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Summary. Let M and N be Lagrangian submanifolds of a complex symplectic
manifold S. We construct a Gerstenhaber algebra structure on TorOS

∗ (OM ,ON )
and a compatible Batalin-Vilkovisky module structure on Ext∗OS

(OM ,ON ). This
gives rise to a de Rham type cohomology theory for Lagrangian intersections.

Introduction

We are interested in intersections of Lagrangian submanifolds of holomorphic
symplectic manifolds. Thus we work over the complex numbers in the analytic
category.

There are two main aspects of this paper we would like to explain in the
introduction: categorification of intersection numbers, and Gerstenhaber and
Batalin-Vilkovisky structures on Lagrangian intersections.

Categorification of Lagrangian intersection numbers

This paper grew out of an attempt to categorify Lagrangian intersection num-
bers. We will explain what we mean by this, and how we propose a solution to
the problem. Our construction looks very promising, but is still conjectural.

Lagrangian intersection numbers: smooth case

Let S be a (complex) symplectic manifold and L,M Lagrangian submanifolds.
Since L and M are half-dimensional, the expected dimension of their inter-
section is zero. Intersection theory therefore gives us the intersection number

#(L ∩M) ,

if the intersection is compact. In the general case, we get a class

[L ∩M ]vir ∈ A0(L ∩M)
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in degree zero Borel-Moore homology, such that in the compact case

#(L ∩M) = deg[L ∩M ]vir .

If the intersection X = L ∩M is smooth,

[X]vir = c>(E) ∩ [X] ,

where E is the excess bundle of the intersection, which fits into the exact
sequence

0 //TX
//TL|X ⊕ TM |X //TS |X //E //0

of vector bundles on X. The symplectic form σ defines an isomorphism
TS |X = ΩS |X . Under this isomorphism, the subbundle TL|X corresponds to
the conormal bundle N∨

L/S . Thus we can rewrite our exact sequence as

0 //E∨ //N∨
L/S ⊕N∨

M/S
//ΩS |X //ΩX

//0 ,

which shows that the excess bundle E is equal to the cotangent bundle ΩX .
Thus, in the smooth case,

[X]vir = c>(E) ∩ [X] = c>(ΩX) ∩ [X] = (−1)nc>(TX) ∩ [X] ,

and in the smooth and compact case,

#(L ∩M) = deg[X]vir = (−1)n

∫
X

c>(TX) = (−1)nχ(X) ,

where 2n is the dimension of S and χ(X) is the topological Euler characteristic
ofX. This shows that we can make sense of the intersection number even if the
intersection is not compact: define the intersection number to be the signed
Euler characteristic.

Intersection numbers: singular case

In [1], it was shown how to make sense of the statement that Lagrangian
intersection numbers are signed Euler characteristics in the case that the in-
tersection X is singular. An integer invariant νX(P ) ∈ Z of the singularity of
the analytic space X at the point P ∈ X was introduced.

In the case of a Lagrangian intersection X = L ∩M , the number νX(P )
can be described as follows. Locally around P , we can assume that S is equal
to the cotangent bundle of M and M ⊂ S is the zero section. Moreover, we
can assume that L is the graph of a closed, even exact, 1-form ω on M . If
ω = df , for a holomorphic function f : M → C, defined near P , then

νX(P ) = (−1)n
(
1− χ(FP )

)
, (1)
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where n = dimM and FP is the Milnor fibre of f at P .
The main theorem of [1] implies that if L and M are Lagrangian subman-

ifolds of the symplectic manifold S, with compact intersection X, then

#X = deg[X]vir = χ(X, νX) ,

the weighted Euler characteristic of X with respect to the constructible func-
tion νX , which is defined as

χ(X, νX) =
∑
i∈Z

i · χ({νX = i}) .

In particular, arbitrary Lagrangian intersection numbers are always well-
defined: the intersection need not be smooth or compact. The integer νX(P )
may be considered as the contribution of the point P to the intersection
X = L ∩M .

Categorifying intersection numbers: smooth case

To categorify the intersection number means to construct a cohomology theory
such that the intersection number is equal to the alternating sum of Betti
numbers. If X is smooth (not necessarily compact) a natural candidate is
(shifted) holomorphic de Rham cohomology

#X = (−1)nχ(X) =
∑

(−1)i−n dimC Hi
(
X, (Ω•

X , d)
)
.

Here (Ω•
X , d) is the holomorphic de Rham complex of X and Hi its hyperco-

homology. Of course, by the holomorphic Poincaré lemma, hypercohomology
reduces to cohomology.

Categorification: compact case

If the intersection X = L ∩M is compact, but not necessarily smooth, we
have

#X =
∑

i

(−1)i−n dimC Exti
OS

(OL,OM )

=
∑
i,j

(−1)i(−1)j−n dimC H
i
(
X, ExtjOS

(OL,OM )
)
.

If X is smooth, ExtjOS
(OL,OM ) = Ωj

X , so this reduces to Hodge cohomology

#X =
∑
i,j

(−1)i(−1)j−n dimC H
i(X,Ωj

X) .
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This justifies using the sheaves ExtjOS
(OL,OM ) as replacements for the sheaves

Ωj
X if X is not smooth any longer. To get finite-dimensional cohomology

groups, we will construct de Rham type differentials

d : ExtjOS
(OL,OM ) −→ Extj+1

OS
(OL,OM ) ,

so that the hypercohomology groups

Hi
(
X, (Ext•OS

(OL,OM ), d)
)

are finite dimensional, even if X is not compact. Returning to the compact
case, for any such d, we necessarily have

#X =
∑

i

(−1)i−n dimC Hi
(
X, (Ext•OS

(OL,OM ), d)
)
.

Categorification: local case

Every symplectic manifold S is locally isomorphic to the cotangent bundle
ΩN of a manifold N . The fibres of the induced vector bundle structure on
S are Lagrangian submanifolds, and thus we have defined (locally on S) a
foliation by Lagrangian submanifolds, i.e., a Lagrangian foliation. (Lagrangian
foliations are also called polarizations.) We may assume that the leaves or our
Lagrangian foliation of S are transverse to the two Lagrangians L and M
whose intersection we wish to study. Then L and M turn into the graphs of
1-forms on N . The Lagrangian condition implies that these 1-forms on N are
closed. Without loss of generality, we may assume that one of these 1-forms
is the zero section of ΩN and hence identify M with N . By making M = N
smaller if necessary, we may assume that the closed 1-form defined by L is
exact. Then L is the graph of the 1-form df , for a holomorphic function f on
M . Thus the intersection L ∩M is now the zero locus of the 1-form df :

X = Z(df) .

This is the local case.
Multiplying by df defines a differential

s : Ωj
M −→ Ωj+1

M

ω 7−→ df ∧ ω .

Because df is closed, the differential s commutes with the de Rham differential
d : Ωj

M → Ωj+1
M . Thus the de Rham differential passes to cohomology with

respect to s:
d : hj(Ω•

M , s) −→ hj+1(Ω•
M , s) ,

where hj denotes the cohomology sheaves, which are coherent sheaves of OX -
modules. Let us denote these cohomology sheaves by
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Ej = hj(Ω•
M , s) .

We have thus defined a complex of sheaves on X

(E•, d) , (2)

where the E i are coherent sheaves of OX -modules, and the differential d is C-
linear. It is a theorem of Kapranov [2], that the cohomology sheaves hi(E•, d)
are constructible sheaves on X and thus have finite dimensional cohomology
groups. It follows that the hypercohomology groups

Hi
(
X, (E•, d)

)
are finite-dimensional as well.

We conjecture that the constructible function

P 7→
∑

i

(−1)i−n dimC Hi
{P}

(
X, (E , d)

)
,

of fiberwise Euler characteristic of (E , d) is equal to the function νX , from
above (1). This would achieve the categorification in the local case. In partic-
ular, for the non-compact intersection numbers we would have

χ(X, νX) =
∑

i

(−1)i−n dimC Hi
(
X, (E , d)

)
.

We remark that if f is a homogeneous polynomial (in a suitable set of coor-
dinates), then this conjecture is true.

To make the connection with the compact case (and because this construc-
tion is of central importance to the paper), let us explain why

E i = ExtiOS
(OL,OM ) .

Denote the projection S = ΩM → M by π. The 1-form on ΩM which corre-
sponds to the vector field generating the natural C∗-action on the fibres we
shall call α. Then dα = σ is the symplectic form on S. We consider the 1-form
s = α − π∗df on S. Its zero locus in S is equal to the graph of df . Let us
denote the subbundle of ΩS annihilating vector fields tangent to the fibres
of π by E. Then s ∈ ΩS is a section of E and we obtain a resolution of the
structure sheaf of OL over OS :

. . . // Λ2E∨ es // E∨ es // OS ,

where s̃ denotes the derivation of the differential graded OS-algebra Λ•E∨

given by contraction with s. Taking duals and tensoring with OM , we obtain
a complex of vector bundles (ΛE|M , s|M ) which computes ExtiOS

(OL,OM ).
One checks that (ΛE|M , s|M ) = (ΩM , s).



6 Behrend and Fantechi

Categorification: global case

We now come to the contents of this paper. let S be a symplectic manifold
and L, M Lagrangian submanifolds with intersection X. Let us use the ab-
breviation E i = ExtiOS

(OL,OM ). The E i are coherent sheaves of OX -modules.
The main theorem of this paper is that the locally defined de Rham differen-
tials (2) do not depend on the way we write S as a cotangent bundle, or, in
other words, that d is independent of the chosen polarization of S. Thus, the
locally defined d glue, and we obtain a globally defined canonical de Rham
type differential

d : E i → E i+1 .

In the case that X is smooth, E i = Ωi
X , and d is the usual de Rham dif-

ferential. We may call (E•, d) the virtual de Rham complex of the Lagrangian
intersection X. Conjecturally, (E , d) categorifies Lagrangian intersection num-
bers in the sense that for the local contribution of the point P ∈ X to the
Lagrangian intersection we have

νX(P ) =
∑

i

(−1)i−n dimC Hi
{P}

(
X, (E , d)

)
.

Hence, for the non-compact intersection numbers we should have

χ(X, νX) =
∑

i

(−1)i−n dimC Hi
(
X, (E , d)

)
.

In particular, if the intersection is compact, #X = χ(X, νX) should be the
alternating sum of the Betti numbers of the hypercohomology groups of the
virtual de Rham complex.

Donaldson-Thomas invariants

Our original motivation for this research was a better understanding of
Donaldson-Thomas invariants. It is to be hoped that the moduli spaces giv-
ing rise to Donaldson-Thomas invariants (spaces of stable sheaves of fixed
determinant on Calabi-Yau threefolds) are Lagrangian intersections, at least
locally. We have two reasons for believing this: first of all, the obstruction
theory giving rise to the virtual fundamental class is symmetric, a property
shared by the obstruction theories of Lagrangian intersections. Secondly, at
least heuristically, these moduli spaces are equal to the critical set of the
holomorphic Chern-Simons functional.

Our ‘exchange property’ should be useful for gluing virtual de Rham com-
plexes if the moduli spaces are only local Lagrangian intersections.

In this way we hope to construct a virtual de Rham complex on the
Donaldson-Thomas moduli spaces and thus categorify Donaldson-Thomas in-
variants.
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Gerstenhaber and Batalin-Vilkovisky structures on Lagrangian
intersections

The virtual de Rham complex (E•, d) is just one half of the story. There is
also the graded sheaf of OX -algebras A• given by

Ai = TorOS
−i (OL,OM ) ,

Locally, A• is given as the cohomology of (ΛTM , s̃), in the above notation.
The Lie-Schouten-Nijenhuis bracket induces a C-linear bracket operation

[ , ] : A • ⊗CA• −→ A•

of degree +1. We show that these locally defined brackets glue to give a
globally defined bracket making (A•,∧, [ ]) a sheaf of Gerstenhaber algebras.

Then E• is a sheaf of modules over A•. (The module structure is induced
by contraction.) The bracket on A• and the differential on E• satisfy a com-
patibility condition, see (5). We say that (E , d) is a Batalin-Vilkovisky module
over the Gerstenhaber algebra (A,∧, [ ]). (This structure has been called a
calculus by Tamarkin and Tsygan in [4].)

In the case that L and M are oriented submanifolds, i.e., the highest
exterior powers of the normal bundles have been trivialized, we have an iden-
tification

Ai = En+i .

Transporting the differential from E• to A• via this identification turns
(A,∧, [ ], d) into a Batalin-Vilkovisky algebra.

To prove these facts we have to study differential Gerstenhaber algebras
and differential Batalin-Vilkovisky modules over them. We will prove that lo-
cally defined differential Gerstenhaber algebras and their differential Batalin-
Vilkovisky modules are quasi-isomorphic, making their cohomologies isomor-
phic and hence yielding the well-definedness of the bracket and the differential.

First order truncation

In this paper we are only interested in the Gerstenhaber and Batalin-
Vilkovisky structures on A and E . In other words, we only deal with the
structures induced on cohomology. This amounts to a truncation of the full
derived Lagrangian intersection. Because of our modest goal, we only need to
study differential Gerstenhaber and Batalin-Vilkovisky structures up to first
order. In future research, we hope to address the complete derived structure
on Lagrangian intersections.

