\relax \immediate\closeout\minitoc \let \MiniTOC =N \citation{KZ} \citation{Dr:Gal} \citation{Su} \citation{Ko} \citation{Dr:QH} \citation{Dr:Gal} \@writefile{toc}{\contentsline {title}{Universal KZB equations: the elliptic case}{165}} \@writefile{toc}{\contentsline {author}{Damien Calaque\unskip {}\and Benjamin Enriquez\unskip {}\and Pavel Etingof\unskip {}}{165}} \citation{Bez} \citation{Kr} \citation{Be1} \citation{Be2} \citation{HLS} \citation{Ma} \citation{Dr:Gal} \citation{GG1} \@writefile{toc}{\contentsline {section}{\numberline {1}Bundles with flat connections on (reduced) configuration spaces}{167}} \newlabel{sect:1}{{1}{167}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1}The Lie algebras ${\@mathfrak {t}}_{1,n}$ and $\mathaccentV {bar}016{\@mathfrak {t}}_{1,n}$}{167}} \newlabel{inf:pure:braid}{{1}{167}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Bundles with flat connections over $C(E,n)$ and $\mathaccentV {bar}016C(E,n)$}{168}} \newlabel{eq:3}{{2}{170}} \newlabel{theta:id}{{3}{171}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Bundles with flat connections on $C(E,n)/S_{n}$ and $\mathaccentV {bar}016C(E,n)/S_{n}$}{172}} \@writefile{toc}{\contentsline {section}{\numberline {2}Formality of pure braid groups on the torus}{172}} \newlabel{sect:2}{{2}{172}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Reminders on Malcev Lie algebras}{172}} \citation{Bi1} \citation{Bez} \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Presentation of $\rm {PB}_{1,n}$}{173}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Alternative presentations of ${\@mathfrak {t}}_{1,n}$}{173}} \newlabel{lemma:pres}{{4}{173}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.4}The formality of $\rm {PB}_{1,n}$}{174}} \newlabel{formality}{{4}{175}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.5}The formality of $\overline {\rm {PB}}_{1,n}$}{176}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.6}The isomorphisms $\rm {B}_{1,n}({\@mathbb C})\simeq \rm {exp}(\mathaccentV {hat}05E{\@mathfrak {t}}_{1,n}) \rtimes S_{n}$, $\overline {\rm {B}}_{1,n}({\@mathbb C}) \simeq \rm {exp}(\mathaccentV {hat}05E{\mathaccentV {bar}016{\@mathfrak {t}}}_{1,n})\rtimes S_{n}$}{176}} \@writefile{toc}{\contentsline {section}{\numberline {3}Bundles with flat connection on ${\cal M}_{1,n}$ and ${\cal M}_{1,[n]}$}{177}} \newlabel{sect:4}{{3}{177}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Derivations of the Lie algebras ${\@mathfrak {t}}_{1,n}$ and $\mathaccentV {bar}016{\@mathfrak {t}}_{1,n}$ and associated groups}{177}} \newlabel{part}{{5}{178}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Bundle with flat connection on ${\cal M}_{1,n}$}{181}} \newlabel{prop:bundle}{{10}{181}} \newlabel{thm:nabla}{{12}{184}} \newlabel{equiv:K}{{6}{184}} \newlabel{shift:Delta}{{7}{184}} \newlabel{equiv:Delta}{{8}{184}} \newlabel{mod:K}{{9}{184}} \newlabel{15}{{10}{185}} \newlabel{16}{{11}{185}} \newlabel{mod:Delta}{{12}{186}} \newlabel{remainingbis}{{13}{187}} \newlabel{crossed}{{14}{188}} \newlabel{id:theta}{{15}{189}} \newlabel{comm}{{16}{189}} \newlabel{start}{{17}{189}} \newlabel{partial:1}{{18}{190}} \newlabel{partial:2}{{19}{190}} \newlabel{partial:3}{{20}{190}} \newlabel{partial:4}{{21}{191}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Bundle