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1 Introduction

1.1

Let Σ be an oriented real analytic manifold of dimension d and let X be
a complex envelope of Σ, i.e. a complex manifold of the same dimension
containing Σ as a totally real submanifold. Then, (real) geometric objects on
Σ can be viewed as (complex) geometric objects on X involving cohomology
classes of degree d. For example, a C∞-function f on Σ can be considered as
a section of BΣ , the sheaf of hyperfunctions on Σ which, according to Sato,
can be defined as

BΣ = Hd
Σ(OX ⊗ orΣ/X) , (1)

where orΣ/X is the relative orientation sheaf. So f can be viewed as a class
in dth local cohomology.

More generally, the equality (1) suggests that various results of holomor-
phic geometry on X should have consequences for the purely real geometry
on Σ, consequences that involve raising the cohomological degree by d. The
goal of this paper is to investigate the consequences of one such result, the
Grothendieck-Riemann-Roch theorem (GRR).

1.2

Let p : X → B be a smooth proper morphism of complex algebraic manifolds.
We denote the fibers of p by Xb = p−1(b) and assume them to be of dimension
d. If E is an algebraic vector bundle on X, the GRR theorem says that

chm(Rp∗(E)) =
∫
X/B

[
ch(E) · Td(TX/B)

]
2m+2d

∈ H2m(B,C) . (2)

Here
∫
X/B

: H2m+2d(X,C) → H2m(B,C) is the cohomological direct image
(integration over the fibers of p).
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In the case m = 1 the class on the left comes from the class, in the Picard
group of B, of the determinantal line bundle det(Rp∗E) whose fiber, at a
generic point b ∈ B, is

det H•(Xb, E) =
⊗
i

(
ΛmaxHi(Xb, E)

)⊗ (−1)i

. (3)

Deligne [9] posed the problem of describing det(Rp∗E) in a functorial way as
a refinement of GRR for m = 1. This problem makes sense already for the
case B = pt when we have to describe the 1-dimensional vector space (3) as
a functor of E . Deligne solved this problem for a family of curves and further
results have been obtained in [11].

1.3

To understand the real counterpart of (2), assume first that B = pt, so X =
Xpt and let Σ ⊂ X be as in 1.1. Denote by E the restriction of E to Σ and
by C∞Σ (E) the sheaf of its C∞ sections. Then, similarly to (1), we have the
embedding

C∞Σ (E) ⊂ Hd
Σ(E ⊗ΩdX) .

Assume further that d = 1, so X is an algebraic curve, and that Σ is a
small circle in X cutting it into two pieces: X+ (a small disk) and X−. Let
E± = E|X± . We are then in the situation of the Krichever correspondence
[26]. Namely, the space Γ (E) of L2-sections has a canonical polarization in
the sense of Pressley and Segal [26] and therefore possesses a determinantal
gerbe DetΓ (E). The latter is a category with every Hom-set made into a C∗-
torsor (a 1-dimensional vector space with zero deleted). The extensions E± of
E to X± define two objects [E±] of this gerbe, and

det H•(X, E) = HomDetΓ (E)([E+], [E−]) .

The real counterpart of the problem of describing the C∗-torsor det H•(X, E)
is the problem of describing the gerbe DetΓ (E). If we now have a family
p : X → B as before (with d = 1), equipped with a subfamily of circles
q : Σ → B, Σ ⊂ X, then we have an O∗B-gerbe Det q∗(E) which, according to
the the classification of gerbes [5], has a class in H2(B,O∗B). The latter group
maps naturally to H3(B,Z) and in fact can be identified with the Deligne
cohomology group H3(B,ZD(1)), see [6]. The Real Riemann-Roch for a circle
fibration describes the above class (modulo 2-torsion) as

[Det q∗(E)] =
∫
Σ/B

ch2(E) ∈ H3(B,ZD(2))⊗ Z
[
1
2

]
. (4)

Here
∫
Σ/B

: H4(Σ,ZD(2)) → H3(B,ZD(1)) is the direct image in Deligne
cohomology. Note the absense of the characteristic classes of TΣ/B (they are
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2-torsion for a real rank one bundle). If one is interested in the image of the
determinantal class in H3(B,Z), then one can understand the RHS of the
above formula in the purely topological sense.

Both sides of (4) do not involve anything other than q : Σ → B and a
vector bundle E on Σ (equipped with CR-structures coming from the embed-
dings into X, E). One has a similar result for any C∞ circle fibration (no CR
structure) and any C∞ complex bundle E on Σ. In this case we get a gerbe
with lien C∞∗B , the sheaf of invertible complex valued C∞-functions on B and
its class lies in H2(B,C∞∗B ) = H3(B,Z). It is this, purely C∞ setting, that
we adopt and generalize in the present paper.

1.4

Let Σ be a compact oriented C∞-manifold of arbitrary dimension d and E
a C∞ complex vector bundle on Σ. One expects that the space Γ (E) should
have some kind of d-fold polarization, giving rise to a “determinantal d-gerbe”,
DetΓ (E). This structure is rather clear when Σ is a 2-torus but in general the
theory of higher gerbes is not fully developed. In any case one expects that
a C∞ family of such gerbes over a base B gives a class in Hd+1(B,C∞∗B ) =
Hd+2(B,Z). In this paper we consider a C∞ family q : Σ → B of relative
dimension d and a C∞ bundle E on Σ. We then define by means of the
Chern-Weil approach, what should be the characteristic class of the would-be
d-gerbe Det(q∗(E)):

C1(q∗(E)) ∈ Hd+2(B,C) .

We denote it by C1 since it is a kind of d-fold delooping of the usual first Chern
(determinantal) class. We then show the compatibility of this class with the
gerbe approach whenever the latter can be carried out rigorously. Our main
result is the Real Riemann-Roch theorem (RRR):

C1(q∗E) =
∫
Σ/B

[
ch(E) · Td(TΣ/B)

]
2d+2

∈ Hd+2(B,C) .

Here, TΣ/B is the complexified relative tangent bundle and
∫
Σ/B

, the integra-
tion along the fibers of q, lowers the degree by d.

Note that the above theorem is a statement of purely real geometry and is
quite different from the “Riemann-Roch theorem for differentiable manifolds”
proved by Atiyah and Hirzebruch [1]. The latter expresses properties of a Dirac
operator on a real manifold Σ, while our RRR deals with the ∂-operator on
a complex envelope X of Σ. The d = 1 case above can be deduced from
a result of Lott [22] on “higher” index forms for Dirac operators (because
the polarization in the circle case can be described in terms of the signs of
eigenvalues of the Dirac operator). In general, however, our results proceed in
a different direction.
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1.5

Our definition of C1(q∗E) uses the description of the cyclic homology of dif-
ferential operators [7] [29] which provides a construction of a natural Lie
algebra cohomology class γ of the Atiyah algebra, i.e., of the Lie algebra of
infinitesimal automorphisms of a pair (Σ,E) where Σ is a compact oriented
d-dimensional C∞-manifold and E is a vector bundle on Σ. The intuition with
higher gerbes suggests that this class comes in fact from a group cohomology
class of the infinite-dimensional group of all the automorphisms of (Σ,E), see
Proposition 40 and, moreover, that there are similar classes coming from the
higher Chern classes (39). This provides a new point of view on the rather
classical subject of “cocycles on gauge groups and Lie algebras” i.e., on groups
of diffeomorphisms of manifolds and automorphisms of vector bundles as well
as their Lie algebra analogs.

There have been two spurs of interest in this subject. The first one was
the study of the cohomology of the Lie algebras of vector fields following the
work of Gelfand-Fuks, see [13] for a systematic account. In particular, Bott
[3] produced a series of cohomology classes of the Lie algebra of vector fields
on a compact manifold and integrated them to group cohomology classes of
the group of diffeomorphisms. Later, group cocycles have been studied with
connections with various anomalies in physics, see [27].

¿From our point of view, the approach of [27] can be seen as producing
“integrals of products of Chern classes” in families over a base B, (cf. [9]
[11]), in other words, as producing the ingredients for the right hand side
of a group-theoretical RRR. This is the same approach that leads to the
construction of the Morita-Miller characteristic classes for surface fibrations
[24]. The anomalies themselves, however, should be seen as the hypothetical
classes from Conjectures 39, 41 and whose description through integrals of
products of Chern classes constitutes the RRR.

1.6

As far as the proof of the RRR goes, we use two types of techniques. The first
is that of differential graded Lie algebroids (which can be seen as infinitesimal
analogs of higher groupoids appearing in the heuristic discussion above). The
second technique is that of “formal geometry” of Gelfand and Kazhdan, i.e.,
reduction of global problems in geometry of manifolds and vector bundles to
problems related to cohomology of Lie algebras of formal vector fields and
currents. The first work relating Riemann-Roch to Lie algera cohomology was
[12] and this approach was further developed in [4]. To prove the RRR we
use results of [25] and [4] on the Lie algebra cohomology of formal Atiyah
algebras.
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2 Background on Lie algebroids, groupoids and gerbes.

2.1 Conventions

All manifolds will be understood to be C∞ unless otherwise specified. For a
manifold Σ we denote by C∞Σ the sheaf of C-valued C∞-functions. By a vector
bundle over Σ we mean a locally trivial, C∞ complex vector bundle, possibly
infinite-dimensional. For such a bundle E we denote by C∞(E) = C∞Σ (E) the
sheaf of smooth sections, which is a locally free sheaf of C∞Σ -modules. By TΣ
we denote the complexified tangent bundle of Σ, so its sections are derivations
of C∞Σ . We denote by DΣ the sheaf of differential operators acting on C∞Σ
and by DΣ,E the sheaf of differential operators acting from sections of E to
sections of E. The notations D(Σ) and D(Σ,E) will be used for the spaces of
global sections of DΣ and DΣ,E .

2.2 Lie algebroids

Recall [23] that a Lie algebroid on Σ consists of a vector bundle G, a morphism
of vector bundles α : G → TΣ (the anchor map) and a Lie algebra structure
in C∞(G) satisfying the properties:

1. α takes the Lie bracket on sections of G to the standard Lie bracket on
vector fields.

2. For any smooth function f on Σ and sections x, y of G we have

[fx, y]− f · [x, y] = Lieα(y)(f) · x .

A Lie algebroid is called transitive if α is surjective.

Example 1. When Σ = pt, a Lie algebroid is the same as a Lie algebra.

Example 2. TX with the standard Lie bracket and α = id is a Lie algebroid.

Example 3. If α = 0, then the bracket in G is C∞Σ -linear. In this case we say
that G is a bundle of Lie algebras: every fiber of G is a Lie algebra.

Morphisms of Lie algebroids are defined in an obvious way. Note that
for any transitive Lie algebroid G the kernel Ker(α) ⊂ G is a bundle of Lie
algebras, i.e., a Lie algebroid with trivial anchor map, and the maps in the
short exact sequence

0→ Ker(α)→ G α→ TX → 0

are morphisms of Lie algebroids.
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2.3 The de Rham complex of a Lie algebroid

Let G be a Lie algebroid on Σ. Let

DRi(G) := Hom(ΛiG, C∞Σ ) .

