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Summary. We de�ne a universal version of the Knizhnik-Zamolodchikov-Bernard
(KZB) connection in genus 1. This is a �at connection over a principal bundle on the
moduli space of elliptic curves with marked points. It restricts to a �at connection on
con�guration spaces of points on elliptic curves, which can be used for proving the
formality of the pure braid groups on genus 1 surfaces. We study the monodromy of
this connection and show that it gives rise to a relation between the KZ associator
and a generating series for iterated integrals of Eisenstein forms. We show that
the universal KZB connection realizes as the usual KZB connection for simple Lie
algebras, and that in the sln case this realization factors through the Cherednik
algebras. This leads us to de�ne a functor from the category of equivariant D-
modules on sln to that of modules over the Cherednik algebra, and to compute the
character of irreducible equivariant D-modules over sln which are supported on the
nilpotent cone.

Introduction

The KZ system was introduced in [KZ84] as a system of equations satis�ed by
correlation functions in conformal �eld theory. It was then realized that this
system has a universal version [Dri91]. The monodromy of this system leads
to representations of the braid groups, which can be used for proving the that
the pure braid groups, which are the fundamental groups of the con�guration
spaces of C, are formal (i.e., their Lie algebras are isomorphic with their asso-
ciated graded Lie algebras, which is a holonomy Lie algebra and thus has an
explicit presentation). This fact was �rst proved in the framework of minimal
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model theory [Sul77, Koh83]. These results gave rise to Drinfeld's theory of
associators and quasi-Hopf algebras [Dri90b, Dri91]; one of the purposes of
this work was to give an algebraic construction of the formality isomorphisms,
and indeed one of its by-products is the fact that these isomorphisms can be
de�ned over Q.

In the case of con�guration spaces over surfaces of genus ≥ 1, similar
Lie algebra isomorphisms were constructed by Bezrukavnikov [Bez94], using
results of Kriz [Kri94]. In this series of papers, we will show that this result can
be reproved using a suitable �at connection over con�guration spaces. This
connection is a universal version of the KZB connection [Ber98a, Ber98b],
which is the higher genus analogue of the KZ connection.

In this paper, we focus on the case of genus 1. We de�ne the universal
KZB connection (Section 1), and rederive from there the formality result
(Section 2). As in the integrable case of the KZB connection, the universal
KZB connection extends from the con�guration spaces C̄(Eτ , n)/Sn to the
moduli spaceM1,[n] of elliptic curves with n unordered marked points (Section
3). This means that: (a) the connection can be extended to the directions of
variation of moduli, and (b) it is modular invariant.

This connection then gives rise to a monodromy morphism γn : Γ1,[n] →
GnoSn, which we analyze in Section 4. The images of most generators can be
expressed using the KZ associator, but the image Θ̃ of the S-transformation
expresses using iterated integrals of Eisenstein series. The relations between
generators give rise to relations between Θ̃ and the KZ associator, identities
(28). This identity may be viewed as an elliptic analogue of the pentagon
identity, as it is a �de Rham� analogue of the relation 6AS in [HLS00] (in
[Man05], the question was asked of the existence of this kind of identity).

In Section 5, we investigate how to algebraically construct a morphism

Γ1,[n] → Gn o Sn. We show that a morphism B1,n → exp(̂̄t1,n) o Sn can be

constructed using an associator only (here B1,n is the reduced braid group of
n points on the torus). [Dri91] then implies that the formality isomorphism
can be de�ned over Q. In the last part of Section 5, we develop the analogue
of the theory of quasitriangular quasibialgebras (QTQBA's), namely elliptic
structures over QTQBA's. These structures give rise to representations of
B1,n, and they can be modi�ed by twist. We hope that in the case of a simple
Lie algebra, and using suitable twists, the elliptic structure given in Section
5.4 will give rise to elliptic structures over the quantum group Uq(g) (where
q ∈ C×) or over the Lusztig quantum group (when q is a root of unity),
yielding back the representations of B1,n from conformal �eld theory.

In Section 6, we show that the universal KZB connection indeed specializes
to the ordinary KZB connection.

Sections 7-9 are dedicated applications of the ideas of the preceding sec-
tions (in particular, Section 6) to representation theory of Cherednik algebras.

More precisely, In Section 7, we construct a homomorphism from the Lie
algebra t̄1,n o d to the rational Cherednik algebra Hn(k) of type An−1. This
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allows us to consider the elliptic KZB connection with values in representa-
tions of the rational Cherednik algebra. The monodromy of this connection
then gives representations of the true Cherednik algebra (i.e. the double a�ne
Hecke algebra). In particular, this gives a simple way of constructing an iso-
morphism between the rational Cherednik algebra and the double a�ne Hecke
algebra, with formal deformation parameters.

In Section 8, we consider the special representation VN of the rational
Cherednik algebra Hn(k), k = N/n, for which the elliptic KZB connection
is the KZB connection for (holomorphic) n-point correlation functions of the
WZW model for SLN (C) on the elliptic curve, when the marked points are
labeled by the vector representation CN . This representation is realized in the
space of equivariant polynomial functions on slN with values in (CN )⊗n, and
we show that it is irreducible, and calculate its character.

In Section 9, we generalize the construction of Section 8, by replacing,
in the construction of VN , the space of polynomial functions on slN with
an arbitrary D-module on slN . This gives rise to an exact functor from the
category of (equivariant) D-modules on slN to the category of representations
of Hn(N/n). We study this functor in detail. In particular, we show that this
functor maps D-modules concentrated on the nilpotent cone to modules from
category O− of highest weight modules over the Cherednik algebra, and is
closely related to the Gan-Ginzburg functor [GG04]. Using these facts, we
show that it maps irreducible D-modules on the nilpotent cone to irreducible
representations of the Cherednik algebra, and determine their highest weights.
As an application, we compute the decomposition of cuspidal D-modules into
irreducible representations of SLN(C). Finally, we describe the generalization
of the above result to the trigonometric case (which involvesD-modules on the
group and trigonometric Cherednik algebras), and point out several directions
for generalization.

1 Bundles with �at connections on (reduced)
con�guration spaces

1.1 The Lie algebras t1,n and t̄1,n

Let n ≥ 1 be an integer and k be a �eld of characteristic zero. We de�ne tk1,n as
the Lie algebra with generators xi, yi (i = 1, ..., n) and tij (i 6= j ∈ {1, ..., n})
and relations

tij = tji, [tij , tik + tjk] = 0, [tij , tkl] = 0, (1)

[xi, yj ] = tij , [xi, xj ] = [yi, yj ] = 0, [xi, yi] = −
∑
j|j 6=i

tij ,

[xi, tjk] = [yi, tjk] = 0, [xi + xj , tij ] = [yi + yj , tij ] = 0.
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(i, j, k, l are distinct). In this Lie algebra,
∑
i xi and

∑
i yi are central; we then

de�ne t̄k1,n := tk1,n/(
∑
i xi,

∑
i yi). Both tk1,n and t̄k1,n are positively graded,

where deg(xi) = deg(yi) = 1.
The symmetric group Sn acts by automorphisms of tk1,n by σ(xi) := xσ(i),

σ(yi) := yσ(i), σ(tij) := tσ(i)σ(j); this induces an action of Sn by automor-

phisms of t̄k1,n.

We will set t1,n := tC1,n, t̄1,n := t̄C1,n in Sections 1 to 4.

1.2 Bundles with �at connections over C(E, n) and C̄(E, n)

Let E be an elliptic curve, C(E,n) be the con�guration space En−{diagonals}
(n ≥ 1) and C̄(E,n) := C(E,n)/E be the reduced con�guration space. We

will de�ne a 4 exp(̂̄t1,n)-principal bundle with a �at (holomorphic) connec-
tion (P̄E,n, ∇̄E,n) → C̄(E,n). For this, we de�ne a exp(̂t1,n)-principal bun-
dle with a �at connection (PE,n,∇E,n) → C(E,n). Its image under the

natural morphism exp(̂tn) → exp(̂̄tn) is a exp(̂̄t1,n)-bundle with connection

(P̃E,n, ∇̃E,n) → C(E,n), and we then prove that (P̃E,n, ∇̃E,n) is the pull-back
of a pair (P̄E,n, ∇̄E,n) under the canonical projection C(E,n) → C̄(E,n).

For this, we �x a uniformization E ' Eτ , where for τ ∈ H, H := {τ ∈
C|=(τ) > 0}, Eτ := C/Λτ and Λτ := Z + Zτ . We then have C(Eτ , n) =
(Cn −Diagn,τ )/Λn

τ , where

Diagn,τ := {z = (z1, ..., zn) ∈ Cn | zij := zi − zj ∈ Λτ for some i 6= j}.

We de�ne Pτ,n as the restriction to C(Eτ , n) of the bundle over Cn/Λnτ for
which a section on U ⊂ Cn/Λnτ is a regular map f : π−1(U) → exp(̂t1,n), such
that5 f(z + δi) = f(z), f(z + τδi) = e−2πixif(z) (here π : Cn → Cn/Λnτ is the
canonical projection and δi is the ith vector of the canonical basis of Cn).

The bundle P̃τ,n → C(Eτ , n) derived from Pτ,n is the pull-back of a bundle

P̄τ,n → C̄(Eτ , n) since the e−2πix̄i ∈ exp(̂̄t1,n) commute pairwise and their

product is 1. Here x 7→ x̄ is the map t̂1,n → ˆ̄t1,n.
A �at connection ∇τ,n on Pτ,n is then the same as an equivariant �at

connection over the trivial bundle over Cn −Diagn,τ , i.e., a connection of the
form

∇τ,n := d−
n∑

i=1

Ki(z|τ)dzi,

where Ki(−|τ) : Cn → t̂1,n is holomorphic on Cn −Diagn,τ , such that:

(a) Ki(z + δj |τ) = Ki(z|τ), Ki(z + τδj |τ) = e−2πiad(xj)(Ki(z|τ)),
(b) [∂/∂zi −Ki(z|τ), ∂/∂zj −Kj(z|τ)] = 0 for any i, j.

4We will denote by ĝ or g∧ the degree completion of a positively graded Lie
algebra g.

5We set i :=
√
−1, leaving i for indices.



Universal KZB equations 169

∇τ,n then induces a �at connection ∇̃τ,n on P̃τ,n. Then ∇̃τ,n is the pull-
back of a (necessarily �at) connection on P̄τ,n i�:

(c) K̄i(z|τ) = K̄i(z+u(
∑
i δi)|τ) and

∑
i K̄i(z|τ) = 0 for z ∈ Cn−Diagn,τ ,

u ∈ C.
In order to de�ne the Ki(z|τ), we �rst recall some facts on theta-functions.

There is a unique holomorphic function C×H → C, (z, τ) 7→ θ(z|τ), such that

• {z|θ(z|τ) = 0} = Λτ ,
• θ(z + 1|τ) = −θ(z|τ) = θ(−z|τ),
• θ(z + τ |τ) = −e−πiτe−2πizθ(z|τ), and
• θz(0|τ) = 1.

We have θ(z|τ +1) = θ(z|τ), while θ(−z/τ | − 1/τ) = −(1/τ)e(πi/τ)z2θ(z|τ). If
η(τ) = q1/24

∏
n≥1(1−qn) where q = e2πiτ , and if we set ϑ(z|τ) := η(τ)3θ(z|τ),

then ∂τϑ = (1/4πi)∂2
zϑ.

Let us set

k(z, x|τ) :=
θ(z + x|τ)
θ(z|τ)θ(x|τ)

− 1
x
.

When τ is �xed, k(z, x|τ) belongs to Hol(C−Λτ )[[x]]. Substituting x = adxi,
we get a linear map t1,n → (t1,n⊗Hol(C−Λτ ))∧, and taking the image of tij ,
we de�ne

Kij(z|τ) := k(z, adxi|τ)(tij) =
(θ(z + ad(xi)|τ)

θ(z|τ)
ad(xi)

θ(ad(xi)|τ)
− 1

)
(yj);

it is a holomorphic function on C− Λτ with values in t̂1,n.
Now set z := (z1, . . . , zn), zij := zi − zj and de�ne

Ki(z|τ) := −yi +
∑
j|j 6=i

Kij(zij |τ).

Let us check that the Ki(z|τ) satisfy condition (c). We have clearly
Ki(z+u(

∑
i δi)) = Ki(z). We have k(z, x|τ)+k(−z,−x|τ) = 0, so Kij(z|τ)+

Kji(−z|τ) = 0, so that
∑
iKi(z|τ) = −

∑
i yi, which implies

∑
i K̄i(z|τ) = 0.

Lemma 1. Ki(z + δj |τ) = Ki(z|τ) and Ki(z + τδj |τ) = e−2πiadxj(Ki(z|τ)),
i.e., the Ki(z|τ) satisfy condition (a).

Proof. We have k(z± 1, x|τ) = k(z, x|τ) so for any j, Ki(z+ δj |τ) = Ki(z|τ).
We have k(z ± τ, x|τ) = e∓2πixk(z, x|τ) + (e∓2πix − 1)/x, so if j 6= i,

Ki(z + τδj |τ) =
∑
j′ 6=i,j

Kij′(zij′ |τ) + e2πiadxiKij(zij |τ) +
e2πiadxi − 1

adxi
(tij)− yi.