with flat connection over ${\cal M}_{1,[n]}$}{192}} \@writefile{toc}{\contentsline {section}{\numberline {4}The monodromy morphisms $\Gamma _{1,[n]}\to {\@mathbf G}_{n}\rtimes S_n$}{193}} \newlabel{sect:5}{{4}{193}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1}The solution $F^{(n)}({\bf z}|\tau )$}{193}} \citation{Bi2} \@writefile{toc}{\contentsline {subsection}{\numberline {4.2}Presentation of $\Gamma _{1,[n]}$}{194}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3}The monodromy morphisms $\gamma _n : \Gamma _{1,[n]} \to {\@mathbf G}_n\rtimes S_{n}$}{195}} \citation{Dr:Gal} \newlabel{lemma:holonomy}{{17}{196}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.4}Expression of $\gamma _n : \Gamma _{1,[n]} \to {\@mathbf G}_n\rtimes S_{n}$ using $\gamma _1$ and $\gamma _2$}{196}} \newlabel{5:4}{{4.4}{196}} \newlabel{A:ids}{{22}{199}} \newlabel{B:ids}{{23}{199}} \newlabel{gamma13}{{24}{199}} \newlabel{gamma12''}{{25}{199}} \newlabel{gamma13'}{{26}{199}} \newlabel{gamma11}{{27}{199}} \newlabel{gamma12}{{28}{199}} \newlabel{gamma12'}{{29}{199}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.5}Expression of $\mathaccentV {tilde}07E\Psi $ and of $\mathaccentV {tilde}07EA$ and $\mathaccentV {tilde}07EB$ in terms of $\Phi $}{200}} \newlabel{ell:KZ}{{30}{200}} \newlabel{ell:KZ2}{{31}{200}} \newlabel{trigo:KZ}{{32}{200}} \newlabel{KZ'}{{33}{202}} \newlabel{thm:B}{{26}{203}} \newlabel{transition}{{34}{204}} \newlabel{inductive}{{35}{205}} \newlabel{ratio:cd}{{36}{206}} \newlabel{adjoint}{{30}{208}} \@writefile{toc}{\contentsline {section}{\numberline {5}Construction of morphisms $\Gamma _{1,[n]}\to {\@mathbf G}_{n}\rtimes S_n$}{209}} \newlabel{sect:5bis}{{5}{209}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Construction of morphisms $\Gamma _{1,[n]}\to {\@mathbf G}_{n}\rtimes S_n$ from a $5$-uple $(\Phi _\lambda ,\mathaccentV {tilde}07EA,\mathaccentV {tilde}07EB,\mathaccentV {tilde}07E\Theta ,\mathaccentV {tilde}07E\Psi )$}{209}} \newlabel{assoc:1}{{37}{209}} \newlabel{assoc:2}{{38}{209}} \newlabel{construction}{{31}{209}} \newlabel{gen:pentagon}{{39}{210}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Construction of morphisms $\overline {\rm {B}}_{1,n}\to \rm {exp}(\setbox \z@ \hbox {\frozen@everymath \@emptytoks \mathsurround \z@ $\textstyle {\mathaccentV {bar}016{\@mathfrak {t}}}_{1,n}^{\bf k}$}\mathaccent "0362{{\mathaccentV {bar}016{\@mathfrak {t}}}_{1,n}^{\bf k}})\rtimes S_{n}$ using an associator $\Phi _\lambda $}{215}} \newlabel{construction:bis}{{33}{216}} \newlabel{rel:B}{{40}{217}} \citation{Dr:Gal} \citation{Dr:QH} \@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Construction of morphisms $\Gamma _{1,[n]}\to {\@mathbf G}_{1,n} \rtimes S_{n}$ using a pair $(\Phi _\lambda ,\mathaccentV {tilde}07E\Theta _\lambda )$}{219}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Elliptic structures over QTQBA's}{219}} \newlabel{5:6}{{5.4}{219}} \newlabel{A:id}{{41}{221}} \newlabel{B:id}{{42}{221}} \citation{Dr:coco} \@writefile{toc}{\contentsline {section}{\numberline {6}The KZB connection as a realization of the universal KZB connection}{223}} \newlabel{sect:6}{{6}{223}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.1}Realizations