The differential d : DRi(G) → DRi+1(G) is defined by the standard formula
of Cartan: for an antisymmetric i-linear function l : Gi → C∞Σ we set

dl(x1, ..., xi+1) =
i+1∑
j=1

(−1)jLieα(xj)l(x1, ..., x̂j , ..., xi+1)

+
∑
j<k

(−1)j+kl([xj , xk], x1, ..., x̂j , ..., x̂k, ..., xi+1) . (5)

We get a complex DR•(G) called the de Rham complex of G. A morphism of
Lie algebroids φ : G → H gives rise to the morphism of de Rham complexes
φ∗ : DR•(H)→ DR•(G).

Example 4. If Σ = pt, so G is a Lie algebra, then DR•(G) = C•(G) is the
cochain complex of G with trivial coefficients.

Example 5. If G = TΣ , then DR•(G) = Ω•Σ is the C∞ de Rham complex of
Σ.

2.4 The enveloping algebra of a Lie algebroid.

Let G be a Lie algebroid on Σ, as before. The enveloping algebra U(G) is the
sheaf of associative algebras on Σ defined by generators x ∈ G (local sections)
and f ∈ C∞Σ (local functions) subject to the relations:

xy − yx = [x, y]
f · x− x · f = Lieα(x)(f) .

Example 6. If Σ = pt, so G is a Lie algebra, then U(G) is the usual enveloping
algebra of G.

Example 7. If G = TΣ , then U(G) = DΣ is the sheaf of differential operators
C∞Σ → C∞Σ .

Example 8. If G is any Lie algebroid, then the anchor map α induces a
morphism

U(α) : U(G)→ U(TΣ) = DΣ
of sheaves of associative algebras. In particular, C∞Σ is a left U(G)-module.

The sheaf U(G) has an increasing ring filtration {Um(G)} with Um(G)
generated by products involving at most m sections of G. The following is
then standard.

Proposition 9. The associated graded sheaf of algebras grU(G) is identified
with the symmetric algebra S•(G).
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2.5 The Koszul resolution

Let G be a Lie algebroid on Σ. We have then the complex

...→ U(G)⊗ Λ2G → U(G)⊗ G → U(G)→ C∞Σ → 0 . (6)

with the differential defined by:

d(u⊗ (γ1 ∧ ... ∧ γn)) =
n∑
j=1

(−1)j(uγj)⊗
(
γ1 ∧ ... ∧ γ̂j ∧ ... ∧ γn

)
+

∑
j<k

(−1)j+ku⊗
(
[γi, γj ] ∧ ... ∧ γ̂i ∧ ... ∧ γ̂j ∧ ... ∧ γn

)
.

Proposition 10. The complex (6) is exact. Thus, it provides a locally free
resolution of C∞Σ as a U(G)-module.

Corollary 11. We have

DR•(G) ' RHomU(G)(C
∞
Σ , C

∞
Σ ) .

2.6 The Atiyah algebra

Let G be a Lie group, g be its Lie algebra, and ρ : P → Σ a principal G-bundle
on Σ. The Atiyah algebra AP is the sheaf of Lie algebras on Σ whose sections
are G-invariant vector fields on P :

AP = (ρ∗TP )G .

The map α = dρ makes AP into a transitive Lie algebroid of the form

0 −−−−→ Ad(P ) −−−−→ AP
α−−−−→ TΣ −−−−→ 0. (7)

Here, Ad(P ) is the bundle of Lie algebras on Σ associated to P via the adjoint
representation.

If Σ =
⋃
Ui is a covering in which P is trivialized: P |Ui = Ui × G, and

gij : Ui ∩ Uj → Aut(g) are the transition functions, then AP is glued out of
AP |Ui = TUi × g via the transition functions

(v, x) 7→ (v, iv(dgij · g−1
ij ) + Adgij (x)) . (8)

Example 12. Let G = GLr(C), so g = glr(C). A principal G-bundle P cor-
responds then to a rank r vector bundle E on Σ. In this case AP will also
be denoted AE and has a well known alternative description. It consists of
differential operators L : E → E such that:

1. L has order ≤ 1.
2. The first order symbol of L (which is a priori a section of TΣ ⊗ End(E))

lies in the subsheaf TΣ = TΣ ⊗ 1.
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2.7 Modules over Lie algebroids

We follow [17] §3 but use a more geometric language. Let G be a Lie algebroid
on Σ. A G-module is a vector bundle M on Σ equipped with a Lie algebra
action (x,m) 7→ xm of G on the sections which satisfies

1. the Leibniz rule

x(f ·m)− f · (xm) = (Lieα(x)f) ·m, f ∈ C∞Σ , x ∈ G,m ∈M ;

in particular, the assignment x 7→ (m 7→ x ·m) defines a map G → AM
which commutes with respective anchor maps

2. the map G → AM is C∞Σ -linear.

Example 13. For any G the trivial bundle (whose sheaf of sections is) C∞Σ is a
G-module with the G action given via the anchor map and the Lie derivations
of functions.

Example 14. An ideal in G is a sub-Lie algebroid G′ such that [G,G′] ⊂ G′.
Suppose that G′ is an ideal in G such that the restriction of the anchor map
to G′ is trivial. Then, G′ is a G-module via the adjoint action.

Any G-module has a structure of a sheaf of modules over the sheaf of rings
U(G).

2.8 Cohomology of Lie algebroids.

Let M be a G-module. The de Rham complex DR•(G,M) with coefficients
inM is defined by

DRi(G,M) = Hom(ΛiG,M) .

with the differential of l : Gi →M defined by the modification of (5):

dl(x1, ..., xi+1) =
i+1∑
j=1

(−1)jxj(l(x1, ..., x̂j , ..., xi+1))

+
∑
j<k

(−1)j+kl([xj , xk], x1, ..., x̂j , ..., x̂k, ..., xi+1) .

Its cohomology sheaves will be denoted Hi
Lie(G,M) and the corresponding

cohomology groups of the complex of global smooth sections of DR•(G,M)
by Hi

Lie(G,M). See [23], §7.1. As before, it is easy to see that

DR•(G,M) ' RHomU(G)(C
∞
Σ ,M) .

Therefore,

Hi
Lie(G,M) = ExtiU(G)(C

∞
Σ ,M), Hi

Lie(G,M) = ExtiU(G)(C
∞
Σ ,M).

Example 15. The trivial bundle C∞Σ is always a G-module and for G = TΣ
we have Hi

Lie(TΣ , C∞Σ ) = Hi(Σ,C).
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2.9 The Hochschild-Serre spectral sequence and the transgression.

Let
0→ G′ → G → G′′ → 0 (9)

be an extension of Lie algebroids on Σ, so G′ is an ideal with zero anchor in G.
Note that G′ is then a bundle of Lie algebras. LetM be a G-module. Then for
every point x ∈ Σ the fiberMx is a module over the Lie algebra G′x. Assume
that for any i ≥ 0 the sheaf of C∞Σ -modules Lie algebra cohomology spaces
Hi

Lie(G′,M) is locally free. Then the sheaves Hi
Lie(G′,M) are vector bundles

on Σ with fiber Hi
Lie(G′x,Mx) at x ∈ Σ. These vector bundles have natural

structures of G′′-modules. In this case we have (a Lie algebroid generalization
of) the Hochshild-Serre spectral sequence with

Epq2 = Hp
Lie(G

′′,Hq
Lie(G

′,M))⇒ Hp+q
Lie (G,M) . (10)

The construction is parallel to the classical (Lie algebra) case as in [13]. One
uses the short exact sequence (9) to produce, in a standard way, a filtration
on DR•(G,M). See [23], Section 7.4 for the treatment of the case G′′ = TΣ
which is the only case we will use in this paper.

Example 16. Similarly to the classical case, one can use (10) (or elementary
considerations) to identify H2

Lie(G,M) with the set of isomorphism classes of
central extensions of Lie algebroids

0→M→ G̃ → G → 0.

Central extensions of this type with G = TΣ , M = C∞Σ , and the G-action
onM being the standard one (by Lie derivations), were called in [17] Picard
Lie algebroids. The set of their isomorphism classes is thus identified with
H2

Lie(TΣ , C∞Σ ) which is the same as the topological (de Rham) cohomology
H2(Σ,C).

Fix n > 0 and assume that

Hj(G′,M) = 0, 0 < j < n . (11)

In this case E0,n
2 = E0,n

n+1 as well as E0,n+1
2 = E0,n+1

n+1 . We obtain therefore the
transgression map

dn+1 : E0,n
n+1 = E0,n

2 = Hn
Lie(G′,M)G

′′
−→

Hn+1
Lie (G′′,MG

′
) = En+1,0

2 = En+1,0
n+1 . (12)

We will use this map later in the paper. Without the assumption (11) we
have that E0,n

n+1 is a subspace of E0,n
2 = Hn

Lie(G′,M)G
′′

namely the intersec-
tion of the kernels of d2, ..., dn. For convenience we will call elements of this
space transgressive elements of E0,n

2 . Similarly, En+1,0
n+1 is a quotient space of

En+1,0
2 = Hn+1

Lie (G′′,MG′) by the union of images of d2, ..., dn.
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Example 17. Suppose that n = 2 and Σ = pt, so (9) is a central extension
of Lie algebras and M is a G-module in the usual sense. Let γ ∈ E0,2

2 =
H2

Lie(G′,M)G
′′

be a G′′-invariant class in H2 and

0→M→ G̃′ → G′ → 0

be a central extension representing γ. The class γ is transgressive, (i.e., an-
nihilated by d2) if and only if G̃′ can be made into a G-equivariant central
extension (as opposed to the fact that the class of the extension remains un-
changed under the G-action or, what is the same, under G′′-action). Given
such an equivariant extension, one obtains a crossed module of Lie algebras
(i.e., a dg-Lie algebra situated in degrees (-1) and 0)

G̃′′ ∂−→ G,

with Ker(∂) =M and Coker(∂) = G′′. As well known (see, e.g., [21], Example
E.10.3), such a crossed module represents an element in H3(G′′,M), and this
element is the lifting of d3(β). Different choices of equivariant structure on G̃′
correspond to the ambiguity of the values of d3 modulo the image of d2. One
can generalize this picture easily to the case of an arbitrary Σ.

2.10 Reminder on gerbes.

We follow the same conventions as in [19] and use [5] as the background
reference.

If B is a topological space and and F is a sheaf of abelian groups on B,
then we can speak of F-gerbes (= gerbes with lien F). Recall that such a
gerbe G is the following:

1. A category G(U) given for all open U ⊂ B, the restriction functors rUV :
G(U)→ G(V ) given for any morphism V ⊂ U and natural isomorphisms
of functors sUVW : rVW ◦ rUV ⇒ rUW given for each W ⊂ V ⊂ U and
satisfying the transitivity conditions.