This would certainly involve studying the Witten deformation of the de
Rham complex in more detail. Related work along these lines has been done
by Kashiwara and Schapira [3].
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Overview

1. Algebra

In this introductory section, we discuss algebraic preliminaries. We review
the definitions of differential Gerstenhaber algebra, and differential Batalin-
Vilkovisky module. This is mainly to fix our notation. There are quite a few
definitions to keep track of; we apologize for the lengthiness of this section.

2. Symplectic geometry

Here we review a few basic facts about complex symplectic manifolds. In
particular, the notions of Lagrangian foliation, polarization, and the canonical
partial connection are introduced.

3. Derived Lagrangian intersections on polarized symplectic manifolds

On a polarized symplectic manifold, we define derived intersections of La-
grangian submanifolds. These are (sheaves of) Gerstenhaber algebras on the
scheme theoretic intersection of two Lagrangian submanifolds. The main theo-
rem we prove about these derived intersections is a certain invariance property
with respect to symplectic correspondences. We call it the exchange property.

We repeat this program for derived homs, (the Batalin-Vilkovisky case),
and oriented derived intersections (the oriented Batalin-Vilkovisky case).

4. The Gerstenhaber structure on Tor and the Batalin-Vilkovisky structure
on Ext

In this section we use the exchange property to prove that, after passing to
cohomology, we do not notice the polarization any more. The Gerstenhaber
and Batalin-Vilkovisky structures are independent of the polarization chosen
to define them.

This section closes with an example of a symplectic correspondence and
the corresponding exchange property.

5. Further remarks

In this final section we define virtual de Rham cohomology of Lagrangian in-
tersections. We speculate on what virtual Hodge theory might look like. We
introduce a natural differential graded category associated to a complex sym-
plectic manifold. (It looks like a kind of holomorphic, de Rham type analogue
of the Fukaya category.) Finally, we mention the conjectures connecting the
virtual de Rham complex to the perverse sheaf of vanishing cycles.
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1 Algebra

Let M be a manifold. Regular functions, elements of OM , have degree 0.
By ΛTM we mean the graded sheaf of polyvector fields on M . We think of
it as a sheaf of graded OM -algebras (the product being ∧), concentrated in
non-positive degrees, the vector fields having degree −1. By Ω•

M we denote
the graded sheaf of differential forms on M . This we think of as a sheaf
of graded OM -modules, concentrated in non-negative degrees, with 1-forms
having degree +1. We will denote the natural pairing of TM with ΩM by
X y ω ∈ OS , for X ∈ TM and ω ∈ ΩM . The following is, of course, well
known:

Lemma 1.1. There exists a unique extension of y to an action of the sheaf
of graded OM -algebras ΛTM on the sheaf of graded OS-modules Ω•

M , which
satisfies
(i) f yω = fω, for f ∈ OS and ω ∈ Ω•

M (linearity over OM ),
(ii) X y (ω1 ∧ ω2) = (X yω1) ∧ ω2 + (−1)ω1ω1 ∧ (X yω2), for X ∈ TM and

ω1, ω2 ∈ Ω•
M , (the degree −1 part acts by derivations),

(iii) (X ∧ Y ) yω = X y (Y yω), for X,Y ∈ ΛTM , ω ∈ Ω•
M (action property).

Now turn things around and note that any section s ∈ ΩM defines a
derivation of degree +1 on ΛTM , which we shall denote by s̃. It is the unique
derivation which extends the map TM → OM given by s̃(X) = X y s, for all
X ∈ TM . (Note that this is not a violation of the universal sign convention,
see Remark 1.3.)

Lemma 1.2. The pair (ΛTM , s̃) is a sheaf of differential graded OM -algebras.
Left multiplication by s defines a differential on Ω•

M and the pair (Ω•
M , s) is

a sheaf of differential graded modules over (ΛTM , s̃).

Proof. This amounts to the formula

s ∧ (X yω) = s̃(X) yω + (−1)XX y (s ∧ ω) (3)

for all ω ∈ Ω•
M and X ∈ ΛTM . ut

Remark 1.3. Set 〈X,ω〉 equal to the degree zero part of X yω. This is a
perfect pairing ΛTM ⊗OM

Ω•
M → OM , expressing the fact that Ω•

M is the OM -
dual of ΛTM . According to Formula (3), we have, if degX + degω + 1 = 0,

〈s̃(X), ω〉+ (−1)X〈X, s ∧ ω〉 = 0 .

This means that the derivation s̃ and left multiplication by s are OS-duals of
one another. To explain the signs, note that we think of s̃ and s as differentials
on the graded sheaves ΛTM and Ω•

M , and for differentials of degree +1 the
sign convention is

0 = D〈X,ω〉 = 〈DX,ω〉+ (−1)X〈X,Dω〉 .

In particular, for degX = 1 and ω = 1 we get s̃(X) = 〈X, s〉 = X y s.
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Remark 1.4. We can summarize Formula (3) more succinctly as

[s, iX ] = ies(X) ,

where iX : Ω•
M → Ω•

M denotes the endomorphism ω 7→ X yω.

1.1 Differential Gerstenhaber algebras

Let S be a manifold and A a graded sheaf of OS-modules.

Definition 1.5. A bracket on A of degree +1 is a homomorphism

[ ] : A⊗C A −→ A

of degree +1 satisfying:
(i) [ ] is a graded C-linear derivation in each of its two arguments,
(ii) [ ] is graded commutative (not anti-commutative).
If [ ] satisfies, in addition, the Jacobi identity, we shall call [ ] a Lie bracket.

The sign convention for brackets of degree +1 is that the comma is treated
as carrying the degree +1, the opening and closing bracket as having degree
0. Thus, when passing an odd element past the comma, the sign changes. For
example, the graded commutativity reads:

[Y,X] = (−1)XY +X+Y [X,Y ] .

Definition 1.6. A Gerstenhaber algebra over OS is a sheaf of graded OS-
modules A, concentrated in non-positive degrees, endowed with
(i) a commutative (associative, of course) product ∧ of degree 0 with unit,

making A a sheaf of graded OS-algebras,
(ii) a Lie bracket [ ] of degree +1 (see Definition 1.5).

In our cases, the underlying OS-module of A will always be coherent and
OS → A0 will be a surjection of coherent OS-algebras. The main example is
the following:

Example 1.7. Let M ⊂ S be a submanifold and A = ΛOM
TM the polyvector

fields on M . The bracket is the Schouten-Nijenhuis bracket.

Definition 1.8. A differential Gerstenhaber algebra is a Gerstenhaber
algebra A over OS endowed with an additional C-linear map s̃ : A → A of
degree +1 which satisfies
(i) [s̃, s̃] = s̃2 = 0,
(ii) s̃ is a derivation with respect to ∧, in particular it is OS-linear,
(iii) s̃ is a derivation with respect to [ ].
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Thus, neglecting the bracket, a differential Gerstenhaber algebra is a sheaf
of differential graded algebras over OS .

Lemma 1.9. Let (A, s̃) be a differential Gerstenhaber algebra. Let I ⊂ A0

be the image of s̃ : A−1 → A0. This is a sheaf of ideals in A0. Then the
cohomology h∗(A, s̃) is a Gerstenhaber algebra with h0(A, s̃) = A0/I.

Proof. This is clear: the fact that s̃ is a derivation with respect to both prod-
ucts on A implies that the two products pass to h∗(A, s̃). Then all the prop-
erties of the products pass to cohomology. ut

Example 1.10. Let M ⊂ S and A = ΛTM be as in Example 1.7. In addition,
let s ∈ ΩM be a closed 1-form. Then (ΛTM , s̃) with ∧ and Schouten-Nijenhuis
bracket [ ] is a differential Gerstenhaber -algebra. The closedness of s makes
s̃ a derivation with respect to [ ].

1.2 Morphisms of differential Gerstenhaber algebras

Definition 1.11. Let A and B be Gerstenhaber algebras over OS . A mor-
phism of Gerstenhaber algebras is a homomorphism φ : A → B of graded
OS-modules (of degree zero) which is compatible with both ∧ and [ ]:
(i) φ(X ∧ Y ) = φ(X) ∧ φ(Y ),
(ii) φ([X,Y ]) = [φ(X), φ(Y )].

Definition 1.12. Let (A, s̃) and (B, t̃) be differential Gerstenhaber algebras
over OS . A (first order) morphism of differential Gerstenhaber algebras is
a pair (φ, { }), where φ : A → B is a degree zero homomorphism of graded
OS-modules, and { } : A ⊗C A → B is a degree zero C-bilinear map , such
that
(i) φ(X ∧ Y ) = φ(X) ∧ φ(Y ) and φ(s̃X) = t̃φ(X), so that φ : A → B is a

morphisms of differential graded OS-algebras,

(ii) { } is symmetric, i.e., {Y,X} = (−1)XY {X,Y },
(iii) { } is a C-linear derivation with respect to ∧ in each of its arguments,

where the A-module structure on B is given by φ, in other words,

{X ∧ Y, Z} = φ(X) ∧ {Y, Z}+ (−1)XY φ(Y ) ∧ {X,Z} ,

and
{X,Y ∧ Z} = {X,Y } ∧ φ(Z) + (−1)Y Z{X,Z} ∧ φ(Y ) ,

(iv) the default of φ to commute with [ ] is equal to the default of the OS-linear
differentials to behave as derivations with respect to { },

φ[X,Y ]− [φ(X), φ(Y )] = (−1)X t̃{X,Y }−(−1)X{s̃X, Y }−{X, s̃Y } . (4)
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Remark 1.13. We will always omit the qualifier ‘first order’, as we will not
consider any ‘higher order’ morphisms in this paper. This is because, in the
end, we are only interested in the cohomology of our differential Gerstenhaber
algebras. To keep track of the induced structure on cohomology, first order
morphisms suffice. We hope to return to ‘higher order’ questions in future
research.

Remark 1.14. Suppose all conditions in Definition 1.12 except the last are
satisfied. Then both sides of the equation in Condition (iv) are symmetric
of degree one and C-linear derivations with respect to ∧ in each of the two
arguments. Thus, to check Condition (iv), it suffices to check on C-algebra
generators for A.

Lemma 1.15. A morphism of differential Gerstenhaber algebras

(φ, { }) : (A, s̃) −→ (B, t̃)

induces a morphism of Gerstenhaber algebras on cohomology. In other words,

h∗(φ) : h∗(A, s̃) −→ h∗(B, t̃)

respects both ∧ and [ ].

Proof. Any morphism of differential graded OS-algebras induces a morphism
of graded algebras when passing to cohomology. Thus h∗(φ) respects ∧. The
fact that h∗(φ) respects the Lie brackets, follows form Property (iv) of Defi-
nition 1.12. All three terms on the right hand side of said equation vanish in
cohomology. ut

Definition 1.16. A quasi-isomorphism of differential Gerstenhaber alge-
bras is a morphism of differential Gerstenhaber algebras which induces an
isomorphism of Gerstenhaber algebras on cohomology.

1.3 Differential Batalin-Vilkovisky modules

Definition 1.17. Let A be a Gerstenhaber algebra. A sheaf of graded OS-
modules L, with an action y of A, making L a graded A-module, is called a
Batalin-Vilkovisky module over A, if it is endowed with a C-linear map
d : L→ L of degree +1 satisfying
(i) [d, d] = d2 = 0,
(ii) For all X,Y ∈ A and every ω ∈ L we have

d(X ∧ Y yω) + (−1)X+Y X ∧ Y y dω + (−1)X [X,Y ] yω =

(−1)XX y d(Y yω) + (−1)XY +Y Y y d(X yω) . (5)
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Remark 1.18. Write iX for the endomorphism ω 7→ X yω of L. Then For-
mula (5) can be rewritten as

[X,Y ] yω =
[
[iX , d], iY

]
(ω)

or simply
i[X,Y ] =

[
[iX , d], iY

]
. (6)

Note also that
[
[iX , d], iY

]
=

[
iX , [d, iY ]

]
.

The action property (X ∧ Y ) yω = X y (Y yω) translates into iX∧Y =
iX ◦ iY .

In our applications, Batalin-Vilkovisky modules will always be coherent
over OS . Note that there is no multiplicative structure on L, so there is no
requirement for the differential d to be a derivation.

Example 1.19. Let M ⊂ S and A = ΛTM be the Gerstenhaber algebra of
polyvector fields on M , as in Example 1.7. Then Ω•

M with exterior differenti-
ation d is a Batalin-Vilkovisky module over ΛTM .

Definition 1.20. A differential Batalin-Vilkovisky module over the dif-
ferential Gerstenhaber algebra (A, s̃) is a Batalin-Vilkovisky module L for the
underlying Gerstenhaber algebra A, endowed with an additional C-linear map
s : L→ L of degree +1 satisfying:
(i) [s, s] = s2 = 0,
(ii) (M, s) is a differential graded module over the differential graded algebra

(A, s̃), i.e., we have

s(X yω) = s̃(X) yω + (−1)XX y s(ω) ,

for all X ∈ A, ω ∈ L. More succinctly: [s, iX ] = ies(X).
(iii) [d, s] = 0.

