid it follows that necessarily (2.23) is valid. On the other hand, assume that 

(2.30) 

Let 4 denote the Lagrangian marker at t = 0 associated with the particle trajectoy equation 
so that 

(2.31) 

In Lagrangian coordinates, the'formula from (2.15) becomes 

a 
ar - p:e I(q, t )  = a(x(4, t ) ,  t )  p:el(4. t )  (2.32) 

where IV:el(q,t) = IV'eI(X(q,t),t). Under the hypothesis in (2.27) and with q(t) 
defined by X ( q ( t ) ,  t ) =  x ( t )  

In the third equality in (2.33), we utilized the fact that IV::BI has a maximum in q at q(t)  
while we used (2.32) in the fourth equality. With (2.30) and (2.33), we achieve the apriori 
bound in (2.25). This completes the proof of proposition 2.1. 
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Remark 2.1. We utilize proposition 2.1 in the numerical sections of this paper where the 
additional hypothesis from (2.27) is satisfied empirically. With a more lengthy proof, the 
same result remains true without the hypothesis in proposition 2.1. We omit this proof here. 

Remark 2.2. The perceptive reader will note that analogous refined criteria for singular 
solutions for the 3-D Euler equations are valid, as given in (3) of theorem 2.1 and also 
proposition 2.1, with v h a l l y  the identical proofs utilizing (2.13), (2.14) rather than (2.15). 
(2.16). Since we discuss the 2-D QG active scalar in,this paper, we have chosen to emphasize 
the analogous criteria for that equation here. In the context of the 3-D Euler equations, the 
proof which we have presented for (3) of theorem 2.1 constitutes a substantial refinement 
with a vastly simpler proof of a result of Ponce [Ill which followed the ideas from [SI and 
characterized the potential singular solutions of 3-D Euler through the blow up of the strain 
matrix. 

2.5. Theoretical predictions for strongfront formation in the QG active scalar 
Recently, one of the authors (see [6] and references therein) has derived and applied 
interesting equations for the convective derivative of the direction field c where $= 3 for 
3-D Euler and t = $ for any active scalar. In particular, if EL = (t . Vt)  . e' denotes 
the curvature of a level set of an active scalar, one identity developed on page 89 of [6] is 
the following: 

(2.34) 
D 
Dt 
- (KIV9I) = (VJ-0. 0) q 

where q =  V VU)^). c' . 
The integral of ~lV''lel on a closed level set of 0 is the rotation number of that level set. 
If we  integrate the quantity, KIV'BI, between two level sets, from (2.34). we obtain a 
geometric constant of motion which is completely different from those discussed earlier in 
2.3; this constant is the 'sum' of the rotation numbers of the level sets contained in the 
region. Thus, by integrating (2.34). over such a region, we obtain that 

: L/I~c,<~(I.l~<c%I KIV++LX = 0 . (2.35) 

We can use these conserved quantities in (2.35) to make a prediction about the geometric 
nature of strongly nonlinear regions in solutions for the QG active scalar. In such strongly 
nonlinear regions, according to theorem 2.1, we necessarily have IV'0[ >> 1. Thus, 

under the hypothesis that the curvature does not oscillate 

wildly, it follows from the conserved quantities in (2.35) that 

necessarily the curvature satisfies I K I  << I, i.e. 

necessarily straightening of the level sets must occur. 

(2.36) 

This theoretical prediction is confirmed in all the numerical experiments presented next in 
section 3 where we always observe general level set flattening in 0 in the regions with the 
most nonlinear behaviour where (V'Ol is largest and changing most rapidly. I t  is worth 
emphasizing again that such a straightening effect of level sets applies to any 2-D active 
scalar in regions of high gradients provided that the curvature does not oscillate wildly. 
Wild oscillation could occur with the quantity in (2.35) remaining conserved if locally the 
curvature, K ,  behaved l i e  f (.r. t ,  &) where c ( t )  tends rapidly to zero as t increases. In 
all of our numerial experiments, we find no evidence for such oscillations. 
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3. Numerical simulations with strong front formation in the QG active scalar 

Here we present the results of systematic numerical simulations for solutions of the QC 
active scalar together with detailed numerical diagnostics involving the theoretical criteria 
developed in theorem 2.1 and proposition 2.1-these diagnostics are used both as self- 
consistent checks of the numerical solutions under refinement and also to monitor the 
self-consistent potential for singularity formation in a given initial data. We report on 
numerical simulations with three different initial data here: the first yields strong front 
formation as predicted theoretically in (2.36) and continued nonlinear development toward a 
potential singular solution; the second initial data, with a different topology for the B - level 
sets, has temporal behaviour with front formation as predicted in (2.36) which saturates 
rapidly to mildly nonlinear and non-singular behaviour on the time interval computed 
here. Connections between the topology of 6'-level sets and potential singular behaviour 
confirming these different numerical results are developed in section 4 of this paper. Finally, 
a third more general initial data is utilized to demonstrate the robustness of flattening of 
level sets associated with strong gradients as predicted theoretically in (2.36). 