2. The structure of F|U -torsor (possibly empty) on each sheaf HomG(U)(x, y)
compatible with the rUV and such that the composition of morphisms is
bi-additive.

These data have to satisfy the local uniqueness and gluing properties for
which we refer to [5].

By a sheaf of F-groupoids we will mean a sheaf of categories C on B (so
both Ob C and MorC are sheaves of sets) in which each sheaf HomC(U)(x, y)
is either empty or is made into a sheaf of F|U -torsors so that the composition
is biadditive. A sheaf C of F-groupoids is called locally connected if locally
on B all the ObC(U) and HomC(U)(x, y) are nonempty.

Each sheaf of F-groupoids can be seen as a fibered category over B, in
fact it is a pre-stack, see, e.g., [20]. Recall (see, e.g., loc. cit. Lemma 2.2) that
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for any pre-stack C there is an associated stack C
∼
. If C is a locally connected

sheaf of F-groupoids, then C
∼

is an F-gerbe.
As well known (see, e.g., [5]), the set formed by F-gerbes up to equivalence

is identified withH2(B,F). The identification of the set of isomorphism classes
of Picard Lie algebroids in Example 1.9.3 can be seen as an infinitesimal analog
of this fact. Given an F-gerbe G, we denote by [G] ∈ H2(B,F) its class. Given
a sheaf C of F-groupoids, we denote by [C] the class of the corresponding gerbe.

Let B be a C∞-manifold. We will be particularly interested in C∞∗B -gerbes
on B. Recall that we have the exponential sequence of sheaves on B:

0→ ZB → C∞B
e2πix

−−−→ C∞∗B → 0 . (13)

The corresponding coboundary map

δn : Hn(B,C∞∗B )→ Hn+1(B,Z) (14)

is an isomoprhism for n ≥ 1 since C∞B is a soft sheaf. Thus [G] give rise to a
class in H3(B,Z).

Let G be a C∞∗B -gerbe. Recall [6], that a connective structure ∆ on G is a
set of data that associates to each open U ⊂ B and each object x ∈ ObG(U)
an Ω1

U -torsor ∆(x) (whose sections can be thought of as “formal connections”
on x) and for any local (iso)morphism g : x → y over U an identification
of torsors g∗ : ∆(x) → ∆(y), satisfying the compatibility property plus the
following gauge condition: if x = y so g ∈ C∞∗(U) is an invertible function,
then g∗(∇) = ∇− g−1d(g).

A curving of a connective structure ∆ is a rule K associating to any x as
above and any global object ∇ ∈ ∆(x) a 2-form K(∇) ∈ Ω2(U) satisfying
the compatibility with pullbacks, invariance under isomorphisms as well as
the gauge condition: K(∇ + α) = K(∇) + dα, α ∈ Ω1(U). In this situation
Brylinski defined the 3-curvature of the connective structure and curving,
which is a closed 3-form S = S∆,K ∈ Ω3(B).

Example 18. Let G be a Lie group and

1→ C∗ → G̃→ G→ 1

be a central extension of Lie groups. Let ρ : P → B be a principal G-bundle.
We have then the C∞∗B -gerbe Lift

eG
G(P ) whose objects over U ⊂ B are liftings

of P |U to a principal G̃-bundle over U , compare [2]. Let ∇P be a connection
on P . Then Lift

eG
G(P ) has a connective structure ∆ which to every lifting P̃ of

P to a G̃-bundle associates the space of all connections on P̃ extending ∇P .
Further, let R∇ ∈ Ω2(B)⊗Ad(P ) be the curvature of ∇. A choice of a lifting
of R∇ to a form R̃∇ ∈ Ω2(B)⊗Ad(P̃ ) gives a curving K on ∆. This curving
associates to any section ∇̃ of ∆(P̃ ), i.e., to a connection on P̃ extending ∇,
the 2-form Re∇ − R̃∇, where Re∇ is the curvature of ∇̃.



136 Paul Bressler, Mikhail Kapranov, Boris Tsygan, and Eric Vasserot

We will need the following result ([6], Thm. 5.3.12).

Theorem 19. If G is a C∞∗B -gerbe with a connective structure ∆ and a curv-
ing K, then the class of S∆,K in H3(B,C) is integral and is equal to the image
of δ2[G] under the natural map from H3(B,Z) to H3(B,C).

3 Background on homology of differential operators

3.1 Conventions

Let A be an associative algebra over C. We denote by Hoch•(A) the Hochschild
complex of A with coefficients in A:

...→ A⊗A⊗A→ A⊗A→ A

with the differential given by the formula

b(a0 ⊗ ...⊗ ap) =
p−1∑
i=0

(−1)ia0 ⊗ ...⊗ aiai+1 ⊗ ...⊗ ap + (−1)papa0 ⊗ a1 ⊗ ...⊗ ap−1.

By HH•(A) we denote the homology of Hoch•(A). As well known,

HH•(A) = TorA⊗A
op

• (A,A) . (15)

Put
τ(a0 ⊗ ...⊗ ap) = (−1)pa1 ⊗ ...⊗ ap ⊗ a0 .

Let N = 1+ τ + τ2 + ...+ τn on Hochn(A). The cyclic complex of A is defined
as the total complex

CC•(A) =

Tot•

{
· · ·Hoch•(A) 1−τ→ Hoch•(A) N→ Hoch•(A) 1−τ→ Hoch•(A)

}
. (16)

The cyclic homology HC•(A) is the homology of the complex CC•(A). We
recall the theorem relating the cyclic homology with the Lie algebra homology
of the algebra of matrices, see [21].

Theorem 20. HLie
• (gl(A)) = S•(HC•−1(A))

Corollary 21. If HCj(A) = 0 for j = 0, ..., p − 1, then HLie
j (gl(A)) = 0 for

j = 1, ..., p, and HLie
p+1(gl(A)) = HCp(A).
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3.2 Homology of differential operators: algebro-geometric version.

Let X be a smooth affine algebraic variety over C of dimension d and E be
an algebraic vector bundle on X. Then the Hochschild-Kostant-Rosenberg
theorem (together with Morita invariance of HH•) gives an identification:

HHm(End(E)) = Ωm(X) ,

where on the right we have the space of global regular m-forms on X. Fur-
thermore,

HCm(End(E)) =

Ωm(X)/dΩm−1(X)⊕Hm−2(X,C)⊕Hm−4(X,C)⊕ . . . .

where on the right we have the usual topological (de Rham) cohomology, see
[21] Th. 3.4.12. Let D(E) be the ring of global differential operators from E
to E . Then, the results of [7], [29] imply:

HHm(D(E)) = H2d−m(X,C) .

Furthermore,
HCm(D(E)) =

⊕
i≥0

H2d−m+2i(X,C).

We recall that the approach of loc. cit is to use the filtration by the order of
differential operators and realize the E1-term of the corresponding spectral
sequence for HH as the complex of forms on the cotangent bundle with the
differential adjoint to the de Rham differential by means of the symplectic
form. The spectral sequence is then seen to degenerate at E2.

Let us note the particular case when X = Ad and E = OAd is the trivial
bundle of rank 1. Then D(E) = Wd is the Weyl algebra with generators xi, ∂i,
i = 1, ..., d, and relations

[xi, xj ] = [∂i, ∂j ] = 0, [∂i, xj ] = δij · 1 .

The above results imply that

HHi(Wd) = 0 if i 6= 2d, HH2d(Wd) = C (17)

and

HCi(Wd) = C, i− 2d ∈ 2Z≥0, HCi(Wd) = 0, i− 2d /∈ 2Z≥0 .

3.3 The C∞ version.

Let Σ be an oriented C∞-manifold of dimension d and E be a smooth complex
vector bundle on Σ. We have then the algebras End(E), D(E) of smooth
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endomorphisms and differential operators on E. Following [29] we present
the analogs of the results cited in 3.2 for these algebras. These rings have
natural Fréchet topologies. As pointed out in loc. cit., to get reasonable results,
all tensor products occuring in the Hochschild and cyclic complexes of the
above algebras should be taken in the category of topological vector spaces,
i.e., be completed. In plain terms, this means that the End(E)⊗p should be
understood as the ring of endomorphisms of the vector bundle E�p on the
p-fold Cartesian product Σp and similarly for differential operators. Under
these conventions, we have:

HHm(D(E)) = H2d−m(Σ,C), (18)

HCm(D(E)) =
⊕
i≥0

H2d−m+2i(Σ,C), (19)

where on the right we have the topological cohomology.

Remark 22. The Lie algebra cochain complexes of D(E) and of glND(E) =
D(E⊗Cr) involve exterior products of these algebras over C. If we understand
these products in the completed sense as above (compare also with Fuks [13]),
then the analog of Theorem 20 holds, and we have the following.

Corollary 23. Let Σ be a compact, oriented C∞ manifold of dimension d.
Then, for N � 0 we have:

HLie
i glND(E) = 0, 0 < i < d+ 1

HLie
d+1glND(E) = C

3.4 The formal series version.

Let
Ŵd = Wd ⊗C[x1,...,xd] C[[x1...., xd]]

be the algebra of differential operators whose coefficients are formal power
series. Similarly to the above, we consider the Hochschild and cyclic complexes
of Ŵd using the adic topology on C[[x1, ..., xd]] and taking completions. Thus
Ŵ⊗pd is understood as the ring of differential operators whose coefficients are
power series in p groups of d variables. With this understanding, we have the
analog of (17):

HH2d(Ŵd) = C, HHi(Ŵd) = 0, i 6= 2d .

For the proof, see [12]. One can also apply the spectral sequence argument of
[7] and [29] and then use the Poincare lemma on the (contangent bundle to
the) formal disk.

Our next step is to consider such formal completions simultaneously at all
points of a given C∞-manifold Σ. So, let Σ,E be as above. Let Ĥochp(D(E))
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be the completion of D(E�(p+1)) (differential operators in the bundle E�(p+1)

on Σp+1) along the diagonal Σ ⊂ Σp+1. This is a sheaf on Σ.
Then the Hochschild differential extends to Ĥoch•(D(E)), making it into

a complex, and we denote by ĤH•(D(E)) its homology. Similarly, we define
the completed cyclic complex ĈC•(D(E)) by the procedure identical to (16)
and denote its homology by ĤC•(D(E)). Thus, ĤH•(D(E)) and ĈC•(D(E))
are sheaves on Σ.

Proposition 24. We have ĤHp(D(E)) = CΣ (constant sheaf) for p = 2d
and ĤHp(D(E)) = 0 for p 6= 2d.

Proof. Consider the case when Σ is an open contractible domain in Rd and
E is trivial. Let us prove that in this case the complex of global sections of
ĤH•(D(E)) is exact everywhere except degree 2d where the cohomology is
isomoprhic to C. (This is the standard Hochschild-Kostant-Rosenberg theorem
in the context of completed Hochschild complexes).