Note that the differential s is necessarily OS-linear. This distinguishes it
from d.

Lemma 1.21. Let (L, s) be a differential Batalin-Vilkovisky module over the
differential Gerstenhaber algebra (A, s̃). Then h∗(L, s) is a Batalin-Vilkovisky
module for the Gerstenhaber algebra h∗(A, s̃).

Proof. First, h∗(M, s) is a graded h∗(A, s̃)-module. The condition [d, s] = 0
implies that d passes to cohomology. Then the properties of d pass to coho-
mology as well. ut

Example 1.22. Let M ⊂ S be a submanifold and s ∈ ΩM a closed 1-form.
Then (Ω•

M , s) (see Lemma 1.2) is a differential Batalin-Vilkovisky module over
the differential Gerstenhaber algebra (ΛTM , s̃) of Example 1.10.
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1.4 Homomorphisms of differential Batalin-Vilkovisky modules

Definition 1.23. Let A and B be Gerstenhaber algebras and φ : A → B a
morphism of Gerstenhaber algebras. Let L be a Batalin-Vilkovisky module
over A and M a Batalin-Vilkovisky module over B. A homomorphism of
Batalin-Vilkovisky modules of degree n (covering φ) is a degree n homomor-
phism of graded A-modules ψ : L→M (where the A-module structure on M
is defined via φ), which commutes with d:

(i) ψ(X yω) = (−1)nXφ(X) yψ(ω),
(ii) ψdL(ω) = (−1)ndMψ(ω).
We write the latter condition as [ψ, d] = 0.

Definition 1.24. Let (A, s̃) and (B, t̃) be differential Gerstenhaber algebras
and (φ, { }) : (A, s̃) → (B, t̃) a morphism of differential Gerstenhaber algebras.
Let (L, s) be a differential Batalin-Vilkovisky module over (A, s̃) and (M, t)
a differential Batalin-Vilkovisky module over (B, t̃). A (first order) homo-
morphism of differential Batalin-Vilkovisky modules of degree n covering
(φ, { }) is a pair (ψ, δ), where ψ : (L, s) → (M, t) is a degree n homomorphism
of differential graded (A, s̃)-modules, where the (A, s̃)-module structure on
(M, t) is through φ. Moreover, δ : L→M is a C-linear map, also of degree n,
satisfying
(i) the commutator property

ψ ◦ d− (−1)nd ◦ ψ = −2(−1)nt ◦ δ + 2δ ◦ s , (7)

(ii) compatibility with the bracket { } property

δ(X∧Y yω)+(−1)n(X+Y )φ(X)∧φ(Y ) y δω+(−1)n(X+Y ){X,Y } yψ(ω)

= (−1)nXφ(X) y δ(Y yω) + (−1)XY +nY φ(Y ) y δ(X yω) . (8)

Remark 1.25. The same comments as those in Remark 1.13 apply.

Remark 1.26. If we use the same letter s to denote theOS-linear differentials
on L andM , we can rewrite the commutator conditions of Definition 1.24 more
succinctly as

[ψ, s] = 0 [ψ, d]− 2[δ, s] = 0 .

The compatibility with bracket property can be rewritten as[
ιX , [ιY , δ]

]
= ι{X,Y } ◦ ψ . (9)

Note the absence of a condition on the commutator [δ, d]. This would be a
‘higher order’ condition.
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Remark 1.27. It is a formal consequence of properties of the commutator
bracket that the left hand side of (9) is a C-linear derivation in each of its
two arguments X,Y . The same is true of the right hand side by assumption.
Thus we have: if all properties of Definition 1.24, except for (i) and (ii) are
satisfied, then to check that (ii) is satisfied, it suffices to do this for all X and
Y belonging to a set of C-algebra generators for A.

Remark 1.28. Suppose all properties of Definition 1.24 except for (i) are
satisfied. Suppose also that L is free of rank one as an A-module on the basis
ω◦ ∈ L. Then it suffices to prove Equation (7) applied to elements of the form
X yω0, where X runs over a set of generators of A as an A0-module.

Lemma 1.29. Let (ψ, δ) : (L, s) → (M, t) be a homomorphism of differen-
tial Batalin-Vilkovisky modules over the morphism (φ, { }) : (A, s̃) → (B, t̃)
of differential Gerstenhaber algebras. Then h∗(ψ) : h∗(L, s) → h∗(M, t) is a
homomorphism of Batalin-Vilkovisky modules over the morphism of Gersten-
haber algebras h∗(φ) : h∗(A, s̃) → h∗(B, t̃).

Proof. Evaluating the right hand side of Equation 7 on s-cocycles in L, yields
t-boundaries in M . ut

1.5 Invertible differential Batalin-Vilkovisky modules

Definition 1.30. We call the Batalin-Vilkovisky module L over the Gersten-
haber algebra A invertible, if, locally in S, there exists a section ω◦ of L
such that the evaluation homomorphism

Ψ◦ : A −→ L

X 7−→ (−1)Xω◦X yω◦

is an isomorphism of sheaves of OS-modules. Any such ω◦ will be called a
(local) orientation for L over A.

Note that if the degree of an orientation ω◦ is n, then Lk = 0, for all k > n,
by our assumption on A. Thus orientations always live in the top degree of
L. Moreover, if orientations exist everywhere locally, Ln is an invertible sheaf
over A0.

Lemma 1.31. Let L be an invertible Batalin-Vilkovisky module over the Ger-
stenhaber algebra A and assume that ω◦ is a (global) orientation for L over
A. Then, transporting the differential d via Ψ◦ to A yields a C-linear map of
degree +1 which we will call d◦ : A→ A. It is characterized by the formula

d◦(X) yω◦ = d(X yω◦) .

It squares to 0 and it satisfies:
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(−1)X [X,Y ] = d◦(X) ∧ Y + (−1)XX ∧ d◦(Y )− d◦(X ∧ Y ) , (10)

for all X,Y ∈ A. In other words, d◦ is a generator for the bracket [ ], making
A a Batalin-Vilkovisky algebra.

Proof. Follows directly from Formula (5) upon noticing that because ω◦ is
top-dimensional, it is automatically d-closed: dω◦ = 0. ut

Corollary 1.32. If the Gerstenhaber algebra admits an invertible Batalin-
Vilkovisky module it is locally a Batalin-Vilkovisky algebra.

Example 1.33. The Batalin-Vilkovisky module Ω•
M over the Gerstenhaber

algebra ΛTM of Example1.10 is invertible. Any non-vanishing top-degree form
ω◦ ∈ Ωn

M is an orientation for Ω•
M , where n = dimM . Thus, the Schouten-

Nijenhuis algebra ΛTM is a Batalin-Vilkovisky algebra. For Calabi-Yau man-
ifolds, i.e., Ωn

M = OS , a generator for the Batalin-Vilkovisky algebra is given.

Definition 1.34. Let (L, s) be a differential Batalin-Vilkovisky module over
the differential Gerstenhaber algebra (A, s̃). Then (L, s) is called invertible,
if the underlying Batalin-Vilkovisky module L is invertible over the underlying
Gerstenhaber algebra A. An orientation for (A, s̃) is an orientation of the
underlying L.

Proposition 1.35. Let (L, s) be an invertible differential Batalin-Vilkovisky
module over the differential Gerstenhaber algebra (A, s̃). Then under the iso-
morphism Ψ◦ defined by an orientation ω◦ of L over A, the differential s̃
corresponds to the differential s. In particular, the induced differential d◦ on
A has the property

[d◦, s̃] = 0 ,

besides satisfying (10). Hence (A, d◦, s̃) is a differential Batalin-Vilkovisky
algebra.

Moreover, the cohomology h∗(L, s) is an invertible Batalin-Vilkovisky mod-
ule over the Gerstenhaber algebra h∗(A, s̃). We have hn(L, s) = Ln/I and the
image of any orientation of L over A under the quotient map Ln → Ln/I
gives an orientation for h∗(L, s) over h∗(A, s̃).

Proof. The equation s◦Ψ◦ = (−1)ω◦Ψ◦ ◦ s̃ follows immediately from [s, iX ] =
ies(X) upon noticing that s(ω) = 0. As Ψ◦ is therefore an isomorphism of
differential graded OS-modules, the cohomology is isomorphic: h∗(A, s̃) ∼−→
h∗(L, s). The rest follows from this. ut

Example 1.36. For a closed 1-form s onM , the differential Batalin-Vilkovisky
module (Ω•

M , s) over the differential Gerstenhaber algebra (ΛTM , s̃) of Exam-
ple 1.22 is invertible. Any trivialization of Ωn

M defines an orientation.
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1.6 Oriented homomorphisms of invertible Batalin-Vilkovisky
modules

Definition 1.37. Let φ : A → B be a morphism of Gerstenhaber algebras
and ψ : L → M a homomorphism of invertible Batalin-Vilkovisky modules
covering φ. Let ω◦L and ω◦M be orientations for L and M , respectively. The
homomorphism ψ : L → M is said to preserve the orientations (or be
oriented) if ψ(ω◦L) = ω◦M .

Lemma 1.38. Suppose given oriented invertible Batalin-Vilkovisky modules L
and M over the Gerstenhaber algebras A and B, making A and B into Batalin-
Vilkovisky algebras. Suppose ψ : L → M is an oriented homomorphism of
Batalin-Vilkovisky modules. Then under the identifications of L and M with
A and B given by ω◦L and ω◦M , the map ψ : L→M corresponds to φ : A→ B.
Hence φ : A → B commutes with d◦. Thus φ is a morphism of Batalin-
Vilkovisky algebras: it respects ∧, [ ] and d◦.

Definition 1.39. Let (ψ, δ) : (L, s) → (M, t) be a homomorphism of invert-
ible differentiable Batalin-Vilkovisky modules over (φ, { }) : (A, s̃) → (B, t̃).
Let ω◦L and ω◦M be orientations for L and M , respectively. We call (ψ, δ)
oriented if ψ(ω◦L) = ω◦M and δ(ω◦L) = 0.

Proposition 1.40. Suppose (ψ, δ) : (L, s, ω◦L) → (M, t, ω◦M ) is an oriented
homomorphism of oriented invertible differential Batalin-Vilkovisky modules
over (φ, { }) : (A, s̃) → (B, t̃). Then (A, s̃, [ ], d◦) and (B, t̃, [ ], d◦) are differ-
ential Batalin-Vilkovisky algebras. Transporting δ : L→M via the identifica-
tions of L and M with A and B to a map δ◦ : A→ B, satisfying

δ◦(X) yωM = (−1)δXδ(X yωL) ,

we get a triple

(φ, { }, δ◦) : (A, s̃, [ ], d◦) −→ (B, t̃, [ ], d◦) ,

which satisfies the following conditions:
(i) φ : (A, s̃) → (B, t̃) is a morphism of differential graded algebras,
(ii) the commutator property

φ ◦ d◦ − d◦ ◦ φ = −2 t̃ ◦ δ◦ + 2 δ◦ ◦ s̃ ,

or, by abuse of notation, [φ, d◦]− 2[δ◦, s̃] = 0,
(iii) the map δ◦ is a generator for the bracket { },

{X,Y } = δ◦(X) ∧ φ(Y ) + φ(X) ∧ δ◦(Y )− δ◦(X ∧ Y ) ,

(iv) the default of φ to preserve [ ] equals the default of s̃ to be a derivation
with respect to { }, Equation (4).
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Thus (φ, { }, δ◦) is a (first order) morphism of differential Batalin-
Vilkovisky algebras.

The Lie bracket [ ] is determined by its generator d0, and the bracket { } is
determined by its generator δ0. Thus, in a certain sense, the two brackets are
redundant. Moreover, Condition (iv) is implied by Conditions (ii) and (iii).

Remark 1.41. A morphism of differential Batalin-Vilkovisky algebras

(φ, { }, δ◦) : (A, s̃, [ ], d◦) −→ (B, t̃, [ ], d◦)

induces on cohomology

h∗(φ) :
(
h∗(A, s̃), [ ], d◦

)
→

(
h∗(B, t̃), [ ], d◦

)
a morphism of Batalin-Vilkovisky algebras.

2 Symplectic geometry

Let (S, σ) be a symplectic manifold, i.e., a complex manifold S endowed with
a closed holomorphic 2-form σ ∈ Ω2

S which is everywhere non-degenerate,
i.e., X → X yσ defines an isomorphism of vector bundles TS → ΩS . The
(complex) dimension of S is even, and we will denote it by 2n.

A submanifold M ⊂ S is Lagrangian, if the restriction of this isomorphism
TS |M → ΩS |M identifies TM ⊂ TS |M with T⊥M ⊂ ΩS |M . An equivalent condi-
tion is that the restriction of σ to a 2-form onM vanishes and that dimM = n.
More generally, we define an immersed Lagrangian, to be an unramified mor-
phism i : M → S, where M is a manifold of dimension n, such that i∗σ ∈ Ω2

M

vanishes.
Holomorphic coordinates x1, . . . , xn, p1, . . . , pn on S are called Darboux

coordinates, if

σ =
n∑

i=1

dpi ∧ dxi .