3.1. The basic numerical method and diagnostics 

We solved the equations in (l.lH1.3) numerically on a 2n-periodic box with a spectral 
collocation method, which involves computing u(B) in Fourier space and the product U. VB 
in physical space, with an exponential filter of high frequencies, and time stepping through 
a fourth-order Runge-Kutta method. This numerical method is basically the one developed 
by E and Shu [12, 131 for incompressible flow with minor modifications to incorporate the 
change in physics in (1.1) <1.3). As a numerical check on the accuracy of the basic scheme 
and the time stepping procedure, we monitored the two positive definite conserved quantities 
described in section 2.3 involving the kinetic energy (see (2.18)) and the pseudo energy, 
H ( B )  (see (2.19)). In the simulations reported below, these quantities were conserved to 
five significant figures. As diagnostics for the resolution with various numbers of Fourier 
modes ranging from (256)' and (512)' to (1024)', we monitored the angular averaged 
energy spectrum. The diagnostics in theorem 2.1 and proposition 2.1 for potential singular 
behaviour were implemented through straightforward evaluation involving post-processing 
of the numerical solution. 

3.2. Case 1: strong andpotentially singular front formation with a hyperbolic saddle in the 
active scalar topology 

In this first case, we considered the simplest initial data with 

B(x, 0) = sin(x1) sin(x2) + cos(x2) . (3.1) 

Eigenmodes of the Laplacian define temperature fields which are steady solutions of (1.1)- 
(1.3). The initial data in (3.1) is a linear combination of the two lowest eigenmodes and 
represents the simplest type of smooth initial data with nonlinear behaviour. 

In figure 1, we present the numerical solution with this initial data at the times, 
t = 0,2 ,4 ,6  with a resolution of (512)' Fourier modes. The initial data for the temperature 
field, e&), clearly has a hyperbolic saddle and the numerical solution develops a strong 
front as time evolves. We are interested in determining whether the front depicted at time 
f = 6 is well-resolved with this method and also whether the numerical solution, resolved 
on a finer mesh, continues to develop nonlinear and potentially singular structure as time 
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t=O , . t=2 

5.  5. 

2.5 ‘ 2.5 

2.5 5.  2.5 . S. 

2.5 , 5.  2.5 S. 

Figure 1. Case 1. Evolution of B and I) between f = 0 and t = 6. exhibiting the initial stages 
in the development of strong, potentially singular fronts. Both 0 and $ have saddle points at 
the centre of the grid. (a) Contours of B .  (b) Contours of 9, 

evolves. To determine the numerical resolution, we give plots of the energy spectrum in 
figure 2 at time, r = 6, with (512)’ Fourier modes and also the same plots at times t = 7 
and I = 7.5 with the higher resolution, (1024)2 modes. 

These three plots indicate a progressive build up of energy in the higher modes, 
characterized by an evolving bump in the spectrum. The graph in figure 2(a) indicates 
that at time t = 6, we are near the h i t  of resolution with (512)2 Fourier modes while 
figures 2(b, c) demonstrate that we reach the limit of resolution with (1024)2 modes near 
f = 7.5 but have adequate resolution until that time. 

In figures 3-5 we plot the level sets of the temperature field and the stream function, 
q, for the velocity field at the times t = 6,7,7.5 with the numerical resolution of the 
preceding paragraph. It is evident from these graphs that the transfer of energy to high 
wave numbers depicted in figure 2 is associated with the nearly self-similar development 
of a strong temperature front with a cusp. This cusp is clearly displayed at time t = 6 in 
figure 6 where a three-dimensional local graph of 0 is presented. 

To present further evidence for the roughly self-similar behaviour of the cusped thermal 
front, in figures 3-5, we have marked the spatial locations where lVLOl and the stretching 
factor ~ ( x ,  t )  from (2.15) and theorem 2.1 achieve their maxima; clearly, they are converging 
to the centre of the hyperbolic saddle in the &level sets as time evolves. 

Is the roughly self-similar steepening of the cusped thermal front associated with a 
strongly nonlinear and potentially sinadax event for the 2-D quasigeostrophic active scalar? 
Here we utilize theorem 2.1 and proposition 2.1 as refined diagnostics to provide insight 
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Figure 1. (Continued) 

into this basic issue. In figure 7 we present log-log plots of max lViOl versus time for 
three different numerical simnlations with resolutions of (256)2. (512J2, and (1024)2. 

As indicated in figure 7, all three curves agree until the time, t = 5.5, where the 
calculation with (256)' modes has lost resolution; self-consistently, the calculation with 
(512)2 modes agrees with the finer resolution calculation until roughly time t = 6 where 
adequate resolution with (512)' modes has been lost (recall figure 2~)) .  The best linear fit 
of the curve in figure 7 yields a slope of -1.66 and a potential blow up time T., with value 
roughly, T, E 8.25, i.e., a singular behaviour for IVL8l like (T* - t)-1,66; these values for 
a potential singularity are consistent with the requirements of rigorous theory from (2) of 
theorem 2.1. 