We start with the case of Ĥoch•(C∞Σ ) defined, as before, using the comple-
tion of the functions on Σ•+1 along the diagonal. Recall the interpretation of
HH as Tor, see (15). Assume for a moment that Σ is the affine space viewed
as an affine algebraic variety. Choose the standard Koszul resolution of C[Σ]
over C[Σ ×Σ]. We see that

HH•(C[Σ]) = Ω•(Σ),

and the same will hold if we replace C[Σ] by a matrix algebra (i.e., take E of
higher rank).

Now let us get back to the C∞ case. There is a small difference, namely
that we are using completed tensor products and therefore the standard ar-
gument of comparing two projective resolutions is not quite applicable. But
if we follow this standard argument in the algebraic case, we see that it gives
the embedding of complexes i : Ω•(Σ) → Hoch•(C[Σ]), a projection j :
Hoch•(C[Σ]) → Ω•(Σ), and a homotopy s : Hoch•(C[Σ]) → Hoch•+1(C[Σ])
such that ji = 1, ij − 1 = sd + ds. It is easy to see that the maps i, j, and
s extend from C[Σ] to C∞(Σ) and from the algebraic Hochschild complex to
the completed one. We conclude that

ĤH•(C∞(Σ)) = Ω•(Σ),

and the same will hold if we replace C[Σ] by a matrix algebra.
Next, we replace C∞Σ by the sheaf of commutative algebras

A = S•(TΣ)

(polynomial functions on the contangent bundle) and define Ĥoch•(A) using
the completions of sheaves of sections of A�(p+1) on Σp+1 along the diagonals.
The same argument will apply, so we conclude that
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ĤH•(A) = p∗(Ω•T∗Σ), (20)

where p : T ∗Σ → Σ is the projection. Again, a similar statement will hold for
matrices.

Finally, we use the approach of [7] [29] and consider the spectral sequence
for ĤH•(D(E)) associated to the filtration by degree of operators. We get
the E1-term to be (20) with the differential being the adjoint of the de Rham
differential on T ∗Σ. Since we assumed Σ to be a contractible domain in the
flat space, we conclude that the E2-term reduces to one space C. Moreover,
we see that the class of the cycle

1⊗AltS2d
(∂x1 ⊗ . . .⊗ ∂xd

⊗ x1 ⊗ . . .⊗ xd)

is a generator of ĤH2d(D(E)). We will call it the canonical generator. Note
also that the above argument works not only for the ring of algebraic or
smooth (or holomorphic) differential operators but also for formal differential
operators, i.e. differential operators whose coefficients are formal power series.

Now consider a diffeomorphism from one contractible domain in the flat
space to another. It induces an isomorphism of the rings of differential oper-
ators. It is enough to show that this isomorphism sends the canonical gen-
erator to the canonical generator. Take a point of Σ. We have seen that
the homomorphism which associates to a function its jet at this point in-
duces an isomorphism on the Hochschild homology. Furthermore, any shift
in the affine space sends the canonical generator to itself. We are reduced
to proving that any formal coordinate change induces an automorphism of
the ring of formal differential operators that sends the canonical generator
to itself.Since a reflection preserves the canonical generator, we may assume
that our formal coordinate change is oriented. Therefore it may be included
into a one-parameter group of formal coordinate changes. We are reduced to
proving that if X is a formal vector field then the corresponding derivation of
the ring of formal differential operators is trivial on the Hochschild homology.
But such derivation is inner, and any inner derivation acts on the Hochschild
homology trivially (the operator ιX from (41) is a contracting homotopy).

More generally, any change of the trivialization of the vector bundle E in-
duces an automorphism of ĤH

•
(D(E)) that sends the fundamental generator

to itself.
We have proven that the only sheaf of cohomology of ĤH•(D(E)) in the

case when Σ is a contractible domain in a flat space (and thus in the general
case) is CΣ . ut

Furthermore, we need a relative version of the above statements. Let

q : Σ → B

be a submersion (smooth fibration) of C∞-manifolds, whose fibers are of di-
mension d and are oriented. Let E be C∞-bundle on Σ, as above. We have
then the subring
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DΣ/B(E) ⊂ D(E),

consisting of differential operators that are q−1C∞B -linear, i.e., act along the
fibers only.

Let Σp+1
B ⊂ Σp+1 be the (p+1)-fold fiber product of Σ over B. We denote

by E�(p+1)
B the restriction of E�(p+1) to Σp+1

B .
Let Ĥochp(DΣ/B(E)) denote the completion of DΣp+1

B /B(E�(p+1)
B ) along

the diagonal. Then the Hochschild differential extends to Ĥochp(DΣ/B(E)).
We also define the completed cyclic complex ĈC•(DΣ/B(E)) by implementing
(16).

Theorem 25.

1. The complex Ĥochp(DΣ/B(E)) is acyclic in degrees other than 2d, and its
2dth cohomology sheaf is isomorphic to q−1C∞B . In other words, we have
an isomorphism in the derived category of sheaves of q−1C∞B -modules on
Σ:

µD : Ĥochp(DΣ/B(E))→ q−1C∞B [2d].

2. We have Hi(ĈC•(DΣ/B(E)) = 0 unless i = −2d+ k, k ∈ Z+, and

H−2d+k(ĈC•(DΣ/B(E)) = q−1C∞B .

Proof. Similar to 24. ut

Corollary 26. We have a morphism (no longer an isomorphism) in the de-
rived category

νD : ĈC•(DΣ/B(E))→ q−1C∞B [2d] .

4 Characteristic classes from Lie algebra cohomology.

4.1 The finite-dimensional case

Let G be a Lie group with Lie algebra g. We denote by C•(g) the cochain
complex of g with trivial coefficients C and by Hn(g) its nth cohomology
space.

Let γ ∈ Hn(g) be a cohomology class. We want to associate (under certain
conditions) to γ a characteristic class of principal G-bundles. In other words,
we want to produce, for each C∞-manifold B and each smooth principal G-
bundle P on B, a topological (de Rham) cohomology class

cγ(P ) ∈ Hn+1(B) = Hn+1(B,C)

(note the shift of degree by 1).
Indeed, let a principal G-bundle ρ : P → B be given and let AP be its

Atiyah algebra. We have then the extension of Lie algebroids (7) on B and
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the corresponding Hochschild-Serre spectral sequence (10) which in our case
has the form:

Epq2 = Hp
Lie(TB ,H

q
Lie(Ad(P ), C∞B ))⇒ Hp+q

Lie (AP , C∞B ). (21)

This sequence was considered in [23], Thm. 7.4.19. Note thatHq
Lie(Ad(P ), C∞B )

is the cohomology of the cochain complex of Ad(P ) as a Lie algebra over C∞B ,
i.e., of the complex of bundles formed by the duals of the fiberwise exterior
products of fibers of Ad(P ). We will also use the notation C•(Ad(P )/B) for
this complex.

Lemma 27. For any q ≥ 0 the bundle Hq
Lie(Ad(P ), C∞B ) = Hq(Ad(P )/B)

on B formed by the Lie algebra cohomology spaces of the fibers of Ad(P ) is
canonically identified with the trivial bundle with fiber Hq(g).

Proof. This follows from the fact the the adjoint action of G on g induces the
trivial action on Hq(g). ut

Corollary 28. The E2-term of the spectral sequence (21) is given by Epq2 =
Hp(B) ⊗ Hq(g) In particular, the assignment γ 7→ 1 ⊗ γ defines a map our
class Hn(g)→ E0n

2 .

Assume now that there exists n > 0 such that the Lie algebra g satisfies
the acyclicity condition:

Hi(g) = 0, 0 < i < n . (22)

Then we are in the situation of (11), so we have the transgression map (12)
which in our case has the form

dn+1 : Hn(g)→ Hn+1(B), (23)

and we define
cγ(P ) = dn+1(1⊗ γ). (24)

Without the assumption (22) we have that cγ(P ) is defined only if 1 ⊗ γ is
transgressive (i.e., annihilated by d2, ..., dn and takes value not in Hn+1(B)
but in the quotient of Hn+1(B) by the images of d2, ..., dn).

If the latter is true for a cohomology class γ, we say that γ is transgressive.

Example 29. Let n = 1. Then the condition (22) is trivially satisfied. A
class γ is just a trace functional γ : g→ C. The class cγ(P ) ∈ H2(B) can be
obtained by choosing a connection ∇ in P with curvature R ∈ Ω2

B ⊗ g and
taking the class of the closed 2-form γ(R) ∈ Ω2

B . Alternatively, one can use
γ to produce a trace functional γP : Ad(P ) → C∞B and then use γP to push
forward the extension (7) to a central extension of Lie algebroids

0→ C∞B → G → TB → 0.

As well known (1.7) the set of isomorphism classes of such central extensions
is identified with H2

Lie(TB , C∞B ) = H2(B,C).
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Example 30. Let n = 2, so γ is represented by a central extension

0→ C→ g̃→ g→ 0. (25)

A sufficient condition for γ to be basic for any P is that g̃ can be made into
a G-equivariant central extension, compare Example 17. Suppose that such
an equivariant structure has been chosen. Then the class cγ(P ) ∈ H3(B,C)
can be constructed as follows. We have the representation Ãd of G on g̃, and
therefore an extension of associated vector bundles on B:

0→ C∞B → Ãd(P )→ Ad(P )→ 0.

Choose a connection ∇ in P . Then we have associated linear connections
∇Ad in Ad(P ) and ∇fAd

in Ãd(P ). We also have the curvature R∇ ∈ Ω2(B)⊗
Ad(P ). Choose a lifting R̃∇ of R∇ to Ω2(B)⊗ Ãd(P ), and take

S = ∇fAd
(R̃∇) ∈ Ω3(B)⊗ Ãd(P ).

By the Bianchi identity ∇(R∇) = 0 and so S lies in the tensor product of
Ω3(B) and the subbundle C∞B ⊂ Ãd(P )), i.e., it is a scalar differential form
S ∈ Ω3(B). Furthermore, it is clear that S is a closed 3-form. The class cγ(P )
is then the class of the form S. A different choice of an equivariant structure
on g̃ leads to change of the class of S by an element from the image of d2.

Example 31. Let G = GLN (C), so g = glN (C). Then H•(g) is the exterior
algebra on generators γ1, ..., γN with γi ∈ H2i−1(g). A principal G-bundle P
on B is the same as a rank N vector bundle E. In this case each 1 ⊗ γi is
transgressive, and cγi(P ) is the image of ci(E) ∈ H2i(B) under the natural
projection H2i(B)→ E0,n+1

n+1 . Here ci(E) is the usual ith Chern class of E.

4.2 Other interpretations

Here we collect, for future use, some more or less straightforward reformula-
tions of the construction of cγ(P ).

4.2.1 The Chern-Weil picture If we choose a connection ∇ in P , then
the sequence (7) splits (such splitting is in fact the definition of a connection
following Atiyah). So we can identify

Ω•(P )G = DR•(AP ) = Ω•B ⊗ C•(Ad(P )/B) . (26)

Let R be the curvature of ∇. Then the differential in the RHS of (26) has the
form ∂ +∇+ iR, where ∂ is the differential in C•(g) and

iR : Ω•B ⊗ C•(g)→ Ω•+2
B ⊗ C•−1(g)
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is the contraction with R. This leads to a definition of cγ(P ) in terms of
differential forms. Namely, we have an injective map of complexes followed by
a surjective one:

Ω•B = Ω•B ⊗ C0(g)
φ
↪→ Ω•B ⊗ C•(g)

ψ−→ Ω0
B ⊗ C•(g).