Let us introduce one further piece of notation. For a subbundle E ⊂ ΩS

we consider the associated bundles E⊥, E∨ and E† defined the short exact
sequences of vector bundles

0 //E⊥ //TS
//E∨ //0 ,

and
0 //E //ΩS

//E† //0 .
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2.1 Lagrangian foliations

Definition 2.1. A Lagrangian foliation on S is an integrable distribution
F ⊂ TS , where F ⊂ TS is a Lagrangian subbundle, i.e., X → X yσ defines an
isomorphism of vector bundles F → F⊥ ⊂ ΩS .

All leaves of the Lagrangian foliation F are Lagrangian submanifolds of
S. The Lagrangian foliation F ⊂ TS may be equivalently defined in terms
of the subbundle E = F⊥ ⊂ ΩS . Usually, we find it more convenient to
specify E ⊂ ΩS , rather than F ⊂ TS . In terms of E, we have the following
isomorphism of short exact sequences of vector bundles:

0 // E⊥

∼=
��

// TS
//

y σ∼=
��

E∨ //

∼=
��

0

0 // E // ΩS
// E† // 0

Definition 2.2. . A polarized symplectic manifold is a symplectic manifold
endowed with a Lagrangian foliation.

The canonical partial connection

Any foliation F ⊂ TS defines a partial connection on the quotient bundle
TS/F :

∇ : TS/F −→ F∨ ⊗ TS/F , (11)

given by
∇Y (X) = [Y,X] ,

for Y ∈ F and X ∈ TS/F . This partial connection is flat. The dual bundle of
TS/F is F⊥ ⊂ ΩS . The dual connection

∇ : F⊥ −→ F∨ ⊗ F⊥

is given by
∇Y (ω) = Y y dω

for Y ∈ F and ω ∈ F⊥ ⊂ ΩS .
Let us specialize to the case that F is Lagrangian. Then we can transport

the partial connection from F⊥ to F , via the isomorphism F ∼= F⊥. We obtain
the canonical partial flat connection

∇ : F −→ F∨ ⊗ F

characterized by
∇Y (X) yσ = Y y d(X yσ) ,

for Y ∈ F and X ∈ F . The dual of this partial connection is
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∇ : F∨ −→ F∨ ⊗ F∨ ,

which is characterized by

∇Y (X yσ) = [Y,X] yσ ,

for Y ∈ F and X ∈ TS .

Oriented Lagrangian foliations

Definition 2.3. Let F ⊂ TS a Lagrangian foliation on S. An orientation of
F is a nowhere vanishing global section

θ ∈ Γ (S,ΛnF ) ,

which is flat with respect to the canonical partial connection on F .
A polarized symplectic manifold is called oriented, if its Lagrangian foli-

ation is endowed with an orientation.

Remark 2.4. If θ is an orientation of the Lagrangian foliation F , then we
have ∇(θ yσn) = 0. (Note that θ yσn ∈ ΛnF⊥ ⊂ ΛnΩS .)

2.2 Polarizations and transverse Lagrangians

Let E ⊂ ΩS define a Lagrangian foliation on S.

Lemma 2.5. Let M be a Lagrangian submanifold of S which is everywhere
transverse to E. Then there exists (locally near M) a unique section s of E,
such that ds = σ and M = Z(s), i.e., M is the zero locus of s (as a section
of the vector bundle E).

Definition 2.6. We call s the Euler form of M with respect to E, or the
Euler section of M in E.

Remark 2.7. Conversely, if s is any section of E such that ds = σ, then Z(s)
is a Lagrangian submanifold. Thus we have a canonical one-to-one correspon-
dence between sections s of E such that ds = σ and Lagrangian submanifolds
of S transverse to E.

Lemma 2.8. Let (S, F, σ, θ) be an oriented polarized symplectic manifold and
E = F⊥. Let M ⊂ S be a Lagrangian submanifold, everywhere transverse
to F . Then near every point of M there exists a set of Darboux coordinates
x1, . . . , xn, pn . . . , pn such that
(i) M = Z(p1, . . . , pn),
(ii) F = 〈 ∂

∂p1
. . . , ∂

∂pn
〉

(iii) ∇( ∂
∂pi

) = 0, for all i = 1, . . . , n,
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(iv) θ = ∂
∂pi

∧ . . . ∧ ∂
∂pn

,
Moreover, in these coordinates we have
(i) E = 〈dx1, . . . , dxn〉,
(ii) the Euler form s of M inside E is given by s =

∑
pidxi.

3 Derived Lagrangian intersections on polarized
symplectic manifolds

Definition 3.1. Let (S,E, σ) be a polarized symplectic manifold and L, M
immersed Lagrangians of S which are both transverse to E. Then the derived
intersection

L eS M

is the sheaf of differential Gerstenhaber algebras (ΛTM , t̃) on M , where t̃ is
the derivation on ΛTM induced by the restriction to M of the Euler section
t ∈ E ⊂ ΩS of L.

Since dt = σ, and M is Lagrangian, the restriction of t to M is closed, and
so t̃ is a derivation with respect to the Schouten-Nijenhuis bracket on ΛTM ,
making (ΛTM , t̃) a differential Gerstenhaber algebra.

Remark 3.2. After passing (locally in L) to suitable étale neighborhoods of
L in S we can assume that L is embedded (not just immersed) in S and that
L admits a globally defined Euler section t on S. This defines the derived
intersection étale locally in M , and the global derived intersection is defined
by gluing in the étale topology on M .

Remark 3.3. If we forget about the bracket, the underlying complex of OS-
modules (ΛTM , t̃) represents the derived tensor product

OL

L
⊗OS

OM

in the derived category of sheaves of OS-modules.

Remark 3.4. The derived intersection L eS M depends a priori on the po-
larization E. We will see later (see the proof of Theorem 4.2) that differ-
ent polarizations lead to locally quasi-isomorphic derived intersections. (The
quasi-isomorphism is not canonical, as it depends on the choice of a third
polarization transverse to both of the polarizations being compared. It is not
clear that such a third polarization can necessarily be found globally.)

Remark 3.5. The derived intersection does not seem to be symmetric. We
will see below that L eS M = M eS L, where S = (S,−σ), but only if S
is endowed with a different polarization, transverse to E. Then the issue of
change of polarization of Remark 3.4 arises.
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Definition 3.6. Let S,L,M be as in Definition 3.1. Let M be oriented, i.e.,
endowed with a nowhere vanishing top-degree differential form ω◦M . (Since M
is Lagrangian, this amounts to the same as a trivialization of the determinant
of the normal bundle NM/C .) We call the differential Batalin-Vilkovisky alge-
bra (ΛTM , t̃, [ ], d◦), where d◦ is induced by ω◦M as in Section 1.5, the oriented
derived intersection, notation L e◦S M .

By a local system we mean a vector bundle (locally free sheaf of finite rank)
endowed with a flat connection. Every local system P on a complex manifold
M has an associated holomorphic de Rham complex (P ⊗OM

Ω•
M , d), where

d denotes the covariant derivative.

Definition 3.7. Let (S,E, σ) be a polarized symplectic manifold and L, M
immersed Lagrangians, both transverse to E. Let P be a local system on
M and Q a local system on S. The derived hom from Q|L to P |M is the
differential Batalin-Vilkovisky module

RHomS

(
Q|L,P |M

)
=

(
Ω•

M ⊗Q∨|M ⊗ P, t
)

over the differential Gerstenhaber algebra

L eS M = (ΛTM , t̃) .

The tensor products are taken over OM . The closed 1-form t ∈ ΩM is the
restriction to M of the Euler section of L inside E. The OM -linear differential
t is multiplication by t and the C-linear differential d is covariant derivative
with respect to the induced flat connection on Q∨|M ⊗ P .

Remark 3.8. If we forget about the C-linear differential d and the flat connec-
tions on P and Q, the underlying complex of OS-modules RHomS(Q|L,P |M)
represents the derived sheaf of homomorphisms RHomOS

(Q|L, P ) in the de-
rived category of sheaves of OS-modules.

3.1 The exchange property: Gerstenhaber case

Given two symplectic manifolds S′, S, of dimensions 2n′ and 2n, a symplectic
correspondence between S′ and S is a manifold C of dimension n + n′,
together with morphisms π′ : C → S′ and π : C → S, such that
(i) π∗σ = π′

∗
σ′ (as sections of ΩC),

(ii) C → S′ × S is unramified.
Thus a symplectic correspondence is an immersed Lagrangian of

S
′ × S = (S′ × S, σ − σ′) .

Let C → S′×S be a symplectic correspondence. We say that the immersed
Lagrangian L→ S is transverse to C, if
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(i) for every (Q,P ) ∈ C ×S L we have that

TC |Q ⊕ TL|P −→ TS |π(Q)

is surjective, hence the pullback L′ = C ×S L is a manifold of dimension
n′

(ii) the natural map L′ → S′ is unramified (and hence L′ is an immersed
Lagrangian of S′).

By exchanging the roles of S and S′ we also get the notion of transversality
to C for immersed Lagrangians of S′.

Exchange property setup

Let (S,E, σ) and (S′, E′, σ′) be polarized symplectic manifolds. Let E⊥ ⊂
TS and E′⊥ ⊂ TS′ be the corresponding Lagrangian foliations. Consider a
transverse symplectic correspondence C → S′ × S. This means that C →
S′ × S is transverse to the foliation E′⊥ × E⊥ of S′ × S. In particular, the
composition

TC −→ π∗TS −→ π∗E∨

is surjective. Hence the foliation E⊥ ⊂ TS pulls back to a foliation F ⊂ TC of
rank n′. We have the exact sequence of vector bundles

0 −→ F −→ TC −→ π∗E∨ −→ 0 . (12)

Similarly, the foliation E′⊥ ⊂ TS′ pulls back to a foliation F ′ ⊂ TC of rank n
with the exact sequence

0 −→ F ′ −→ TC −→ π′
∗
E′∨ −→ 0 .

Moreover, F and F ′ are transverse foliations of C and so we have

F ⊕ F ′ = TC = π′
∗
E′∨ ⊕ π∗E∨ .

Even though it is not strictly necessary, we will make the assumption that
F ⊂ TC descends to a Lagrangian foliation F̃ ⊂ TS′ and F ′ ⊂ TC descends to
a Lagrangian foliation F̃ ′ ⊂ TS . This makes some of the arguments simpler.

Remark 3.9. The composition

F //TC
//π′∗TS′

y π′∗σ′ //π′∗ΩS′
//π′∗E′†

defines an isomorphism of vector bundles β : F ∼−→ π′
∗
E′†, and its inverse

η : π′∗E′† ∼−→ F . We can reinterpret these as perfect pairings β : F ⊗OC

π′
∗
E′⊥ → OC and η : F∨ ⊗OC

π′
∗
E′† → OC . These will be important in the

proof below.
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Now assume given immersed Lagrangians L of S and M ′ of S′. Assume
both are transverse to C. Then we obtain manifolds L′ and M by the pullback
diagram

L′ //

��
�

L

��
M //

��
�

C
π //

π′

��

S

M ′ // S′

(13)

Then L′ is an immersed Lagrangian of S′ and M an immersed Lagrangian of
S.

Finally, we assume that L and M are transverse to E and that M ′ and
L′ are transverse to E′. As a consequence, L′ is transverse to F ′ and M is
transverse to F .

Remark 3.10. As M is transverse to F , we have a canonical isomorphism
F |M = NM/C . Also, since π′∗NM ′/S′ = NM/C , we have π′∗E′⊥|M = NM/C .
Thus, restricting the pairings β and η to M , we obtain: β|M : NM/C ⊗OM

NM/C → OM and η|M : N∨
M/C ⊗OM

N∨
M/C → OM .

Lemma 3.11. If s ∈ E is the Euler section of M in E and s′ the Euler
section of M ′ in E′, then the homomorphism β|M : NM/C → N∨

M/C fits into
the commutative diagram

TC
es−es′ //

��

OC
d // ΩC

��
TC |M // NM/C

β|M // N∨
M/C

// ΩC |M

Proof. Let P ∈ M ⊂ C be a point. It suffices to prove the claim locally near
P . Let F̃ ⊂ TS′ be the Lagrangian foliation on S′, which pulls back to F ⊂ TC .
Then F̃ is transverse to both E′ and M ′.

Choose holomorphic functions x1, . . . , xn′ in a neighborhood of π′(P ) in
S′, such that dx1, . . . , dxn′ is a basis for E′ ⊂ ΩS′ . Also, choose y1, . . . , yn′ ,
such that dy1, . . . , dyn′ is a basis for F̃⊥ ⊂ ΩS′ . Then (xi, yj) is a set of
coordinates for S′ near π′(P ).

Let s be the Euler section of M ′ in F̃⊥ and f be the unique holomorphic
function on S′, defined in a neighborhood of π′(P ), such that f(π′(P )) = 0
and df = s−s′. Then we have s =

∑
j

∂f
∂yj

dyj and s′ = −
∑

i
∂f
∂xi

dxi. Moreover,

σ′ =
∑

i,j
∂2f

∂xi∂yj
dxi ∧ dyj .

