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What are rare events?

Examples:

▸ Material failure (bridge/tool/plane stress fractures)

▸ Extreme weather (tornadoes, hurricanes, heat waves)

▸ Rogue waves, tsunamis, earthquakes

▸ Financial sector/bank/company collapse

▸ Pandemics
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Why study rare events?

Common to all these:

▸ Rare but high impact

▸ Prob. 10−3 or 10−7: big difference

▸ Long simulation time

▸ Control and mitigation

Ô⇒

We need:

▸ accurate

▸ efficient

probability estimation
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Rare event probability estimation

F ∶ θ ∈ Rn Ð→ R

▸ θ: random parameter with PDF πpr (high-dimensional)

▸ F : parameter-to-event map (involve PDE solves)

Shallow water equations

ht + vx = 0

vt + (v
2

h
+ 1

2
gh2)

x

+ ghBx = 0

h(x,0) = −B0(x), v(x,0) = 0

Target: Probability of wave height ≥ a given threshold z:

P(F (θ) ≥ z)
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Why are rare events difficult to estimate?

pF ∶= P(F (θ) ≥ z)

≈ 1

N

N

∑
i=1

1F(θi), with samples {θi}Ni=1
i.i.d.∼ πpr

▸ Measure of rare event set F ∶= {θ ∶ F (θ) ≥ z}

▸ Standard Monte Carlo methods

Ô⇒ fail when pF ≪ 1

level sets of πpr

F

Main Challenges:

I. Large sample size

II. High-dim random space

III. Expensive eval
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Methods for rare event estimation

πpr

F

πbias

Our contribution:
Adapt LDT to inform IS & improve efficiency

Sampling:

▸ Importance sampling, adaptive
importance sampling, cross-entropy
[Kahn, Marshall, Rubinstein, . . . ]

▸ Sequential sampling, splitting [Au,
Beck, Papaioannou, . . . ]

Asymptotic approximation:

▸ Reliability methods [Breitung,
Hasofer, Lind, . . . ]

▸ Large deviation theory [Grafke,
Vanden-Eijnden, . . . ]
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I. Large deviation theory and optimization

Large deviation theory [Tong, Vanden-Eijnden, Stadler (2021)]

Under regularity assumptions on F and rate function I (depends only on πpr),

pF ≈ C(z) exp(−I(θ⋆)) as z →∞, θ⋆ ∶= argmin
θ∈F

I(θ).

level sets of I

F
(θ) =

z

F
n̂

θ⋆

▸ log(decay rate of pF ) is I(θ⋆)

▸ C(z): sub-exp. prefactor

▸ I(θ): Legendre transform of cumulant
generating fct of θ

I(θ) = sup
η

η⊺θ − logEπpr[exp(η⊺θ)]

▸ I(θ) = 1
2∥θ∥

2 for Gaussian θ ∼ N(0,In)

Challege I completed: Find a good initialization to reduce sample size!
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Under regularity assumptions on F and rate function I (depends only on πpr),

pF ≈ C(z) exp(−I(θ⋆)) as z →∞, θ⋆ ∶= argmin
θ∈F

I(θ).

level sets of πpr

F
(θ) =

z

F
n̂

θ⋆

θ⋆ dominates pF in F

▸ LDT optimizer

▸ Reliability: most probable/design point

▸ Bayesian: MAP point

▸ SDE/SPDE: instanton/saddle point

Challege I completed: Find a good initialization to reduce sample size!
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I. Large deviation theory and optimization

LDT optimization for Gaussian θ ∼ N(0,In)

θ⋆ ∶= argmin
θ∈F

1

2
∥θ∥2, F = {θ ∶ F (θ) ≥ z}

level sets of πpr

F

θ⋆

▸ (PDE-) constrained optimization problem

▸ Solved by adjoint method

▸ Mass concentrate near θ⋆

▸ Good initial biasing density N(θ⋆,In)

▸ Remove exponential term in variance

Challege I completed: Find a good initialization to reduce sample size!
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What is the optimal biasing density?

Importance sampling (IS): sample from a biasing density {θi}Ni=1
i.i.d.∼ πbias

pF ≈
1

N

N

∑
i=1

1F(θi)w(θi) with w(θi) =
πpr(θi)
πbias(θi)

πpr

F

πbias

▸ Optimal biasing density πF

πF(θ) ∶=
1

pF
1F(θ)πpr(θ)

“posterior” if view 1F(θ) as likelihood

▸ pF is unknown (target) Ô⇒ impractical

▸ Approximate πF with Gaussian
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Cross-entropy method

Cross-entropy method (CE):

▸ min Kullback-Leibler divergence between πF and Gaussian πbias(⋅;v)
▸ use evaluations from previous θi ∼ πbias(⋅;v′) (iterative)

Optimal mean µ⋆ and covariance Σ⋆ are high-dimensional:

µ⋆ = ∑
N
i=1 1F(θi)w(θi;v′)θi
∑N

i=1 1F(θi)w(θi;v′)
, Σ⋆ = ∑

N
i=1 1F(θi)w(θi;v′)(θi −µ⋆)(θi −µ⋆)⊺

∑N
i=1 1F(θi)w(θi;v′)

▸ Large sample size required for estimating optimal parameter

▸ Intrinsic low-dim Ô⇒ No need of changes in every direction

Our contributions:

▸ Build a low-dim subspace using local info of θ⋆

▸ Reweigh samples and evaluations to save costs
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II. LDT-informed dimension reduction

Low-dimensional subspace includes

▸ normal direction n̂ = ∇F (θ⋆)/∥∇F (θ⋆)∥

▸ dominating eigvec of Hldt ∶= (In − n̂n̂⊺)∇2F (θ⋆)(In − n̂n̂⊺) (large curvatures)

level sets of πpr

n̂

θ⋆

F

▸ Inspired by asymptotic approx/SORM:

C(z) ≈ [2π∥θ⋆∥2
n

∏
i=1
(1 − λλi (Hldt))]

− 1
2

▸ λ ∶= ∥∇I(θ⋆)∥/∥∇F (θ⋆)∥

▸ λi(⋅): ith eigval

▸ Coincides with local likelihood-informed
subspace from Bayesian inversion

Challenge II completed: Build a low-dim subspace to tackle high dim!

