\relax \immediate\closeout\minitoc \let \MiniTOC =N \@writefile{toc}{\contentsline {title}{Riemann-Roch for real varieties}{125}} \@writefile{toc}{\contentsline {author}{Paul Bressler\unskip {}\and Mikhail Kapranov\unskip {}\and Boris Tsygan\unskip {}\and Eric Vasserot\unskip {}}{125}} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{125}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}}{125}} \newlabel{subsection: hyperfunctions}{{1.1}{125}} \newlabel{hyperfunctions}{{1}{125}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}}{125}} \newlabel{GRR}{{2}{125}} \citation{D1} \citation{E} \citation{PS} \citation{PS} \citation{Bre} \citation{Bry} \newlabel{det coh fib}{{3}{126}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3}}{126}} \newlabel{class of det gerbe}{{4}{126}} \citation{AH} \citation{Lo} \citation{BG} \citation{W} \@writefile{toc}{\contentsline {subsection}{\numberline {1.4}}{127}} \newlabel{subsection: higher det gerbe}{{1.4}{127}} \citation{F} \citation{Bo} \citation{RSF} \citation{RSF} \citation{D1} \citation{E} \citation{M} \citation{FT} \citation{BNT} \citation{NT} \citation{BNT} \@writefile{toc}{\contentsline {subsection}{\numberline {1.5}}{128}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.6}}{128}} \citation{McK} \@writefile{toc}{\contentsline {subsection}{\numberline {1.7}}{129}} \@writefile{toc}{\contentsline {section}{\numberline {2}Background on Lie algebroids, groupoids and gerbes.}{129}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Conventions}{129}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2} Lie algebroids}{129}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}The de Rham complex of a Lie algebroid}{130}} \newlabel{de Rham differential}{{5}{130}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}The enveloping algebra of a Lie algebroid.}{130}} \citation{Kal} \@writefile{toc}{\contentsline {subsection}{\numberline {2.5}The Koszul resolution}{131}} \newlabel{Spencer}{{6}{131}} \newlabel{corollary: DR is RHom}{{11}{131}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.6}The Atiyah algebra}{131}} \newlabel{ses: tran lie algd}{{7}{131}} \newlabel{transition functions Atiyah}{{8}{131}} \citation{McK} \@writefile{toc}{\contentsline {subsection}{\numberline {2.7}Modules over Lie algebroids}{132}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.8}Cohomology of Lie algebroids.}{132}} \citation{F} \citation{McK} \citation{Kal} \@writefile{toc}{\contentsline {subsection}{\numberline {2.9}The Hochschild-Serre spectral sequence and the transgression.}{133}} \newlabel{extension of lie algds}{{9}{133}} \newlabel{Hochschild-Serre SS}{{10}{133}} \newlabel{cohomology vanishing}{{11}{133}} \newlabel{transgaression map}{{12}{133}} \citation{L} \citation{KV2} \citation{Bre} \citation{Bre} \citation{LM} \citation{Bre} \newlabel{example: central extensions of Lie algebras}{{17}{134}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.10}Reminder on gerbes.}{134}} \citation{Bry} \citation{Bl} \citation{Bry} \newlabel{exponential sequence}{{13}{135}} \newlabel{boundary map}{{14}{135}} \newlabel{example: curving}{{18}{135}} \citation{L} \newlabel{theorem: curvature is integral}{{19}{136}} \@writefile{toc}{\contentsline {section}{\numberline {3}Background on homology of differential operators}{136}} \newlabel{section: HH HC DO}{{3}{136}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Conventions}{136}} \newlabel{HH is Tor}{{15}{136}} \newlabel{CC}{{16}{136}} \newlabel{theorem: HLie is SymmHC}{{20}{136}} \citation{L} \citation{BG} \citation{W} \citation{W} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Homology of differential operators: algebro-geometric version.}{137}} \newlabel{subsection: homology of DO AG}{{3.2}{137}} \newlabel{HH Weyl}{{17}{137}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}The $C^\infty $ version.}{137}} \citation{F} \citation{FT} \citation{BG} \citation{W} \newlabel{HH DO}{{18}{138}} \newlabel{corollary: HLie glDO}{{23}{138}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.4}The formal series version.}{138}} \newlabel{subsection: formal series version}{{3.4}{138}} \newlabel{proposition: HH DO formal}{{24}{139}} \citation{BG} \citation{W} \newlabel{eq:aassaa}{{20}{140}} \citation{McK} \newlabel{theorem: HH HC DO formal}{{25}{141}} \newlabel{corollary: dTr on CC}{{26}{141}} \@writefile{toc}{\contentsline {section}{\numberline {4}Characteristic classes from Lie algebra cohomology.