In figure 8, we plot a*@), the maximum of the stretching factor over the entire periodic 
box defined earlier in (3) of theorem 2.1, and also &(t), the value of the stretching factor at 
the location of the maximum for ]ViB] with (1024)2 modes. According to (3) of theorem 
2.1 and proposition 2.1, nonlinear growth in either a*@) or a(t) is a signature of strongly 
nonlinear interaction and growth of gradients (far beyond constant exponential growth!) 
and divergent behaviour in time for both of these quantities is the signature of a singular 
solution. First, we discuss the graph of a*@); the quantity a*@) reflects the global rate of 
increase of arc length of level sets; the graph of or*@) is roughly constant until the time 
t = 7, and a*@) exhibits strongly nonlinear growth after t = 7. The quantity &(t) givk a 
more accurate measure of the local nonlinearity in the system at the location of the largest 
gradient; the behaviour of & ( f )  is strongly nonlinear until the time t = 7; beyond t = 7,  the 
curve &(t) lies below a*@). According to the data presented in figures 3-5, the locations 
of the maximum of a yielding a*@) and the location of the maximum magnitude for the 
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Figure 2. Case 1. Logarithmic plots of the specmm of 8, 
averaged over angles. A wavdiie propagation toward the 
high modes takes place in Fourier space: its sharply defined 
front allows us to decide which size of grid is required at 
each time. At I = 6 weswitchedfromagnd with 512x512 
points to one with 1024 x 1024. The decay to the left 
of the front is slower than exponential, suggesting that a 
singularity is being formed. (U) t = 6, front in Fourier 
space near Ikl = 200. (b) t = I. front in Fourier space 
near lkl = 350. (c) f = 7.5, front in Fourier space near 
Ikl = 400. 

gradient yielding G(t) converge rapidly and nearly coincide around the time, t = 7. In 
the regime with 7 < t < 7.5, near the limits of resolution on a fixed mesh (see figure 
2) with strong nonlinear growth, the maximum gradient of the actual solution is probably 
lying between mesh points. Thus, with this rough reasoning, beyond the time, t = 7, 
we take the maximum of the two curves in figure 8 as a measure of the nonlinearity in 
the system. Thus, this second refined set of mathematical diagnostics indicates continued 
nonlinear growth consistent with the behaviour presented earlier in figure I. 

To summarize, we have presented 'numerical evidence, consistent with refined 
mathematical diagnostics for strongly nonlinear and potentially singular behaviour of the 
solution of (1.1) - (1.3) with the initial data in (3.1). While the strongly nonlinear behaviour 
of this cusped thermal front has been established, caution is needed regarding the potential 
finite time singularity in such a front-even with a resolution of (ION)* on a Cray C90 
supercomputer, from figure 7, we see that the value of the gradient has only amplified by 
a factor of 30 by the time, t = 7.5 where resolution is lost. Obviously, there is a need for 
a carefully designed new adaptive numerical method to give additional insight. With the 
theoretical results in 18, 111, mathematical diagnostics for potential singular solutions for 
the 3-D Euler equations predicted by numerical methods have been used since that time; 
a review of these efforts until 1991 is presented in [2] and very interesting high quality 
numerical simulations which systematically utilize such diagnostics in different contexts are 
presented in [13-151. Our use of the refined diagnostics involving or'@) and G ( t )  from 
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x*  2 
Figure 3. Case 1.  Contours of R and @ at I = 6. From about this time an. the formation of the 
front follows a seemingly self-similar panem. (U)  Contours of 0, where we have marked the 
location of maximum jVRl (denoted ‘-’I and martimum strain (I (denoted ‘9). (b) Contours of 
*. 

theorem 2.1 and proposition 2.1 is the first attempt to utilize the most refined mathematical 
diagnostics in a numerical study. 

3.3. Case 2: Nonsingularfront formation with an elliptic centre in the active scalar topology 

Here we present the results of numerical simulations with the simple initial data given by 

(3.2) 

In figure 9, we present snapshots of the @-level sets of the numerical solutions at the 
times t = 0, 1.5,3.0, and 4.5 with a resolution of (512)’ Fourier modes. As in case 1 and 
according to the theoretical prediction in section 2.5, a strong front with nearly planar level 
sets develops in time. In contrast to case 1 described earlier, the strong front forms in the 
vicinity of an elliptic centre in the @-level sets rather than a hyperbolic saddle. We will 
present further numerical evidence below that the behaviour associated with the solution in 
case 2 is not stronglynonlinear and far from singular bchaviour for this interval of time. In 
sections 4 and 5, we will present mathematical evidence supporting these numerical results, 

O(x ,  0) = - (cos(2x~)cos(x~) + sin(x1) sin@’)) 
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Figure 3. (Continued) 

In figure 10 we present the spectrum at time t = 4 with (512)* modes and at time t = 5 
with modes. figure 10 indicates adequate numerical resolution at these times. These 
graphs also reveal a transfer of energy to high wave numbers in case 2 but, in c o n a t  to the 
data presented in figure 2 for case 1, the amplitudes are slightly smaller and the pronounced 
bump in the spectrum is absent. 

