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What are mean field games?

▶ Study non-cooperative games with a large number of rational agents

▶ Characterize Nash equilibrium

▶ Introduced 2006 by Lasry and Lions

▶ Applications to economics, finance, traffic flow, crowd motions, epidemics control

▶ Connection to reinforcement learning

▶ PDEs with a forward-backward structure
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Mean field games — crowd motion model

An agent (car) moves according to SDE:

dXs = −q(Xs , s) ds +
√
2ε dWs

, Xt = x

Each agent is rational: control its velocity by q to minimize cost

u(x , t) :=

inf
q
E
[∫ T

0

(
1

2
|q(Xs , s)|2 + V (Xs) + F (m(Xs , s))

)
ds + ψ(XT )

]

▶ q(x , s) : control process

▶ m(x , s): distribution/density of all agents

▶ 1
2 |q|2: kinetic energy of the agent

▶ V (x): obstacle function

▶ F (m): interaction cost (e.g., F (m) = m2)

▶ ψ(x): terminal cost
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An agent (car) moves according to SDE:

dXs = −q(Xs , s) ds +
√
2ε dWs

, Xt = x

Value function u(x , t): min cost of an agent starting at time t at position x

u(x , t) := inf
q
E
[∫ T

t

(
1

2
|q(Xs , s)|2 + V (Xs) + F (m(Xs , s))

)
ds + ψ(XT )

]

▶ Optimality condition ⇒ u satisfies Hamilton-Jacobi-Bellman (HJB) equation

−∂tu − ε∆u +
1

2
|Du|2 = V (x) + F (m(x , t)), u(x ,T ) = ψ(x)

▶ Optimal control q = Du: optimizer of Hamiltonian H(Du) = sup
q

Du · q − 1
2 |q|2

▶ m evolves according to Fokker-Planck equation: ∂tm − ε∆m − div(mDu) = 0
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Inverse mean field games

▶ Forward model (MFG): V 7−→ (m, u)
−∂tu −∆u + 1

2 |Du|2 = V + F (m) in Td × (0,T )
∂tm −∆m − div(mDu) = 0 in Td × (0,T )
u(x ,T ) = ψ(x), m(x , 0) = m0(x) in Td

▶ Inverse problem:
data (observations of MFG solution) =⇒ reconstruct obstacle fun V (environment info)

u(x , 0) or ut(x ,T ) 7−→ V

▶ Challenges:

▶ MFG: forward-backward coupled nonlinear system ⇒ nontrivial & inefficient to solve
Iterative methods, optimal control, machine learning, reinforcement learning

▶ PDE-constrained optimization ⇒ adjoint equation with same structure
Direct least-square, primal-dual method, bilevel optimization, Gaussian process
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Policy iteration method for MFG

▶ Classical algorithm for optimal control

▶ First introduced to MFG by [Cacace et al. 2021]

▶ A quasi-Newton algorithm for root-finding:
−∂tu −∆u + 1

2 |Du|2 = V + F (m) in Td × (0,T )
∂tm −∆m − div(mDu) = 0 in Td × (0,T )
u(x ,T ) = ψ(x), m(x , 0) = m0(x) in Td

▶ Use policy/control

q = argmax
q

[
q · Du − 1

2
|q|2

]
= Du

▶ Fixed point iteration
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Policy iteration method for MFG

Choose q(0), iterate on k = 0, 1, 2, . . .

1. Solve linear PDE for m(k){
∂tm

(k) − ε∆m(k) − div(m(k)q(k)) = 0 in Td × (0,T )

m(k)(x , 0) = m0(x) in Td

2. Solve linear PDE for u(k){
−∂tu(k) − ε∆u(k) + q(k) · Du(k) = 1

2 |q(k)|2 + V + F (m(k)) in Td × (0,T )

u(k)(x ,T ) = ψ(x) in Td

3. Update policy

q(k+1) = argmax
q

[
q · Du(k) − 1

2
|q|2

]
= Du(k)
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Convergence theorem for policy iteration on inverse MFG

Convergence theorem

Under certain regularity assumptions on initial and final conditions ψ,m0, data h, initial policy
q0 and interaction cost function F , for sufficiently small T > 0, the sequence {V (k)}k≥0

generated by the above policy iteration algorithm satisfies

V (k) → V ∗ uniformly in Td ,

where V ∗ is a solution to the inverse mean field game problem with data h(x) = ut(x ,T ).

Linear convergence

With same assumptions, for sufficiently small T , there exist constants C > 0 and 0 < λ < 1
such that

∥V (k) − V ∗∥L∞(Td ) ≤ Cλk , ∀k ≥ 0.
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Convergence rate for policy iteration
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Comparison with direct least-square method
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Main takeaways

▶ Introduce an interesting inverse problem:

▶ Inverse mean field game
▶ Reconstruct environment info from observations of population & strategy

▶ Efficient method for solving inverse mean field game:

▶ Reformulate a forward-backward coupled nonlinear PDE-constrained opt
▶ Only require iterations of linear PDE solves & linear least-square

Current and future plans:

▶ More complicated setting: non-separable Hamiltonians

▶ Theoretical study of uniqueness & stability

▶ Application to real traffic flow models
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