Here, ψ is identified with the projection to gr0F , where F is the filtration from
(21). If our class γ is basic, then it lifts uniquely to a class in Hn(Coker(φ)),
so cγ(P ) is the image of that lifted class under the coboundary map corre-
sponding to the short exact sequence

0→ Ω•B
φ
↪→ Ω•B ⊗ C•(g)→ Coker(φ)→ 0.

4.2.2 The differential graded picture Let A denote the cone of the map
i : Ad(P ) → AP viewed as a differential graded Lie algebroid. Thus AP is
put in degree 0, and Ad(P ) in degree (−1). The anchor map α induces the
quasi-isomorphism of Lie algebroids A → TB , hence the map of respective
universal enveloping (differential graded) algebras U(A)→ U(TB) = DB (the
latter concentrated in degree zero) which is a quasi-isomorphism. Define the
map

DR•(AP )/DR•(TB) δ−→ DR•+1(A)

as follows. For X ∈ Ad(P ), denote by X the element (X, 0) in the cone A of
i; for Y ∈ AP , denote the element (0, Y ) simply by Y . Given a p-cochain ω
from DR•(AP ), define the cochain δω by

δω(X1, . . . , Xq, Y1, . . . , Yr) = ω(X1, Y1, . . . , Yr)

for q = 1 and zero for q 6= 1.
It is easy to see that the sequence

DR•(AP )/DR•(TB) δ−→ DR•+1(A)← DR•+1(TB) = Ω•+1
B

represents the boundary map

H•(DR•(AP )/DR•(TB))→ H•+1(DR•(TB)) = H•+1(B). (27)

A basic class γ as above defines an n-dimensional cohomology class γ̃ of
DR•(AP )/DR•(TB), and cγ(P ) is the image of γ̃ under (27).

4.2.3 The D-module picture Consider the short exact sequence

0→ C≥1(Ad(P )/B)→ C•(Ad(P )/B)→ C∞B → 0 (28)

coming from the fact that C∞B = C0(Ad(P )/B) is the 0th term of the relative
cochain complex. If A is as in (b), then all three complexes in (28) are graded
U(A)-modules in the following way. Elements Y = (0, Y ), Y ∈ A, act via
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the adjoint action. Element X = (X, 0), X ∈ Ad(P ),acts by contraction, i.e.
by substitution of X into a cochain. The action of U(A) on C∞B is via the
quasiisomorphism with DB .

Note that (28) splits as a short exact sequence of complexes of vector
bundles but not of U(A)-modules. We will use the corresponding connecting
morphism

δ : C∞B → C≥1(Ad(P )/B)[1]

in D(U(A)), the derived category of differential graded U(A)-modules.
As A is quasiisomorphic to TB , the DG algebra U(A) is quasiisomorphic to

DB , and the category D(U(A)) is equivalent to D(DB). Now recall (Corollary
11) that

Hm(B; C) = HomD(DB)(C∞B , C
∞
B [m]) .

On the other hand, suppose that g is such that Hi(g) = 0 for 0 < i < n, see
(3.1.11). Then Hi(Ad(P )/B) = Hi(g)⊗C∞B = 0 for 0 < i < n as well. In other
words, the complex C≥1(Ad(P )/B) is acyclic in degrees < n and therefore each
class ξ in its nth cohomology (which is isomorphic to Hn(g)⊗C∞B ) defines a
morphism in the derived category of complexes of vector bundles

ξ̃ : C≥1(Ad(P )/B)→ C∞B [n] .

Furthermore, “constant” class ξ, i.e., a class of the form γ ⊗ 1, γ ∈ Hn(g),
defines in fact a morphism in the category D(U(A)) ∼ D(DB). Composing
γ̃ ⊗ 1 with δ, we get a morphism

C∞B → C∞B [n+ 1] , (29)

i.e., a class in Hn+1(B; C).

Proposition 32. The class in Hn+1(B; C) corresponding to (29) is equal to
cγ(P ).

Proof. This follows directly from the definitions (in fact, we could take (29)
as the definition of cγ(P )). Indeed, the morphism in the derived category
from the cohomology of a quotient complex such as C∞B to the homology of
a subcomplex such as C≥1(Ad(P )/B) acyclic up to degree n, is precisely the
differential dn+1 in the corresponding spectral sequence. ut

4.3 Infinite-dimensional groups

Slightly reformulating the approach of K.-T. Chen [8], we introduce the fol-
lowing definition.

Definition 33. A differentiable space is an ind-object in the category of C∞-
manifolds.
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For background on ind-objects, see [10]. Thus a differentiable space M is
a formal limit “ lim

−→
′′
α∈AMα of (finite-dimensional) C∞-manifolds. In partic-

ular, M defines a functor

S 7→M(S) = C∞(S,M) = lim
−→

C∞(S,Mα) (30)

on such manifolds and can in fact be identified with this functor. In practice,
however, we will identify M with the set M(pt) = lim

−→
Mα with (30) providing

an additional structure on this set (description of what it means for an element
of this set to vary in a smooth family).

For a differential space M we define (compare [8]) the space of p-forms (in
particular, of C∞-functions) on M by

Ωp(M) = lim
←−

Ωp(Mα) .

For a point m ∈M(pt) the tangent space TmM is defined by

TmM = lim
−→

TsS ,

where the limit is taken over C∞-maps (S, s)→ (M,m).
A differentiable group G is a group object in the category of differentiable

spaces. For such a group the space g = TeG is a Lie algebra in the standard
way.

Example 34 (Groups of diffeomorphisms). Let Σ0 be a compact ori-
ented C∞-manifold of dimension d. Then we have a differentiable group
G = Diffeo(Σ0) of orientation preserving diffeomorphisms. The corresponding
functor (30) is as follows. A smooth map S → Diffeo(Σ0) is a diffeomorphism
of S × Σ0 preserving the projection to S. The Lie algebra of this group is
Vect(Σ0), the algebra of C∞ vector fields.

Example 35 (Gauge groups). LetΣ0 be as before and E0 be a C∞ complex
vector bundle on Σ0 Then we have the differentiable group Aut(E0) of C∞-
automorphisms of E0 (the differentiable structure defined as in Example 34).
Its Lie algebra is End(E0).

Example 36 (Atiyah groups). Let Σ0, E0 be as before. The Atiyah group
AT (Σ0, E0) consists of pairs (φ, f), where φ is an orientation preserving dif-
feomorphism of Σ0, and f : φ∗E0 → E0 is an isomorphism of vector bundles.
Thus we have an extension of differentiable groups:

1→ Aut(E0)→ AT (Σ0, E0)→ Diffeo(Σ0)→ 1.

The Lie algebra of AT (Σ0, E0) is AE0(Σ0), the algebra of global C∞-sections
of the Atiyah Lie algebroid.
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More generally, one can replace the vector bundle in Examples 35, 36 by a
principal bundle with an arbitrary structure Lie group. In this paper we will
be interested in the vector bundle case and will concentrate on the Example
36 as the most general.

Let us now describe a class of principal bundles with structure groups as
in Example 36. Suppose that q : Σ → B is a smooth fibration with compact
oriented fibers of dimension d. Suppose that B is connected. Then all the fibers
Σb = q−1(b), b ∈ B, are diffeomorphic to each other. Let Σ0 be one such fiber.
Futher, let E be a smooth C-vector bundle on Σ and Eb = E|Σb

. Then,
for different b the pairs (Σb, Eb) are isomorphic, in particular, isomorphic to
(Σ0, E0). Let G = AT (Σ0, E0). We have the principal G-bundle

ρ : P = P (Σ/B,E)→ B (31)

whose fiber Pb = ρ−1(b), b ∈ B, consists of isomoprhisms of pairs (Σ0, E0)→
(Σb, Eb).

For any differentiable G-bundle P over a finite-dimensional base B the
Atiyah algebra AP can be defined by (8). In the example where G =
AT (Σ0, E0) and P = P (Σ/B,E), this gives

AP (Σ/B,E) = q∗AE

(the sheaf-theoretic direct image of the Atiyah algebra of E).

4.4 The first Chern class

Let q : Σ → B and E be as before, so that we have a principal bundle P =
P (Σ/B,E)→ B with structure group G = AT (Σ0, E0). As the corresponding
Lie algebra g = AE0(Σ0) consists of global sections of the Atiyah Lie algebroid
of Σ0, we have the embeddings

g ↪→ D(E0) ↪→ gl(D(E0)) .

By Corollary 23, gl(D(E0)) has a unique continuous (in the Fréchet topology)
cohomology class c in degree d+ 1. We denote by γ the restriction of c to g.

Proposition 37.

1. There exists a Lie algebroid

0→ q∗(gl(DΣ/B(E)))→ AΣ/B,E
α−→ TB → 0

and a morphism (embedding) of Lie algebroids AP → AΣ/B,E which re-
stricts to the embedding g ↪→ gl(D(E0)).

2. The class 1⊗ γ is transgressive, so dd+2(1⊗ γ) is defined.
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Proof. The construction of AΣ/B,E is given in 4.5 below.
The fibers of Ker(α) are Lie algebras isomorphic to gl(DΣ0,E0) via an iso-

morphism defined uniquely up to an inner automorphism and thus satisfy the
acyclicity condition (22) with n = d+1. Therefore the class c is transgressive.

The Hochschild-Serre spectral sequence for AΣ/B,E maps into the analo-
gous spectral sequence for AP . Since γ is the restriction of c, the naturality
of the Hochschild-Serre spectral sequence implies that γ is transgressive. ut

Definition 38. The first Chern class C1(q∗E) is defined by

C1(q∗E) := dd+2(1⊗ γ) ∈ Hd+2(B,C) ,

The class C1(q∗E) will be the main object of study in the rest of the paper.

4.5 Construction of AΣ/B,E.

We start with the Atiyah Lie algebroid on Σ:

0→ End(E) i→ AE
α−→ TΣ → 0 .

Let U(AE)/B denote the centralizer of q−1C∞B in U(AE). Let F1U(AE) =
{a|[a, q−1C∞B ] ⊆ q−1C∞B }. Then, F1U(AE) is a Lie algebra under the com-
mutator, U(AE)/B is a Lie ideal in F1U(AE), and there is an exact sequence

0→ U(AE)/B → F1U(AE)→ q−1TB → 0 (32)

exhibiting F1U(AE) as a transitive q−1C∞B -algebroid.
The inclusion AE → DΣ(E) induces the surjective map U(AE)/B →

DΣ/B,E with kernel being the ideal generated by the relation which iden-
tifies 1 ∈ C∞Σ ⊂ U(AE)/B with 1 ∈ EndC∞Σ (E) ⊂ U(AE)/B . The pushout of
the exact sequence (32) by the map U(AE)→ DΣ(E) gives the transitive Lie
algebroid (the middle term in the exact sequence)

0→ DΣ/B,E → F1DΣ,E → q−1TB → 0. (33)

Replacing E by its tensor product by the trivial bundle of rank r in the
above example, (33) can be rewritten as

0→ glr(DΣ/B,E)→ F1glr(DΣ,E)→ q−1TB → 0 .