Then

e2πiadxi − 1
adxi

(tij) =
1− e−2πiadxj

adxj
(tij) = (1− e−2πiadxj)(yi),
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e2πiadxi(Kij(zij |τ)) = e−2πiadxj(Kij(zij |τ)) and for j′ 6= i, j, Kij′(zij′ |τ) =
e−2πiadxj(Kij′(zij′ |τ)), so Ki(z + τδj |τ) = e−2πiadxj(Ki(z|τ)). Now

Ki(z + τδi|τ) = −
∑
i

yi −
∑
j|j 6=i

Kj(z + τδi|τ)

= −
∑
i

yi − e−2πiadxi(
∑
j|j 6=i

Kj(z|τ))

= e−2πiadxi(−
∑
i

yi −
∑
j|j 6=i

Kj(z|τ))

= e−2πiadxiKi(z|τ)

(the �rst and last equality follow from the proof of (c), the second equality has
just been proved, the third equality follows from the centrality of

∑
i yi). ut

Proposition 2. [∂/∂zi−Ki(z|τ), ∂/∂zj −Kj(z|τ)] = 0, i.e., the Ki(z|τ) sat-
isfy condition (b).

Proof. For i 6= j, let us set Kij := Kij(zij |τ). Recall that Kij + Kji = 0,
therefore if ∂i := ∂/∂zi

∂iKij − ∂jKji = 0, [yi −Kij , yj −Kji] = −[Kij , yi + yj ].

Moreover, if i, j, k, l are distinct, then [Kik,Kjl] = 0. It follows that if
i 6= j, then [∂i −Ki(z|τ), ∂j −Kj(z|τ)] equals

[yi+yj ,Kij ]+
∑

k|k 6=i,j

(
[Kik,Kjk]+[Kij ,Kjk]+[Kij ,Kik]+[yj ,Kik]−[yi,Kjk]

)
.

Let us assume for a while that if k /∈ {i, j}, then

−[yi,Kjk]− [yj ,Kki]− [yk,Kij ]+ [Kji,Kki]+ [Kkj ,Kij ]+ [Kik,Kjk] = 0 (2)

(this is the universal version of the classical dynamical Yang-Baxter equation).
Then (2) implies that

[∂i−Ki(z|τ), ∂j−Kj(z|τ)] = [yi+yj ,Kij ]+
∑

k|k 6=i,j

[yk,Kij ] = [
∑
k

yk,Kij ] = 0

(as
∑
k yk is central), which proves the proposition.

Let us now prove (2). If f(x) ∈ C[[x]], then

[yk, f(adxi)(tij)] =
f(adxi)− f(−adxj)

adxi + adxj
[−tki, tij ],

[yi, f(adxj)(tjk)] =
f(adxj)− f(−adxk)

adxj + adxk
[−tij , tjk]

=
f(adxj)− f(adxi + adxj)

−adxi
[−tij , tjk],
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[yj , f(adxk)(tki)] =
f(adxk)− f(−adxi)

adxk + adxi
[−tjk, tki]

=
f(−adxi − adxj)− f(−adxi)

−adxj
[−tjk, tki].

The �rst identity is proved as follows:

[yk, (adxi)n(tij)] = −
n−1∑
s=0

(adxi)s(adtki)(adxi)n−1−s(tij)

= −
n−1∑
s=0

(adxi)s(adtki)(−adxj)n−1−s(tij)

= −
n−1∑
s=0

(adxi)s(−adxj)n−1−s(adtki)(tij)

= f(adxi,−adxj)([−tki, tij ]),

where f(u, v) = (un − vn)/(u − v). The two next identities follow from this
one and from the fact that xi + xj + xk commutes with tij , tik, tjk.

Then, if we write k(z, x) instead of k(z, x|τ), the l.h.s. of (2) is equal to(
k(zij ,−adxj)k(zik, adxi + adxj)− k(zij , adxi)k(zjk, adxi + adxj)

+k(zik, adxi)k(zjk, adxj) +
k(zjk, adxj)− k(zjk, adxi + adxj)

adxi

+
k(zik, adxi)− k(zij , adxi + adxj)

adxj
− k(zij , adxi)− k(zij ,−adxj)

adxi + adxj

)
[tij , tik].

So (2) follows from the identity

k(z,−v)k(z′, u+ v)− k(z, u)k(z′ − z, u+ v) + k(z′, u)k(z′ − z, v)

+
k(z′ − z, v)− k(z′ − z, u+ v)

u
+
k(z′, u)− k(z′, u+ v)

v
−k(z, u)− k(z,−v)

u+ v
= 0,

where u, v are formal variables, which is a consequence of the theta-functions
identity(
k(z,−v)− 1

v

)(
k(z′, u+ v) +

1
u+ v

)
−

(
k(z, u) +

1
u

)(
k(z′ − z, u+ v) +

1
u+ v

)
+

(
k(z′, u) +

1
u

)(
k(z′ − z, v) +

1
v

)
= 0. (3)

ut

We have therefore proved:

Theorem 3. (Pτ,n,∇τ,n) is a �at connection on C(Eτ , n), and the induced

�at connection (P̃τ,n, ∇̃τ,n) is the pull-back of a unique �at connection (P̄τ,n, ∇̄τ,n)
on C̄(Eτ , n).
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1.3 Bundles with �at connections on C(E, n)/Sn and C̄(E, n)/Sn

The group Sn acts freely by automorphisms of C(E,n) by σ(z1, ..., zn) :=
(zσ−1(1), ..., zσ−1(n)). This descends to a free action of Sn on C̄(E,n). We set
C(E, [n]) := C(E,n)/Sn, C̄(E, [n]) := C̄(E,n)/Sn.

We will show that (Pτ,n,∇τ,n) induces a bundle with �at connection
(Pτ,[n],∇τ,[n]) on C(Eτ , [n]) with group exp(̂t1,n)oSn, and similarly (P̄τ,n, ∇̄τ,n)
induces (P̄τ,[n], ∇̄τ,[n]) on C̄(Eτ , [n]) with group exp(̂̄t1,n) o Sn.

We de�ne Pτ,[n] → C(Eτ , [n]) by the condition that a section of U ⊂
C(Eτ , [n]) is a regular map π−1(U) → exp(̂t1,n) o Sn, satisfying again f(z +
δi) = f(z), f(z + τδi) = e−2πixif(z) and the additional requirement f(σz) =
σf(z) (where π̃ : Cn −Diagτ,n → C(Eτ , [n]) is the canonical projection). It is
clear that ∇τ,n is Sn-invariant, which implies that it de�nes a �at connection
∇τ,[n] on C(Eτ , [n]).

The bundle P̄ (Eτ , [n]) → C̄(Eτ , [n]) is de�ned by the additional require-
ment f(z + u(

∑
i δi)) = f(z) and ∇̄τ,n then induces a �at connection ∇̄τ,[n]

on C̄(Eτ , [n]).

2 Formality of pure braid groups on the torus

2.1 Reminders on Malcev Lie algebras

Let k be a �eld of characteristic 0 and let g be a pronilpotent k-Lie algebra. Set
g1 = g, gk+1 = [g, gk]; then g = g1 ⊃ g2... is a decreasing �ltration of g. The
associated graded Lie algebra is gr(g) := ⊕k≥1g

k/gk+1; we also consider its
completion ĝr(g) := ⊕̂k≥1g

k/gk+1 (here ⊕̂ is the direct product). We say that
g is formal i� there exists an isomorphism of �ltered Lie algebras g ' ĝr(g),
whose associated graded morphism is the identity. We will use the following
fact: if g is a pronilpotent Lie algebra, t is a positively graded Lie algebra, and
there exists an isomorphism g ' t̂ of �ltered Lie algebras, then g is formal,
and the associated graded morphism gr(g) → t is an isomorphism of graded
Lie algebras.

If Γ is a �nitely generated group, there exists a unique pair (Γ (k), iΓ ) of
a prounipotent algebraic group Γ (k) and a group morphism iΓ : Γ → Γ (k),
which is initial in the category of all pairs (U, j), where U is prounipotent
k-algebraic group and j : Γ → U is a group morphism.

We denote by Lie(Γ)k the Lie algebra of Γ (k). Then we have Γ (k) =
exp(Lie(Γ)k); Lie(Γ)k is a pronilpotent Lie algebra. We have Lie(Γ)k =
Lie(Γ)Q ⊗ k. We say that Γ is formal i� Lie(Γ)C is formal (one can show
that this implies that Lie(Γ)Q is formal).

When Γ is presented by generators g1, ..., gn and relations Ri(g1, ..., gn)
(i = 1, ..., p), Lie(Γ)Q is the quotient of the topologically free Lie algebra f̂n
generated by γ1, ..., γn by the topological ideal generated by log(Ri(eγ1 , ..., eγn))
(i = 1, ..., p).
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The decreasing �ltration of f̂n is f̂n = (̂fn)1 ⊃ (̂fn)2 ⊃ ..., where (̂fn)k

is the part of f̂n of degree ≥ k in the generators γ1, ..., γn. The image of
this �ltration by the projection is map is the decreasing �ltration Lie(Γ)Q =
Lie(Γ)1Q ⊃ Lie(Γ)2Q ⊃ ... of Lie(Γ)Q.

2.2 Presentation of PB1,n

For τ ∈ H, let Uτ ⊂ Cn − Diagn,τ be the open subset of all z = (z1, ..., zn),
of the form zi = ai + τbi, where 0 < a1 < ... < an < 1 and 0 < b1 < ... <
bn < 1. If z0 = (z0

1 , ..., z
0
n) ∈ Uτ , its image z0 in Enτ actually belongs to the

con�guration space C(Eτ , n).
The pure braid group of n points on the torus PB1,n may be viewed as

PB1,n = π1(C(Eτ ,n), z0). Denote by Xi, Yi ∈ PB1,n the classes of the projec-
tion of the paths [0, 1] 3 t 7→ z0 − tδi and [0, 1] 3 t 7→ z0 − tτδi.

Set Ai := Xi...Xn, Bi := Yi...Yn for i = 1, ..., n. According to [Bir69a],
Ai, Bi (i = 1, ..., n) generate PB1,n and a presentation of PB1,n is, in terms of
these generators:

(Ai, Aj) = (Bi, Bj) = 1 (any i, j), (A1,Bj) = (B1,Aj) = 1 (any j),

(Bk, AkA−1
j ) = (BkB−1

j , Ak) = Cjk (j ≤ k);

(Ai, Cjk) = (Bi, Cjk) = 1 (i ≤ j ≤ k),

where (g, h) = ghg−1h−1.

2.3 Alternative presentations of t1,n

We now give two variants of the de�ning presentation of t1,n. Presentation
(A) below is the original presentation in [Bez94], and presentation (B) will be
suited to the comparison with the above presentation of PB1,n.

Lemma 4. t1,n admits the following presentations:
(A) generators are xi, yi (i = 1, ..., n), relations are [xi, yj ] = [xj , yi]

(i 6= j), [xi, xj ] = [yi, yj ] = 0 (any i, j), [
∑
j xj , yi] = [

∑
j yj , xi] = 0 (any i),

[xi, [xj , yk]] = [yi, [yj , xk]] = 0 (i, j, k are distinct);
(B) generators are ai, bi (i = 1, ..., n), relations are [ai, aj ] = [bi, bj ] = 0

(any i, j), [a1, bj ] = [b1, aj ] = 0 (any j), [aj , bk] = [ak, bj ] (any i, j), [ai, cjk] =
[bi, cjk] = 0 (i ≤ j ≤ k), where cjk = [bk, ak − aj ].

The isomorphism of presentations (A) and (B) is ai =
∑n
j=i xj, bi =∑n

j=i yj.

Proof. Let us prove that the initial relations for xi, yi, tij imply the relations
(A) for xi, yi. Let us assume the initial relations. If i 6= j, since [xi, yj ] = tij
and tij = tji, we get [xi, yj ] = [xj , yi]. The relations [xi, xj ] = [yi, yj ] = 0 (any
i, j) are contained in the initial relations. For any i, since [xi, yi] = −

∑
j|j 6=i tij
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and [xj , yi] = tji = tij (j 6= i), we get [
∑
j xj , yi] = 0. Similarly, [

∑
j yj , xi] = 0

(for any i). If i, j, k are distinct, since [xj , yk] = tjk and [xi, tjk] = 0, we get
[xi, [xj , yk]] = 0 and similarly we prove [xi, [yj , xk]] = 0.

Let us now prove that the relations (A) for xi, yi imply the initial relations
for xi, yi and tij := [xi, yj ] (i 6= j). Assume the relations (A). If i 6= j, since
[xi, yj ] = [xj , yi], we have tij = tji. The relation tij = [xi, yj ] (i 6= j) is
clear and [xi, xj ] = [yi, yj ] = 0 (any i, j) are already in relations (A). Since
for any i, [

∑
j xj , yi] = 0, we get [xi, yi] = −

∑
j|j 6=i[xj , yi] = −

∑
j|j 6=i tji =

−
∑
j|j 6=i tij . If i, j, k are distinct, the relations [xi, [xj , yk]] = [yi, [yj , xk]] = 0

imply [xi, tjk] = [yi, tjk] = 0. If i 6= j, since [
∑
k xk, xi] = [

∑
k xk, yj ] = 0,

we get [
∑
k xk, tij ] = 0 and [xk, tij ] = 0 for k /∈ {i, j} then implies [xi +

xj , tij ] = 0. One proves similarly [yi + yj , tij ] = 0. We have already shown
that [xi, tkl] = [yj , tkl] = 0 for i, j, k, l distinct, which implies [[xi, yj ], tkl] = 0,
i.e., [tij , tkl] = 0. If i, j, k are distinct, we have shown that [tij , yk] = 0 and
[tij , xi + xj ] = 0, which implies [tij , [xi + xj , yk]] = 0, i.e., [tij , tik + tjk] = 0.