We remark that the composition TS′
df→ OS′

d→ ΩS′ factors through
NM ′/S′ → N∨

M ′/S′ , because f vanishes on M ′. The resulting map is, in
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fact, the Hessian of f . Via our identifications, this Hessian agrees with the
map F̃ |M ′ → E′†|M ′ induced by σ′, because, with our choice of coordinates,
F̃ |M ′ = NM ′/S′ has basis ∂

∂xi
and E′†|M ′ = N∨

M ′/S′ has basis dyj .
To transfer this result from S′ to C, we remark that the pullback of s to C

is necessary equal to the pullback of s to C. Thus the composition d ◦ (s̃− s̃′)
is equal to the Hessian of the pullback of f to C. This is, by what we proved
above, equal to the pullback of the map induced by σ′. ut

Theorem 3.12. There are canonical quasi-isomorphisms of differential Ger-
stenhaber algebras

(M ′ × L) eS
′×S C −→ L eS M ,

and
(M ′ × L) eS

′×S C −→M ′ eS
′ L′ .

In particular, the derived intersections LeS M and M ′ eS
′ L′ are canonically

quasi-isomorphic.

Proof. Passing to étale neighborhoods of L in S and M ′ in S′ will not change
anything about either derived intersection L eS M or M ′ eS

′ L′, so we may
assume, without loss of generality, that
(i) L is embedded (not just immersed) in S (and same for M ′ in S′),
(ii) L admits a global Euler section t with respect to E on S (and M ′ has the

Euler section s′ in E′ on S′)

Then the Euler section of M ′ with respect to E′ on S
′
is −s′. Thus the derived

intersection LeSM is equal to (ΛTM , t̃) and the derived intersection M ′eS
′L′

equals (ΛTL′ ,−s̃′).
Pulling back the 1-form t via π, we obtain a 1-form on C, which we shall,

by abuse of notation, also denote by t. Similarly, pulling back s′ via π′ we get
the 1-form s′ on C. The difference t− s′ is closed on C, and thus we have the
differential Gerstenhaber algebra (ΛTC , t̃− s̃′). We remark that it is equal to
(M ′ × L) eS

′×S C.
Recall that we have the identification TC = π′

∗
E′∨ ⊕ π∗E∨. Under this

direct sum decomposition t̃ − s̃′ splits up into two components, −s̃′ and t̃.
Hence we obtain the decomposition

(ΛTC , t̃− s̃′) = π′
∗(ΛE′∨,−s̃′)⊗ π∗(ΛE∨, t̃)

of differential graded OC-algebras.
Recall that OS′ → OM ′ induces a quasi-isomorphism of differential graded

OS′ -algebras (ΛE′∨,−s̃′) → OM ′ . Because the pullback M = M ′ ×S′ C is
transverse, we get an induced quasi-isomorphism

π′
∗(ΛE′∨,−s̃′) −→ OM
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of differential graded OC-algebras. Tensoring with π∗(ΛE∨, t̃), we obtain the
quasi-isomorphism

(ΛTC , t̃− s̃′) −→ (ΛE∨, t̃)|M .

Noting that E∨|M = TM , because M is an immersed submanifold in S trans-
verse to E, we see that (ΛE∨, t̃)|M = (ΛTM , t̃) and so we have a quasi-
isomorphism of differential graded OC-algebras

φ : (ΛTC , t̃− s̃′) −→ (ΛTM , t̃) . (14)

For analogous reasons, we also have the quasi-isomorphism

φ′ : (ΛTC , t̃− s̃′) −→ (ΛTL′ ,−s̃′) .

The proof will be finished, if we can enhance φ and φ′ by brackets, making
them morphisms of differential Gerstenhaber algebras. We will concentrate on
φ. The case of φ′ follows by symmetry.

Thus we shall define a bracket

{ } : ΛTC ⊗C ΛTC −→ ΛTM , (15)

such that (φ, {, }) becomes a morphism of differential Gerstenhaber algebras.
We use the foliation F ⊂ TC . It defines (11) a partial flat connection

∇ : TC/F −→ F∨ ⊗OC
TC/F .

By the usual formulas we can transport ∇ onto the exterior powers of TC/F .
In our context, we obtain

∇ : π∗ΛE∨ −→ F∨ ⊗OC
π∗ΛE∨ .

To get the signs right, we will consider the elements of the factor F∨ in this
expression to have degree zero.

Let us write the projection ΛTC → π∗ΛE∨ as ρ. We identify F∨|M with
N∨

M/C and (π∗ΛE∨)|M with ΛTM . Then φ is the composition of ρ with re-
striction to M . We now define for X,Y ∈ ΛTC

{X,Y } = η
(
∇(ρX)|M ∧∇(ρY )|M

)
. (16)

In this formula, ‘∧’ denotes the homomorphism (all tensors are over OM )

(N∨
M/C ⊗ ΛTM )⊗ (N∨

M/C ⊗ ΛTM ) −→ (N∨
M/C ⊗N∨

M/C)⊗ ΛTM

v ⊗X ⊗ w ⊗ Y 7−→ v ⊗ w ⊗X ∧ Y .

There is no sign correction in this definition, because the elements ofN∨
M/C are

considered to have degree zero, by our sign convention. We have also extended
the map η linearly to

η : (N∨
M/C ⊗OM

N∨
M/C)⊗OM

ΛTM −→ ΛTM .
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Claim. The conditions of Definition 1.12 are satisfied by (φ, { }).
All but the last condition follow easily from the definitions. Let us check

Condition (iv). We use Remark 1.14. The C-algebra ΛTC is generated in
degrees 0 and −1. As generators in degree −1, we may take the basic vector
fields of a coordinate system for C. We choose this coordinate system such
thatM is cut out by a subset of the coordinates. Then, if we plug in generators
of degree −1 for both X and Y in Formula (4), every term vanishes. Also, if
we plug in terms of degree 0 for both X and Y , both sides of (4) vanish for
degree reasons. By symmetry, we thus reduce to considering the case where
X is of degree −1, i.e., a vector field on C, and Y is of degree 0, i.e., a regular
function on C.

Hence we need to prove that for all X ∈ TC and g ∈ OC we have

X(g)|M − ρ(X)|M
(
g|M

)
= {(t̃− s̃′)X, g} − t̃{X, g} . (17)

Let s denote the Euler section of M in E ⊂ ΩS , and its pullback to C. We
will prove that

X(g)|M − ρ(X)|M
(
g|M

)
= {(s̃− s̃′)X, g} (18)

and
{(t̃− s̃)X, g} = t̃{X, g} . (19)

Equation (18) involves only M , not L, and Equation (19) involves only E, not
E′. Together, they imply Equation (17).

All terms in these three equations are OS-linear in X and derivations in
g, and may hence be considered as OC-linear maps TC → Der(OC ,OM ). As
Der(OC ,OM ) = HomOC

(ΩC ,OM ) = TC |M , we may also think of them as
OC-linear maps TC → TC |M .

For example, the OC-linear map

TC −→ TC |M (20)
X 7−→ {(s̃− s̃′)X, · }

Is equal to the composition

TC
es−es′ //OC

d //ΩC
//F∨|M

η //F |M //TC |M .

Then the commutative diagram (Lemma 3.11)

TC
es−es′ //

��

OC
d // ΩC

�� $$IIIIIIIII

TC |M

��

ΩC |M // F∨|M
η // F |M // TC |M

NM/C
β // N∨

M/C

OO

id

;;wwwwwwwww
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and the fact that η is the inverse of β, proves that (20) is equal to the com-
position

TC
//TC |M

p //TC |M ,

where p is the projection onto the the second summand of the decomposition

TC |M = TM ⊕NM/C

given by the foliation F transverse to M in C. If we denote by q the projection
onto the first summand, we see that the map

TC −→ TC |M (21)
X 7−→ ρ(X)|M ( · |M )

is equal to

TC
//TC |M

q //TC |M .

Thus (20) and (21) sum up to the restriction map TC → TC |M , which is equal
to the map given by X 7→ X( · )|M . This proves (18).

Now, let us remark that for any closed 1-form u on C we have

ũ[Y,X] = Y
(
ũ(X)

)
−X

(
ũ(Y )

)
.

If u ∈ π∗E ⊂ ΩC , then ũ(Y ) = 0, for all Y ∈ F . So if Y ∈ F we have

ũ[Y,X] = Y
(
ũ(X)

)
.

We have ũ[Y,X] = ũ
(
∇(X)(Y )

)
by definition of the partial connection ∇ and

we can write Y
(
ũ(X)

)
= 〈Y, d

(
ũ(X)

)
〉. In other words, the diagram

TC/F
∇ //

eu
��

Hom(F, TC/F )

◦eu
��

OC
d // ΩC

// F∨

commutes. Thus, the larger diagram

TC
ρ //

eu ""EE
EE

EE
EE

E π∗E∨ ∇ //

eu
��

F∨ ⊗ π∗E∨

id⊗eu
��

// F∨|M ⊗ TM
η⊗id //

id⊗eu|M
��

F |M ⊗ TM

id⊗eu|M
��

OC
d // F∨ // F∨|M

η // F |M

��
TC |M

commutes as well. We can apply these considerations to u = t − s. Then
ũ = t̃ − s̃ and ũ|M = t̃|M . Thus the upper composition in this diagram
represents the right hand side of Equation (19), and the lower composition
represents the left hand side of Equation (19). This exhibits that (19) holds
and finishes the proof of the theorem. ut
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3.2 The Batalin-Vilkovisky case

For the exchange property in the Batalin-Vilkovisky case, we require an ori-
entation on the symplectic correspondence C → S′ × S.

Definition 3.13. Let π : C → S be a morphism of complex manifolds, F ⊂
TC and F̃ ⊂ TS foliations. The foliations F , F̃ are compatible (with respect
to π), if F → TC → π∗TS factors through π∗F̃ → π∗TS .

If F and F̃ are compatible, then partial connections with respect to F̃ pull
back to partial connections with respect to F .

Now let (S,E, σ), (S′, E′, σ′) and C → S′×S be, as in Section 3.1, polar-
ized symplectic manifolds with a transverse symplectic correspondence. Let
F and F ′ be, as in 3.1, the inverse image foliations:

F //

��
�

E⊥

��
F ′ //

��
�

C
π //

π′

��

S

E′⊥ // S′

(22)

Furthermore, we suppose that F̃ ⊂ TS′ is a Lagrangian foliation on S′ com-
patible with F via π′ and that F̃ ′ ⊂ TS is a Lagrangian foliation on S,
compatible with F ′ via π. Since the composition F → π′

∗
TS′ → π′

∗
E′∨ is an

isomorphism, the map F → π′
∗
TS′ identifies F with a subbundle of π′∗TS′ .

As F and F̃ have the same rank, it follows that F → π′
∗
F̃ is an isomorphism

of subbundles of π′∗TS′ . Similarly, we have and identification F ′ → π∗F̃ ′ of
subbundles of π∗TS .

Thus we have two Lagrangian foliations on S
′×S, namely E′⊥×E⊥ and

F̃×F̃ ′. Both Lagrangian foliations are transverse to C, and they are transverse
to each other near C.

Definition 3.14. If θ ∈ Γ (S′,Λn′ F̃ ) and θ′ ∈ Γ (S,ΛnF̃ ′) are orientations of
the Lagrangian foliations F̃ on S′ and F̃ ′ on S, we call the data (F̃ , θ, F̃ ′, θ′)
an orientation of the symplectic correspondence C → S′ × S.

We call the transverse symplectic correspondence of polarized symplectic
manifolds C → S′ × S orientable, if it admits an orientation.

Exchange property setup

Let (S,E, σ) and (S′, E′, σ′) be polarized symplectic manifolds and C →
S′ × S, (F̃ , θ, F̃ ′, θ′) an oriented transverse symplectic correspondence. More-
over, let L → S and M ′ → S′ be, as in Section 3.1, immersed Lagrangians
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transverse to C, such that the induced M and L′ are transverse to E and E′,
respectively. (This latter condition is satisfied if M ′ and L are transverse to F̃
and F̃ ′, respectively.) Pulling back θ to C gives us a trivialization of Λn′F and
restricting further to M gives a trivialization of the determinant of the normal
bundle Λn′NM/C , because of the canonical identification F |M = NM/C . Sim-
ilarly, θ′ gives rise to a trivialization of the determinant of the normal bundle
ΛnNL′/C .

Finally, let P ′ be a local system on S′ and Q a local system on S. Let
P = π′

∗
P ′ and Q′ = π∗Q be the pullbacks of these local systems to C.

Theorem 3.15. There exists a canonical quasi-isomorphism of differential
Batalin-Vilkovisky modules

RHomS
′×S

(
O|(M ′ × L), (P ⊗Q′∨)|C

)
−→ RHomS

(
Q|L,P |M

)
of degree −n′, covering the corresponding canonical quasi-isomorphism of dif-
ferential Gerstenhaber algebras of Theorem 3.12. Moreover, there is the quasi-
isomorphism of differential Batalin-Vilkovisky modules

RHomS
′×S

(
O|(M ′ × L), (P ⊗Q′∨)|C

)
−→ RHomS

′
(
P ′

∨|M ′, Q′∨|L′
)

of degree −n, covering the other canonical quasi-isomorphism of differential
Gerstenhaber algebras of Theorem 3.12.

Thus, the derived homs RHomS(Q|L,P |M) and RHomS
′(P ′∨|M ′, Q′∨|L′)

are canonically quasi-isomorphic, up to a degree shift n′ − n.

