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Recall that our mechanical worm (MW) model used in the simulation portion of our study is constructed from a

chain of spherical beads of radius a. Each bead, indexed by n, is centered at Yn, and has an orientation vector t̂n.

The vector t̂n is also used as the unit tangent to the worm’s centerline. Each bead is also subject to several forces

and torques which sum to zero at each moment in the dynamics,

FC
n + FH

n + FB
n = 0 (1)

τ
E
n + τ

C
n + τ

D
n + τ

H
n = 0. (2)

In this Supplementary Materials, we describe each of the models used to compute each of these forces and torques.

1 Elastic torques: τ
E

We resolve the worm’s passive response to changes in its centerline curvature by treating it as an elastic beam divided

in N − 1 segments of length ∆L. Consider three consecutive beads labelled, n − 1, n and n + 1 with orientation

vectors t̂n−1, t̂n and t̂n+1 respectively. We assume that between beads n − 1 and n, t is given by

t−(l) =
t̂n − t̂n−1

∆L
l + t̂n−1 (3)

and

t+(l) =
t̂n+1 − t̂n

∆L
l + t̂n (4)

between n and n + 1 for l ∈ [0, ∆L].

The bending moment M(l) of an elastic beam is provided by the constitutive relation [1]

M(l) = Kbt×
dt

dl
(5)
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where Kb is the bending modulus. Inserting Eqs. (3) and (4) into Eq. (5), we find that between beads, M is constant

and given by

M− =
Kb

∆L
t̂n−1 × t̂n (6)

between beads n − 1 and n and

M+ =
Kb

∆L
t̂n × t̂n+1 (7)

between n and n+1, respectively. Since the chain is in equilibrium, the resulting torque on bead n due to deflections

of the segments is given by the jump in M. Thus, the bending torques on bead n are given by

τ
E
n = M+ − M− =

Kb

∆L
t̂n × (t̂n+1 + t̂n−1). (8)

1.1 Constraint Forces and Torques: FC and τ
C

Constraint forces and torques on the beads are introduced to enforce the inextensibility of each of the N − 1 links.

When ∆L → 0 and N → ∞, these forces and torque converge to the tension and shear forces experienced by a

continuous beam.

The positions of two neighboring beads are related to the tangent vector by

Yn+1 − Yn =

∫ ∆L

0

t(l)dl. (9)

With the tangent vector between each beads n and n + 1 given by Eq. (4), Eq. (9) becomes

Yn+1 − Yn =
∆L

2
(t̂n+1 + t̂n) (10)

for n = 1, . . . , N − 1. Eq. (10) relates the bead positions with their orientations and serves as the constraint used to

determine the forces and torques on a neighboring pair of beads. Rewriting Eq. (10) as

gn = Yn+1 − Yn − ∆L

2
(t̂n+1 + t̂n) = 0, (11)

the forces and torques on the beads n due to constraints gn and gn+1 are given by (in indicial notation)

FC
n;i = λn−1;j∂gn−1;j/∂Yn;i + λn;j∂gn;j/∂Yn;i (12)

τC
n;i = λn−1;lǫijk t̂n;j∂gn−1;l/∂t̂n;k + λn;lǫijk t̂n;j∂gn;l/∂t̂n;k (13)

where n = 1, . . . , N − 1. λn are the vector Lagrange multipliers and ǫijk is the permutation tensor.
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The values of λn are determined iteratively each time-step. At the beginning of each iteration, the initial values

of λn are either those from the previous iteration, or extrapolated from the values at the three previous time-steps,

λ
init
n = 3λ

i−1
n − 3λ

i−2
n + λ

i−3
n . (14)

With the initial values for the Lagrange multipliers, the constraint forces and torques are computed, as are the

other forces and torques experienced by the beads. The motion of the beads is then determined as are the resulting

positions and orientation vectors. We then check that these new positions and orientations satisfy the constraints

Eq. (11). In the simulations, we set our tolerance levels to keep the deviation in link length below 3.1× 10−4∆L. If

the constraints are satisfied, the values are accepted, and time is advanced. If the constraints are not satisified, we

determine new values for λn from the deviation ǫ in the constraints and the initial values for λn. Given the 2N − 2

linear constraints established by Eq. (11) for planar motion and the linear dependence of the bead motion on the

applied forces and torques, the exact values of λn can be found from

λn = λn −
2N−2
∑

m=1

(∂gm/∂λn)−1ǫm. (15)

Instead, to avoid computing ∂gm/∂λn, we use Broyden’s method [2] and determine the values of λn iteratively.