Let us prove that the relations (A) for xi, yi imply relations (B) for ai :=∑n
j=i xj , bi :=

∑n
j=i yj . Summing up the relations [xi′ , xj′ ] = [yi′ , yj′ ] = 0

and [xi′ , yj′ ] = [xj′ , yi′ ] for i′ = i, ..., n and j′ = j, ..., n, we get [ai, aj ] =
[bi, bj ] = 0 and [ai, bj ] = [aj , bi] (for any i, j). Summing up [

∑
j xj , yi′ ] =

[
∑
j yj , xi′ ] = 0 for i′ = i, ..., n, we get [a1, bi] = [ai, b1] = 0 (for any i).

Finally, cjk =
∑k−1
α=j

∑n
β=k tαβ (in terms of the initial presentation) so the

relations [xi′ , tαβ ] = 0 for i′ 6= α, β and [xα + xβ , tαβ ] = 0 imply [ai, cjk] = 0
for i ≤ j ≤ k. Similarly, one shows [bi, cjk] = 0 for i ≤ j ≤ k.

Let us prove that the relations (B) for ai, bi imply relations (A) for xi :=
ai − ai+1, yi := bi − bi+1 (with the convention an+1 = bn+1 = 0). As before,
[ai, aj ] = [bi, bj ] = 0, [ai, bj ] = [aj , bi] imply [xi, xj ] = [yi, yj ] = 0, [xi, yj ] =
[xj , yi] (for any i, j). We set tij := [xi, yj ] for i 6= j, then we have tij = tji.
We have for j < k, tjk = cjk − cj,k+1 − cj+1,k + cj+1,k+1 (we set ci,n+1 := 0),
so [ai, cjk] = 0 implies [

∑n
i′=i xi′ , tjk] = 0 for i ≤ j < k. When i < j < k, the

di�erence between this relation and its analogue of (i+1, j, k) gives [xi, tjk] = 0
for i < j < k. This can be rewritten [xi, [xj , yk]] = 0 and since [xi, xj ] = 0, we
get [xj , [xi, yk]] = 0, so [xj , tik] = 0 and by changing indices, [xi, tjk] = 0 for
j < i < k. Rewriting again [xi, tjk] = 0 for i < j < k as [xi, [yj , xk]] = 0 and
using [xi, xk] = 0, we get [xk, [xi, yj ]] = 0. i.e., [xk, tij ] = 0, which we rewrite
[xi, tjk] = 0 for j < k < i. Finally, [xi, tjk] = 0 for j < k and i /∈ {j, k}, which
implies [xi, tjk] = 0 for i, j, k di�erent. One proves similarly [yi, tjk] = 0 for
i, j, k di�erent. ut

2.4 The formality of PB1,n

The �at connection d−
∑n

i=1 Ki(z|τ)dzi gives rise to a monodromy represen-
tation

µz0,τ : PB1,n = π1(C, z0) → exp(̂t1,n),
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which factors through a morphism µz0,τ (C) : PB1,n(C) → exp(̂t1,n). Let
Lie(µz0,τ ) : Lie(PB1,n)C → t̂1,n be the corresponding morphism between
pronilpotent Lie algebras.

Proposition 5. Lie(µz0,τ ) is an isomorphism of �ltered Lie algebras, so that
PB1,n is formal.

Proof. As we have seen, Lie(PB1,n)C (denoted Lie(PB1,n) in this proof)
is the quotient of the topologically free Lie algebra generated by αi, βi
(i = 1, ..., n) by the topological ideal generated by [αi, αj ], [βi, βj ], [α1, βj ],
[β1, αj ], log(eβk , eαk−αj) − log(eβk−βj , eαk), [αi, γjk], [βi, γjk] where γjk =
log(eβk , eαk−αj).

This presentation and the above presentation (B) of t1,n imply that there
is a morphism of graded Lie algebras pn : t1,n → grLie(PB1,n) de�ned by
ai 7→ [αi], bi 7→ [βi], where α 7→ [α] is the projection map Lie(PB1,n) →
gr1Lie(PB1,n).

pn is surjective because grLieΓ is generated in degree 1 (as the associated
graded of any quotient of a topologically free Lie algebra).

There is a unique derivation ∆̃0 ∈ Der(t1,n), such that ∆̃0(xi) = yi and

∆̃0(yi) = 0. This derivation gives rise to a one-parameter group of automor-
phisms of Der(t1,n), de�ned by exp(s∆̃0)(xi) := xi + syi, exp(s∆̃0)(yi) = yi.

Lie(µz0,τ ) induces a morphism grLie(µz0,τ ) : grLie(PB1,n) → t1,n. We will
now prove that

grLie(µz0,τ ) ◦ pn = exp(− τ

2πi
∆̃0) ◦ w, (4)

where w is the automorphism of t1,n de�ned by w(ai) = −bi, w(bi) = 2πiai.
µz0,τ is de�ned as follows. Let Fz0(z) be the solution of

(∂/∂zi)Fz0(z) = Ki(z|τ)Fz0(z), Fz0(z0) = 1

on Uτ ; let

Hτ := {z = (z1, ..., zn) | zi = ai + τbi, 0 < a1 < ... < an < 1}

and
Vτ := {z = (z1, ..., zn) | zi = ai + τbi, 0 < b1 < ... < bn < 1};

let FHz0
and FVz0

be the analytic prolongations of Fz0 to Hτ and Vτ ; then

FHz0
(z + δi) = FHz0

(z)µz0,τ (Xi), e2πixiFVz0
(z + τδi) = FVz0

(z)µz0,τ (Yi).

We have logFz0(z) = −
∑

i(zi − z0
i )yi + terms of degree ≥ 2, where t1,n is

graded by deg(xi) = deg(yi) = 1, which implies that logµz0,τ (Xi) = −yi

+ terms of degree ≥ 2, logµz0,τ (Yi) = 2πixi − τyi + terms of degree ≥ 2.
Therefore Lie(µz0,τ )(αi) = logµz0,τ (Ai) = −bi + terms of degree ≥ 2,
Lie(µz0,τ )(βi) = logµz0,τ (Bi) = 2πiai − τbi + terms of degree ≥ 2. So
grLie(µz0,τ )([αi]) = −bi, grLie(µz0,τ )([βi]) = 2πiai − τbi.
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It follows that grLie(µz0,τ ) ◦ pn is the endomorphism ai 7→ −bi, bi 7→
2πiai − τbi of t1,n, which is the automorphism exp(− τ

2πi∆̃0) ◦ w; this proves
(4).

Since we already proved that pn is surjective, it follows that grLie(µz0,τ )
and pn are both isomorphisms. As Lie(PB1,n) and t̂1,n are both complete
and separated, Lie(µz0,τ ) is bijective, and since it is a morphism, it is an
isomorphism of �ltered Lie algebras. ut

2.5 The formality of PB1,n

Let z0 ∈ Uτ and [z0] ∈ C̄(Eτ , n) be its image. We set

PB1,n := π1(C̄(Eτ , n), [z0]).

Then PB1,n is the quotient of PB1,n by its central subgroup (isomorphic to
Z2) generated by A1 and B1. We have µz0,τ (A1) = e−

P
i yi and µz0,τ (B1) =

e2πi
P

i xi−τ
P

i yi , so Lie(µz0,τ )(α1) = −a1, Lie(µz0,τ )(β1) = 2πia1−τb1, which
implies that Lie(µz0,τ ) induces an isomorphism between Lie(PB1,n)C and t̄1,n.
In particular, PB1,n is formal.

Remark 6. Let Diagn := {(z, τ) ∈ Cn × H|z ∈ Diagn,τ} and let U ⊂
(Cn × H) − Diagn be the set of all (z, τ) such that z ∈ Uτ . Each element
of U gives rise to a Lie algebra isomorphism µz,τ : Lie(PB1,n) ' t̂1,n. For an
in�nitesimal (dz,dτ), the composition µz+dz,τ+dτ ◦ µ−1

z,τ is then an in�nitesi-

mal automorphism of t̂1,n. This de�nes a �at connection over U with values
in the trivial Lie algebra bundle with Lie algebra Der(̂t1,n). When dτ = 0, the
in�nitesimal automorphism has the form exp(

∑
i Ki(z|τ)dzi), so the connec-

tion has the form d−
∑

i ad(Ki(z|τ))dzi− ∆̃(z|τ)dτ , where ∆̃ : U → Der(̂t1,n)
is a meromorphic map with poles at Diagn. In the next section, we determine
a map ∆ : (Cn ×H)−Diagn → Der(̂t1,n) with the same �atness properties as

∆̃(z|τ).

2.6 The isomorphisms B1,n(C) ' exp(̂t1,n) o Sn,

B1,n(C) ' exp(̂̄t1,n) o Sn

Let z0 be as above; we de�ne B1,n := π1(C(Eτ , [n]), [z0]) and B1,n :=
π1(C̄(Eτ , [n]), [z0]), where x 7→ [x] is the canonical projection C(Eτ , n) →
C(Eτ , [n]) or C̄(Eτ , n) → C̄(Eτ , [n]).

We have an exact sequence 1 → PB1,n → B1,n → Sn → 1, We then de-
�ne groups B1,n(C) �tting in an exact sequence 1 → PB1,n(C) → B1,n(C) →
Sn → 1 as follows: the morphism B1,n → Aut(PB1,n) extends to B1,n →
Aut(PB1,n(C)); we then construct the semidirect product PB1,n(C) o B1,n;
then PB1,n embeds diagonally as a normal subgroup of this semidirect prod-
uct, and B1,n(C) is de�ned as the quotient (PB1,n(C) o B1,n)/PB1,n.
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The monodromy of ∇τ,[n] then gives rise to a group morphism B1,n →
exp(̂t1,n) o Sn, which factors through B1,n(C) → exp(̂t1,n) o Sn. Since this
map commutes with the natural morphisms to Sn and using the isomorphism
PB1,n(C) ' exp(̂t1,n), we obtain that B1,n(C) → exp(̂t1,n) o Sn is an isomor-
phism.

Similarly, from the exact sequence 1 → PB1,n → B1,n → Sn → 1 one
de�nes a group B1,n(C) �tting in an exact sequence 1 → PB1,n → B1,n(C) →
Sn → 1 together with an isomorphism B1,n(C) → exp(̂̄t1,n) o Sn.

3 Bundles with �at connection on M1,n and M1,[n]

We �rst de�ne Lie algebras of derivations of t̄1,n and a related group Gn.
We then de�ne a principal Gn-bundle with �at connection of M1,n and a
principal Gn o Sn-bundle with �at connection on the moduli space M1,[n] of
elliptic curves with n unordered marked points.

3.1 Derivations of the Lie algebras t1,n and t̄1,n and associated

groups

Let d be the Lie algebra with generators ∆0, d,X and δ2m (m ≥ 1), and
relations:

[d,X] = 2X, [d,∆0] = −2∆0, [X,∆0] = d,

[δ2m, X] = 0, [d, δ2m] = 2mδ2m, ad(∆0)2m+1(δ2m) = 0.

Proposition 7. We have a Lie algebra morphism d → Der(t1,n), denoted by

ξ 7→ ξ̃, such that d̃(xi) = xi, d̃(yi) = −yi, d̃(tij) = 0, X̃(xi) = 0, X̃(yi) = xi,

X̃(tij) = 0, ∆̃0(xi) = yi, ∆̃0(yi) = 0, ∆̃0(tij) = 0, δ̃2m(xi) = 0,

δ̃2m(tij) = [tij , (adxi)2m(tij)], and

δ̃2m(yi) =
∑
j|j 6=i

1
2

∑
p+q=2m−1

[(adxi)p(tij), (−adxi)q(tij)].

This induces a Lie algebra morphism d → Der(̄t1,n).

Proof. The fact that ∆̃0, d̃, X̃ are derivations and commute according to the
Lie bracket of sl2 is clear.

Let us prove that δ̃2m is a derivation. We have

δ̃2m(tij) = [tij ,
∑
i<j

(adxi)2m(tij)],

which implies that δ̃2m preserves the in�nitesimal pure braid identities. It
clearly preserves the relations
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[xi, xj ] = 0, [xi, yj ] = tij , [xk, tij ] = 0, [xi + xj , tij ] = 0.

Let us prove that δ̃2m preserves the relation [yk, tij ] = 0. On the one hand

[δ̃2m(yk), tij ] =
1
2

∑
p+q=2m−1

(−1)q[[(adxk)p(tki), (adxk)q(tki)]

+[(adxk)p(tkj), (adxk)q(tkj)], tij ]

=
1
2

∑
p+q=2m−1

(−1)q+1[[(adxk)p(tki), (adxk)q(tkj)]

+[(adxk)p(tkj), (adxk)q(tki)], tij ]

=
∑

p+q=2m−1

(−1)q+1[[(adxk)p(tki), (adxk)q(tkj)], tij ]

= [tij ,
∑

p+q=2m−1

(−1)p(adxi)p(adxj)q([tki, tkj ])].