Proof. Let t and s′ be as in the proof of Theorem 3.12. We need to construct
quasi-isomorphisms of Batalin-Vilkovisky modules

(ψ, δ) : (Ω•
C ⊗ P ⊗Q′∨, t− s′) −→ (Ω•

M ⊗ P ⊗Q′∨, t)

and
(ψ′, δ′) : (Ω•

C ⊗ P ⊗Q′∨, t− s′) −→ (Ω•
L′ ⊗ P ⊗Q′∨,−s′) .

(Note that because the elements of P and Q′∨ have degree zero, it is immate-
rial in which order we write the two factors P and Q′∨.) The case of (ψ′, δ′)
being analogous, we will discuss only (ψ, δ).

Let us start with ψ. Denote the pullback of the orientation θ ∈ Λn′ F̃ to C
by the same letter, thus giving us a trivialization θ ∈ Λn′F . Note that contract-
ing α ∈ Ω•

C with θ gives a form θ yα in the subbundle π∗ΛE ⊂ Ω•
C , see (12).

Recall the non-degenerate symmetric bilinear form β : NM/C ⊗OM
NM/C →

OM of Remark 3.10. Since F |M = NM/C , we may apply the discriminant of
β to θ|M ⊗ θ|M to obtain the nowhere vanishing regular function

g = detβ (θ|M ⊗ θ|M ) ∈ OM (23)

on M . The homomorphism ψ is now defined as the composition
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ψ : Ω•
C

θ y · //π∗ΛE
res |M //ΛE|M = Ω•

M

·g //Ω•
M .

Tensoring with P⊗Q′∨, we obtain the quasi-isomorphism of differential graded
modules

ψ : (Ω•
C ⊗ P ⊗Q′∨, t− s) −→ (Ω•

M ⊗ P ⊗Q′∨, t)

covering the morphism of differential graded algebras φ of (14). The formula
for ψ is

ψ(α) = g · dθ yαe
M
. (24)

(‘Ceiling brackets’ denote restriction.) Note that degψ = −n′
Let us next construct δ : Ω•

C → Ω•
M . Recall the canonical partial flat

connection on the Lagrangian foliation F̃ on S′:

∇̃ : F̃ −→ F̃∨ ⊗OS′ F̃ ,

defined by the requirement

∇̃eY (X̃) yσ′ = Ỹ y d(X̃ yσ′) ,

for Ỹ , X̃ ∈ F̃ . As F is compatible with F̃ via π′, we get the pullback partial
flat connection

∇ : π′∗F̃ −→ F∨ ⊗OC
π′
∗
F̃ .

Making the identification F = π′
∗
F̃ we rewrite this partial connection as

∇ : F −→ F∨ ⊗OC
F .

It is characterized by the formula

∇Y (X) yσ = Y y d(X yσ) ,

for Y,X ∈ F . We have written σ for the restriction of the symplectic form σ′

to C. The dual connection

∇ : F∨ −→ F∨ ⊗OC
F∨ (25)

satisfies
∇Y (X ′ yσ) = [Y,X ′] yσ ,

for Y ∈ F and X ′ ∈ TC .
Recall that we also have the partial connection

∇ : π∗E −→ F∨ ⊗OC
π∗E (26)

defined by ∇Y ω = Y y dω, for Y ∈ F and ω ∈ π∗E ⊂ ΩC . We used the dual
of this connection in the proof of Theorem 3.12.

Thus, we have partial flat connections on F and π∗E, in such a way that
the canonical homomorphism F → π∗E given by X 7→ X yσ is flat. We hope
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there will be no confusion from using the same symbol ∇ for both partial con-
nections. As usual, we get induced partial connections on all tensor operations
involving F and π∗E. We define

∇2 : π∗ΛE −→ F∨ ⊗ F∨ ⊗ π∗ΛE

as the composition (all tensor products are over OC)

π∗ΛE ∇−→ F∨ ⊗ π∗ΛE ∇−→ F∨ ⊗ F∨ ⊗ π∗ΛE .

We will also need
∇3 : OC −→ F∨ ⊗ F∨ ⊗ F∨ .

To simplify notation, let us assume that the closed 1-form s − s′ on C
is exact. Let I be the ideal of M in OC . Then there exists a unique regular
function f ∈ I2, such that df = s − s′. The fact that f ∈ I2 follows because
s and s′ vanish in ΩC |M , so df vanishes in ΩC |M . Then the Hessian of f is a
symmetric bilinear form NM/C ⊗OM

NM/C → OM , and is equal to β|M , by
Lemma 3.11..

Finally, we define δ : Ω•
C → Ω•

M as a certain C-linear combination of the
two compositions

Ω•
C

θ y · // π∗ΛE
∇2

// F∨ ⊗OC
F∨ ⊗OC

π∗ΛE

res |M
��

N∨
M/C ⊗OM

N∨
M/C ⊗OM

Ω•
M

η // Ω•
M

· g // Ω•
M ,

and

π∗ΛE
∇ // F∨ ⊗ π∗ΛE

∇3(f)⊗id // (F∨)⊗4 ⊗ π∗ΛE

res |M
��

Ω•
C

θ y ·

OO

(N∨)⊗4 ⊗ Ω•
M

η⊗η // Ω•
M

· g // Ω•
M .

Here η and η ⊗ η are the linear extension of the map η from Remark 3.10. In
fact, we define:

δ(α) = − 1
2g · η

(
d∇2(θ yα)e

M

)
+ 1

2g · (η ⊗ η)
(
d∇3(f)⊗∇(θ yα)e

M

)
.

As P and Q′∨ have flat connections on them, their pullbacks to C do, too.
In particular, we can partially differentiate. Thus, δ extends naturally to the
map δ : Ω•

C ⊗ P ⊗Q′∨ → ΩM ⊗ P ⊗Q′∨.
We need to check Properties (i) and (ii) of Definition 1.24. To simplify

notation, we will only spell out the case where P = Q′ = (OC , d), leaving the
general case to the reader.
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Proving (ii) is a straightforward but tedious calculation using the prop-
erties of the partial connections on π∗ΛE, π∗ΛE∨, F and F∨, in particular,
compatibility with contraction. One can simplify this calculation by using Re-
mark 1.27: choose C-algebra generators for ΛTC in such a way that the degree
−1 generators are flat for the partial connection (see below). This reduces to
checking (8) for the case where X and Y are of degree 0, i.e., regular functions
x and y on C. The claim is:

δ(xyω) + xyδ(ω) + {x, y}ψ(ω) = xδ(yω) + yδ(xω) ,

for all ω ∈ ΩC . We leave the details to the reader, and only write down the
terms containing dx⊗ dy and only after canceling g · (θ yω)|M . In fact, from
the term δ(xyω) we get the contribution

− 1
2ηddx⊗ dy + dy ⊗ dxe

M
,

and from the term {x, y}ψ(ω) we get the contribution

ηddx⊗ dye
M
,

and these two expressions do, indeed, add up to 0, because η is symmetric.
To prove (i), we shall use Remark 1.28. We will carefully choose a local

trivialization of the vector bundle TC , as this will give local generators for
ΛTC as OC-algebra.

The equations we wish to prove can be checked locally. So we pick a point
P ∈M and pass to a sufficiently small analytic neighborhood of P in C.

Choose holomorphic functions p1, . . . , pn′ in a neighborhood of π′(P ) in
S′ satisfying
(i) p1, . . . , pn′ cut out the submanifold M ′ ⊂ S′,

(ii) dp1, . . . , dpn′ form a frame of F̃∨,

(iii) dp1, . . . , dpn′ are flat for the partial connection on F̃∨,
(iv) θ y (dp1 ∧ . . . ∧ dpn′) = 1.
Denote the pullbacks of these functions to C by the same letters. Then these
functions on C cut out M , their differentials are flat for the partial connection
(25) and form a frame for F∨. Also, the last property remains true as written.
Such pi exist by Lemma 2.8

Similarly, we choose holomorphic functions x1, . . . , xn in a neighborhood
of π(P ) in S, such that dx1, . . . , dxn form a frame for the subbundle E ⊂ ΩS .
Then the dxi are automatically flat for the partial connection on E. Again,
we denote the pullbacks to C of these functions by the same letters. For the
functions x1, . . . , xn on C we have that their differentials dx1, . . . , dxn form
a flat frame for the subbundle π∗E of ΩC . In particular, the restrictions of
x1, . . . , xn to M ⊂ C form a set of coordinates for M near P .

Then the union of these two families dp1, . . . , dpn′ , dx1, . . . , dxn forms a ba-
sis for ΩC . We denote the dual basis (as usual) by ∂

∂p1
, . . . , ∂

∂pn′
, ∂

∂x1
, . . . , ∂

∂xn
.

We have
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θ = (−1)
1
2 n′(n′−1) ∂

∂p1
∧ . . . ∧ ∂

∂pn′
.

We define
ω◦ = dp1 ∧ . . . ∧ dpn′ ∧ dx1 ∧ . . . ∧ dxn ,

which is a basis for Ω•
C as a ΛTC-module. Note that

θ yω◦ = dx1 ∧ . . . ∧ dxn .

We denote the restriction to M of dx1 ∧ . . . ∧ dxn by τ◦. This is a basis for
Ω•

M as a ΛTM -module. We have

dθ yω◦eM = τ◦ .

We now have to prove that for X = ∂
∂pi

and X = ∂
∂xj

we have

ψ
(
d(X yω◦)

)
− (−1)n′d

(
ψ(X yω◦)

)
= −2(−1)n′t ∧ δ(X yω◦) + 2 δ

(
(t− s′) ∧ (X yω◦)

)
. (27)

For any of our values for X we have d(X yω◦) = 0. So the first term in (27)
always vanishes. Similarly, the third term always vanishes, because every of
our values for X, as well as θ and ω◦ are flat for the partial connection ∇.
Thus only the second and fourth term of (27) contribute.

Consider the fourth term. We have

δ
(
(t− s′) ∧ (X yω◦)

)
= δ

(
(t− s) ∧ (X yω◦)

)
+ δ

(
df ∧ (X yω◦)

)
= δ

((
X y (t− s)

)
ω◦)

)
+ δ

(
X(f)ω◦

)
.

Since t − s is a section of π∗E and is also a closed 1-form, t − s is flat with
respect to the partial connection ∇. Since X is by assumption also flat with
respect to ∇, it follows that ∇

(
X y (t− s)

)
= 0, and hence the fourth term of

(27) is equal to
δ
(
(t− s′) ∧ (X yω◦)

)
= δ

(
X(f)ω◦

)
.

Thus, (27) reduces to

(−1)n′d
(
ψ(X yω◦)

)
= −2 δ

(
X(f)ω◦

)
. (28)

Let us first consider the case that X = ∂
∂pi

. In this case θ ∧ X = 0, so that
the left hand side of (28) vanishes. The claim is therefore, that

δ
(

∂f
∂pi

ω◦
)

= 0 ,

for all i = 1, . . . , n′. This is equivalent to

η
(
d∇2 ∂f

∂pi
e

M

)
= (η ⊗ η)

(
d∇3fe

M
⊗ d∇ ∂f

∂pi
e

M

)
. (29)
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To check (29), let us write it out in coordinates. The right hand side is equal
to∑

k,l

∑
m,n

ηklηmn
∂3f

∂pk∂pl∂pm

∣∣∣∣
p=0

∂2f

∂pn∂pi

∣∣∣∣
p=0

=
∑
k,l

∑
m

ηklδ
i
m

∂3f

∂pk∂pl∂pm

∣∣∣∣
p=0

=
∑
k,l

ηkl
∂3f

∂pk∂pl∂pi

∣∣∣∣
p=0

,

which is, indeed, equal to the left hand side of (29).
Now let us consider the case X = ∂

∂xj
. Recall that the ideal I defining M

is given by I = (p1, . . . , pn′). Since f ∈ I2, we still have ∂f
∂xj

∈ I2 and hence

∇( ∂f
∂xj

)|p=0 = 0. Thus, the right hand side of (28) is equal to

−2 δ( ∂f
∂xj

ω◦) = g · η
(
d∇2 ∂f

∂xj
e

M

)
τ◦ + 0

= g · tr
(
η · ∂

∂xj
H(f)

)
τ◦ ,

because differentiating with respect to xj commutes with restriction to M =
{p = 0}. (We have written H(f) for the Hessian of f .) On the other hand,
the left hand side of (28) is equal to

(−1)n′d
(
ψ(X yω◦)

)
= ∂g

∂xj
τ◦ ,

and thus, our final claim is equivalent to

∂g
∂xj

= g · tr
(
η · ∂

∂xi
H(f)

)
.

Recalling that g = detH(f), and η is the inverse of H(f), this claim follows
from the following:

Claim. Let A be an invertible square matrix of regular functions on the
manifold M . Then for every vector field X on M we have

(detA)−1X(detA) = tr
(
A−1X(A)

)
.