Taking the limit over inclusions glr → glr+1 we obtain a q−1C∞B -algebroid

0→ gl(DΣ/B,E)→ Aq,E → q−1TB → 0 . (34)

Let Aq,E denote the cone of the inclusion gl(DΣ/B,E) → Aq,E . There are
quasi-isomorphisms

Aq,E → q−1TB , Uq−1C∞B
(Aq,E)→ q−1DB .
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Taking the direct image of (34) under q and pulling back by the canonical
map TB → q∗q

−1TB we obtain the transitive (because R1π∗glr(DΣ/B,E) = 0)
Lie algebroid on B:

0→ G → AΣ/B,E → TB → 0 ,

where G = q∗gl(DΣ/B,E), as we wanted. Let AΣ/B,E denote the differential
graded Lie algebroid on B equal to the cone of the inclusion G → AΣ/B,E .

For any Lie algebra h, we denote by C+(h) the positive part of the
Chevalley-Eilenberg complex, i.e. ⊕p>0Λ

ph with the Chevalley-Eilenberg dif-
ferential. There is an exact sequence of complexes

0→ C+(h)→ C•(h)→ C0(h)→ 0

The exact sequence

0→ C+(G)→ C•(G)→ C0(G)→ 0

is, in fact, an exact sequence of differential graded U(AΣ/B)-modules (this is
a construction dual to (28)). Note that C0(G) = C∞B . Let

δΣ/B : C∞B → C+(G)[1] (35)

denote the correponding morphism in the derived category of differential
graded modules over the universal enveloping (differential graded) algebra
U(AΣ/B).

4.6 Smooth cohomology and characteristic classes

A more traditional way of getting characteristic classes of principal G-bundle
is by using group cohomology classes of G. Let us present a framework which
we will then compare with the Lie algebra framework above.

Let S be a topological space and F be a sheaf of abelian groups on
S. We denote by Φ•(F) the standard Godement resolution of F by flabby
sheaves. Thus Φ0(F) = DS(F) is the sheaf of (possibly discontinuous) sec-
tions of the (étale space associated to) F , and Φn+1(F) = DS(Φn(F)). In this
and the next sections we write RΓ (S,F) for the complex of global sections
Γ (S, Φ•(F)).

Let G be a differentiable group and B•G be its classifying space. Thus
B•G = (BnG)n≥0 is a simplicial object in the category of differentiable spaces
with BnG = Gn, and the face and degeneracy maps given by the standard
formulas. We define the smooth cohomology of G with coefficients in C∗ to be

Hn
sm(G,C∗) = Hn(B•G,C∞∗) .

Here the hypercohomology on the right is defined as the cohomology of the
double complex whose rows are the complexes RΓ (BnG,C∞∗BnG

) and the differ-
ential between the neighboring slices coming from the simplicial structure on
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B•G. This is a version of the Segal cohomology theory for topological groups
([13], p. 305). In particular, we have a spectral sequence

Hi(BnG,C∗)⇒ Hi+n
sm (G,C∗) .

We will use some other natural (complexes of) sheaves on B•G to get natural
cohomology theories for G. For example, the Deligne cohomology

Hn
sm(G,ZD(p)) = Hn(B•G,ZD(p)) ,

where for any differentiable space M we set

ZD(p) =
{

ZM → Ω0
M → Ω1

m → ...→ Ωp−1
M

}
,

with ZM placed in degree zero, compare [6].
Let B be a C∞-manifold and U = {Ui}i∈I be an open covering of B. We

denote by N•U the simplicial nerve of U , i.e., the simplicial manifold with

NnU =
∐

i0,...,in

Ui0 ∩ ... ∩ Uin .

For any sheaf F on B there is a natural isomorphism

Hi(N•U ,F•) = Hi(B,F) ,

where F• is the natural sheaf on N•U whose nth component is the sheaf on
NnU formed by the restrictions of F .

Let ρ : P → B be a principal G-bundle and suppose that P is trivial on
each Ui. Then a collection of trivializations (i.e., sections) τ = (τi : Ui → P )
gives a morphism of simplicial differentiable spaces

uτ : N•U → B•G .

Given a class β ∈ Hn
sm(G,C∗), we define the characteristic class

cβ(P ) = u∗φ(β) ∈ Hn(B,C∞∗B ) . (36)

Similarly one can define characteristic classes corresponding to group coho-
mology classes with values in the Deligne cohomology.

4.7 Integrality and integrability

Let G be as in 4.6, and g be the Lie algebra of G. We construct the “derivative”
map

∂ : Hn
sm(G,C∗)→ Hn

Lie(g,C) . (37)

To do this, we first remark that for any topological space S, any sheaf of
abelain groups F on S and any point s0 ∈ S we have a natural morphism of
complexes
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εs0 : RΓ (S,F)→ Fs0 ,

where Fs0 is the stalk of F at s0. To construct εs0 , we first project RΓ (S,F) =
Γ (S, Φ•(F)) to its 0th term Γ (S, Φ0(F)) which, by definition, is the space of
all sections φ = (s 7→ φs) of the étale space of F . Thus any such φ is a rule
which to any point s ∈ S associates an element of Fs. We define εs0 by further
mapping any φ as above to φs0 ∈ Fs0 .

We now specialize to S = BmG = Gm, to s0 = em := (1, ..., 1) and to
F = C∞∗S . We get a morphism from the double complex

{RΓ (BmG,C∞∗BmG)}m≥0 (38)

to the complex of stalks

C∗ → C∞∗G,e1 → C∞∗G×G,e2 → . . .

Thus, an n-cocycle in (38) gives a germ of a smooth function

ξ = ξ(g1, ..., gn) : Gn → C∗

satisfying the group cocycle equation (on a neighborhood of en+1 in Gn+1).
Similarly to [13], p. 293, one associates to ξ a Lie algebra cocycle ∂(ξ) ∈ Cn(g)
by

∂(ξ)(x1, ..., xn) =
d

dt
Alt log ξ(exp(tx1), ..., exp(txn))

∣∣∣∣
t=0

.

A Lie algebra cohomology class γ ∈ Hn(g,C) will be called integrable if
it lies in the image of the map ∂ from (37). Consider the exponential exact
sequence (13) of sheaves on B and ts coboundary map δn from (14). The
intuition with determinantal d-gerbes (1.4) suggests the following.

Conjecture 39.

1. The class γ ∈ Hd+1(AE0(Σ0)) constructed in 4.4 is integrable and comes
from a natural class β ∈ Hd+1

sm (AT (Σ0, E0),C∗) (the “higher determinan-
tal class”).

2. Furthermore, for any q : Σ → B and E as above, the class C1(q∗E) =
cγ(P ) ∈ Hd+2(B,C) is integral and is the image of the following class in
the integral cohomology:

δd+1(cβ(P )) ∈ Hd+2(B,Z) .

This conjecture holds for d = 1 (i.e., for the case of a circle fibration).
We will verify this in Section 6. In general, the second statement seems to
follow from the first by virtue of some compatibility result between group
cohomology classes with coefficients in C∗ and Lie algebra cohomology classes
with coefficients in C. Here we present a d = 1 version of such a result.
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Let G be a differentiable group with Lie algebra g. Let β ∈ H2
sm(G,C∗)

and γ = ∂(β) ∈ H2
Lie(g,C) be the derivative of β. Suppose β is represented

by an extension of differentiable groups

1→ C∗ → G̃→ G→ 1 ,

whose Lie algebra is the extension (25) representing γ. Let ρ : P → B be a
principal G-bundle over a C∞-manifold B. Then we have the characteristic
class cγ(P ) ∈ H3(B,C) (lifting to H3 well defined because g̃ is a G-module
via the adjoint representation of G̃, see Example 30). On the other hand, β
gives rise to a class cβ(P ) ∈ H2(B,C∞∗B ), see (36).

Proposition 40. In the above situation cγ(P ) ∈ H3(B,C) is the image of
δ2(cβ(P )) ∈ H3(B,Z) under the natural homomorphism from the integral to
the complex cohomology.

Proof. This follows from Theorem 19 using Example 30 and an obvious gen-
eralization of Example 18 to differentiable groups. ut

Conjecture 41. We further conjecture the existence of the natural “deloopings”
of the higher Chern classes as well, i.e., the existence of classes

βm ∈ Hd+2m
sm (AT (Σ0, E0),ZD(m)), m ≥ 1, (39)

which then give characteristic classes in families:

Cm(q∗E) ∈ Hd+2m(B,ZD(m)). (40)

5 The Real Riemann-Roch

Here is the main result of the present paper.

Theorem 42. Let q : Σ → B be a C∞ fibration with compact oriented fibers
of dimension d. Let E be a complex C∞ vector bundle on Σ. Then:

C1(q∗E) =
∫
Σ/B

[
ch(E) · Td(TΣ/B)

]
2d+2

∈ Hd+2(B,C).

The proof consists of several steps.

5.1 A D-module interpretation of C1 using AΣ/B,E.

We use the notation of 4.4 and introduce the following abbreviations:

G = q∗(gl(DΣ/B(E))) .

This is a bundle of infinite-dimensional Lie algebras on B.
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A = Aq,E .

This is a DG Lie algebroid on Σ quasiisomorphic to q−1TB .

UA = Uq−1C∞B
(Aq,E) .

This is a sheaf of DG-algebras on Σ quasiisomorphic to q−1DB .
Now, UA acts on C+(gl(DΣ/B,E))B . Furthermore, a similar algebra acts

on the Hochschild and cyclic complexes of DΣ/B,E . Let A0 be the Lie algebroid
defined exactly in the same way as A but without tensoring by gl. In the same
spirit as in 4.2.3, elements Y = (0, Y ), Y ∈ Aq,E , act via the adjoint action.
Elements of the form X = (X, 0) act via the shuffle multiplication

ιX(a0 ⊗ ...⊗ ap) =
p∑
i=0

(−1)ia0 ⊗ ...⊗ ai ⊗X ⊗ ai+1 ⊗ ...⊗ ap . (41)

Denoting by b, B the standard operators on Hoschshild chains, see [21], we
have

[b, ιX ] = ad(X), [B, ιX ] = 0.

