Policy iteration method for inverse mean field games

Shanyin Tong

jointly with:  Nathan Soedjak  Kui Ren

Department of Applied Physics and Applied Mathematics, Columbia University, NY

June 18, 2024
New England Numerical Analysis Day (NENAD), Dartmouth College, Hanover, NH

1/15



What are mean field games?

\4

Study non-cooperative games with a large number of rational agents

\4

Characterize Nash equilibrium
Introduced 2006 by Lasry and Lions

Applications to economics, finance, traffic flow, crowd motions, epidemics control

v

v

v

Connection to reinforcement learning

v

PDEs with a forward-backward structure
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Mean field games — crowd motion model

An agent (car) moves according to SDE:
dXs = —q(Xs, s) ds + v/2e dW;

Each agent is rational: control its velocity by g to minimize cost

i [ [ (3100 + VX + P, s+ 067

» g(x,s) : control process

» m(x,s): distribution/density of all agents
> %|q|2: kinetic energy of the agent
» V(x): obstacle function

» F(m): interaction cost (e.g., F(m) = m2)

v

(x): terminal cost
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Mean field games — crowd motion model

An agent (car) moves according to SDE:
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Value function u(x, t): min cost of an agent starting at time t at position x

u(x, t) = ir;fIE {/tT <%|q(Xs,s)|2 + V(Xs) + F(m(Xs,s))) ds + T,ZJ(XT)]
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Mean field games — crowd motion model

An agent (car) moves according to SDE:
dXs = —q(Xs, s) ds + V/2e dW,

Value function u(x, t): min cost of an agent starting at time t at position x

oty = g [ (Sla0c 9+ V00 + Rl o)) as o)

» Optimality condition = u satisfies Hamilton-Jacobi-Bellman (HJB) equation
1
e~ eBu+ S|DuP = V(x) + F(m(x,8), u(x, T) = ¥(x)

» Optimal control g = Du: optimizer of Hamiltonian H(Du) = sup Du - q — %|q|2
q
» m evolves according to Fokker-Planck equation: 9;m — eAm — div(mDu) =0

4/15



Inverse mean field games

» Forward model (MFG): V — (m, u)

Orm — Am — div(mDu) = 0 in T4 x (0, T)

{ —Ou — Au+ 3|Dul?> =V + F(m) in T x (0, T)
u(x, T) = ¥(x), m(x,0) = mo(x) in T
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Inverse mean field games

» Forward model (MFG): V — (m, u)

—Ou — Au+ 3|Dul?> =V + F(m) in T x (0, T)
Orm — Am — div(mDu) = 0 in T4 x (0, T)
u(x, T) = ¥(x), m(x,0) = mo(x) in T
» Inverse problem:
data (observations of MFG solution) == reconstruct obstacle fun V' (environment info)

u(x,0)or ug(x, T) +— V

» Challenges:
» MFG: forward-backward coupled nonlinear system = nontrivial & inefficient to solve
Iterative methods, optimal control, machine learning, reinforcement learning
» PDE-constrained optimization = adjoint equation with same structure
Direct least-square, primal-dual method, bilevel optimization, Gaussian process
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Policy iteration method for MFG

Classical algorithm for optimal control
First introduced to MFG by [Cacace et al. 2021]

A quasi-Newton algorithm for root-finding:

v

v

v

—Opu— Au+ 3[Dul> =V + F(m) inT9x (0, T)
9¢m — Am — div(mDu) = 0 in T4 x (0, T)
u(x, T) = ¥(x), m(x,0) = mo(x) in Td

v

Use policy/control

1
g = arg max [q- Du — —|q|2] = Du
q 2

v

Fixed point iteration
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Policy iteration method for MFG

Choose g0, iterate on k = 0,1,2, ...
1. Solve linear PDE for m(k)

9em®) — eAm*®) — div(mK gy =0 in T x (0, T)
m(®(x,0) = mo(x) in T

2. Solve linear PDE for u(k)

—0pul) — eAuk) + gt puk) = 11012 + vV + F(m()) in T x (0, T)
u(x, T) = ¢(x) in T9

3. Update policy
q(k+1) = arg max [q- Duk) — %|q|2] = Du(k)
q
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Policy iteration method for inverse MFG

Choose q(O), iterate on k =0,1,2,...
1. Solve linear PDE for m(k)

ormk) — e AmK) — div(mW gy =0 in T x (0, T)
m¥)(x,0) = mo(x) in T9

2. Solve linear inverse problem: reconstruct V(¥) and u(k) from data u(x,0) (or u(x, T))

—9puk) — eAuk) 4 k) . pyk) = %|q(k)|2 + VO L F(m®))  in T9 x (0, T)
uk)(x, T) = () in T9

3. Update policy

q(k+1) = arg max |:q . DU(k) . ;q2:| — Du(k)
q
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Policy iteration method for inverse MFG

Choose q(o), iterate on k =0,1,2,...
1. Solve linear PDE for m(k)

2em%) — e AmF) — div(mKglk))y =0 in T x (0, T)
m¥)(x,0) = mo(x) in T9

2. Solve linear least-square problem: reconstruct V() and u(k) from data h(x)

minimize lu(x,0) — hC) Zanay (or e T) — A1)
subject to —iu—eAu+qk) . Du = %|q(k)|2 + V + F(m(k)) in T4 x (0, T)
u(x, T) = 1(x) in T¢

3. Update policy

1
gk = arg max {q . Dutk) — 2q2} = Du(k)
q
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Policy iteration method for inverse MFG

Choose q(o), iterate on k=10,1,2,...
1. Solve linear PDE for m(k)

2rmk) — e AmK) — div(mW gy =0 in T x (0, T)
m)(x,0) = mo(x) in T4

2. Solve linear least-square problem: reconstruct V(%) with data h(x) = u:(x, T)

. 1
vk — arg‘;mn |V —[-eAy + q(k)(', T) ¢ — §\q(k)(-, T)|2 — F(m(k)) - h]H%Q(Tc,)
S { ;(ff(ll)ik)T; ::A@u((i)ﬁ gk . Duk) = %‘q(k)‘z + V() 4 F(m(k) :: %Z x (0, T)

3. Update policy

gk = arg max {q . Dutk) — ;qﬂ = Du(k)
q
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Convergence theorem for policy iteration on inverse MFG

Convergence theorem

Under certain regularity assumptions on initial and final conditions 1, mg, data h, initial policy
go and interaction cost function F, for sufficiently small T > 0, the sequence {V(k)}kzo
generated by the above policy iteration algorithm satisfies

V&) — v* uniformly in TY,

where V* is a solution to the inverse mean field game problem with data h(x) = us(x, T).

Linear convergence

With same assumptions, for sufficiently small T, there exist constants C > 0and 0 < A < 1
such that
IV — V¥l oo (pay < CAX, VK >0.
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Convergence rate for policy iteration

Ite 1 Ite 3
Data: us(x, T)
T
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Comparison with direct least-square method

Total time cost Relative reconstruction error
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Main takeaways

» Introduce an interesting inverse problem:

» Inverse mean field game
» Reconstruct environment info from observations of population & strategy

» Efficient method for solving inverse mean field game:

» Reformulate a forward-backward coupled nonlinear PDE-constrained opt
» Only require iterations of linear PDE solves & linear least-square

Current and future plans:
» More complicated setting: non-separable Hamiltonians
» Theoretical study of uniqueness & stability

» Application to real traffic flow models
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