On the other hand

[yk, δ̃2m(tij)] = [yk, [tij , (adxi)2m(tij)]] = [tij , [yk, (adxi)2m(tij)]].

Now

[yk, (adxi)2m(tij)] = −
∑

α+β=2m−1

(adxi)α
(
[tki, (adxi)β(tij)]

)
= −

∑
α+β=2m−1

(adxi)α[tki, (−adxj)β(tij)]

= −
∑

α+β=2m−1

(adxi)α(−adxj)β([tki, tij ])

=
∑

p+q=2m−1

(−1)p+1(adxi)p(adxj)q([tki, tkj ]).

Hence [δ̃2m(yk), tij ] + [yk, δ̃2m(tij)] = 0.
Let us prove that δ̃2m preserves the relation [yi, yj ] = 0, i.e., that

[δ̃2m(yi), yj ] + [yi, δ̃2m(yj)] = 0. We have

[yi, δ̃2m(yj)] =
1
2
[yi,

∑
p+q=2m−1

(−1)q[(adxj)p(tji), (adxj)q(tji)]]

+
1
2

∑
k 6=i,j

[yi,
∑

p+q=2m−1

(−1)q[(adxj)p(tjk), (adxj)q(tjk)]].

Now
1
2
[yi,

∑
p+q=2m−1

(−1)q[(adxj)p(tji), (adxj)q(tji)]]− (i↔ j) (5)
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= −1
2
[yi + yj ,

∑
p+q=2m−1

(−1)q[(adxi)p(tij), (adxi)q(tij)]]

=
∑

p+q=2m−1

(−1)q+1[[yi + yj , (adxi)p(tij)], (adxi)q(tij)].

A computation similar to the above computation of [yk, (adxi)2m(tij)] yields

[yi + yj , (adxi)p(tij)] = (−1)p
∑

α+β=p−1

[(adxk)α(tik), (adxj)β(tjk)],

so
(5) =

∑
α+β+γ=2m−2

[(adxi)α(tij), [(adxk)β(tik), (adxj)γ(tjk)]].

If now k 6= i, j, then

[yi,
1
2

∑
p+q=2m−1

(−1)q[(adxj)p(tjk), (adxj)q(tjk)]]

=
∑

p+q=2m−1

(−1)q[[yi, (adxj)p(tjk)], (adxj)q(tjk)].

As we have seen,

[yj , (adxi)p(tik)] = (−1)p
∑

α+β=p−1

(−adxi)α(adxk)β [tij , tik]

= (−1)p+1
∑

α+β=p−1

[(−adxi)α(tij), (adxk)β(tjk)].

So we get that [yi, 1
2

∑
p+q=2m−1(−1)q[(adxj)p(tjk), (adxj)q(tjk)]] equals∑

α+β+γ=2m−2

[[(adxi)α(tij), (adxk)β(tik)], (adxj)γ(tjk)]

and thus [yi, 1
2

∑
p+q=2m−1(−1)q[(adxj)p(tjk), (adxj)q(tjk)]]− (i↔ j) equals∑

α+β+γ=2m−2

[(adxi)α(tij), [(adxk)β(tik), (adxj)γ(tjk)]].

Therefore [yi, δ̃2m(yj)] + [δ̃2m(yi), yj ] = 0.
Since δ̃2m(

∑
i xi) = δ̃2m(

∑
i yi) = 0 and

∑
i xi and

∑
i yi are central, δ̃2m

preserves the relations [
∑
i xi, yj ] = 0 and [

∑
k xk, tij ] = [

∑
k yk, tij ] = 0. It

follows that δ̃2m preserves the relations [xi + xj , tij ] = [yi + yj , tij ] = 0 and

[xi, yi] = −
∑
j|j 6=i tij . All this proves that δ̃2m is a derivation.

Let us show that ad(∆̃0)2m+1(δ̃2m) = 0 for m ≥ 1. We have
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ad(∆̃0)2m+1(δ̃2m)(xi) = −(2m+ 1)∆̃2m
0 ◦ δ̃2m ◦ ∆̃0(xi)

= −(2m+ 1)∆̃2m
0 ◦ δ̃2m(yi)

= −(2m+ 1)∆̃2m
0 (

1
2

∑
j|j 6= i,

p + q = 2m − 1

[(adxi)p(tij), (−adxi)q(tij)])

= 0;

the last part of this computation implies that ad(∆̃0)2m+1(δ̃2m)(yi) = 0, there-
fore ad(∆̃0)2m+1(δ̃2m) = 0.

We have clearly [X̃, δ̃2m] = 0 and [d̃, δ̃2m] = 2mδ̃2m. It follows that
we have a Lie algebra morphism d → Der(t1,n). Since d̃, ∆̃0, X̃ and δ̃2m
all map C(

∑
i xi) ⊕ C(

∑
i yi) to itself, this induces a Lie algebra morphism

d → Der(̄t1,n). ut

Let e, f, h be the standard basis of sl2. Then we have a Lie algebra mor-
phism d → sl2, de�ned by δ2n 7→ 0, d 7→ h, X 7→ e, ∆0 7→ f . We denote by
d+ ⊂ d its kernel.

Since the morphism d → sl2 has a section (given by e, f, h 7→ X,∆0, d),
we have a semidirect product decomposition d = d+ o sl2.

We then have
t̄1,n o d = (̄t1,n o d+) o sl2.

Lemma 8. t̄1,n o d+ is positively graded.

Proof. We de�ne compatible Z2-gradings of d and t̄1,n by deg(∆0) = (−1, 1),
deg(d) = (0, 0), deg(X) = (1,−1), deg(δ2m) = (2m + 1, 1), deg(xi) = (1, 0),
deg(yi) = (0, 1), deg(tij) = (1, 1).

We de�ne the support of d (resp., t̄1,n) as the subset of Z2 of indices for
which the corresponding component of d (resp., t̄1,n) is nonzero.

Since the x̄i on one hand, the ȳi on the other hand generate abelian Lie
subalgebras of t̄1,n, the support of t̄1,n is contained in N2

>0 ∪ {(1, 0), (0, 1)}.
On the other hand, d+ is generated by the ad(∆0)p(δ2m), which all have

degrees in N2
>0. It follows that the support of d+ is contained in N2

>0.
Therefore the support of t̄1,n o d+ is contained in N2

>0 ∪ {(1, 0), (0, 1)}, so
this Lie algebra is positively graded. ut

Lemma 9. t̄1,n o d+ is a sum of �nite dimensional sl2-modules; d+ is a sum
of irreducible odd dimensional sl2-modules.

Proof. A generating space for t̄1,n is
∑
i(Cx̄i ⊕ Cȳi), which is a sum of �nite

dimensional sl2-modules, so t̄1,n is a sum of �nite dimensional sl2-modules.
A generating space for d+ is the sum over m ≥ 1 of its sl2-submodules

generated by the δ2m, which are zero or irreducible odd dimensional, there-
fore d+ is a sum of odd dimensional sl2-modules. (In fact, the sl2-submodule
generated by δ2m is nonzero, as it follows from the construction of the above
morphism d+ → Der(̄t1,n) that δ2m 6= 0.) ut
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It follows that t̄1,n, d̄+ and t̄1,n o d+ integrate to SL2(C)-modules (while
d̄+ even integrates to a PSL2(C)-module).

We can form in particular the semidirect products

Gn := exp((̄t1,n o d+)∧) o SL2(C)

and exp(d̂+) o PSL2(C); we have morphisms Gn → exp(d̂+) o PSL2(C) (this
is a 2-covering if n = 1 since t̄1,1 = 0).

Observe that the action of Sn by automorphisms of t̄1,n extends to an
action on t̄1,n o d, where the action on d is trivial. This gives rise to an action
of Sn by automorphisms of Gn.

3.2 Bundle with �at connection on M1,n

The semidirect product ((Zn)2 × C) o SL2(Z) acts on (Cn × H)−Diagn by

(n,m, u) ∗ (z, τ) := (n + τm + u(
∑
i

δi), τ) for (n,m, u) ∈ (Zn)2 × C

and (
α β
γ δ

)
∗ (z, τ) := (

z
γτ + δ

,
ατ + β

γτ + δ
) for

(
α β
γ δ

)
∈ SL2(Z)

(here Diagn := {(z, τ) ∈ Cn×H| for some i 6= j, zij ∈ Λτ}). The quotient then
identi�es with the moduli spaceM1,n of elliptic curves with n marked points.

Set Gn := exp((̄t1,nod+)∧)oSL2(C). We will de�ne a principal Gn-bundle
with �at connection (Pn,∇Pn) over M1,n.

For u ∈ C×, ud :=
(
u 0
0 u−1

)
∈ SL2(C) ⊂ Gn and for v ∈ C, evX :=(

1 v
0 1

)
∈ SL2(C) ⊂ Gn. Since [X, x̄i] = 0, we consistently set

exp(aX +
∑

i

bix̄i) := exp(aX)exp(
∑

i

bix̄i).

Proposition 10. There exists a unique principal Gn-bundle Pn over M1,n,
such that a section of U ⊂M1,n is a function f : π−1(U) → Gn (where

π : (Cn × H)−Diagn →M1,n

is the canonical projection), such that

• f(z + δi|τ) = f(z + u(
∑
i δi)|τ) = f(z|τ),

• f(z + τδi|τ) = e−2πix̄if(z|τ),
• f(z|τ + 1) = f(z|τ) and
• f( z

τ | −
1
τ ) = τdexp( 2πi

τ (
∑

i zix̄i + X))f(z|τ).
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Proof. Let cg̃ : Cn × H → Gn be a family of holomorphic functions (where
g̃ ∈ ((Zn)2 × C) o SL2(Z)) satisfying the cocycle condition

cg̃g̃′(z|τ) = cg̃(g̃′ ∗ (z|τ))cg̃′(z|τ).

Then there exists a unique principal Gn-bundle overM1,n such that a section
of U ⊂ M1,n is a function f : π−1(U) → Gn such that f(g̃ ∗ (z|τ)) =
cg̃(z|τ)f(z|τ).

We will now prove that there is a unique cocycle such that c(u,0,0) =
c(0,δi,0) = 1, c(0,0,δi) = e−2πix̄i , cS = 1 and cT (z|τ) = τdexp( 2πi

τ (
∑

i zix̄i + X)),

where S =
(

1 1
0 1

)
, T =

(
0 −1
1 0

)
.

Such a cocycle is the same as a family of functions cg : Cn×H → Gn (where
g ∈ SL2(Z)), satisfying the cocycle conditions cgg′(z|τ) = cg(g′ ∗ (z|τ))cg′(z|τ)
for g, g′ ∈ SL2(Z), and cg(z + δi|τ) = e2πiγx̄icg(z|τ), cg(z + τδi|τ) =

e−2πiδx̄icg(z|τ)e2πix̄i and cg(z + u(
∑
i δi)|τ) = cg(z|τ) for g =

(
α β
γ δ

)
∈

SL2(Z).

Lemma 11. There exists a unique family of functions cg : Cn×H → Gn such
that cgg′(z|τ) = cg(g′ ∗ (z|τ))cg′(z|τ) for g, g′ ∈ SL2(Z), with

cS(z|τ) = 1, cT (z|τ) = τde(2πi/τ)(
P

j zjx̄j+X).

Proof. SL2(Z) is the group generated by S̃, T̃ and relations T̃ 4 = 1, (S̃T̃ )3 =
T̃ 2, S̃T̃ 2 = T̃ 2S̃. Let 〈S̃, T̃ 〉 be the free group with generators S̃, T̃ ; then there
is a unique family of maps cg̃ : Cn×H → Gn, g̃ ∈ 〈S̃, T̃ 〉 satisfying the cocycle
conditions (w.r.t. the action of 〈S̃, T̃ 〉 on Cn×H through its quotient SL2(Z))
and cS̃ = cS , cT̃ = cT . It remains to show that cT̃ 4 = 1, c(S̃T̃ )3 = cT̃ 2 and
cS̃T̃ 2 = cT̃ 2S̃ .

For this, we show that cT̃ 2(z|τ) = (−1)d. We have

cT̃ 2(z|τ) = cT (z/τ | − 1/τ)cT (z|τ)

= (−τ)−dexp(−2πiτ(
∑

j

(zj/τ)x̄j + X))τdexp(
2πi
τ

(
∑

j

zjx̄j + X))

= (−1)d

since τdXτ−d = τ2X, τdx̄iτ
−d = τ x̄i.

Since ((−1)d)2 = 1d = 1, we get cT̃ 4 = 1. Since cS̃ and cT̃ 2 are both
constant and commute, we also get cS̃T̃ 2 = cT̃ 2S̃ .