Therefore UA0 acts on both the Hochschild and the cyclic complexes. This ac-
tion extends to the completions described in 3.4. Furthermore, the morphisms
µD, νD from Theorem 25 and Corollary 26 are in fact morphisms in D(UA).
Indeed, there is a spectral sequence

Epq2 = Extpq−1DB

(
Hq(Ĥoch•(DΣ/B(E))), C∞B

)
⇒

Extp+qUA0
(
(
Ĥoch•(DΣ/B(E)), C∞B ) , (42)

and similarly for the cyclic complex. The action of q−1DB onHq(Ĥoch•(DΣ/B(E)))
is induced on the cohomology by the action of UA on Ĥoch•(DΣ/B(E)). The
map µD defines an element of E0d

2 , and Epq2 = 0 for q < d, so µD gives rise to
a well defined class in Extd on the RHS of (42). Similarly for νD.

We would like to compare the Lie algebra chain complex to the cyclic com-
plex as modules over the algebras above. Roughly speaking, this comparison
involves the embedding of A0 into A induced by the embedding of differential
operators into matrix-valued differential operators as diagonal matrices all of
whose diagonal entries are the same. Unfortunately, these operators are not
finite and therefore do not lie in gl. This causes a minor technical difficulty
that we are going to address next.

Let
C+(gl(DΣ/B(E)))B

β−→ CC•(DΣ/B(E))B [1]

be the standard map from the Lie algebra chain complex to the cyclic complex,
see [21], (10.2.3). Observe that this map factors into the composition

C+(gl((DΣ/B(E)))B
proj−−→ (C+(gl(DΣ/B(E)))B)gl(C) → CC•(DΣ/B(E))B [1]
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(the complex in the middle is the complex of coinvariants). For each p the
coinvariants stabilize: the projection

(Cp(glN (DΣ/B(E)))B)glN (C)
projN−−−→ (Cp(gl(DΣ/B(E)))B)gl(C)

is an isomorphism for N > p. The DG Lie algebroid A0 acts on the complex of
glN -coinvariants via the diagonal embedding of DΣ/B(E) into glN (DΣ/B(E))
for N big enough; this action is independent of N .

Let
α : (C+(gl(DΣ/B(E)))B)gl(C) → q−1C∞B [2d]

denote the composition

(C+(gl(DΣ/B(E)))B)gl(C)
β−→ CC•(DΣ/B(E))B [1]→

ĈC•(DΣ/B(E))B [1]
νD[1]−−−→ q−1C∞B [2d+ 1] . (43)

It is checked directly that β commutes with the operators ιX , so it is
UA0-invariant. Therefore, all maps in (43) and the map α are morphisms in
D(UA0).

Let us now take the direct image and define the morphism∫
Σ/B

α : (C+(G)B)gl(C) → C∞B [d]

as the composition

(C+(G)B)gl(C) → q∗(C+gl(DΣ/B(E))B)gl(C)
∼−→

Rq∗(C+gl(DΣ/B(E))B)gl(C)
α−→ Rq∗q

−1C∞B [2d+ 1]
R

Σ/B−−−→ C∞B [d+ 1].

Here the last map is the integration over the relative (topological) fundamental
class of Σ/B. Consider the composition

C∞B
δΣ/B−→ (C+(G)B)gl(C)[1]

R
Σ/B

α
−→ C∞B [d+ 2] , (44)

where δΣ/B is as in (35). As both maps in (44) are morphisms in D(DB), the
composition (denote it C) is an element

C ∈ Extd+2
DB

(C∞B , C
∞
B ) = Hd+2(B,C).

Proposition 43. We have C = C1(q∗E).

Proof. This follows from the interpretation of C1(q∗E) = cγ(P (Σ/B,E))
given in 4.2.2 and 4.2.3, and from the compatibility of the Atiyah algebroid
of P (Σ/B) with AΣ/B,E . ut
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5.2 A local RRR in the total space

Proposition 43 reduces the RRR to the following “local” statement taking
place in the total space Σ.

Theorem 44. Let ξ be the morphism in D(q−1DB) defined as the composition

q−1C∞B → C+(gl(DΣ/B,E))gl(C)[1]→ q−1C∞B [2d+ 2] .

Then the class in

Ext2d+2
q−1DB

(q−1C∞B , q
−1C∞B ) = H2d+2(Σ,C)

corresponding to ξ is equal to[
ch(E) · Td(TΣ/B)

]
2d+2

.

We now concentrate on the proof of Theorem 44. First, we remind the
definition of periodic cyclic homology [21]. Let A be an associative algebra.
The “negative” cyclic complex of A is defined, similarly to (16), as

CC−• (A) = Tot
{

Hoch•(A) N−→ Hoch•(A) 1−τ−→ Hoch•(A)→ . . .

}
Here, the grading of the copies of Hoch•(A) in the horizontal direction goes
in increasing integers 0,1,2 etc. So CC−• (A) s a module over the formal Tay-
lor series ring C[[u]] where u has degree (−2). The original cyclic complex is
a module over the polynomial ring C[u−1]. Finally, the periodic cyclic com-
plex CCper• (A) is obtained by merging together CC•(A) and CC−• (A) into
one double complex which is repeated 2-periodically both in the positive and
negative horizontal directions. In other words,

CCper• (A) = CC−• (A)⊗C[[u]] C((u)).

We extend these construction to other situations (see Section 3) where the ten-
sor products are understood in the sense of various completions. In particular,
the morphism νD of 26 extends to morphisms

ν−D : CC−• (DΣ/B,E)→ q−1C∞B [2d][[u]]

νperD : CCper• (DΣ/B,E)→ q−1C∞B [2d]((u))

These morphisms include into the commutative diagram

CC−• (DΣ/B,E) −−−−→ CCper• (DΣ/B,E) −−−−→ CC(DΣ/S,E)[2]

ν−D

y νper
D

y yνD
C∞B [2d][[u]] −−−−→ C∞B [2d]((u)) Resu=0−−−−−→ C∞B [2d+ 2]

We now want to reduce Theorem 44 to the following statement.
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Theorem 45. The composition

C∞B
1−→ CCper• (DΣ/B,E)

νper
D−−−→ C∞B [2d]((u))

defines an element of Ext•q−1DB
(q−1C∞B , q

−1C∞B [2d])((u)) which is equal to

∞∑
i=0

ui ·
[
ch(E)Td(TΣ/B)

]
2(d−i) .

Proof (Theorem 44). Assuming Theorem 45 it is sufficient to prove that the
composition

q−1C∞B → C+(gl(DΣ/B,E))gl(C)[1]→ CC•(DΣ/B,E)[2]

is equal to the composition

q−1C∞B
1−→ CCper• (DΣ/B,E)→ CC•(DΣ/B,E)[2] ,

as the latter one is related to Chern and Todd via Theorem 45. In order to
perform the comparison, let K be the cone of the inclusion C+(gl(DΣ/B,E)→
C•(gl(DΣ/B,E)), so that we have a quasi-isomorphism K → q−1C∞B as well
as an isomorphism of distinguished triangles

C•(gl(DΣ/B,E))gl(C) −−−−→ K −−−−→ C+(gl(DΣ/B,E))gl(C)[1]y y y
C(gl(DΣ/B,E))gl(C) −−−−→ q−1C∞B −−−−→ C+(gl(DΣ/B,E))[1]gl(C)

(with the top row a short exact sequence of complexes). Note, that there is a
morphism of distinguished triangles

C•(gl(DΣ/B,E))gl(C) −−−−→ K −−−−→ C+(gl(DΣ/B,E))gl(C)[1]y y y
CC−• (DΣ/B,E) −−−−→ CCper• (DΣ/B,E) −−−−→ CC•(DΣ/B,E)[2]

It remains to notice further that the diagram

q−1C∞B ←−−−− K −−−−→ CCper• (DΣ/B,E)

represents the morphism C∞B
1−→ CCper• (DΣ/B,E) in the derived category. ut
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5.3 Proof of Theorem 45

This statement can be deduced from the results of [25] on the cohomology
of the Lie algebras of formal vector fields and formal matrix functions. We
recall the setting of [25] which extends that of the Chern-Weil definition of
characteristic classes. Recall that the latter provides a map

S•[[h0]]H0 → H2•(Σ,C) , (45)

where H0 = GLd(C)×GLr(C) with r = rk(E), while h0 is the Lie algebra of
H0, i.e., gld(C) ⊕ glr(C). To be precise, the elementary symmetric functions
of the two copies of gl are mapped to the Chern classes of TΣ/B and E.

In [25], this construction was generalized in the following way. Let k =
dim(B), and ĝ be the Lie algebra of formal differential operators of the form

k∑
i=1

Pi(y1, . . . , yk)
∂

∂yi
+

d∑
j=1

Qj(x1, . . . , xd, y1, . . . , yk)
∂

∂xi
+R(x1, . . . , xd, y1, . . . , yk)

where Pi, Qj are formal power series, and R(x) is an r×r matrix whose entries
are power series. Thus ĝ is the formal version of the relative Atiyah algebra.
Consider the Lie subalgebra h of fields such that all Pi and Qj are of degree
one and all entries of R are of degree zero. We can identify this subalgebra
with

h = gld(C)⊕ glk(C)⊕ glr(C)

Let
H = GLd(C)×GLk(C)×GLr(C)

be the corresponding Lie group. Thus (ĝ,H) form a Harish-Chandra pair.
Following the ideas of “formal geometry” (or “localization”) of Gelfand and
Kazhdan, one sees that every (ĝ,H)-module L induces a sheaf L on Σ. Sim-
ilarly, a complex L• of modules gives rise to a complex of sheaves L•. A
complex L• of modules is called homotopy constant if the action of ĝ extends
to an action of the differential graded Lie algebra (ĝ[ε], ∂∂ε ). Here ε is a formal
variable of degree −1 and square zero. In this case, there is a generalization
of the Chern-Weil map constructed in [25]:

CW : H•(h0[ε], h0;L•)→ H•(Σ,L•)

which gives (45) when L = C with the trivial action. Consider the following
(ĝ,H)-modules:

D =
{∑

Pα(x1, . . . , xd, y1, . . . , yk)∂αx

}
,
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where Pα are r × r matrices whose entries are power series, and

Ω• =
{∑

I

PI(x1, . . . , xd, y1, . . . , yk)dIx
}
,

which is the space of differential forms whose coefficients are formal power
series. The latter is a complex with the (fiberwise) De Rham differential.
Moreover, Ω• is homotopy constant (εĝ acts on it by exterior multiplication).
The Hochschild, cyclic, etc. complexes of D inherit the (ĝ,H)-module struc-
ture; moreover, they also become homotopy constant (an element εX ∈ εĝ act
by the operator ιX from (4.2.4)). One constructs ([4], pt. II, Lemma 3.2.4) a
class

ν ∈ H0(h0[ε], h0; Hom(CCper
−• (D), Ω2d+•))

such that CW(ν) coincides with

νD ∈ H0(Σ; Hom(CCper
−• (DΣ/B), Ω2d+•

Σ/B )) .

To be precise, the cited lemma concerns the Weyl algebra of power series in
both coordinates and derivations with the Moyal product (clearly, differential
operators of finite order form a subalgebra). Second, the construction there is
for the relative cohomology of the pair (g, h) but it extends to the case of the
pair (g[ε], h) of which (h0[ε], h0) is a sub-pair.