14 / 24



II. LDT-informed dimension reduction

Low-dimensional subspace includes

▸ normal direction n̂ = ∇F (θ⋆)/∥∇F (θ⋆)∥

▸ dominating eigvec of Hldt ∶= (In − n̂n̂⊺)∇2F (θ⋆)(In − n̂n̂⊺) (large curvatures)

level sets of πpr

n̂

θ⋆

F
▸ Randomized SVD or Lanczos

▸ Only need Hessian-applies

▸ Apply CE only in this low-dim subspace

▸ Use πpr in remaining orthogonal space

Challenge II completed: Build a low-dim subspace to tackle high dim!

15 / 24



II. LDT-informed dimension reduction

Low-dimensional subspace includes

▸ normal direction n̂ = ∇F (θ⋆)/∥∇F (θ⋆)∥

▸ dominating eigvec of Hldt ∶= (In − n̂n̂⊺)∇2F (θ⋆)(In − n̂n̂⊺) (large curvatures)

level sets of πpr

n̂

θ⋆

F
▸ Randomized SVD or Lanczos

▸ Only need Hessian-applies

▸ Apply CE only in this low-dim subspace

▸ Use πpr in remaining orthogonal space

Challenge II completed: Build a low-dim subspace to tackle high dim!

15 / 24



III. Multiple importance sampling

MIS: Reweigh all previous samples and evaluations (as from a mixture distribution)

pF ≈
1

JM

J

∑
j=1

M

∑
i=1

1F(θ(j)i )wmis(θ(j)i )

Recompute weights: wmis(θ(j)i ) ∶=
J

∑J
j′=1 1/wj′(θ(j)i )

Challenge III completed: MIS to reuse evaluations and save costs!
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Summary of LDT-based adaptive IS (LAIS)

level sets of πpr

F
(θ)
=
z F

n̂

θ⋆

1. LDT optimization ⇒ θ⋆

2. Build low-dim subspace using local derivatives

3. Adaptive IS: initialization

3.1 Sample from current biasing density

3.2 CE to update µ⋆ and Σ⋆

3.3 Repeat

4. Estimate pF using MIS and all previous eval
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Quadratic map

F (θ) ∶= −5
4
(θ1 − θ2)2 +

1√
n

n

∑
k=1

θk, θ = [θ1, . . . , θn], pF ∶= P(F (θ) ≥ z)

Relative root-mean-square error after 5 iterations, M samples per iteration

10−10 10−5
0.01

0.02

0.03

pF

R
R
M
S
E

n = 2

10−10 10−5
pF

n = 334

10−10 10−5
pF

n = 1000

M = 500 M = 1000

LAIS: insensitive to dimension & target probability pF
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Extreme tsunami estimation

Target: Estimate P(tsunami height ≥ z[m])

Shallow water equations

ht + vx = 0

vt + (v
2

h
+ 1

2
gh2)

x

+ ghBx = 0

h(x,0) = −B0(x), v(x,0) = 0

2011 Tohoku-Oki earthquake and tsunami

0 50 100 150 200 250 300 350

0
−2
−4
−6
−8
−10

Distance to shore [km]

Water

Rock/Sand

Observ. location

Slips θ location

▸ Gaussian slips θ

▸ Bathymetry
B = Oθ +B0

▸ Tsunami F (θ) =
max
[0,T ] ⨏

(h +B0)dx
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Extreme tsunami estimation – Comparison with iCEred1

100 200 300 400 600
0.05

0.1

0.2

0.5

Number of shallow water eq solves

C
V

Relative error

LAIS
iCEred

▸ pF ≈ 10−4

▸ each PDE solve: ≈ 10min

▸ MC (10% error): 106 SWE solves

Number of adjoint (extra) PDE solves:

▸ LAIS: O(1) ≈ 20

▸ iCEred: O(N)

1Uribe, Felipe, Iason Papaioannou, Youssef M. Marzouk, and Daniel Straub, Cross-entropy-based importance
sampling with failure-informed dimension reduction for rare event simulation. JUQ (2021)
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Main takeaways

LAIS: Efficient for rare event probability estimation

▸ insensitive to extremeness and dimensions

▸ works for high-dim random space and expensive evaluations

▸ Connection to reliability methods and Bayesian inverse problems

Extensions:

▸ Infinite dim: SDE/SPDEs [Statistics and Computing (2023)]
MS 223: Friday 5:30-5:55PM, Timo Schorlepp: Scalable Methods for Computing
Sharp Extreme Event Probabilities in Infinite-Dimensional Stochastic Systems

▸ Non-Gaussian: triangular maps/normalizing flows/diffusion models (ongoing)

▸ Risk control: optimization under rare chance constraints [SIOPT (2022)]

▸ Digital twin: MS169: Thursday 5:30-5:55PM, Georg Stadler: Rare Event Estimation
in Complex Physics Models
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