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What are rare events?

Examples:

▸ Material failure (bridge/tool/plane stress fractures)

▸ Extreme weather (tornadoes, hurricanes, heat waves)

▸ Rogue waves, tsunamis, earthquakes

▸ Financial sector/bank/company collapse

▸ Pandemics
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Why study rare events?

Common to all:

▸ Rare but high impact/cost/damage

Control and mitigation:

▸ Design engineering structures Ô⇒ control material failure

▸ Design portfolio Ô⇒ control risk of investments
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Optimization under rare chance constraints

minimize
u∈U

J(u)

subject to P(F (u, ξ) ≥ z) ≤ α for some fixed α≪ 1

▸ F ∶ U ×Ξ→ R . . . parameter-to-observation map, can involve PDEs

▸ J ∶ U → R . . . cost

▸ Ξ ⊆ Rn . . . random space of uncertain parameters ξ with measure P
▸ U ⊆ Rm . . . domain for control or decision variable u

▸ z . . . specified upper bound

▸ α ∈ (0,1) . . . risk threshold
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Challenges for rare chance constraints

Sampling-based methods:

ξi
i.i.d.∼ P

▸ Indicator approximation:

P(F (u, ξ) ≥ z) ≈ 1

N

N

∑
i=1

1[z,∞) (F (u, ξi))

▸ Scenario approach:

F (u, ξi) ≤ z, i = 1, . . . ,N

▸ Spherical radial decomposition

F
(u

, ξ) =
z

{ξ ∶ F (u, ξ) ≥ z}

Need N = O(α−1) samples, each adds
new variables and constraints;
intractable for complicated F
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Overview of large deviation theory-based method

1. Find LDT optimizer ξ⋆

2. Explicit formula for geometric approx.

3. Bilevel reformulation

F (u, ξ) =
z

{ξ ∶ F (u, ξ) ≥ z}

LDT-based methods:

▸ sampling-free

▸ insensitive to extremeness

▸ work for expensive parameter-to-observation maps

▸ solvable by off-the-shelf solvers
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Large deviation theory

P (F (u, ξ) ≥ z) ≍ exp (−I(ξ⋆(u, z))) as z →∞

LDT optimizer:
ξ⋆(u, z) ∶= argmin

ξ∈Ξ
{I(ξ) ∶ F (u, ξ) ≥ z}

▸ I(⋅): rate function

▸ depends only on distribution of ξ

▸ Legendre transform of cumulant generating fct

▸ Gaussian ξ ∼ N(µ,Σ): I(ξ) = 1
2∥ξ − µ∥

2
Σ−1

level sets of I(ξ)

F (u, ξ) =
z

{ξ ∶ F (u, ξ) ≥ z}

ξ⋆

n̂⋆
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Geometric approximation of rare event probability

Geometric approx: measure bounded by second-order Taylor expansion

P(F (u, ξ) ≥ z) ≈ P2(u, z, ξ⋆) = P ({ξ ∈ Ξ ∶ F2(u, ξ; ξ⋆) ≥ z})

▸ Gaussian mixture model

ξ ∼
M

∑
i=1

wiN(µi,Σi),
M

∑
i=1

wi = 1

▸ Explicit algebraic formula

▸ Only require local derivative info

▸ Universal approximation

level sets of I(ξ)

F (u, ξ) =
z

{ξ ∶ F (u, ξ) ≥ z}

ξ⋆

n̂⋆

P2(u, z, ξ⋆) =
M

∑
i=1

wiΦ(−∥ξ̃i − µi∥Σ−1i )det⊥ñi(In −
∥ξ̃i−µi∥Σ−1

i

∥Σ
1
2
i ∇ξF2(u,ξ̃i;ξ⋆)∥

Σ
1
2
i ∇2

ξF (u, ξ⋆)Σ
1
2
i )−

1
2
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∥ξ̃i−µi∥Σ−1

i

∥Σ
1
2
i ∇ξF2(u,ξ̃i;ξ⋆)∥

Σ
1
2
i ∇2

ξF (u, ξ⋆)Σ
1
2
i )−

1
2

10 / 19



Geometric approximation of rare event probability

Geometric approx: measure bounded by second-order Taylor expansion

P(F (u, ξ) ≥ z) ≈ P2(u, z, ξ⋆) = P ({ξ ∈ Ξ ∶ F2(u, ξ; ξ⋆) ≥ z})