We �nally have cS̃T̃ (z|τ) = cT (z|τ) while S̃T̃ =
(

1 −1
1 0

)
, (S̃T̃ )2 =

(
0 −1
1 −1

)
so
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c(S̃T̃ )3(z|τ) = cT (
z

τ − 1
| 1
1− τ

)cT (
z
τ
|τ − 1
τ

)cT (z|τ)

= (
1

1− τ
)dexp(−2πi

∑
zjx̄j + 2πi(1− τ)X)(

τ − 1
τ

)d

exp(
2πi
τ − 1

∑
j

zjx̄j + 2πi
τ

τ − 1
X)τdexp(

2πi
τ

(
∑

j

zjx̄j + X))

= (−1)dexp(
2πi

1− τ
(
∑

j

zjx̄j + X))exp(
2πi

τ(τ − 1)
(
∑

j

zjx̄j + X))

exp(
2πi
τ

(
∑

j

zjx̄j + X)) = (−1)d,

so c(S̃T̃ )3 = cT̃ 2 . ut

End of proof of Proposition 10. We now check that the maps cg satisfy
the remaining conditions, i.e., c(z + u(

∑
i δi)|τ) = cg(z|τ), cg(z + δi|τ) =

e2πiγx̄icg(z|τ), cg(z + τδi|τ) = e−2πiδx̄icg(z|τ)e2πix̄i . The cocycle identity
cgg′(z|τ) = cg(g′∗(z|τ))cg′(z|τ) implies that it su�ces to prove these identities
for g = S and g = T . They are trivially satis�ed if g = S. When g = T , the
�rst identity follows from

∑
i x̄i = 0, the third identity follows from the fact

that (X, x̄1, ..., x̄n) is a commutative family, the second identity follows from
the same fact together with τdx̄iτ

−d = τ x̄i. ut

Set

g(z, x|τ) :=
θ(z + x|τ)
θ(z|τ)θ(x|τ)

(θ′
θ

(z + x|τ)− θ′

θ
(x|τ)

)
+

1
x2

= kx(z, x|τ),

(we set f ′(z|τ) := (∂/∂z)f(z|τ)).
We have g(z, x|τ) ∈ Hol((C × H) − Diag1)[[x]], therefore g(z, adx̄i|τ) is

a linear map t̄1,n → (Hol((C × H) − Diag1) ⊗ t̄1,n)∧, so g(z, adx̄i|τ)(t̄ij) ∈
(Hol((C× H)−Diag1)⊗ t̄1,n)∧. Therefore

g(z|τ) :=
∑
i<j

g(zij , adx̄i|τ)(t̄ij)

is a meromorphic function Cn × H → ˆ̄t1,n with only poles at Diagn.
We set

∆̄(z|τ) := − 1
2πi

∆0 −
1

2πi

∑
n≥1

a2nE2n+2(τ)δ2n +
1

2πi
g(z|τ),

where a2n = −(2n + 1)B2n+2(2iπ)2n+2/(2n + 2)! and Bn are the Bernoulli
numbers given by x/(ex − 1) =

∑
r≥0(Br/r!)x

r. This is a meromorphic func-
tion Cn × H → (̄t1,n o d+)∧ o n+ ⊂ Lie(G1,n) (where n+ = C∆0 ⊂ sl2) with
only poles at Diagn.
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For ψ(x) =
∑
n≥1 b2nx

2n, we set δψ :=
∑
n≥1 b2nδ2n, ∆ψ := ∆0 +∑

n≥1 b2nδ2n. If we set

ϕ(x|τ) = −x−2−(θ′/θ)′(x|τ)+(x−2 +(θ′/θ)′(x|τ))|x=0 = g(0, 0|τ)−g(0, x|τ),

then ϕ(x|τ) =
∑
n≥1 a2nE2n+2(τ)x2n, so that

∆̄(z|τ) = − 1
2πi

∆ϕ(∗|τ) +
1

2πi
g(z|τ).

Theorem 12. There is a unique �at connection ∇Pn on Pn, whose pull-back
to (Cn × H)−Diagn is the connection

d− ∆̄(z|τ)dτ −
∑

i

K̄i(z|τ)dzi

on the trivial Gn-bundle.

Proof. We should check that the connection d− ∆̄(z|τ)dτ −
∑

i K̄i(z|τ)dzi is
equivariant and �at, which is expressed as follows (taking into account that
we already checked the equivariance and �atness of d−

∑
i K̄i(z|τ)dzi for any

τ):

(equivariance) for g =
(
α β
γ δ

)
∈ SL2(Z)

1

γτ + δ
K̄i(

z

γτ + δ
|ατ + β

γτ + δ
) = Ad(cg(z|τ))(K̄i(z|τ))+ [(∂/∂zi)cg(z|τ)]cg(z|τ)−1 (6)

∆̄(z + δi|τ) = ∆̄(z + u(
X

i

δi)|τ) = ∆̄(z|τ)

and ∆̄(z + τδi|τ) = e−2πiadxi(∆̄(z|τ)− K̄i(z|τ)), (7)

1

(γτ + δ)2
∆̄(

z

γτ + δ
|ατ + β

γτ + δ
) = Ad(cg(z|τ))(∆̄(z|τ)) (8)

+
γ

γz + δ

nX
i=1

ziAd(cg(z|τ))(K̄i(z|τ)) + [(
∂

∂τ
+

γ

γτ + δ

nX
i=1

zi
∂

∂zi
)cg(z|τ)]cg(z|τ)−1,

(�atness) [∂/∂τ − ∆̄(z|τ), ∂/∂zi − K̄i(z|τ)] = 0.
Let us now check the equivariance identity (6) for K̄i(z|τ). The cocycle

identity cgg′(z|τ) = cg(g′∗(z|τ))cg′(z|τ) implies that it su�ces to check it when
g = S and g = T . When g = S, this is the identity K̄i(z|τ + 1) = K̄i(z|τ),
which follows from the identity θ(z|τ + 1) = θ(z|τ). When g = T , we have to
check the identity

1
τ
K̄i(

z
τ
| − 1

τ
) = Ad(τde

2πi
τ (

P
i zix̄i+X))(K̄i(z|τ)) + 2πix̄i. (9)
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We have

2πix̄i −Ad(e2πi(
P

i zix̄i+X))(ȳi/τ)
= −Ad(e2πi(

P
i zix̄i))(ȳi/τ) (as Ad(e2πiτX)(ȳi/τ) = ȳi/τ + 2πix̄i)

= − ȳi
τ
− e2πiad(

P
k zkx̄k) − 1

ad(
∑

k zkx̄k)
([

∑
j

zj x̄j ,
ȳi
τ

])

= − ȳi
τ
− e2πiad(

P
k zkx̄k) − 1

ad(
∑

k zkx̄k)
(
∑
j|j 6=i

zji
τ
t̄ij)

= − ȳi
τ
−

∑
j|j 6=i

e2πiad(
P

k zkx̄k) − 1
ad(

∑
k zkx̄k)

(
zji
τ
t̄ij) = − ȳi

τ
−

∑
j|j 6=i

e2πiad(zijx̄i) − 1
ad(zijx̄i)

(
zji
τ
t̄ij)

= − ȳi
τ

+
∑
j|j 6=i

e2πiad(zijx̄i) − 1
ad(x̄i)

(
t̄ij
τ

),

therefore

1
τ

(
∑
j

e2πizijadx̄i − 1
adx̄i

(t̄ij)− ȳi) = −Ad(τde
2πi
τ (

P
i zix̄i+X))(ȳi) + 2πix̄i. (10)

We have θ(z/τ | − 1/τ) = (1/τ)e(πi/τ)z2θ(z|τ), therefore

1
τ
k(
z

τ
, x| − 1

τ
) = e2πizxk(z, τx|τ) +

e2πizx − 1
xτ

. (11)

Substituting (z, x) = (zij , adx̄i) (j 6= i), applying to t̄ij , summing over j and
adding up identity (10), we get

1
τ

(
∑
j|j 6=i

k(
zij
τ
, adx̄i| −

1
τ

)(t̄ij)− ȳi) =
∑
j|j 6=i

e2πizijadx̄ik(zij , τadx̄i|τ)(t̄ij)

−Ad(τde
2πi
τ (

P
i zix̄i+X))(ȳi) + 2πix̄i.

Since e2πizijadx̄ik(zij , τadx̄i|τ)(t̄ij) = Ad(τde(2πi/τ)(
P

i zix̄i+X))
(
k(zij, adx̄i)(t̄ij)

)
,

this implies (9). This ends the proof of (6).
Let us now check the shift identities (7) in ∆̄(z|τ). The �rst part is imme-

diate; let us check the last identity. We have k(z + τ, x|τ) = e−2πixg(z, x|τ) +
(e−2πix − 1)/x, therefore g(z+ τ, x|τ) = e−2πixg(z, x|τ)− 2πie−2πixk(z, x|τ) +
1
x ( 1−e−2πix

x − 2πie−2πix). Substituting (z, x) = (zij , adx̄i) (j 6= i), applying
to t̄ij , summing up and adding up

∑
k,l|k,l 6=j g(zkl, adx̄k|τ)(t̄kl), we get that

g(z + τδi|τ) equals

e−2πiadx̄i(g(z|τ))− 2πie−2πiadx̄i(K̄i(z|τ) + ȳi) +
X
j|j 6=i

1

adx̄i
(
1− e−2πiadx̄i

adx̄i
− 2πie−2πiadx̄i)(t̄ij)

= e−2πiadx̄i(g(z|τ))− 2πie−2πiadx̄i(K̄i(z|τ) + ȳi)− (
1− e−2πiadx̄i

adx̄i
− 2πie−2πiadx̄i)(ȳi)

= e−2πiadx̄i(g(z|τ))− 2πie−2πiadx̄i(K̄i(z|τ))− 1− e−2πiadx̄i

adx̄i
(ȳi);
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on the other hand, we have e−2πiadx̄i(∆0) = ∆0+ 1−e−2πiadx̄i

adx̄i
(ȳi) (as [∆0, x̄i] =

ȳi), therefore g(z + δi|τ) − ∆0 = e−2πiadx̄i(g(z|τ) − ∆0 − 2πiK̄i(z|τ)). Since
the δ2n commute with x̄i, we get ∆̄(z + τδi|τ) = e−2πiadx̄i(∆̄(z|τ)− K̄i(z|τ)),
as wanted.

Let us now check the equivariance identities (8) for ∆̄(z|τ). As above, the
cocycle identities imply that it su�ces to check (8) for g = S, T . When g = S,
this identity follows from

∑
i K̄i(z|τ) = 0. When g = T , it is written

1
τ2
∆̄(

z
τ
| − 1

τ
) = Ad(cT(z|τ))

(
∆̄(z|τ) +

1
τ

∑
i

ziK̄i(z|τ)
)

+
d
τ
− 2πiX. (12)

The modularity identity (11) for k(z, x|τ) implies that

1
τ2
g(
z

τ
, x|−1

τ
) = e2πizxg(z, τx|τ)+2πiz

τ
e2πizxk(z, τx|τ)+1− e2πizx

τ2x2
+

2πiz
τ2

e2πizx

x
.

This implies

1
τ2

∑
i<j

g(
zij
τ
, adx̄i| −

1
τ

)(t̄ij) =
∑
i<j

e2πizijadx̄ig(zij, τadx̄i|τ)(t̄ij)

+
∑
i<j

2πi
τ
zije

2πizijadx̄ik(zij , τadx̄i|τ)(t̄ij)+
∑
i<j

(
1− e2πizijadx̄i

τ2(adx̄i)2
+

2πizij

τ2

e2πizijadx̄i

adx̄i
)(t̄ij).

We compute as above∑
i<j

e2πizijadx̄ig(zij , τadx̄i|τ)(t̄ij) = Ad(τde
2πi
τ (

P
i zix̄i+X))(g(z|τ)),

∑
i<j

2πi
τ
zije

2πizijadx̄ik(zij , τadx̄i|τ)(t̄ij) =
∑

i

2πi
τ

zi(
∑
j|j 6=i

e2πizijadx̄ik(zij, τadx̄i|τ)(t̄ij))

(using k(z, x|τ) + k(−z,−x|τ) = 0) and∑
i<j

e2πizijadx̄ik(zij , τadx̄i|τ)(t̄ij) = Ad(τde
2πi
τ (

P
i zix̄i+X))(K̄i(z|τ) + ȳi).

Therefore

1
τ2
g(

z
τ
| − 1

τ
) = Ad(cT(z|τ))

(
g(z|τ) +

2πi
τ

∑
i

ziK̄i(z|τ) +
2πi
τ

∑
i

ziȳi

)
+

∑
i<j

(
1− e2πizijadx̄i

τ2(adx̄i)2
+

2πizij

τ2

e2πizijadx̄i

adx̄i
)(t̄ij),

which implies
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1
τ2
∆̄(

z
τ
| − 1

τ
) = Ad(cT(z|τ))

(
∆̄(z|τ) +

1
τ

∑
i

K̄i(z|τ)
)

+ Ad(cT(z|τ))( 1
τ

∑
i

ziȳi)

+
1

2πi

∑
i<j

(
1− e2πizijadx̄i

τ2(adx̄i)2
+

2πizij

τ2

e2πizijadx̄i

adx̄i
)(t̄ij)

+
1

2πi
(
Ad(cT(z|τ))(∆ϕ(∗|τ))−

1
τ2

∆ϕ(∗|−1/τ)

)
.

To prove (12), it then su�ces to prove

Ad(cT(z|τ))( 1
τ

∑
i

ziȳi) +
1

2πi

∑
i<j

(
1− e2πizijadx̄i

τ2(adx̄i)2
+

2πizij

τ2

e2πizijadx̄i

adx̄i
)(t̄ij)

+
1

2πi
(
Ad(cT(z|τ))(∆ϕ(∗|τ))−

1
τ2

∆ϕ(∗|−1/τ)

)
=

d
τ
− 2πiX. (13)

We compute

Ad(cT(z|τ))( 1
τ

∑
i

ziȳi) =
1
τ2

∑
i

ziȳi+
2πi
τ

∑
i

zix̄i+
∑
i<j

(− 1
τ2

)zij
e2πizijadx̄i − 1

adx̄i
(t̄ij).