}{141}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}The finite-dimensional case}{141}} \newlabel{H-S ss Atiyah}{{21}{142}} \newlabel{acyclicity condition HLie}{{22}{142}} \newlabel{eq:3.1.6}{{23}{142}} \newlabel{eq:3.1.7}{{24}{142}} \newlabel{example: central extension}{{30}{143}} \newlabel{central extension lie alg}{{25}{143}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Other interpretations}{143}} \newlabel{subsubsection: Chern-Weil picture}{{4.2.1}{143}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.2.1}The Chern-Weil picture}{143}} \newlabel{inv forms connection}{{26}{143}} \newlabel{subsubsection: DG picture}{{4.2.2}{144}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.2.2}The differential graded picture}{144}} \newlabel{boundary map Atiyah}{{27}{144}} \newlabel{subsubsection: D-mod picture}{{4.2.3}{144}} \@writefile{toc}{\contentsline {subsubsection}{\numberline {4.2.3}The $\@mathcal {D}$-module picture}{144}} \newlabel{ses: Lie cochains}{{28}{144}} \citation{C} \citation{D2} \newlabel{morphism from class}{{29}{145}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}Infinite-dimensional groups}{145}} \citation{C} \newlabel{diff space is a functor}{{30}{146}} \newlabel{example: groups of diffeomorphisms}{{34}{146}} \newlabel{example: gauge groups}{{35}{146}} \newlabel{example: Atiyah groups}{{36}{146}} \newlabel{principal bundle Atiyah group}{{31}{147}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}The first Chern class}{147}} \newlabel{subsection: C1}{{4.4}{147}} \newlabel{definition: C1}{{38}{148}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.5}Construction of $\@mathcal {A}_{\Sigma /B, E}$.}{148}} \newlabel{subsection: construction of algd}{{4.5}{148}} \newlabel{ses:F1UA}{{32}{148}} \newlabel{ses:F1DE}{{33}{148}} \newlabel{ses:glD algd}{{34}{148}} \citation{F} \newlabel{conn hom on base}{{35}{149}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.6}Smooth cohomology and characteristic classes}{149}} \newlabel{subsection: smooth coh}{{4.6}{149}} \citation{Bry} \newlabel{pull-back class}{{36}{150}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.7}Integrality and integrability}{150}} \newlabel{derivative coh}{{37}{150}} \citation{F} \newlabel{double complex group coh}{{38}{151}} \newlabel{conjecture: integral C1}{{39}{151}} \newlabel{conj true for central extensions}{{40}{152}} \newlabel{conjecture: higher chern classes}{{41}{152}} \newlabel{eq:assa}{{39}{152}} \newlabel{eq:aaasa}{{40}{152}} \@writefile{toc}{\contentsline {section}{\numberline {5}The Real Riemann-Roch}{152}} \newlabel{theorem: main}{{42}{152}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}A $\@mathcal {D}$-module interpretation of $C_1$ using $\@mathcal {A}_{\Sigma /B, E}$.}{152}} \citation{L} \citation{L} \newlabel{contraction operator}{{41}{153}} \newlabel{local to global ss}{{42}{153}} \newlabel{definition of alpha}{{43}{154}} \newlabel{integral after conn hom}{{44}{154}} \newlabel{proposition: C is C1}{{43}{154}} \citation{L} \@writefile{toc}{\contentsline {subsection}{\numberline {5.2}A local RRR in the total space}{155}} \newlabel{theorem: local RRR}{{44}{155}} \citation{NT} \citation{NT} \newlabel{theorem: local RR CCper}{{45}{156}} \citation{NT} \citation{NT} \@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Proof of Theorem 45\hbox {}}{157}} \newlabel{CW map}{{45}{157}} \citation{BNT} \citation{NT} \citation{BNT} \@writefile{toc}{\contentsline {section}{\numberline {6}Comparison with the gerbe picture}{158}} \newlabel{section: comparison with gerbe}{{6}{158}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1}$L^2$-sections of a vector bundle on a circle.}{158}} \citation{PS} \citation{PS} \citation{PS} \citation{PS} \newlabel{lemma: GLres indep of choices}{{47}{159}} \newlabel{mult det}{{46}{160}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2}$L^2$-direct image in a circle fibration.}{160}} \citation{T} \citation{KP} \citation{KR} \citation{W} \citation{L} \bibcite{AH}{1} \bibcite{Bl}{2} \bibcite{Bo}{3} \bibcite{BNT}{4} \bibcite{Bre}{5} \bibcite{Bry}{6} \bibcite{BG}{7} \bibcite{C}{8} \bibcite{D1}{9} \bibcite{D2}{10} \bibcite{E}{11} \bibcite{FT}{12} \bibcite{F}{13} \bibcite{HS}{14} \bibcite{KP}{15} \bibcite{KR}{16} \bibcite{Kal}{17} \bibcite{KV1}{18} \bibcite{KV2}{19} \bibcite{LM}{20} \bibcite{L}{21} \bibcite{Lo}{22} \bibcite{McK}{23} \bibcite{M}{24} \@writefile{toc}{\contentsline {section}{References}{163}} \@mtwritefile{\contentsline {mtchap}{References}{163}} \bibcite{NT}{25} \bibcite{PS}{26} \bibcite{RSF}{27} \bibcite{T}{28} \bibcite{W}{29} \immediate\closeout\minitoc