In figures ll(a) and l l@) we give contour plots for the active scalar, 8, at the times, 
t = 4, and t = 5 with the numerical resolution described above. Also on these graphs are 
marked the spatial locations of the maximum of IVLel and the maximum of the stretching 
factor, d. In contrast to the results in figures 3-5 for case 1, these locations remain 
distinctly separated as time evolves. This behaviour suggests that the strong front that has 
formed in case 2 is not a strongly nonlinear event as time evolves. In figure I&. we plot 
log (lV'OILw) as a function of time for 0 < f < 5-3.5 indicated in figure lo@), we are at 
the limits of resolution with (1024)z modes at time t = 5. 

The graph in figure 12 has a pronounced constant slope for times, t ,  with 3.75 Q t < 5. 
According to the mathematical criterion in (2) of theorem 2.1, this constant slope is the 
signature of mildly nonlinear exponential growth of the magnitude of IV+ in conhast to 
case 1 and this is very far from singular behaviour. In figure 13 we graph the temporal 
behaviour of the quantities a*@) and G(t)  utilized in the refined diagnostics in (3) of theorem 
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Figure 4. Same as previous figure, at f = 7. Observe how the location of the points with 
maximum gradient and strain have nearly converged to the centre of the grid. (0) Conmm of 
8. (b) Contom of @ 

2.1 and proposition 2.1. Both of these quantities exhibit mild growth through their history 
and the more sensitive diagnostic for strongly nonlinear behaviour in the vicinity of the 
maximum gradient, ti@), is leveling off and is'nearly flat for t with 3.75 < t c 5.00. 

consistent evidence that the front formation depicted in figures 9 and 11 is only mildly 
nonlinear and very far from a potentially singular event. Mathematical evidence giving 
further support for this behaviour is presented in section 4. Here in section 3.3, we have 
utilized the mathematical diagnostics from theorem 2.1 and proposition 2.1 together with 
numerical experiments to exclude strongly nonlinear and potentially singular behaviour in a 
certain geometric configuration for the level sets of the active scalar-despite the fact that 
visually a strong front has formed. 

3.4. Care 3: front formorion with general initial data 

Here we briefly present the results of our numerical simulations with the more general initial 
data, 

(3.3) 

Thus, all of the mathematical diagnostics presented in figures 12 and 13 provide self- - 

e ( x ,  0) = cos(2xl) C O S X ~  + sinxl sinxz + cos(2q) sin(3.q) . 
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Figure 4. (Continued) 

In figures 14 and 15 we present graphs with the active scalar level sets in a numerical 
simulation with (1024)2 Fourier modes at the times t = 0 and t = 3 respectively. These 
plots clearly indicate that the large scale straightening of level sets in regions with large 
gradients is occurring with this general initial data. This confirms once again, our theoretical 
prediction from (2.36). 

4. The topology of level sets for the active scalar and strong front formation 

Cases 1 and 2 of the numerical study presented in section 3 indicate that there is a very 
interesting connection between the topology of the level sets for the active scalar in the 
region of initially evolving strong gradients and the formation of strong nonlinear and 
potentially singular fronts. In case 1 with the initial data in (3.1), the developing region 
with large gradients for 0 impinges on a hyperbolic saddle point in the scalar level sets 
and in section 3.2, we carefully documented subsequent strongly nonlinear behaviour with 
a potentially singular thermal eont forming in finite time. In case 2 with the initial data in 
(3.2), the developing region with large gradients for 0 impinges on an elliptic centre in the 
active scalar level sets and we documented through the diagnostics in section 3.3 that there 
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Figure 5. Same as before, at f = 7.5. Although the points of maximum gradient and strain 
appear to have separged slightly since the previous snap-shot, we attribute this to their failure 
to lie exactly on grid points. (a) Contours of 9. (b) Contours of + 

is substantial depletion of local nonlinear interaction without the possibility of a singular 
front forming in finite time. These two examples demonstrate the crucial role of the local 
topology of level sets in the formation of strong and potentially singular fronts. Here we 
continue the symbiotic interaction of mathematical theory and numerical simulation utilized 
throughout this paper by providing an explanation through mathematical analysis of the role 
of topology of the scalar level sets in strong front formation. Our intention in this section of 
the paper is to provide an expository account of these matters without technical details-the 
mathematical details are presented in section 5. 

4.1. Classicalfrontogenesis with trivial active scalar topology is impossible 

Classical frontogenesis in geophysical fluid dynamics is the rapid temporal development of 
a sharp front between warm and cold masses of air. In some simplified semi-geostrophic 
approximations in meteorology incorporating ageoseophic effects beyond (1.1)+.3), the 
formation of these sharp fronts corresponds to a finite time singularity (see [l] and references 
there); the physical picture is much like the formation of shock waves in compressible fluid 
flow [lo]. In case 1 from section 3, we presented numerical evidence for the possibility 



Figure 5. (Continued) 

of nonclassical frontogenesis involving fronts with cusps (figures 3-6) completely within 
the quasigeostrophic approximation and without incorporating any ageostrophic effects; 
however, a hyperbolic saddle in the scalar topology played a crucial role. Here we study 
whether classical frontogenesis with trivial topology is possible within the quasigeostrophic 
equations in (1.1)-(1.3). 