This last claim is both well-known and easy to check. ut

3.3 The oriented Batalin-Vilkovisky case

The setup is exactly the same as in Section 3.2, with one additional ingredient;
namely an orientation of C, i.e., a nowhere vanishing global section ω◦C ∈
Ωn+n′

C . We require ω◦C to be compatible with the orientation (F̃ , F̃ ′, θ, θ′) on
the symplectic correspondence C → S′ × S in the following sense: namely we
ask that
(i) ∇(θ yω◦C) = 0, where ∇ : π∗E → F∨⊗ π∗E is the partial connection (26)

on F⊥ = π∗E defined by the foliation F of C,
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(ii) ∇′(θ′ yω◦C) = 0, where ∇′ : π′∗E′ → F ′
∨ ⊗ π′

∗
E′ is the corresponding

partial connection defined by the foliation F ′ of C.
Now, (θ yω◦C)|M is an orientation of M (recalling that (π∗E)|M = ΩM ).

We shall denote it by ω◦M . Similarly, (θ′ yω◦C)|L′ is an orientation of L′, which
we shall denote by ω◦L′ . This orients the three Lagrangian intersections in
Theorem 3.12.

Theorem 3.16. The quasi-isomorphisms of differential Gerstenhaber alge-
bras of Theorem 3.12 are canonically enhanced to quasi-isomorphisms of dif-
ferential Batalin-Vilkovisky algebras

(M ′ × L) e◦
S
′×S

C −→ L e◦S M ,

and
(M ′ × L) e◦

S
′×S

C −→M ′ e◦
S
′ L′ .

In particular, the oriented derived intersections L e◦S M and M ′ e◦
S
′ L′ are

canonically quasi-isomorphic.

Proof. In view of Theorems 3.12 and 3.15 and the results of Section 1.6, we
only need to check that
(i) ψ(ω◦C) = ω◦M ,
(ii) ψ′(ω◦C) = ω◦L′ ,
(iii) δ(ω◦C) = 0,
(iv) δ′(ω◦C) = 0,
where (ψ, δ) and (ψ′, δ′) are the homomorphisms of differential Batalin-
Vilkovisky modules constructed in the proof of Theorem 3.15. But the first
two follow from the above definitions and the last two from the above assump-
tions. ut

Remark 3.17. If C = S and C → S × S is the diagonal, a canonical choice
for the orientation of C is ω◦C = σn, by Remark 2.4. In this case, we also
have ω◦M = θ|M , via the identification Ωn

M = ΛnNM/S = ΛnF |M . Similarly,
ω◦L′ = θ′|L′ .

4 The Gerstenhaber structure on Tor and the
Batalin-Vilkovisky structure on Ext

4.1 The Gerstenhaber algebra structure on Tor

Let L and M be immersed Lagrangians in the symplectic manifold S. Write
Tori

OS
(OL,OM ) = TorOS

−i (OL,OM ). The direct sum

Tor•OS
(OL,OM ) =

⊕
i

Tori
OS

(OL,OM )

is a graded sheaf of OS-algebras, concentrated in non-positive degrees.
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Remark 4.1. To be precise, we have to use the analytic étale topology on
S to be able to think of Tor•OS

(OL,OM ) as a sheaf of OS-algebras. If L and
M are embedded, not just immersed, we can use the usual analytic topol-
ogy. Alternatively, introduce the fibered product Z = L ×S M and think of
Tor•OS

(OL,OM ) as a sheaf of graded OZ-algebras.

Theorem 4.2. There exists a unique bracket of degree +1 on Tor•OS
(OL,OM )

such that
(i) Tor•OS

(OL,OM ) is a sheaf of Gerstenhaber algebras,
(ii) whenever E is a (local) polarization of S, such that L and M are transverse

to E, then this sheaf of Gerstenhaber algebras is obtained from the derived
intersection LeS M (defined with respect to E) by passing to cohomology.

Proof. Without loss of generality, assume that L and M are submanifolds.
For every point of S we can find an open neighborhood in S, over which we
can choose a polarization E, which is transverse to L and M . This proves
uniqueness.

For existence, we have to prove that any two polarizations E, E′′ give rise
to the same bracket on Tor•OS

(OL,OM ). This is a local question, so we may
choose a third polarization E′, which is transverse to both E and E′′, and
also to L and M .

We will apply the exchange property, Theorem 3.12, twice. First to the
symplectic correspondence ∆ : C = S → S × S between the polarized sym-
plectic manifolds (S,E′) and (S,E), then to the symplectic correspondence
∆ : C = S → S × S between (S,E′′) and (S,E′). We obtain the following di-
agram of quasi-isomorphisms of sheaves of differential Gerstenhaber algebras:

(M × L) eE′×E

S×S
S //

��

L eE
S M

(L×M) eE′′×E′

S×S
S //

��

M eE′

S
L

L eE′′

S M

(30)

We have included the polarizations defining the derived intersections in the
notation.

Passing to cohomology sheaves, we obtain the following diagram of iso-
morphisms of sheaves of Gerstenhaber algebras:
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Tor•OS×S
(OM×L,OS) //

��

Tor•OS
(OL,OM )

Tor•OS×S
(OL×M ,OS) //

��

Tor•OS
(OM ,OL)

Tor•OS
(OL,OM )

One checks that all these morphisms are the canonical ones, and hence that
the composition of all four of them is the identity on Tor•OS

(OL,OM ). If the
identity preserves the two brackets on Tor•OS

(OL,OM ) defined by E and E′′,
respectively, then the two brackets are equal. ut

4.2 The Batalin-Vilkovisky structure on Ext

Let L and M continue to denote immersed Lagrangians in the symplectic
manifold S. Furthermore, let P be a local system on M and Q a local system
on L. The direct sum

Ext•OS
(Q,P ) =

⊕
i

ExtiOS
(Q,P )

is a graded sheaf of Tor•OS
(OL,OM )-modules.

Theorem 4.3. There exists a unique C-linear differential

d : ExtiOS
(Q,P ) −→ Exti+1

OS
(Q,P ) ,

(for all i) such that
(i) Ext•OS

(Q,P ) is a sheaf of Batalin-Vilkovisky modules over the Gersten-
haber algebra Tor•OS

(OL,OM ),
(ii) whenever E is a (local) polarization of S, such that L and M are trans-

verse to E, and Q is a local system on S restricting to Q on L, this
sheaf of Batalin-Vilkovisky modules is obtained from the derived hom
RHomS(Q|L,P |M) (defined with respect to E) by passing to cohomology.

Proof. Uniqueness is clear. Let us prove existence. For this, we assume given
two polarization E, E′′, transverse to L and M , and two extensions Q
and Q̂ of Q to S. To compare the derived homs RHomE

S (Q|L,P |M) and
RHomE′′

S (Q̂|L,P |M), we choose (locally) a third polarization E′, transverse
to L and M , and E and E′′, and an extension P of P to S. These choices
make the five derived homs in Diagram (32), below, well-defined.

To define the homomorphisms of differential Batalin-Vilkovisky modules
in (32), we orient the symplectic correspondence given by the diagonal of S in
the canonical way, as in Remark 3.17, by σn. The corresponding symplectic
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correspondence given by the diagonal of S is hence oriented by (−1)nσn.
We also orient the three Lagrangian foliations F , F ′, F ′′ on S, by choosing
θ ∈ ΛnF , θ′ ∈ ΛnF ′ and θ′′ ∈ ΛnF ′′. (Note that F̃ = F = E⊥, etc., in
our case.) But the choice of θ, θ′′ is not completely arbitrary. In fact, notice
that both F |L and F ′′|L are complements to TL ⊂ TS |L, so that we get a
canonical identification F |L

∼−→ F ′′|L. We choose θ and θ′′ in such a way that
the composition

OL

θ|L // detF |L
∼= // detF ′′|L

θ′′∨|L //OL (31)

is equal to the identity.
Now, by applying the exchange property, Theorem 3.15, twice, as in the

proof of Theorem 4.2, we obtain the following diagram of quasi-isomorphisms
of differential Batalin-Vilkovisky modules, covering Diagram (30) of differen-
tial Gerstenhaber algebras:

RHomE′×E

S×S

(
O|(M × L), (P ⊗Q

∨
)|S

)
//

++VVVVVVVVVVVVVVVVVVV
RHomE

S (Q|L,P |M)

RHomE′′×E′

S×S

(
O|(L×M), (Q̂∨,⊗P )|S

)
//

++VVVVVVVVVVVVVVVVVVV
RHomE′

S
(P

∨|M,Q∨|L)

RHomE′′

S (Q̂|L,P |M)

(32)

When passing to cohomology, the first and the last item in this diagram are
both equal to Ext•OS

(Q,P ). We claim that the induced isomorphism on co-
homology is equal to the identity. For simplicity, we will prove this for the
case that P and Q are the trivial rank one local systems. Then the differential
Batalin-Vilkovisky modules of Diagram (32) are invertible. We orient them
using σn, (−1)nσn, and (θ yσn)|M , (θ′ yσn)|L and (θ′′ yσn)|M , respectively,
as in Section 3.3. Then the homomorphisms in Diagram (32) do not preserve
orientations according to Definition 1.37, because of the presence of the func-
tions g, defined in (23), entering into the definition of ψ, Equation (24).

Let us call these functions, from the top to the bottom, g1, g2, g3, g4. We
also need more detailed notation for the various maps β of Remark 3.9 and
introduce

βij : F (i) → TS
y σ−→ ΩS → F (j)∨ ,

where i, j = 0, 1, 2 denotes the number of primes on the letter F . Using similar
notation, we introduce the functions

hij = (θ(j))
∨
◦ detβij ◦ θ(i) .

These are functions on S, invertible where they are defined.
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On the submanifold M , we have canonical isomorphisms αij : F (i)|M →
F (j)|M and functions

aij = (θ(j))−1 ◦ detαij ◦ θ(i) .

Similarly, on L, we have canonical isomorphisms γij : F (i)|L → F (j)|L and
functions

cij = (θ(j))−1 ◦ detαij ◦ θ(i) .

With these notations, we now have:

g1 = h01a01 ,

g2 = h10c10 ,

g3 = h12c12 ,

g4 = h21a21 .

Hence the default of the maps in (32) to preserve orientations is given by the
product

g2
(
(−1)ng4

)
g1

(
(−1)ng3

) =
h10c10h21a21

h01a01h12c12
=
c10a21

a01c12
,

noting that hij is dual, and hence equal, to hji.
Now note that we have two orientations on M , namely (θ yσn)|M and

(θ′′ yσn)|M . On Ext•OS
(OL,OM ), this difference induces a factor of a20. Thus,

to prove our claim, we need to show that

a20 =
c10a21

a01c12
.

Now, it is clear that aijajk = aik, and cijcjk = cik. Thus, our claim is equiv-
alent to

c20 = 1 ,

which is true, because c02 is the homomorphism of Diagram (31), which is the
identity, by assumption. ut

4.3 Oriented case

Theorem 4.4. Let L and M be immersed Lagrangians of the symplectic man-
ifold S of dimension 2n. Then every orientation of M defines a generator
for the bracket of Theorem 4.2. More precisely, every trivialization ω◦M of
Ωn

M defines a differential d◦ on Tor•OS
(OL,OM ) making the latter a sheaf of

Batalin-Vilkovisky algebras.

Proof. From Example 1.36 and Proposition 1.35, we get that ω◦M defines a
differential d◦ on Tor•OS

(OL,OM ). We have to show that d◦ does not depend
on the polarization. For this we repeat the proof of Theorem 4.3, making
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sure that all morphisms of differential Batalin-Vilkovisky modules preserve
orientations. For this, we have to be more careful with our choices. Of course,
F and F ′′, the two polarizations to be compared, are given. But we will choose
F ′ in a special way, as follows.

First note that on L, both F |L and F ′′|L are complements to TL inside
TS |L. Thus we obtain an isomorphism φ : F |L → F ′′|L, characterized by
φ(X)−X ∈ TL, for allX ∈ F |L. There exists a canonical subbundleH ⊂ TS |L,
such that H is complementary to F |L, F ′′|L and TL, and the isomorphism φ̃ :
F |L → F ′′|L, characterized by φ̃(X)−X ∈ H is equal to −φ. (Essentially, H is
obtained by negating the F ′′-components of the vectors in TL, but preserving
their F -components.) The subbundle H ⊂ TS |L is isotropic, so we can extend
it, at least locally, to a Lagrangian subbundle F ′ ⊂ TS . With this choice we
will have

h10

h12
=

(h10

h12

)∨
= (−1)nc02 ,

and hence
g2 = (−1)ng3 .

Now, finally, we choose, first an orientation ω◦L of L and then θ and θ′ in
such a way that

g1(θ yσn)|M = ω◦M ,

g2(θ′ yσn)|M = ω◦L .

Then, by the choice of F ′, we have

g3
(
θ′ y (−1)nσn

)
|M = ω◦L .

We choose θ′′ in such a way that c02 = 1, as above. Then h10 = (−1)nh12,
and hence h01 = (−1)nh21 and h01a01a20 = (−1)nh21a21. In other words,
g1a20 = (−1)ng4, or

g4
(
θ′′ y (−1)nσn

)
|M = g1(θ yσn)|M = ω◦M .