We also have Ad(cT(z|τ))(E2n+2(τ)δ2n) = 1
τ2 E2n+2(− 1

τ )δ2n since [δ2n, x̄i] =
[δ2n, X] = 0 and [d, δ2n] = 2nδ2n, and since E2n+2(−1/τ) = τ2n+2E2n+2(τ).
This implies

Ad(cT(z|τ))(δϕ(∗|τ)) = δϕ(∗|−1/τ).

We now compute Ad(cT(z|τ))(∆0)− (1/τ2)∆0. We have

Ad(cT(z|τ))(∆0) = Ad(e2πi
P

i zix̄i) ◦Ad(τde(2πi/τ)X)(∆0),

and
Ad(τde(2πi/τ)X)(∆0) = (1/τ2)∆0 + (2πi/τ)d− (2πi)2X.

Now Ad(e2πi
P

i zix̄i)(X) = X, Ad(e2πi
P

i zix̄i)(d) = d − 2πi
∑

i zix̄i. We now
compute

Ad(e2πi
P

i zix̄i)(∆0) = ∆0 +
e2πi

P
i ziadx̄i − 1

2πiad(
∑

i zix̄i)
([2πi

∑
i

zix̄i,∆0])

= ∆0 −
e2πi

P
i ziadx̄i − 1

ad(
∑

i zix̄i)
(
∑
i

ziȳi) = ∆0 −
∑
i

e2πi
P

j|j6=i zjiadx̄j − 1
ad(

∑
j|j 6=i zjix̄j)

(ziȳi)

= ∆0 −
∑
i

(
2πiziȳi +

1
ad(

∑
j|j 6=i zjix̄j)

(
e2πi

P
j|j6=i zjiadx̄j − 1

ad(
∑

j|j 6=i zjix̄j)
− 2πi)([

∑
j|j 6=i

zjix̄j, ziȳi])
)

= ∆0 −
∑
i

2πiziȳi −
∑
i 6=j

( 1
ad(x̄j)

(
e2πizjiadx̄j − 1

ad(zjix̄j)
− 2πi)(zit̄ij)

)
;
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the last sum decomposes as∑
i<j

1
ad(x̄j)

(
e2πizjiadx̄j − 1

ad(zjix̄j)
− 2πi)(zit̄ij) +

∑
i>j

1
ad(x̄j)

(
e2πizjiadx̄j − 1

ad(zjix̄j)
− 2πi)(zit̄ij)

=
∑
i<j

1
ad(x̄j)

(
e2πizjiadx̄j − 1

ad(zjix̄j)
− 2πi)(zit̄ij) +

1
ad(x̄i)

(
e2πizijadx̄i − 1

ad(zijx̄i)
− 2πi)(zjt̄ij)

=
∑
i<j

1
ad(x̄i)

(
e2πizijadx̄i − 1

ad(zijx̄i)
− 2πi)(zjit̄ij),

so

Ad(e2πi
P

i zix̄i)(∆0) = ∆0−2πi
∑

i

ziȳi−
∑
i<j

1
ad(x̄i)

(
e2πizijadx̄i − 1

ad(zijx̄i)
−2πi)(zjit̄ij),

and �nally

Ad(cT(z|τ))(∆ϕ(∗|τ))−
1
τ2

∆ϕ(∗|−1/τ) = −2πi
τ2

∑
i

ziȳi −

1
τ2

∑
i<j

1
ad(x̄i)

(
e2πizijadx̄i − 1

ad(zijx̄i)
− 2πi)(zjit̄ij) +

2πi
τ

(d− 2πi
∑

i

zix̄i)− (2πi)2X,

which implies (13). This proves (12) and therefore (8).
We prove the �atness identity [∂/∂τ − ∆̄(z|τ), ∂/∂zi − K̄i(z|τ)] = 0. For

this, we prove that (∂/∂τ)K̄i(z|τ) = (∂/∂τ)∆̄(z|τ), and [∆̄(z|τ), K̄i(z|τ)] = 0.
Let us �rst prove

(∂/∂τ)K̄i(z|τ) = (∂/∂zi)∆̄(z|τ). (14)

We have
(∂/∂τ)K̄i(z|τ) =

∑
j|j 6=i

(∂τk)(zij , adx̄i|τ)(t̄ij)

and (∂/∂zi)∆̄(z|τ) = (2πi)−1
∑

j|j 6=i (∂zg)(zij , adx̄i)(t̄ij) (where ∂τ := ∂/∂τ ,

∂z = ∂/∂z) so it su�ces to prove the identity

(∂τk)(z, x|τ) = (2πi)−1(∂zg)(z, x|τ),

i.e., (∂τk)(z, x|τ) = (2πi)−1(∂z∂xk)(z, x|τ). In this identity, k(z, x|τ) may be
replaced by k̃(z, x|τ) := k(z, x|τ) + 1/x = θ(z + x|τ)/(θ(z|τ)θ(x|τ)). Dividing
by k̃(z, x|τ), the wanted identity is rewritten as

2πi
(∂τθ
θ

(z + x|τ)− ∂τθ

θ
(z|τ)− ∂τθ

θ
(x|τ)

)
= (

θ′

θ
)′(z + x|τ) +

(θ′
θ

(z + x|τ)− θ′

θ
(z|τ)

)(θ′
θ

(z + x|τ)− θ′

θ
(x|τ)

)
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(recall that f ′(z|τ) = ∂zf(z|τ)), or taking into account the heat equation
4πi(∂τθ/θ)(z|τ) = (θ′′/θ)(z|τ)− 12πi(∂τη/η)(τ), as follows

2
(
θ′

θ (z|τ) θ
′

θ (x|τ)− θ′

θ (x|τ) θ
′

θ (z + x|τ)− θ′

θ (z|τ) θ
′

θ (z + x|τ)
)

(15)

+ θ′′

θ (z|τ) + θ′′

θ (x|τ) + θ′′

θ (z + x|τ)− 12πi∂τη
η (τ) = 0

Let us prove (15). Denote its l.h.s. by F (z, x|τ). Since θ(z|τ) is odd w.r.t. z,
F (z, x|τ) is invariant under the permutation of z, x,−z − x. The identities

(θ′/θ)(z + τ |τ) = (θ′/θ)(z|τ)− 2πi

and
(θ′′/θ)(z + τ |τ) = (θ′′/θ)(z|τ)− 4πi(θ′/θ)(z|τ) + (2πi)2

imply that F (z, x|τ) is elliptic in z, x (w.r.t. the lattice Λτ ). The possible poles
of F (z, x|τ) as a function of z are simple at z = 0 and z = −x (mod Λτ ),
but one checks that F (z, x|τ) is regular at these points, so it is constant in z.
By the S3-symmetry, it is also constant in x, hence it is a function of τ only:
F (z, x|τ) = F (τ).

To compute this function, we compute

F (z, 0|τ) = [−2(θ′/θ)′−2(θ′/θ)2 +2θ′′/θ](z|τ)+(θ′′/θ)(0|τ)−12πi(∂τη/θ)(τ),

hence
F (τ) = (θ′′/θ)(0|τ)− 12πi(∂τη/η)(τ).

The above heat equation then implies that F (τ) = 4πi(∂τθ/θ)(0|τ). Now
θ′(0|τ) = 1 implies that θ(z|τ) has the expansion θ(z|τ) = z +

∑
n≥2 an(τ)z

n

as z → 0, which implies (∂τθ/θ)(0|τ) = 0. So F (τ) = 0, which implies (15)
and therefore (14).

We now prove
[∆̄(z|τ), K̄i(z|τ)] = 0. (16)

Since τ is constant in what follows, we will write k(z, x), g(z, x), ϕ instead of
k(z, x|τ), g(z, x|τ), ϕ(∗|τ). For i 6= j, let us set gij := g(zij , adx̄i)(t̄ij). Since
g(z, x|τ) = g(−z,−x|τ), we have gij = gji. Recall that K̄ij = k(zij , adx̄i)(tij).

We have

2πi[∆̄(z|τ), K̄i(z|τ)] = [−∆ϕ +
∑

i,j|i<j

gij,−ȳi +
∑
j|j 6=i

K̄ij] (17)

= [∆ϕ, ȳi] +
∑
j|j 6=i

(
− [∆ϕ, K̄ij ] + [ȳi, gij ] + [gij , K̄ij ]

)
+

∑
j,k|j 6=i,k 6=i,j<k

(
[ȳi, gjk] + [gik + gjk, K̄ij ] + [gij + gjk, K̄ik]

)
.

One computes
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[∆ϕ, ȳi] =
∑
α

[fα(adx̄i)(t̄ij), gα(−adx̄i)(t̄ij)] (18)

where
∑
α fα(u)gα(v) = 1

2
ϕ(u)−ϕ(v)

u−v . If f(x) ∈ C[[x]], then

[∆0, f(adx̄i)(t̄ij)]− [ȳi, f ′(adx̄i)(t̄ij)] =
∑
α

[hα(adx̄i)(t̄ij), kα(adx̄i)(t̄ij)]

+
∑

k|k 6=i,j

f(adx̄i)− f(−adx̄j)− f ′(−adx̄j)(adx̄i + adx̄j)
(adx̄i + adx̄j)2

([t̄ij , t̄ik]),

where∑
α

hα(u)kα(v) =
1
2

( 1
v2

(
f(u+v)−f(u)−vf ′(u)

)
− 1
u2

(
f(u+v)−f(v)−uf ′(v)

))
.

Since g(z, x) = kx(z, x), we get

−[∆0, K̄ij ] + [ȳi, gij ] = −
∑
α

[f ijα (adx̄i)(t̄ij), gij
α(adx̄i)(t̄ij)] (19)

+
∑

k|k 6=i,j

k(zij , adx̄i)− k(zij,−adx̄j)− (adx̄i + adx̄j)kx(zij,−adx̄j)
(adx̄i + adx̄j)2

([t̄ij , t̄jk]),

where
∑
α f

ij
α (u)gijα (v) equals

1
2

( 1
v2

(
k(zij , u+v)−k(zij , u)−vkx(zij , u)

)
− 1
u2

(
k(zij , u+v)−k(zij , v)−ukx(zij , v)

))
.

For f(x) ∈ C[[x]], we have

[δϕ, f(adx̄i)(t̄ij)] =
∑
α

[lα(adx̄i)(t̄ij),mα(adx̄i)(t̄ij)],

where
∑
α lα(u)mα(v) = f(u+ v)ϕ(v); therefore

−[δϕ, K̄ij ] = −
∑
α

[lijα (adx̄i)(t̄ij),mij
α(adx̄i)(t̄ij)], (20)

where
∑
α l
ij
α (u)mij

α (v) = k(zij , u+ v)ϕ(v).
For j, k 6= i and j < k, we have

[ȳi, gjk] + [gik + gjk, K̄ij ] + [gij + gjk, K̄ik]
= [ȳi, gjk]− [gki, K̄ji]− [gji, K̄ki] + [gjk, K̄ij ] + [gjk, K̄ik],

and since for any f(x) ∈ C[[x]], [ȳi, f(adx̄i)(t̄jk)] = − f(adx̄j)−f(−adx̄k)
adx̄j+adx̄k

([̄tij, t̄jk]),
we get
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[ȳi, gjk] + [gik + gjk, K̄ij ] + [gij + gjk, K̄ik] =
(
− g(zjk, adx̄j)− g(zjk,−adx̄k)

adx̄j + adx̄k

−g(zki, adx̄k)k(zji, adx̄j) + g(zji, adx̄j)k(zki, adx̄k) (21)

−g(zkj , adx̄k)k(zij, adx̄i) + g(zjk, adx̄j)k(zik, adx̄i)
)
([̄tij, t̄jk]).

Summing up (18), (19), (20) and (21), (17) gives

2πi[∆̄(z|τ), K̄i(z|τ)] =
∑
j|j 6=i

∑
α

[F ijα (adx̄i)(t̄ij),Gij
α(adx̄i)(t̄ij)]

+
∑

j,k|j 6=i,k 6=i

H(zij , zik,−adx̄j,−adx̄k)([tij, tjk]),

where
∑
α F

ij
α (u)Gijα (v) = L(zij , u, v),

L(z, u, v) =
1

2

ϕ(u)− ϕ(v)

u + v
+

1

2
k(z, u + v)(ϕ(u)− ϕ(v))

+
1

2
(g(z, u)k(z, v)− k(z, u)g(z, v))

−1

2

“ 1

v2

`
k(z, u + v)− k(z, u)− vkx(z, u)

´
− 1

u2

`
k(z, u + v)− k(z, v)− ukx(z, v)

´”
and

H(z, z′, u, v) = 1
v2

`
k(z, u + v)− k(z, u)− vkx(z, u)

´
− 1

u2

`
k(z′, u + v)− k(z′, v)− ukx(z′, v)

´
+ 1

u+v

`
g(z′ − z,−u)− g(z′ − z, v)

´
−g(−z′,−v)k(−z,−u) + g(−z,−u)k(−z′,−v)

−g(z − z′,−v)k(z, u + v) + g(z′ − z,−u)k(z′, u + v).