For the purposes of exposition, we consider a simplified scenario for classical 
frontogenesis with trivial topology. To do this, we consider a smooth curve in the plane, 
the front curve, written as a graph 

xz = f(x1). (4.1) 
We consider a smooth function of one variable, F(s)  with the properties that F(s )  = 1 for 
s 0 for all s. We assume a simplified ansatz for 
classical frontogenesis with hivial topology where the thermal 2-D quasigeostrophic active 
scalar has the form 

3, F ( s )  = 0 for s < 1 and F'(s) 

where for some critical time, T, > 0 
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Figure 6. Case 1, f = 6. Detail ofthe cusp developing in 8. The nature of this front diffm 
significantly from the 'shock-W fmnt of classical frontogenesis. It is a n a l o p ~ s  though to the 
configuration with potentially collapsing nearly antiparallel vortex tuks in 3.D Euler. 

1'  
7.65 7.0 6.0 5.0 

c 

0 

Figure 7. Log-log depiction of the p w t h  of maX IWI. Three runs with different resolution 
are superimposed, showing their tendency to align with a straight line. corresponding to the 
development of a singularity ne= I = 8.25. The rimes at which each mn departs from this 
straght line correspond roughly to those at which their resolution fails, at least for computing 
maxima adequately. 

With the properties for the functions, f ,  F ,  described above (4.1), the form for the active 
scalar in (4.2) models classical frontogenesis with trivial level set topology for 0 with 
a potential singularity forming at the time, t = T*. At the time, T,, the scalar becomes 
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Figure 8. Case 1. Evolution of the Suain, computed where it is marimum (U’) and where 
the maximum gmdient of 0 is ma%imum (5). The latter gives a better diagnostic for nodineax 
behaviour at the early stages of front formation, when U* is nearly constant. After the two nearly 
collide and the grid s m  Wig insufficient for computing maxima and their precibe location, 
however, U* appears to display nonlinearity more consistently. 

discontinuous across the curve xz = f (XI) with different limiting values for the temperature 
on each side of the front, i.e. classical frontogenesis potentially occurs at t = T,. However, 
despite this potential singularity formation, the direction field t = $, remains smooth 
throughout this process; in fact, the direction field is time independent and IS given explicitly 
by 

(4.4) 

In theorem 5.1 of section 5, we state and prove a general theorem with the following 
intuitive context: 

If locally the direction field t ( x ,  t )  remains smooth 

(in a very weak sense) as f /” T., then no finite time 

singularity is possible as t 7 T, . 
(4.5) 

An immediate corollary of theorem 5.1 is that the classical frontogenesis scenario with 
trivial topology described in (4.2) and (4.3) above is impossible for any function 8( t )  with 
8 ( t )  --f 0 as f 7 T. since the direction field f ( x ,  t )  as computed in (4.4) remains smooth 
on the closed time interval, 0 < t 4 T,. 
4.2. A singular t h e m 1  ridge with trivial active scalar topology is impossible 

In case 1 from section 3, as documented in figures 3-6, the numerical evidence suggests 
nonclassical frontogenesis through the formation of a thermal ridge with a critical role for a 
hyperbolic saddle in the scalar topology. Here we consider the possibility of singular front 
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Figure 9. Case 2. Contours of 8 between t = 0 and f = 4.5 showing front formation. In this 
case, 8 has an elliptic point at the centre of the grid. This will exclude the possibility of singular 
behaviour. 

Figure 10. Case 2. Logarithmic plots of the spectrum of theta. averaged over angles. In this 
case, the decay of energy is exponential, which Seems to exclude a tendency Loward singular 
behaviour. The front itself is not as c lwly  m k e d  as in case 1. We switched from a grid with 
512 x 512 points to one with 1024 x 1024 at t = 4. (U) f = 4, front near Ikl = 230. (6) t = 5, 
front near Ikl = 400. 
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Figure 11. Case 2. Snapshots of B at f = 4 md I = 5. exhibiting strong4ut not singular- 
front formation. As time progresses, the configuration looks more and more like that of a 
pair of perfectly antiparallel vortex lines, since there is no saddle in 0 to preserve the two- 
dimensionality. The points of maximum IV0I and U remain at distincb disfant positions. (a) 
1 = 4 . ( b ) t  = 5  

formation through a thermal ridge with trivial topology (no hyperbolic saddle, etc) in the 
scalar level sets. 