Now all four homomorphisms of Diagram (32) preserve orientations, and
hence they are equal to the morphisms of Diagram (30). This finishes the
proof. ut

Corollary 4.5. In the non-oriented case, the sheaf of Gerstenhaber alge-
bras Tor•OS

(OL,OM ) is locally a Batalin-Vilkovisky algebra, albeit in a non-
canonical way.

4.4 The exchange property

Let S and S′ be a complex symplectic manifolds, of dimension 2n, 2n′, re-
spectively.
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Definition 4.6. A symplectic correspondence C → S′ × S is called regular,
if for every point P ∈ C one can find polarizations E ⊂ ΩS , defined in a
neighborhood of π(P ) ∈ S, and E′ ⊂ ΩS′ , defined in a neighborhood of
π′(P ) ∈ S′, such that

(i) C is transverse to E′⊥ × E⊥ inside S′ × S,

(ii) the induced foliations F , F ′ on C descend to foliations F̃ , F̃ ′ on S′ and
S, respectively, as in Section 3.2.

Theorem 4.7. Let C → S′ × S be a regular symplectic correspondence. Let
L→ S be an immersed Lagrangian transverse to C and M ′ → S′ an immersed
Lagrangian transverse to C. Then there is a canonical isomorphism of sheaves
of Gerstenhaber algebras

Tor•OS′
(OL′ ,OM ′) = Tor•OS

(OL,OM ) ,

with notation as in (13).
If L, M ′ and C are oriented, then this is an isomorphism of sheaves of

Batalin-Vilkovisky algebras.

Proof. We apply the exchange property, Theorem 3.12, twice, first to C →
S′ × S, then to S′ → S′ × S′. ut

Theorem 4.8. Let C → S′ × S be a regular symplectic correspondence. Let
L→ S be an immersed Lagrangian transverse to C and M ′ → S′ an immersed
Lagrangian transverse to C. Let P ′ be a local system on M ′ and Q a local
system on L. Then there is a canonical isomorphism of sheaves of Batalin-
Vilkovisky modules

Ext•OS′
(Q|L′ , P ′) = Ext•OS

(Q,P ′|M ) ,

covering the isomorphism of sheaves of Gerstenhaber algebras of Theorem 4.7.

Proof. We apply the exchange property, Theorem 3.15, twice, first to C →
S′×S, then to S′ → S′×S′. The details are similar to the proof of Theorem 4.3.

ut

An example

Let M be a complex manifold and S = ΩM the cotangent bundle with its
canonical symplectic structure. There are two typical examples of immersed
Lagrangians:
(i) the graph of a closed 1-form ω ∈ Γ (M,ΩM ) which we denote by Γω ⊂ ΩM .

This is in fact embedded.
(ii) the conormal bundle CZ/M → ΩM , where Z → M is an immersion of

complex manifolds, i.e., a holomorphic map, injective on tangent spaces.
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Given one of each, we consider the Lagrangian intersection Γω ∪ CZ/M . Note
that it is supported on Z(ω) ∩ Z. We use the notation

TM (ω,Z) = Tor•OΩM
(OΓω ,OCZ/M

) ,

and
EM (ω,Z) = Ext•OΩM

(OΓω
,OCZ/M

) .

Let f : M → N be a holomorphic map between complex manifolds M ,
N . Consider the symplectic manifolds S′ = ΩM and S = ΩN . The pullback
vector bundle f∗ΩN is then a symplectic correspondence C:

f∗ΩN

��

// ΩN

ΩM

Let us assume that f∗ΩN → ΩM fits into a short exact sequence of vector
bundles

0 //K //f∗ΩN
//ΩM

//ΩM/N
//0 .

Then the symplectic correspondence C = f∗ΩN is regular.
If Z → M is an immersion (i.e., injective on tangent spaces), such that

the composition Z → N is also an immersion, then the conormal bundle
CZ/M → ΩM is an immersed Lagrangian transverse to f∗ΩN . The corre-
sponding immersed Lagrangian of ΩN is the conormal bundle CZ/N .

If ω ∈ Γ (N,ΩN ) is a closed 1-form, then its graph is a Lagrangian subman-
ifold of ΩN , which is automatically transverse to f∗ΩN . The corresponding
Lagrangian submanifold of ΩM is the graph of the pullback form f ∗ ω.

Corollary 4.9. There is a canonical isomorphism of Gerstenhaber algebras
with Batalin-Vilkovisky modules

TN (ω,Z) = TM (f∗ω,Z) , EN (ω,Z) = EM (f∗ω,Z) .

5 Further remarks

5.1 Virtual de Rham cohomology

Let M and L be Lagrangian submanifolds of the complex symplectic manifold
S. Let X be their scheme-theoretic intersection. Let E = Ext•OS

(OL,OM ) be
endowed with the differential d from Section 4.2. The sheaf E is a coherent
OX -module, the differential d is C-linear.

Definition 5.1. We call (E , d) the virtual de Rham complex of X.

Theorem 5.2. The complex (E , d) is constructible.
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Proof. The claim is local inX, so we may assume that the symplectic manifold
S is the cotangent bundle of the manifold M , that the first Lagrangian M is
the zero section and the second Lagrangian L is the graph of an exact 1-form
df , where f : M → C is a holomorphic function. In this form theorem was
proved by Kapranov; see the remarks towards the bottom of page 72 in [2]. ut

Corollary 5.3. The hypercohomology group Hp
(
X, (E , d)

)
is finite dimen-

sional. Moreover, for Z ⊂ X Zariski closed, Hp
Z

(
X, (E , d)

)
is also finite di-

mensional.

By abuse of notation, we will write Hp(X, E) and Hp
Z(X, E), instead of

Hp
(
X, (E , d)

)
and Hp

Z

(
X, (E , d)

)
, respectively.

Definition 5.4. We call the hypercohomology group Hp(X, E) the p-th vir-
tual de Rham cohomology group of the Lagrangian intersection X.

Corollary 5.5. The function

P 7−→
∑

i

(−1)i dimC Hi
{P}(X, E)

is a constructible function χ : X → Z.

We may think of χ : X → Z as the fiberwise Euler characteristic of the
constructible complex (E , d).

5.2 A speculation in Hodge theory

Remark 5.6. There is the standard spectral sequence of hypercohomology

Epq
1 = Hq(X, Ep) =⇒ Hp+q

(
X, (E , d)

)
. (33)

This should be viewed as a generalization of the Hodge to de Rham spectral
sequence.

There is also the usual local do global spectral sequence

Ep,q
2 = Hp(X, Eq) =⇒ Extp+q

OS
(OL,OM ) . (34)

One may speculate to what extent these spectral sequences degenerate.

Example 5.7. For example, if M is a manifold and S = ΩM the cotangent
bundle with its standard symplectic structure, and we consider the intersection
of M (the zero section) with itself, we get:

ExtpOS
(OM ,OM ) = Ωp

M .

Moreover, (E , d) = (Ω•
M , d) is the de Rham complex of M and Lagrangian

intersection cohomology is equal to de Rham cohomology of M . Thus the
spectral sequence (33) is the usual Hodge to de Rham spectral sequence:
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Epq
1 = Hq(M,Ωp) =⇒ Hp+q

(
M, (Ω•

M , d)
)
.

On the other hand, we have

Exti
OS

(OM ,OM ) =
⊕

p+q=i

Hi(M,Ωq) ,

in other words, the E2-term of the spectral sequence (34) is equal to the
abutment. Thus Exti

OS
(OM ,OM ) is equal to Hodge cohomology of M .

We may, then, rewrite the Hodge to de Rham spectral sequence (33) as

Exti
OS

(OM ,OM ) =⇒ Hi
(
M, (E , d)

)
.

This, of course, degenerates if M is proper and gives the equality

Exti
OS

(OM ,OM ) = Hi
(
M, (E , d)

)
, (35)

if M is Kähler, by Hodge theory.

The following conjecture is thus a generalization of Hodge theory:

Conjecture 5.8. Under sufficiently strong hypotheses, including certainly
that the intersection X = L∩M is complete and some analogue of the Kähler
condition, for example that X is projective, we we have

Hp
(
X, (E , d)

)
= Extp

OS
(OL,OM ) .

5.3 A differential graded category

Let S be a symplectic variety and U = {Ui} an affine open cover of S. Con-
struct a category A as follows: objects of A are pairs (M,P ), where M is
a Lagrangian submanifold of S and P is a local system on M . We do not
assume that M → S is a closed immersion, it suffices that this map be affine.
We often omit the first component of such a pair (M,P ) from the notation.

For objects (M,P ) and (L,Q) of A we define HomA(Q,P ) to be the total
complex associated to the double complex

C•(U, (E•, d))
given by Cech cochains with respect to the cover U with values in the vir-
tual de Rham complex E = Ext•OS

(Q,P ) (endowed with the differential from
Theorem 4.3).

Theorem 5.9. This defines a differential graded category.

Proof. For simplicity of notation, we deal only with Lagrangian submanifolds
M , N and L, leaving the generalization to local systems to the reader. There
are natural Yoneda pairings (all tensors and Ext’s are over OS)
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Exti(OM ,ON )⊗ Extj(ON ,OL) −→ Exti+j(OM ,OL) .

We need to show that these are compatible with the canonical differential
of Section 4.2. This is a local question, so we may assume that S has three
Lagrangian foliations F , F ′ and F ′′, all transverse to each other, and all
transverse to M , N , L. Let s, t′, u′′ be the Euler sections of M , N , L with
respect to F , F ′ and F ′′, respectively. Then we can represent Ext•(OM ,ON )
as the cohomology of (Ω•

S , s − t′), and Ext•(ON ,OL) as the cohomology of
(Ω•

S , t
′ − u′′), and Ext•(OM ,OL) as the cohomology of (Ω•

S , s − u′′). So the
claim will follow if we can produce a morphism of complexes

(Ω•
S , s− t′)⊗ (Ω•

S , t
′ − u′′) −→ (Ω•

S , s− u′′) .

But this is easy: just take the cup product. ut

Remark 5.10. The cohomology groups of the hom-spaces inA are the virtual
de Rham cohomology groups of Lagrangian intersections.

Remark 5.11. The category A does not depend on the affine cover U in any
essential way.

Remark 5.12. Of course, it is tempting to speculate on relations of A to the
Fukaya category of S. We will leave this to future research.

5.4 Relation to vanishing cycles

Let S be a complex symplectic manifold of dimension 2n. Let L,M Lagrangian
submanifolds, and X = L ∩M their intersection.

In [1], we introduced for any scheme X a constructible function νX : X →
Z. The value νX(P ) is an invariant of the singularity (X,P ). In our context,
the singularity (X,P ) is the critical set of a holomorphic function f : M → C,
locally defined near P ∈ M . Hence (see [1]), the invariant νX(P ) is equal to
the Milnor number of f at P , i.e., we have

νX(P ) = (−1)n
(
1− χ(FP )

)
,

where FP is the Milnor fibre of f at the point P .

Conjecture 5.13. We have χ(P ) = νX(P ).

This conjecture would follow from Remark 2.12 (b) of [2]. Note that Kapra-
nov refers to this as a fact, which is not obvious, although probably not very
difficult.

Conjecture 5.14. If the intersection X is compact, so that the intersection
number #vir(X) is well-defined, we have

#vir(X) =
∑

i

(−1)i dim Hi(X, E) ,

i.e., the intersection number if equal to the virtual Euler characteristic of
X, defined in terms of virtual de Rham cohomology.
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To see that Conjecture 5.13 implies Conjecture 5.14, recall from [1], that
the intersection X has a symmetric obstruction theory. The main result of [1]
implies that #vir(X) = χ(X, νX). But if χ = νX , then χ(X, νX) = χ(X,χ) =∑

i(−1)i dim Hi(X, E).

Remark 5.15. If S is the cotangent bundle of M , and L is the graph of df ,
where f : M → C is a holomorphic function, then the Lagrangian intersection
X = L ∩M is the critical set of f . Thus X carries the perverse sheaf of van-
ishing cycles Φf . In [2], Kapranov constructs, at least conjecturally, a spectral
sequence whose E2-term is (E , d) and whose abutment is, in some sense, Φf .

Conjecture 5.16. In the general case of a Lagrangian intersection X =
L ∩M inside a complex symplectic manifold S, we conjecture the existence
of a natural perverse sheaf on X, which locally coincides with the perverse
sheaf of vanishing cycles of Remark 5.15. There should be a spectral sequence
relating (E , d) to this perverse sheaf of vanishing cycles. We believe that [3]
may be related to this question. This conjecture, in some sense, categorifies
Conjecture 5.13.

References

1. K. Behrend, Donaldson-Thomas invariants via microlocal geometry,
math.AG/0507523, July 2005.

2. M. Kapranov, On DG-modules over the de Rham complex and the vanishing
cycles functor, Algebraic Geometry (Chicago, 1989), Lecture Notes in Math.,
1479, Springer, Berlin, 1991, 57–86.

3. M. Kashiwara, P. Schapira, Constructibility and duality for simple holonomic
modules on complex symplectic manifolds, math.QA/0512047, December 2005.

4. D. Tamarkin, B. Tsygan, The ring of differential operators on forms in
noncommutative calculus, Graphs and patterns in mathematics and theoretical
physics, Proc. Sympos. Pure Math. 73, Amer. Math. Soc., Providence, RI, 2005,
105–131.