Explicit computation shows that H(z, z′, u, v) = 0, which implies that
L(z, u, v) = 0 since L(z, u, v) = − 1

2H(z, z, u, v). This proves (16). ut

Remark 13. De�ne ∆(z|τ) by the same formula as ∆̄(z|τ), replacing x̄i, ȳi
by xi, yi. Then d−∆(z|τ)dτ −

∑
i Ki(z|τ)dzi is �at. This can be interpreted

as follows.
Let N+ ⊂ SL2(C) be the connected subgroup with Lie algebra C∆0. Set

Ñn := exp((t1,n o d+)∧) o N+, Nn := exp((̄t1,n o d+)∧) o N+ and G̃n :=
exp((t1,n o d+)∧) o SL2(C). Then we have a diagram of groupsÑn → Nn

↓ ↓
G̃n → Gn


The trivial Nn-bundle on (H×Cn)−Diagn with �at connection d−∆̄(z|τ)dτ−∑

i K̄i(z|τ)dzi admits a reduction to Ñn, where the bundle is again trivial and
the connection is d−∆(z|τ)dτ −

∑
i Ki(z|τ)dzi.
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((Z2)2 × C) o SL2(Z) contains the subgroups (Zn)2, (Zn)2 × C, (Zn)2 o
SL2(Z). We denote the corresponding quotients of (Cn×H)−Diagn by C(n),
C̄(n), M̃1,n. These �t in the diagram C̃(n) → C(n)

↓ ↓
M̃1,n →M1,n


The pair (Pn,∇Pn) can be pulled back to Gn-bundles over these covers of
M1,n. These pull-backs admit G-structures, where G is the corresponding
group in the above diagram of groups.

We have natural projections C(n) → H, C̄(n) → H. The �bers of τ ∈ H
are respectively C(Eτ , n) and C̄(Eτ , n). The pair (Pn,∇n) can be pulled back
to C(Eτ , n) and C̄(Eτ , n); these pull-backs admit G-structures, where G =
exp(t1,n) and exp(̄t1,n), which coincide with (Pn,τ ,∇n,τ ) and (P̄n,τ , ∇̄n,τ ).

3.3 Bundle with �at connection over M1,[n]

The semidirect product ((Zn)2×C)o (SL2(Z)×Sn) acts on (Cn×H)−Diagn

as follows: the action of ((Zn)2 × C) o SL2(C) is as above and the action of
Sn is σ ∗ (z1, ..., zn, τ) := (zσ−1(1), ..., zσ−1(n), τ). The quotient then identi�es
with M1,[n].

We will de�ne a principalGnoSn-bundle with a �at connection (P[n],∇P[n])
over M1,[n].

Proposition 14. There exists a unique principal Gn o Sn-bundle P[n] over
M1,[n], such that a section of U ⊂M1,[n] is a function f : π̃−1(U) → GnoSn,
satisfying the conditions of Proposition 10 as well as f(σz|τ) = σf(z|τ) for
σ ∈ Sn (here π̃ : (Cn × H)−Diagn →M1,[n] is the canonical projection).

Proof. One checks that σcg̃(z|τ)σ−1 = cσg̃σ−1(σ−1z), where g̃ ∈ ((Zn)2×C)o
SL2(Z), σ ∈ Sn. It follows that there is a unique cocycle c(g̃,σ) : Cn × H →
Gn o Sn such that c(g̃,1) = cg̃ and c(1,σ)(z|τ) = σ. ut

Theorem 15. There is a unique �at connection ∇P[n] on P[n], whose pull-

back to (Cn × H)−Diagn is the connection d− ∆̄(z|τ)dτ −
∑

i K̄i(z|τ)dzi on
the trivial Gn o Sn-bundle.

Proof. Taking into account Theorem 12, it remains to show that this con-
nection is Sn-equivariant. We have already mentioned that

∑
i K̄i(z|τ)dzi is

equivariant; ∆̄(z|τ) is also checked to be equivariant. ut
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4 The monodromy morphisms Γ1,[n] → Gn o Sn

Let Γ1,[n] be the mapping class group of genus 1 surfaces with n unordered
marked points. It can be viewed as the fundamental group π1(M1,[n], ∗), where
∗ is a base point at in�nity which will be speci�ed later. The �at connection
on M1,[n] introduced above gives rise to morphisms γn : Γ1,[n] → Gn o Sn,
which we now study. This study in divided in two parts: in the �rst, analytic
part, we show that γn can be obtained from γ1 and γ2, and show that the
restriction of γn to B1,n can be expressed in terms of the KZ associator only.

In the second part, we show that morphisms B1,n → exp(̂̄t1,n) o Sn can be
constructed algebraically using an arbitrary associator. Finally, we introduce
the notion of an elliptic structure over a quasi-bialgebra.

4.1 The solution F (n)(z|τ )

The elliptic KZB system is now

(∂/∂zi)F (z|τ) = K̄i(z|τ)F (z|τ), (∂/∂τ)F (z|τ) = ∆̄(z|τ)F (z|τ),

where F (z|τ) is a function (Cn ×H)−Diagn ⊃ U → Gn o Sn invariant under
translation by C(

∑
i δi). Let Dn := {(z, τ) ∈ Cn × H|zi = ai + biτ, ai, bi ∈

R, a1 < a2 < ... < an < a1 +1, b1 < b2 < ... < bn < b1 +1}. Then Dn ⊂ (Cn×
H)−Diagn is simply connected and invariant under C(

∑
i δi). A solution of the

elliptic KZB system on this domain is then unique, up to right multiplication
by a constant. We now determine a particular solution F (n)(z|τ).

Let us study the elliptic KZB system in the region zij � 1, τ → i∞. Then
K̄i(z|τ) =

∑
j|j 6=i t̄ij/(zi − zj) +O(1).

We now compute the expansion of ∆̄(z|τ). The heat equation for ϑ implies
the expansion ϑ(x|τ) = η(τ)3

(
x + 2πi∂τ logη(τ)x3 + O(x5)

)
, so θ(x|τ) = x +

2πi∂τ logη(τ)x3 + O(x5), hence

g(0, x|τ) = (
θ′

θ
)′(x|τ) +

1
x2

= 4πi∂τ logη(τ) + O(x) = −(π2/3)E2(τ) + O(x)

since E2(τ) = 24
2πi∂τ logη(τ). We have g(0, x|τ) = g(0, 0|τ)− ϕ(x|τ), so

g(0, x|τ) = −
∑
k≥0

a2kx
2kE2k+2(τ),

where a0 = π2/3. Then

∆̄(z|τ) = − 1
2πi

(
∆0 +

∑
k≥0

a2kE2k+2(τ)
(
δ2k +

∑
i,j|i<j

(adx̄i)2k(t̄ij)
))

+ o(1)

for zij � 1 and any τ ∈ H. Since we have an expansion E2k(τ) =
1 +

∑
l>0 akle

2πilτ as τ → i∞, and using Proposition 85 with un = zn1,
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un−1 = zn−1,1/zn1,..., u2 = z21/z31, u1 = q = e2πiτ , there is a unique solution
F (n)(z|τ) with the expansion

F (n)(z|τ) ' zt̄1221 z
t̄13+t̄23
31 ...z

t̄1n+...+t̄n−1,n

n1 exp
(
− τ

2πi

(
∆0+

∑
k≥0

a2k

(
δ2k+

∑
i<j

(adx̄i)2k(t̄ij)
)))

in the region z21 � z31 � ... � zn1 � 1, τ → i∞, (z, τ) ∈ Dn (here
zij = zi − zj); here the sign ' means that any of the ratios of both sides

has the form 1+
∑
k>0

∑
i,a1,...,an

ri,a1,...,an

k (u1, ..., un), where the second sum

is �nite with ai ≥ 0, i ∈ {1, ..., n}, ri,a1,...,an

k (u1, ..., un) has degree k, and is
O(ui(logu1)a1 ...(logun)an).

4.2 Presentation of Γ1,[n]

According to [Bir69b], Γ1,[n] = {B1,n o S̃L2(Z)}/Z, where S̃L2(Z) is a

central extension 1 → Z → S̃L2(Z) → SL2(Z) → 1; the action α :

S̃L2(Z) → Aut(B1,n) is such that for Z the central element 1 ∈ Z ⊂ S̃L2(Z),
αZ(x) = Z ′x(Z ′)−1, where Z ′ is the image of a generator of the center of
PBn (the pure braid group of n points on the plane) under the natural mor-

phism PBn → B1,n; B1,n o S̃L2(Z) is then B1,n × S̃L2(Z) with the product
(p,A)(p′, A′) = (pαA(p′), AA′); this semidirect product is then factored by its
central subgroup (isomorphic to Z) generated by ((Z ′)−1, Z).

Γ1,[n] is presented explicitly as follows. Generators are σi (i = 1, ..., n− 1),
Ai, Bi (i = 1, ..., n), Cjk (1 ≤ j < k ≤ n), Θ and Ψ , and relations are:

σiσi+1σi = σi+1σiσi+1 (i = 1, ..., n− 2), σiσj = σjσi (1 ≤ i < j ≤ n),

σ−1
i Xiσ

−1
i = Xi+1, σiYiσi = Yi+1 (i = 1, ..., n− 1),

(σi, Xj) = (σi, Yj) = 1 (i ∈ {1, ..., n− 1}, j ∈ {1, ..., n}, j 6= i, i+ 1),

σ2
i = Ci,i+1Ci+1,i+2C

−1
i,i+2 (i = 1, ..., n− 1),

(Ai, Aj) = (Bi, Bj) = 1(any i, j), A1 = B1 = 1,

(Bk, AkA−1
j ) = (BkB−1

j , Ak) = Cjk (1 ≤ j < k ≤ n),

(Ai, Cjk) = (Bi, Cjk) = 1 (1 ≤ i ≤ j < k ≤ n),

ΘAiΘ
−1 = B−1

i , ΘBiΘ
−1 = BiAiB

−1
i ,

ΨAiΨ
−1 = Ai, ΨBiΨ

−1 = BiAi, (Θ, σi) = (Ψ, σi) = 1,

(Ψ,Θ2) = 1, (ΘΨ)3 = Θ4 = C12...Cn−1,n.

Here Xi = AiA
−1
i+1, Yi = BiB

−1
i+1 for i = 1, ..., n (with the convention An+1 =

Bn+1 = Ci,n+1 = 1). The relations imply

Cjk = σj,j+1...k...σj+n−k,j+n−k+1...nσj,j+1...n−k+j+1...σk−1,k...n,
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where σi,i+1...j = σj−1...σi. Observe that C12, ..., Cn−1,n commute with each
other.

The group S̃L2(Z) is presented by generators Θ,Ψ and Z, and relations: Z

is central, Θ4 = (ΘΨ)3 = Z and (Ψ,Θ2) = 1. The morphism S̃L2(Z) → SL2(Z)

is Θ 7→
( (

0 1
−1 0

) )
, Ψ 7→

( (
1 1
0 1

) )
, and the morphism Γ1,[n] → SL2(Z) is

given by the same formulas and Ai, Bi, σi 7→ 1.
The elliptic braid group B1,n is the kernel of Γ1,[n] → SL2(Z); it has the

same presentation as Γ1,[n], except for the omission of the generators Θ,Ψ
and the relations involving them. The �pure� mapping class group Γ1,n is the
kernel of Γ1,[n] → Sn, Ai, Bi, Cjk 7→ 1, σi 7→ σi; it has the same presentation

as Γ1,[n], except for the omission of the σi. Finally, recall that PB1,n is the
kernel of Γ1,[n] → SL2(Z)× Sn.

Remark 16. The extended mapping class group Γ̃1,n of classes of non neces-
sarily orientation-preserving self-homeomorphisms of a surface of type (1, n)
�ts in a split exact sequence 1 → Γ1,n → Γ̃1,n → Z/2Z → 1; it may be

viewed as {PB1,no G̃L2(Z)}/Z; it has the same presentation as Γ1,n with the
additional generator Σ subject to

Σ2 = 1, ΣΘΣ−1 = Θ−1, ΣΨΣ−1 = Ψ−1,

ΣAiΣ
−1 = A−1

i , ΣBiΣ
−1 = AiBiA

−1
i .

4.3 The monodromy morphisms γn : Γ1,[n] → Gn o Sn

Let F (z|τ) be a solution of the elliptic KZB system de�ned on Dn.
Recall that Dn := {(z, τ) ∈ Cn × H|zi = ai + biτ, ai, bi ∈ R, a1 < a2 <

... < an < a1 + 1, b1 < b2 < ... < bn < b1 + 1}. The domains Hn :=
{(z, τ) ∈ Cn × H|zi = ai + biτ, ai, bi ∈ R, a1 < a2 < ... < an < a1 + 1} and
Dn := {(z, τ) ∈ Cn×H|zi = ai+biτ, ai, bi ∈ R, b1 < b2 < ... < bn < b1+1} are
also simply connected and invariant, and we denote by FH(z|τ) and FV (z|τ)
the prolongations of F (z|τ) to these domains.

Then (z, τ) 7→ FH(z +
∑n
j=i δi|τ) and (z, τ) 7→ e2πi(x̄i+...+x̄n)FV (z +

τ(
∑n
j=i δi)|τ) are solutions of the elliptic KZB system on Hn and Dn re-

spectively. We de�ne AFi , B
F
i ∈ Gn by

FH(z+
n∑
j=i

δi|τ) = FH(z|τ)AFi , e2πi(x̄i+...+x̄n)FV (z+τ(
n∑
j=i

δi)|τ) = FV (z|τ)BFi .