of $\mathaccentV {bar}016{\@mathfrak {t}}_{1,n}$}{223}} \newlabel{sect:real:1n}{{6.1}{223}} \newlabel{prop:realization}{{39}{224}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2}Realizations of $\mathaccentV {bar}016{\@mathfrak {t}}_{1,n}\rtimes {\@mathfrak d}$}{224}} \newlabel{real:der}{{40}{225}} \citation{EE} \@writefile{toc}{\contentsline {subsection}{\numberline {6.3}Reductions}{226}} \citation{EE} \newlabel{prop:red:1}{{41}{227}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.4}Realization of the universal KZB system}{231}} \citation{Be1} \citation{FW} \@writefile{toc}{\contentsline {section}{\numberline {7}The universal KZB connection and representations of Cherednik algebras}{232}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.1}The rational Cherednik algebra of type $A_{n-1}$}{232}} \citation{EG} \@writefile{toc}{\contentsline {subsection}{\numberline {7.2}The homorphism from $\mathaccentV {bar}016{\@mathfrak t}_{1,n}$ to the rational Cherednik algebra}{233}} \newlabel{mapxi}{{46}{233}} \citation{Ch2} \citation{Ch1} \citation{BEG1} \citation{E} \citation{Ch2} \@writefile{toc}{\contentsline {subsection}{\numberline {7.3}Monodromy representations of double affine Hecke algebras}{234}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.4}The modular extension of $\xi _{a,b}$.}{234}} \citation{Ch2} \@writefile{toc}{\contentsline {section}{\numberline {8}Explicit realizations of certain highest weight representations of the rational Cherednik algebra of type $A_{n-1}$}{235}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.1}The representation $V_N$.}{235}} \newlabel{cheract}{{50}{235}} \newlabel{classkzb}{{51}{235}} \citation{Ch2} \citation{BEG2} \citation{EG} \citation{GGOR} \@writefile{toc}{\contentsline {subsection}{\numberline {8.2}The spherical part of $V_N$.}{236}} \newlabel{xi}{{43}{236}} \newlabel{yi}{{44}{236}} \citation{BEG2} \newlabel{surje}{{53}{237}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.3}Coincidence of the two ${\@mathfrak {sl}}_2$ actions}{237}} \newlabel{seo}{{45}{237}} \newlabel{ef}{{46}{237}} \newlabel{eulh}{{56}{237}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.4}The irreducibility of $V_N$.}{238}} \newlabel{irre}{{57}{238}} \citation{K} \citation{He} \citation{Lu1} \newlabel{ffirst}{{48}{239}} \newlabel{invce:c}{{49}{239}} \newlabel{ssecond}{{50}{239}} \citation{K} \citation{K} \citation{Lu1} \citation{He} \citation{Ro} \citation{HK} \citation{LS} \citation{L} \citation{Mi} \@writefile{toc}{\contentsline {subsection}{\numberline {8.5}The character formula for $V_N$.}{240}} \newlabel{chara}{{59}{240}} \@writefile{toc}{\contentsline {section}{\numberline {9}Equivariant $D$-modules and representations of the rational Cherednik algebra}{240}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.1}The category of equivariant $D$-modules on the nilpotent cone}{240}} \citation{Mi} \citation{Lu3} \citation{Lu2} \citation{Lu2} \citation{Lu2} \@writefile{toc}{\contentsline {subsection}{\numberline {9.2}Simple objects in ${\@mathcal D}_G({\@mathcal N})$}{241}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.3}Semisimplicity of ${\@mathcal D}_G({\@mathcal N})$.