The cochain ν is actually independent of y. There is the canonical class 1
in HC0

per(D); it is h0-invariant, and it is shown in [25] how to extend it to a
class in H0(h0[ε], h0; CCper

−• (D)). On the other hand,

H0(h0[ε], h0;Ω•)

can be naturally identified with

H0(h0[ε], h0; C)

It remains to show that

ν(1) =
∑

[ch · Td]2(d+i) · ui

where ch is the corresponding invariant power series in H•(glr[ε], glr; C) and
Td is the corresponding invariant power series in H•(gld[ε], gld; C). This was
carried out in [4], Lemma 5.3.2. ut

6 Comparison with the gerbe picture

6.1 L2-sections of a vector bundle on a circle.

Let Σ be an oriented C∞-manifold diffeomorphic to the circle S1 with the
standard orientation, and let E be a complex C∞-vector bundle on Σ. Choose
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a smooth Riemannian metric g on Σ and a smooth Hermitian metric h on
E. Let Γ (Σ,E) be the space of C∞-sections of E. The choise of g, h defines
a positive definite scalar product on this space and we denote by L2

g,h(Σ,E)
the Hilbert space obtained by completion with respect to this scalar product.

Lemma 46. For a different choice g′, h′ of metrics on Σ,E we have a canon-
ical identification of topological vector spaces

L2
g,h(Σ,E)→ L2

g′,h′(Σ,E).

Proof. The Hilbert norms on Γ (Σ,E) associated to (g, h) and (g′, h′) are
equivalent, since Σ is compact. ut

We will denote the completion simply by L2(Σ,E).
Consider now the case when Σ = S1 is the standard circle and E = Cr is

the trivial bundle of rank r. In this case L2(Σ,E) = L2(S1)⊕r. Let us denote
this Hilbert space by H. It comes with a polarization in the sense of Pressley
and Segal [26]. In other words, H is decomposed as H+ ⊕H− where H+,H−
are infinite-dimensional ortogonal closed subspaces defined as follows.

H+ consists of vector functions extending holomorphically into the unit
disk D+ = {|z| < 1}. The space H− consists of vector functions extending
holomorphically into the opposite annulus D− = {|z| > 1} and vanishing at
∞.

The decomposition H = H+⊕H− yields the groups GLres(H) ⊂ GL(H),
see [26] (6.2.1), as well as the Sato Grassmannian Gr(H) on which GLres(H)
acts transitively. We recall that Gr(H) consists of closed subspaces W ⊂ H
whose projection to H+ is a Fredholm operator and the projection to H− is
a Hilbert-Schmidt operator, see [26] (7.1.1).

Given arbitrary Σ,E as before, we can choose an orientation preserving
diffeomorphism φ : S1 → Σ and a trivialization ψ : φ∗E → Cr. This gives an
identification

uφ,ψ : L2(Σ,E)→ H = L2(S1)⊕r.

In particular, we get a distinguished set of subspaces in L2(Σ,E), namely

Grφ,ψ(Σ,E) = u−1
φ,ψ(Gr(H)),

and a distinguished subgroup of its automorphisms, namely

GLφ,ψres (L2(Σ,E)) = u−1
φ,ψGLres(H)uφ,ψ.

Lemma 47. The subgroup GLφ,ψres (L2(Σ,E)) and the set Grφ,ψ(L2(Σ,E)) are
independent of the choice of φ and ψ.

Proof. Any two choices of φ, ψ differ by an element of the Atiyah group
AT (S1,Cr), see Example 36. This group being a semidirect product of
Diffeo(S1) and GLrC∞(S1), our statement follows from the known fact that
both of these groups are subgroups of GLres(H), see [26]. ut
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We will drop φ, ψ from the notation, writingGr(L2(Σ,E)) andGLres(L2(Σ,E)).
Recall further that Gr(H)×Gr(H) is equipped with a line bundle ∆ (the

relative determinantal bundle) which has the following additional structures:

1. Equivariance with respect to GLres(H).
2. A multiplicative structure, i.e., an identification

p∗12∆⊗ p∗23∆→ p∗13∆ (46)

of vector bundles on Gr(H)×Gr(H)×Gr(H), which is equivariant under
GLres(H) and satisfies the associatiivity, unit and inversion properties.

It follows from the above that we have a canonically defined line bun-
dle (still denoted ∆) on Gr(L2(Σ,E)) × Gr(L2(Σ,E)) equivariant under
GLres(L2(Σ,E)) and equipped with a multiplicative structure. For W,W ′ ∈
Gr(L2(Σ,E)) we denote by ∆W,W ′ the fiber of ∆ at (W,W ′).

As is well known, the multiplicative bundle ∆ gives rise to a category
(C∗-gerbe) Det L2(Σ,E) whose set of objects is Gr(L2(Σ,E)), while

HomDet L2(Σ,E)(W,W ′) = ∆W,W ′ − {0} .

The composition of morphisms comes from the identification

∆W,W ′ ⊗∆W ′,W ′′ → ∆W,W ′′

given by (46).

6.2 L2-direct image in a circle fibration.

Let now q : Σ → B be a fibration in oriented circles and E be a vector
bundle on Σ. We have then a bundle of Hilbert spaces qL

2

∗ (E) whose fiber at
b ∈ B is L2(Σb, Eb). Furthermore, by Lemma 47 this bundle has a GLres(H)-
structure, where H = L2(S1)⊕r. Therefore we have the associated bundle of
Sato Grassmannians Gr(qL

2

∗ (E)) on B and the (fiberwise) multiplicative line
bundle ∆ on

Gr(qL
2

∗ (E))×B Gr(qL
2

∗ (E)).

We define a sheaf of C∞∗B -groupoids on B whose local objects are local sections
of Gr(qL

2

∗ (E)) and for any two such sections defined on U ⊂ B

Hom(s1, s2) = (s1, s2)∗∆− 0U ,

where 0U stands for the zero section of the induced line bundle. This sheaf
of groupoids is locally connected and so gives rise to a C∞∗B -gerbe which we
denote Det(q∗E). So we have the class[

Det(q∗e)
]
∈ H2(B,C∞∗B ).
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Alternatively, consider the Atiyah group G = AT (S1,Cr), see Example 36.
By the above, G ⊂ GLres(H). The determinantal C∗-gerbe Det(H) (over a
point) with G-action gives a central extension G̃ of G by C∗. A circle fibration
q : Σ → B gives a principal G-bundlle P (Σ/B), as in (31), and the following
is clear.

Proposition 48. The gerbe Det(q∗E) is equivalent to Lift
eG
G(P (Σ/B,E)), see

Example 18.

Consider the exponential sequence (13) of sheaves on B and the corre-
sponding coboundary map δ2, see (14). Then we have the class

δ2
[
Det(q∗E)

]
∈ H3(B,Z) .

Theorem 49. The image of δ
[
Det(q∗E)

]
in H3(B,C) coincides with negative

of the class C1(q∗E) (see Definition 38).

Proof. We apply Proposition 40 to G = AT (S1,Cr) and β being the class of
the central extension G̃. Then g = ACr (S1) is the Atiyah algebra of the trivial
bundle on S1 and γ is the class of the “trace” central extension induced from
the Lie algebra glres(H) of GLres(H). We have the embeddings

g ⊂ glr(D(S1)) ⊂ glres(H),

and the trace central extension is represented by an explicit cocycle Ψ of
glres(H) (going back to [28]). Let z be the standard complex coordinate on
S1 such that |z| = 1. Then the formula for the restriction of Ψ to glr(D(S1))
was given in [15], see also [16], formula (1.5.2):

Ψ(f(z)∂mz , g(z)∂
n
z ) =

m!n!
(m+ n+ 1)!

Resz=0dz · Tr(f (n+1(z)g(m)(z)) ,

where f (n) denotes the nth derivative with respect to z. Our statement now
reduces to the following lemma. ut

Lemma 50. The second Lie cohomology class of glrD(S1) given by the cocycle
Ψ is equal to the negative of the class corresponding to the fundamental class
of S1 via the identification of Corollary 23.

Proof. As the space of (continuous) Lie algebra homology in question is 1-
dimensional, it is enough to evaluate the cocycle Ψ on the Lie algebra 2-
homology class σ from 23 and to show that this value is precisely equal to 1.
For this it is enough to consider r = 1. Let D = D(S1) for simplicity.

We need to recall the explicit form of the identification (18) for the case
n = 1 (first Hochschild homology maps to the second Lie algebra homology).
In other words, we need to recall the definition of the map.

ε : HH1(D)→ HLie
2 (gl(D))→ C .
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As explained in BĢ and [29], this map is defined via the order filtration F
on the ring D and uses the corresponding spectral sequence. This means we
need to start with a Hochschild 1-cycle σ =

∑
Pi ⊗Qi ∈ D ⊗D and form its

highest symbol cycle

Smbl(σ) =
∑

Smbl(Pi)⊗ Smbl(Qi) ∈ gr(D)⊗ gr(D) ,

which gives an element in Hoch1(gr(D)). As gr(D) is the ring of polyno-
mial functions on T ∗S1, Hochschild-Kostant-Rosenberg gives HH1(gr(D)) =
Ω1(T ∗S1), the space of 1-forms on T ∗S1 polynomial along the fibers. So the
class of Smbl(σ) is a 1-form ω = ω(σ) on T ∗S1. This is an element of the
E1-term of the spectral sequence for the Hochschild homology of the filtered
ring D.

Furthermore, one denotes by ∗ the symplectic Hodge operator on forms
on T ∗S1. The results of loc. cit. imply the differential in the E1-term is ∗d∗
where d is the de Rham differential on T ∗S1 while higher differentials vanish.
This means that under our assumptions ∗ω(σ) is a closed 1-form and

ε(σ) =
∫
S1
∗ω(σ) .

To finish the proof we need to exhibit just one σ as above such that

0 6= ε(σ) = Ψ(σ) :=
∑

Ψ(Pi, Qi) .

We take
σ = z2 ⊗ z−1∂z − 2z ⊗ ∂z .

Then one sees that σ is a Hochschild 1-cycle and Ψ(σ) = 1. On the other
hand, let θ be the real coordinate on S1 so that z = exp(2πiθ). Then the real
coordinates on T ∗S1 are θ, ξ with ξ = Smbl(∂/∂θ), so the Poisson bracket
{θ, ξ} is equal to 1. In terms of the coordinate z it means that ξ = Smbl(z∂/∂z)
and {z, ξ} = z. Therefore

Smbl(σ) = z2 ⊗ z−2ξ − 2z ⊗ z−1ξ

and, hence,

ω(σ) = z2d(z−2ξ) = 2zd(z−1ξ) = −dz − z−1ξ ,

see [21] p.11. The symplectic (volume) form on T ∗S1 is (dz/z) ∧ dξ, so the
symplectic Hodge operator is given by

∗dξ = dz/z, ∗dz/z = dξ, ∗2 = 1 .

Therefore,

∗ω(σ) = −dz/z − ξdξ,
∫
S1
∗ω(σ) = −1

and we are done. ut
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