For the purposes of exposition, as in section 4.1 we consider a simplified scenario. We 
consider a smooth curve in the plane as described in (4.1) and utilize the same ansatz as in 
(4.2) so that there is trivial scalar level set topology. However, here we take a completely 
different profile function, F(s) ,  which corresponds to a thermal ridge. Thus, we assume 
that F ( s )  is a non-negative smooth bump function with F(s) identically zero fors  < 1 and 
for s > 3, F'(s) z 0 for 1 < s < 2, and F'(s) < 0 for 2 e s < 3. With this choice of F 
and the ansatz in (4.2), as f converges to the candidate singular time, T., the solution looks 
like a thermal ridge as in figure 6 from section 3 with the crucial difference that the level 
set topology for 0 is completeIy trivial here. In contIast to the case studied in section 4.1, 
as f is no longer smooth in the limit, in fact the 

direction field is discontinuous at the limiting time, f = T,, and is given by 

T. the direction field t ( x ,  r) = 
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(4.6) 

This behaviour with a discontinuous limiting direction field as t /” T,, with the ansatz in 
(4.1) and (4.2) is a special example of what we call regularly directed behaviour in section 
5. In theorem 5.2 of section 5, we prove a result which guarantees that no singularities in 
finite time are possible for regularly directed limiting behaviour in a very precise sense. In 
particular, at the end of section 5, we present detailed calculations which verify this theorem 
for the thermal ridges described in this section. Thus, the mathematical theory in section 5 
implies that 

thermal ridges with trivial level set topology as described in 

this section can never become singular in a finite time, T* for any 

arbitrary scaling function S(t) with S(t) J 0 as t + T, 
(4.7) 

4.3. Detailed behaviour of level sets in cases 1 and 2 

Here with the theoretical facts mentioned in sections 4.1 and 4.2, we examine the behaviour 
of the level sets of the active scalar in more detail for the numerical solutions with the 
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Figure 12. Case 2. Logarithmic plot of the growth of m a r  IV81. Notice the fast convergence 
to a straight line. wmesponding to exponential growth. 

Figure 13. Case 2. Evolution of a' and E. As the locations with muximum gradients and 
strains remain clearly distinct, the corresponding values of a do not meet, nor does either show 
strongly nonlinear growth. 

initial data for case I and case 2 from sections 3.2 and 3.3 respectively. For case 1 with 
the initial data in (3.1), in figures 16 and 17, we plot the evolution of selected equispaced 
level sets for the active scalar at the times, t = 0,4,6. 

The plots in figure 16(a, b, c) involve eleven equispaced contours on the outside of 
the hyperbolic saddle as time evolves while those in figure 17(a, b, c) involve equispaced 
evolving contours inside the hyperbolic saddle. In order to contrast the behaviour in these 
two different situations, in figures 18 and 19, we present similar plots for the initial data 
for case 2 in (3.2) at the times t = 0.3, and 4.5 where the initial nonlinear development 
impinges on an elliptic centre-the boundaries of the contours in this case extend outside 
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Figure 14. Case 3. Initial condition, t&en as representative of a ‘general‘ large scale flow. 

(figure 18) and inside (figure 19) the two heteroclinic stream lines which connect two distant 
hyperbolic saddles and enclose the elliptic cenue in the scalar level sets. 

I t  is evident from the plots in figures 18 and 19 that for case 2 with the strong gradient 
region impinging on an elliptic centre, the packing of level sets in the region near the 
elliptic centre is almost completely one-dimensional. This behaviour is also evident in 
the temperature contour plots for this case presented earlier in figure 1 I(u, b). With this 
numerical evidence it is clear that the contours near the elliptic centre behave like the 
thermal ridge theoretical example discussed earlier in section 4.2. According to theorem 
5.2, no finite time singularities can occur in a region with the trivial level set topology in 
the thermal ridge and indeed ow refined numerical diagnostics in figures 12 and 13 for case 
2 confirm that strong nonlinearity has been depleted in this geometric configuration. 

In contrast, the detailed behaviour of the level sets for case 1 depicted in figures 16, 17 
where the region of strong gradients impinges on a hyperbolic saddle is quite different. It 
is evident from figures 16(b) and 17(b) that at time t = 4 strong gradients in 8 are created 
which definitely are not quasi-one-dimensional because a two-dimensional behaviour is 
always driven by the hyperbolic saddle in the temperature field which necessarily persists 
for all time. This behaviour for the level sets with nontrivial topology involving a hyperbolic 
saddle is confirmed by the detailed diagnostics in figures 7 and 8 which give evidence for 
strongly nonlinear  and potentially singular behaviour in case 1. However, our present 
mathematical theory is unable to answer whether a finite time singularity actually occurs in 
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Figure 15. Case 3. f = 3. Elongated fronts have formed at various locations. A detailed study 
of the evolution of these fronts would require. the use of grids with a prohibitively small mesh 
size. This slightly under-resolved camputation, however. should suffice to show that the svong 
development of fronu is inherent to the equations, occurring for a wide m g e  of initial data. 

case 1 or whether this is simply a strongly nonlinear but nonsingular event. 
To summarize, the rigorous theorems mentioned in sections 4.1 and 4.2 above together 

with the detailed numerical experiments and diagnostics presented here and in section 3 all 
point to the following general principle: 

If the level set topology in the temperature field for the 2-D 

quasigeostrophic active scalar in the region of strong scalar 

gradients does not contain a hyperbolic saddle, then no finite 

time singularity is possible. 