Broyden’s method is a generalized secant method which updates an approximate Jacobian, Q, as well as λn at each

iteration. Once the suitable values of λn are determined and the constraints are satisfied, the time-step is accepted

and the process is repeated.

2 Driving torques: τ
D

In our simulations, the worm’s active muscular contractions are represented by a propagating wave of torques provided

by a preferred curvature model [3]. In this model, the torques result from a deviation in the centerline curvature

from

κ(s, t) = −κ0(s) sin(ks − 2πft) (16)

with s ∈ [0, L]. To replicate the higher curvature near the head of C. elegans observed during swimming, we take

κ0(s) to be of the form

κ0(s) =
{ K0, s ≤ 0.5L

2K0(L − s)/L, s > 0.5L.
(17)

To obtain the driving torque on bead n, τ
D
n , we assume that the preferred curvature is constant between beads.

The driving torque, therefore, results from jumps in the value at the bead positions multiplied by the worm’s bending
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modulus. Accordingly, τ
D
n is then given by

τ
D
n = Kb(κ(sn, t) − κ(sn+1, t)) (18)

where sn = (n − 0.5)∆L and n = 1, . . . , N − 1.

3 Barrier Force: FB

In addition to the hydrodynamic interactions between the worm in the obstacles, we include in our model a pairwise

repulsion force of the form

FB
nm =

{ −Fref

a+R

(

R2

ref−|Yn−Ym|2

R2

ref
−(a+R)2

)4

(Yn − Ym), |Yn − Ym| ≤ Rref

0, |Yn − Ym| > Rref

(19)

with Rref = 1.1(a + R) and Fref = 114Kb/L2. Not only does this force prevent the beads in the chain from

overlapping the obstacles, but provides the contact force experienced by the worm when it touches the micro-pillars.

4 Hydrodynamic Forces and Torques: FH and τ
H

The force and torque balance for each bead establish a low Reynolds number mobility problem whose solution

provides the velocity, Vn, and angular velocity, Ωn, for each bead. To solve this mobility problem, the force-coupling

method (FCM) [4, 5]. In FCM, each particle n is represented as a finite-force multipole expansion in the Stokes

equations which is truncated after the force dipole term. Specifically, we have

∇p− η∇2u =

N
∑

n=1

Fn
tot∆n(x − Yn) + Gn · ∇Ξn(x − Yn) (20)

∇ · u = 0 (21)

where

∆n(x) = (2πσ2
n,∆)−3/2e−r2/2σ2

n,∆ , (22)

Ξn(x) = (2πσ2
n,Ξ)−3/2e−r2/2σ2

n,Ξ . (23)

The length scales σn,∆ and σn,Ξ are related to the radius of bead n, an, through an =
√

πσn,∆ = (6
√

π)
1/3

σn,Ξ.

In Eq. (20), Fn
tot = FC

n + FB
n is the total external force on bead n and the antisymmetric part of the tensor Gn is
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related to the torque on the bead τ
n
tot = τ

bend
n + τ

C
n + τ

D
n through (Gn

ij − Gn
ji)/2 = 1

2ǫijkτn
tot,k. The symmetric part

of Gn is chosen so that
∫

1

2

(

∇u + (∇u)T
)

Ξn(x − Yn)d3x = 0. (24)

In the simulations, we obtain the flow field u(x) by solving the Stokes equations Eqs. (20) in a triply period domain

of size 3q × 3q × 2.08R using a Fourier spectral method. For each case, the grid spacing is dx = 2σΞ(a)/3 where

σΞ(a) is the envelope size for the dipole Gaussian associated with a bead comprising the worm.

After obtaining the flow field u(x), the velocity and angular velocity of each bead n are determined from

Vn =

∫

u(x)∆n(x − Yn)d3x (25)

Ωn =
1

2

∫

ω(x)Ξn(x − Yn)d3x. (26)

In Eq. (26), ω is the vorticity of the fluid.

With FCM, the resulting flow field for each bead is asymptotic to the Stokeslet, rotlet and stresslet fundamental

solutions and provide the corresponding degenerate multipoles associated with these terms. The volume averaged

integration captures the Faxén corrections for particle motion in a spatially varying flow field.
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