}{241}} \newlabel{semisi}{{61}{241}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.4}Monodromicity}{242}} \newlabel{monodromic}{{62}{242}} \citation{J} \citation{Mi} \citation{GG1} \@writefile{toc}{\contentsline {subsection}{\numberline {9.5}Characters}{243}} \citation{GG1} \citation{GG1} \citation{GG1} \citation{GG1} \@writefile{toc}{\contentsline {subsection}{\numberline {9.6}The functors $F_n$, $F_n^*$}{244}} \newlabel{cato}{{64}{244}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.7}The symmetric part of $F_n$}{244}} \citation{GG1} \newlabel{gg}{{65}{245}} \newlabel{irred}{{66}{245}} \newlabel{support}{{67}{245}} \citation{Ro} \@writefile{toc}{\contentsline {subsection}{\numberline {9.8}Irreducible equivariant $D$-modules on the nilpotent cone for $G = {\rm SL}_N({\@mathbb C})$}{246}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.9}The action of $F_n^*$ on irreducible objects}{246}} \newlabel{nescond}{{51}{246}} \newlabel{funconirr}{{68}{246}} \citation{GS} \citation{GS} \citation{GGOR} \citation{GS} \citation{BEG2} \@writefile{toc}{\contentsline {subsection}{\numberline {9.10}Proof of Theorem 68\hbox {}}{247}} \newlabel{gst}{{72}{247}} \newlabel{nilorb}{{74}{247}} \newlabel{incl}{{75}{248}} \newlabel{annih}{{76}{248}} \citation{L} \citation{LS} \citation{BEG2} \citation{CE} \citation{BEG1} \@writefile{toc}{\contentsline {subsection}{\numberline {9.11}The support of $L(\pi (n\mu /N))$}{249}} \newlabel{superr}{{78}{249}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.12}The cuspidal case}{249}} \citation{BEG1} \newlabel{deco}{{79}{250}} \newlabel{lc}{{52}{250}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.13}The case of general orbits}{251}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.14}The trigonometric case}{251}} \newlabel{rela}{{81}{252}} \citation{AS} \citation{AST} \citation{EG} \citation{GG2} \@writefile{toc}{\contentsline {subsection}{\numberline {9.15}Relation with the Arakawa-Suzuki functor}{253}} \@writefile{toc}{\contentsline {subsection}{\numberline {9.16}Directions of further study}{253}} \citation{Gin} \@writefile{toc}{\contentsline {section}{\numberline {A}}{254}} \newlabel{prop:app:1}{{83}{254}} \newlabel{prop:app:2}{{84}{255}} \newlabel{prop:app:3}{{85}{255}} \bibcite{AS}{AS98} \bibcite{AST}{AST96} \bibcite{BK}{BK00} \bibcite{BEG1}{BEG03a} \bibcite{BEG2}{BEG03b} \bibcite{Be1}{Ber98a} \bibcite{Be2}{Ber98b} \@writefile{toc}{\contentsline {section}{References}{256}} \@mtwritefile{\contentsline {mtchap}{References}{256}} \bibcite{Bez}{Bez94} \bibcite{Bi1}{Bir69a} \bibcite{Bi2}{Bir69b} \bibcite{CE}{CE03} \bibcite{Ch1}{Che97} \bibcite{Ch2}{Che03} \bibcite{Dr:coco}{Dri90a} \bibcite{Dr:QH}{Dri90b} \bibcite{Dr:Gal}{Dri91} \bibcite{EE}{EE05} \bibcite{E}{Eti94} \bibcite{EG}{EG02} \bibcite{FW}{FW96} \bibcite{GG1}{GG04} \bibcite{GG2}{GG05} \bibcite{Gin}{Gin89} \bibcite{GGOR}{GGOR03} \bibcite{GS}{GS05} \bibcite{HLS}{HLS00} \bibcite{He}{Hes80} \bibcite{HK}{HK84} \bibcite{J}{Jos97} \bibcite{KZ}{KZ84} \bibcite{Ko}{Koh83} \bibcite{K}{Kos63} \bibcite{Kr}{Kri94} \bibcite{Lu1}{Lus81} \bibcite{Lu2}{Lus88} \bibcite{Lu3}{Lus85} \bibcite{L}{Lev98} \bibcite{LS}{LS97} \bibcite{Ma}{Man05} \bibcite{Mi}{Mir04} \bibcite{Ro}{Rou05} \bibcite{Su}{Sul77} \immediate\closeout\minitoc