(4.8) 

. 
Finally, we recall the analogy developed in section 2.2 between the level sets of the 

thermal active scalar and the vortex lines of a three-dimensional incompressible flow. With 
this analogy, both case 1 and case 2 as well as the thermal ridge with trivial topology 
discussed in section 4.2 correspond to the behaviour of anti-parallel vortex filaments in a 
3-D incompressible flow. The behaviour in case 1 corresponds in this analogy to similar 
but more complex strongly nonlinear and potentially singular behaviour in the anti-parallel 
pair documented by Kerr 1141 in very interesting recent work; on the other hand, the 
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Figure 16. Case 1. Evolution of eleven selected wntour lines on the outside of the saddle, 
showing the preservation of a two-dimensiond pattern despite the fast elongation of the fronts. 
whether nonlineariw will or not survive depends on a c r u d  balance between the rate at which 
the contom are packing and that at which the angle of npedure of the saddle is wnverging to 
zero. (a) t = 0, a regular saddle point. (b) t = 4, sWn of the stretching of contour lines. (e) 
t = 6. ‘milture’ front, with densely packed contours and very distorted saddle. 

behaviour with different topology documented in case 2 and section 4.2 corresponds to 
nonsingular behaviour in the antiparallel vortex pair with somewhat different initial data 
(see the references in 12, 141 for this type of behaviour in 3-D incompressible flow). 

5. Analytic and geometric constraints on singular solutions 

Here we prove the precise mathematical theorems discussed in sections 4.1 and 4.2. At the 
end of this section, we apply theorem 5.2 to the thermal ridge scenario described in section 
4.2. 

5.1. Precise statement of results 

We consider a QG active scalar O(x, t )  with smooth initid’ data and suppose the scalar is 
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Figure 16. (Continued) 

defined and smooth for (x ,  t )  E Rz x [O, T ) .  Recall from (2.31) the particle trajectories 
X ( q ,  t).  which are solutions of 

Also recall that e = " I s  is the direction field tangent to the level sets. We say that a set 

no is smoothly directed if there exists p > 0 such that 

where Bp(X) is the ball of radius p centred at X and 

Q; = [ q  E no; Ivedq)j #o) . 

If no is a set we denote by S2, its image at time t under the particle trajectory map 

Q, = X(%, t )  

and by O,(Qo) the semi-orbit: 

&(Qo) = { ( x ,  t ) l x  E: Q, 0 < t < T )  

Theorem 5.1. Assume s20 is smoothly directed. Then 

(5.la) 

(5.lb) 
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Figure 17. Case 1. Evolution of eleven contous inside the saddle, showing the survival of 
nontrivial topology for all times. (a) I = 0. (b) t = 4. (c) r = 6.  
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20 40 

Fiwre 18. Case 2. Evolution of eleven wntours on the outside of the saddles between which 
the elliptic region is being crushed. (a) t = 0. (b) f = 3. (c) f = 4.5. Near the centre of 
the grid, where the gradients are largest. the configuration looks purely one-dimensional, the 
analogue of two perfectly panllel vortex lines. 

i.e. if the direction field is smooth locally on a set moving with the fluid in the precise 
sense of (5.lb). then no singularity is possible in that set. 

Next we state a general technical theorem which applies to the prototypical situation in 
section 4.2 where the direction field is not smooth but the special structure of the singular 
integral operators allows depletion of nonlinearity on special geometric configurations. 
Related results for the 3-D Euler equations are presented in [6] and [9]. We say that 
the set C20 is regularly directed if there exists p > 0 such that 

where 

In (5.3) and elsewhere in this section, we define A ( x )  to be A(x)  = IVLel. 
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Theorem 2. Assume that st, is regularly directed. Then 

i.e. if a set moving with the fluid is regularly directed, there is depletion of nonlinearity 
and no singularity is possible on that set. 

5.2. The proofs of the theorems 

The proofs of both theorems rely on special formulae for the level set stretching factor, a, 
from (2.15), (2.16) together with a local version of the proof that we utilized in theorem 2.1 
to demonstrate that (3) implies (2). We start by computing the full gradient of the velocity 
field U from the formula in (2.8). 

( W W  = -Vx 1 &VLe)(x + y)dy 

Differentiating under the integral sign we get 

(Vu)@) = - / (vyV$e) (x + y)dy 

We write the integral as a limit as E + 0 of integrals on IyI > E .  Because the two gradients 
applied to 6 commute, we can choose any one of them and integrate by parts. The limit of 
the contributions from IyI = 6 vanishes. In this fashion, we obtain two formulae: 

and 

dY 
(VU)(X) = -P.V. ((VlS.(x + y ) )  @ 9)  - s IY? . (5.5) 
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.Figure 19. Case 2. Eleven contours inside the saddles surrounding the elliptic region. The 
configuration at the centre of the grid converges to the regularly-directed scenario. (a) I = 0. 
(b) t = 3. (c) t = 4.5. ~ 
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Writing 

V'O = A t  

and using the definition from (2.4) and (2.15) that 

4) = ( ( ( V W ) ) 5 ( X ) )  ' t ( X )  

we deduce the two representations of 01 
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and 

Let us consider now a number p > 0 and decompose 

W )  = ai&) + ~ r o d x )  

where 

and 

(U0,[(X) = P . V . 1  (1 - x  (?))" 
with x ( r )  a smooth non-negative function of one positive variable satisfying x (r) = 1 for 
0 < r < i, x ( r )  = 0 for r > 1. 