▸ Gaussian mixture model

ξ ∼
M

∑
i=1

wiN(µi,Σi),
M

∑
i=1

wi = 1

▸ Explicit algebraic formula

▸ Only require local derivative info

▸ Universal approximation

level sets of I(ξ)

F (u, ξ) =
z

F2(u, ξ; ξ⋆) = z

{ξ ∶ F (u, ξ) ≥ z}

ξ⋆

n̂⋆

P2(u, z, ξ⋆) =
M

∑
i=1

wiΦ(−∥ξ̃i − µi∥Σ−1i )det⊥ñi(In −
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Bilevel Reformulation

Optimization under rare chance constraints

minimize
u∈U

J(u)

subject to P(F (u, ξ) ≥ z) ≤ α for some fixed α≪ 1

Bilevel opt: Approximate rare event probability with LDT estimates

minimize
u∈U

J(u)

subject to P2(u, z, ξ⋆) ≤ α, ξ⋆ ∈ argmin
ξ∈Ξ

{I(ξ) ∶ F (u, ξ) ≥ z}

Single-level opt: Replace lower-level with first-order optimality conditions

minimize
u∈U ,ξ⋆∈Ξ,λ∈R+

J(u)

solvable by off-the-shelf solvers, e.g. Ipopt

subject to P2(u, z, ξ⋆) ≤ α, F (u, ξ⋆) = z, ∇I(ξ⋆) = λ∇ξF (u, ξ⋆)
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Short column design

Find width and height u = [w,h] to minimize area wh of rectangular cross section, avoiding
material failure with probability 1 − α, with uncertain material parameter ξ = [ξF , ξM , ξY ]

minimize
u=[w,h]∈R2

wh

subject to Lw ≤ w ≤ Uw,

Lh ≤ h ≤ Uh,

P(F (u, ξ) ≥ 1) ≤ α, for fixed α≪ 1

From elastic-plastic constitutive law

F (u, ξ) ∶= 4ξM
wh2 exp(ξY )

+ ξ2F
w2h2 exp(2ξY )
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Short column design
Compare LDT-based methods with sampling-based methods (SAA, CVaR)
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Optimal PDE boundary control

Control temperature at boundary Γc as close to 0 as possible, while ensuring average
temperature in Ω0 bounded by z with high probability

minimize
u

1

2
∫
Γc

u2(x)dx,

subject to P(F (u, ξ) ≥ z) ≤ α

F (u, ξ) ∶= 1

∣Ω0∣ ∫Ω0

y(x;u, ξ)dx

Ω0

Ω

Γc

Γn ∶= ∂Ω/Γc

κ random
y(x;u, ξ) is solution of 2D steady-state advection-diffusion equation

−∇ ⋅ (κ(x, ξ)∇y(x)) +w(x) ⋅ ∇y(x) = f(x, ξ), x ∈ Ω,

(κ(x, ξ)∇y(x)) ⋅ n(x) = 1

ϵ0
(u(x) − y(x)) , on Γc,

(κ(x, ξ)∇y(x)) ⋅ n(x) = 0, on Γn.

with random diffusion coefficient κ(x, ξ) and random source f(x, ξ)
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Optimal PDE boundary control
Sampling-based methods are untenable
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Main takeaways
▸ Large deviation theory for rare chance constraints

▸ Explicit algebraic formulations for Gaussian mixture
▸ Methods for optimization under rare chance constraints:

▸ sampling-free
▸ solvable by off-the-shelf solvers
▸ insensitive to extremeness

▸ Examples on nonlinear and PDE-constrained optimization problems

Future directions

▸ Refine asymptotic approx

▸ Generalize to more distributions

▸ Release some regularity assumptions

▸ SunA7 (March 24, 8:30 - 10:00am): Anirudh Subramanyam
Self-Structured Importance Sampling for Chance-Constrained Optimization

▸ Improve efficiency for large-scale problems: SDEs/SPDEs (ongoing)
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