It is easy to prove the estimate: 

Jawt(x)l 6 w 2 i i e i i L 2  . (5.8) 

Indeed using any of the two representations, the fact that A( = VLO and integrating by 
parts one obtains 

Let us consider now the situation in which the direction field 6 is smooth in the 
ball of centre x and radius p. corresponding to the smoothly directed case. We use the 
representation in (5.6). Let us denote by G the maximum of the gradient of 5 there: 
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Clearly 

IHX+Y).e%)l  G GlYl 

for IyI 4 p. We deduce from (5.6) that 

Now we use the fact that 

A = $ . (V%) 
and integrate by parts: 

We carry out the differentiation and obtain three terms which we denote I, II and I l l  

and 

The first two can be estimated in a straightforward manner: 

111 4 CpGllellt- 
and 

la[ <ciieuLm. 

III=&).P.V. j + e ( x + ~ ) ~ + m ’  d r  

We write in the third term ( ( x  + y )  = &) + ( t ( x  + y )  - c(x) )  and therefore 

J IYI 

with 

4 C (pGllellL- + p-’Ilello) . 
We observe that 

dY P.V. j 4 ( x  + y)--i = -U@) s IY I 
hUS 

I N . ( x ) ~  G c~[ l~(x) l+(p~+i ) l le l l ,  + P - ’ I I ~ I I ~ ~ ]  . 
Combining this with the estimate in (5.8) we proved: 

(5.9) 

(5.10) 
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Lemma 5.1. Assume that x is such that 
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and Iv(x)l  are finite. Then Irr(x)I is bounded by 

Ia(x)l < C[GlUCx)l+ (pG+ 1) (GllellL- +p-211~11~~)] 

Proof of theorem 5.1. If Szo is smoothly directed then we can apply lemma 1 with 
x = X ( q ,  t) ,  for any q E 520 and any t E [O, T ) .  Using the ordinary differential equation 
from (2.15), (2.32). 

d -JvLe(x(q, 0, f J  = a(x(q,  t ) ,  r)lvLe(x(q, t ) .  t )J  dt 

and the bound in lemma 1 we obtain 

where 
*T 

This completes the proof of theorem 5.1. In the above, we used the fact that I16'll;z(t) = 
][O,& for all times, t.  The proof for theorem 5.2 is simpler and follows directly from the 
identity for &(x)  in (5.6) together with (5.8). 

Lemma 5.2. Consider a point x E R2 and assume that there exists p > 0 such that 

1 / 9 . f L ( x ) l  I f ' ( x ) . 5 ( x + y ) l A ( x + y ) l  dY < 03. 

IY I K p ( x )  = 
I Y K P  

Then 

l m l  < Kp(x)  +~-*11~Ily (5.11) 

The proof of the l e m a  follows immediately from (5.6) and (5.9). The proof of theorem 
5.2 now follows from lemma 2 as the proof of theorem 1 followed from lemma 1. Note 
that because ( ( x  + y) ( A(x + y)I = V'O(x + y) there is no contribution to the integral from 
points where A(x + y )  = 0. 
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Proof that rhe therm1 ridgefrom 4.2 is regularly directed We check that the smooth ridge 
is regulady directed. Thus, we consider a smooth function xz = f(x1) and a ridge profile 
F as described in section 4.2 and form 

We fix x with lVLO(x)l # 0, choose p = O(1) and estimate Kp(x) .  We note that for 
any point z = (21. ZZ) with A(z )  # 0 we have 

The sign is decided by which side of the ridge z belongs to. Jrrespective of this jump 
however, 

IP(x).<(X+Y)I < rlYll 

with r = sup I f" l .  The bound 

C 
A(x+Y) 4 s 

is obvious and unavoidable. Now the term 19. eL(x)l  is bounded by 1, but also by 

Indeed, this term is bounded by 

and using the fact that both x and x + y must be in the support of A we have 

IY2+Xz-f(X1+Y,)I 4C6 
Ix* - f (x1)l  < C6 

[yz - Ylf'(Xd1 4 If(x1f Yl) - f ( x d  - Ylf'(Xl)l+ C6 . 
and hence 

Let us break the integral defining Kp(x) in two pieces: the coneibutions from IyI < 6 
and those from IyI > 6. In the first piece we use polar coordinates and obtain easily a 
bound 

The outside piece is not suited for polar coordinates; there we use the fact that for a given 
y~ the strip of allowed yz, z ( y ~ ) ,  has width of order C6 and obtain a bound 

It follows thus that 

KAX) < cru + Pr) 
which verifies that the smooth ridge is regularly directed. Obviously, if r is a function of 
time which diverges at the time of blow-up, for instance if the front itself forms a comer 
or a cusp, then the possibility of a finite time singularity is not precluded by this argument. 
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