The action of T−1 =
( (

0 1
−1 0

) )
is (z, τ) 7→ (−z/τ,−1/τ); this trans-

formation takes Hn to Vn. Then (z, τ) 7→ cT−1(z|τ)−1FV (−z/τ | − 1/τ) is
a solution of the elliptic KZB system on Hn (recall that cT−1(z|τ)−1 =
e2πi(−

P
i zix̄i+τX)(−τ)d = (−τ)de(2πi/τ)(

P
i zix̄i+X)). We de�ne ΘF by
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cT−1(z|τ)−1FV (−z/τ | − 1/τ) = FH(z|τ)ΘF .

The action of S =
( (

1 1
0 1

) )
is (z, τ) 7→ (z, τ + 1). This transformation

takes Hn to itself. Since cS(z|τ) = 1, the function (z, τ) 7→ FH(z, τ + 1) is a
solution of the elliptic KZB system on Hn. We de�ne ΨF by

FH(z|τ + 1) = FH(z|τ)ΨF .

Finally, de�ne σFi by
σiF (σ−1

i z|τ) = F (z|τ)σFi ,
where on the l.h.s. F is extended to the universal cover of (Cn × H)− Diagn

(σi exchanges zi and zi+1, zi+1 passing to the right of zi).

Lemma 17. There is a unique morphism Γ1,[n] → G1,n o Sn, taking X to
XF , where X = Ai, Bi, Θ or Ψ .

Proof. This follows from the geometric description of generators of Γ1,[n]: if
(z0, τ0) ∈ Dn, then Ai is the class of the projection of the path [0, 1] 3
t 7→ (z0 + t

∑n
j=i δj , τ0), Bi is the class of the projection of [0, 1] 3 t 7→

(z0 + tτ
∑n
j=i δj , τ0), Θ is the class of the projection of any path connecting

(z0, τ0) to (−z0/τ0,−1/τ0) contained inHn, and Ψ is the class of the projection
of any path connecting (z0, τ0) to (z0, τ0 + 1) contained in Hn. ut

We will denote by γn : Γ1,[n] → Gn o Sn the morphism induced by the

solution F (n)(z|τ).

4.4 Expression of γn : Γ1,[n] → Gn o Sn using γ1 and γ2

Lemma 18. There exists a unique Lie algebra morphism d → t̄1,nod, x 7→ [x],
such that [δ2n] = δ2n +

∑
i<j(adx̄i)2n(t̄ij), [X] = X, [∆0] = ∆0, [d] = d.

It induces a group morphism G1 → Gn, also denoted g 7→ [g].

Lemma 19. For each map φ : {1, ...,m} → {1, ..., n}, there exists a Lie al-
gebra morphism t̄1,n → t̄1,m, x 7→ xφ, de�ned by (x̄i)φ :=

∑
i′∈φ−1(i) x̄i′ ,

(ȳi)φ :=
∑
i′∈φ−1(i) ȳi′ , (t̄ij)φ :=

∑
i′∈φ−1(i),j′∈φ−1(j) t̄i′j′ .

It induces a group morphism exp(̂̄t1,n) → exp(̂̄t1,m), also denoted g 7→ gφ.

The proofs are immediate. We now recall the de�nition and properties of
the KZ associator [Dri91].

If k is a �eld with char(k) = 0, we let tkn be the k-Lie algebra generated
by tij , where i 6= j ∈ {1, ..., n}, with relations

tji = tij , [tij + tik, tjk] = 0, [tij , tkl] = 0

for i, j, k, l distinct (in this section, we set tn := tCn). For each partially de-

�ned map {1, ...,m} ⊃ Dφ
φ→ {1, ..., n}, we have a Lie algebra morphism
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tn → tm, x 7→ xφ, de�ned by6 (tij)φ :=
∑
i′∈φ−1(i),j′∈φ−1(j) ti′j′ . We also have

morphisms tn → t1,n, tij 7→ t̄ij , compatible with the maps x 7→ xφ on both
sides.

The KZ associator Φ = Φ(t12, t23) ∈ exp(̂t3) is de�ned by G0(z) = G1(z)Φ,
where Gi :]0, 1[→ exp(̂t3) are the solutions of G′(z)G(z)−1 = t12/z+t23/(z−1)
with G0(z) ∼ zt12 as z → 0 and G1(z) ∼ (1−z)t23 as z → 1. The KZ associator
satis�es the duality, hexagon and pentagon equation (37), (38) below (where
λ = 2πi).

Lemma 20. γ2(A2) and γ2(B2) belong to exp(̂̄t1,2) ⊂ G2.

Proof. If F (z|τ) : H2 → G2 is a solution of the KZB equation for n = 2,
then AF2 = FH(z+ δ2|τ)FH(z|τ)−1 is expressed as the iterated integral, from

z0 ∈ Dn to z0 + δ2, of K̄2(z|τ) ∈ ˆ̄t1,2, hence AF2 ∈ exp(̂̄t1,2). Since γ2(A2) is
a conjugate of AF2 , it belongs to exp(̂̄t1,2) as exp(̂̄t1,2) ⊂ G2 o S2 is normal.

One proves similarly that γ2(B2) ∈ exp(̂̄t1,2). ut

Set
Φi := Φ1...i−1,i,i+1...n...Φ1...n−2,n−1,n ∈ exp(̂tn).

We denote by x 7→ {x} the morphism exp(̂tn) → exp(̂̄t1,n) induced by tij 7→
t̄ij .

Proposition 21. If n ≥ 2, then

γn(Θ) = [γ1(Θ)]ei
π
2

P
i<j t̄ij , γn(Ψ) = [γ1(Ψ)]ei

π
6

P
i<j t̄ij ,

and if n ≥ 3, then

γn(Ai) = {Φi}−1γ2(A2)1...i−1,i...n{Φi}, (i = 1, ..., n),

γn(Bi) = {Φi}−1γ2(B2)1...i−1,i...n{Φi}, (i = 1, ..., n),

γn(σi) = {Φ1...i−1,i,i+1}−1eiπt̄i,i+1{Φ1...i−1,i,i+1}, (i = 1, ..., n− 1).

Proof. In the region z21 � z31 � ...� zn1 � 1, (z, τ) ∈ Dn, we have

F (n)(z|τ) ' zt̄1221 ...z
t̄1n+...+t̄n−1,n

n1 exp(− a0

2πi
(
∫ τ

i

E2 + C)(
∑
i<j

t̄ij))[F(τ)],

where F (τ) = F (1)(z|τ) for any z. Here C is the constant such that
∫ τ
i
E2 +

C = τ + o(1) as τ → i∞.
We have F (τ + 1) = F (τ)γ1(Ψ), F (−1/τ) = F (τ)γ1(Θ). Since

∑
i<j t̄ij

commutes with the image of x 7→ [x], we get

F (n)(z|τ + 1) = F (n)(z|τ)exp(− a0

2πi
(
∑
i<j

t̄ij))[γ1(Ψ)],

6We will also use the notation xI1,...,In for xφ, where Ii = φ−1(i).
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so
γn(Ψ) = exp(i

π

6

∑
i<j

t̄ij)[γ1(Ψ)].

In the same region,

cT−1(z|τ)−1F (n)V (−z

τ
| − 1

τ
) ' (−τ)de

2πi
τ

(
P

i zix̄i+X)(−z21/τ)t̄12 ...(−zn1/τ)t̄1n+...+t̄n−1,n

exp(− a0

2πi
(

Z −1/τ

i

E2 + C)(
X
i<j

t̄ij))[F(−1/τ)].

Now E2(−1/τ) = τ2E2(τ) + (6i/π)τ , so∫ −1/τ

i

E2 −
∫ τ

i

E2 = (6i/π)[log(−1/τ)− logi]

(where log(reiθ) = logr + iθ for θ ∈]− π, π[).
It follows that

cT−1(z|τ)−1F (n)V (−z

τ
| − 1

τ
) ' e2πi(

P
i zix̄i)zt̄12

21 ...z
t̄1n+...+t̄n−1,n

n1

exp(− a0

2πi
(

Z τ

i

E2 + C)(
X
i<j

t̄ij))(exp− a0

2πi

−6i

π
(logi)(

X
i<j

t̄ij))[(−τ)de(2πi/τ)XF(−1/τ)]

' zt̄12
21 ...z

t̄1n+...+t̄n−1,n

n1 exp(− a0

2πi
(

Z τ

i

E2 + C)(
X
i<j

t̄ij))[F(τ)γ1(Θ)]exp(
iπ

2

X
i<j

t̄ij)

' F (n)H(z|τ)[γ1(Θ)]exp(
iπ

2

X
i<j

t̄ij)

(the second ' follows from
∑
i zix̄i =

∑
i>1 zi1x̄i and zi1 → 0), so

γn(Θ) = [γ1(Θ)]exp(i
π

2

∑
i<j

t̄ij).

Let Gi(z|τ) be the solution of the elliptic KZB system, such that

Gi(z|τ) ' zt̄1221 ...z
t̄12+...+t̄1,i−1
i−1,1 z

t̄i,n+...+t̄n−1,n

n,i ...z
t̄n−1,n

n,n−1

exp
(
− τ

2πi

(
∆0 +

∑
n≥0

a2n

(
δ2n +

∑
i<j

(adx̄i)2n(t̄ij)
)))

when z21 � ... � zi−1,1 � 1, zn,n−1 � ... � zn,i � 1, τ → i∞ and
(z, τ) ∈ Dn. Then Gi(z +

∑n
j=i δi|τ) = Gi(z|τ)γ2(A2)1...i−1,i...n, because in

the domain considered K̄i(z|τ) is close to K̄2(z1, zn|τ)1...i−1,i...n (where K̄2(...)
corresponds to the 2-point system); on the other hand, F (z|τ) = Gi(z|τ){Φi},
which implies the formula for γn(Ai). The formula for γn(Bi) is proved in the
same way. Finally, the behavior of F (n)(z|τ) for z21 � ... � zn1 � 1 is
similar to that of a solution of the KZ equations, which implies the formula
for γn(σi). ut
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Remark 22. One checks that the composition SL2(Z) ' Γ1,1 → G1 →
SL2(C) is a conjugation of the canonical inclusion. It follows that the com-

position S̃L2(Z) ⊂ Γ1,n → G1 → SL2(C) is a conjugation of the canonical
projection for any n ≥ 1.

Let us set Ã := γ2(A2), B̃ := γ2(B2). The image of A2A
−1
3 = σ−1

1 A−1
2 σ−1

1

by γ3 yields

Ã12,3 = eiπt̄12{Φ}3,1,2Ã2,13{Φ}2,1,3eiπt̄12 · {Φ}3,2,1Ã1,23{Φ}1,2,3 (22)

and the image of B2B
−1
3 = σ1B

−1
2 σ1 yields

B̃12,3 = e−iπt̄12{Φ}3,1,2B̃2,13{Φ}2,1,3e−iπt̄12 · {Φ}3,2,1B̃1,23{Φ}1,2,3. (23)

Since (γ3(A2), γ3(A3)) = (γ3(B2), γ3(B3)) = 1, we get

({Φ}3,2,1Ã1,23{Φ}, Ã12,3) = ({Φ}3,2,1B̃1,23{Φ}, B̃12,3) = 1 (24)

(this equation can also be directly derived from (22) and (23) by noting that
the l.h.s. is invariant x 7→ x2,1,3 and commutes with e±iπt̄12). We have for
n = 2, C12 = (B2, A2), so (Ã, B̃) = γ2(C12)−1. Also γ1(Θ)4 = 1, so γ2(C12) =
γ2(Θ)4 = (eiπt̄12/2[γ1(Θ)])4 = e2πīt12 [γ1(Θ)4] = e2πīt12 , so

(Ã, B̃) = e−2πīt12 . (25)

For n = 3, we have γ3(Θ)4 = e2πi(t̄12+t̄13+t̄23) = γ3(C12C23); since
γ3(C12) = (γ3(B2), γ3(A2)) = {Φ}−1(B̃, Ã)1,23{Φ} = {Φ}−1e2πi(t̄12+t̄13){Φ},
we get γ3(C23) = {Φ}−1e2πīt23{Φ}. The image by γ3 of (B3, A3A

−1
2 ) =

(B3B
−1
2 , A3) = C23 then gives

(B̃12,3, Ã12,3{Φ}−1(Ã1,23)−1{Φ}) = (B̃12,3{Φ}−1(B̃1,23)−1{Φ}, Ã12,3)
= {Φ}−1e2πīt23{Φ} (26)

(applying x 7→ x∅,1,2, this identity implies (25)).
Let us set Θ̃ := γ1(Θ), Ψ̃ := γ1(Θ). Since γ1, γ2 are group morphisms, we

have
Θ̃4 = (Θ̃Ψ̃)3 = (Θ̃2, Ψ̃) = 1, (27)

[Θ̃]ei
π
2 t̄12Ã([Θ̃]ei

π
2 t̄12)−1 = B̃−1, [Θ̃]ei

π
2 t̄12B̃([Θ̃]ei

π
2 t̄12)−1 = B̃ÃB̃−1, (28)

[Ψ̃ ]ei
π
6 t̄12Ã([Ψ̃ ]ei

π
6 t̄12)−1 = Ã, [Ψ̃ ]ei

π
6 t̄12B̃([Ψ̃ ]ei

π
6 t̄12)−1 = B̃Ã. (29)

(27) (resp., (28), (29)) are identities in G1 (resp., G2); in (28), (29), x 7→ [x]
is induced by the map d → d o t̄1,2 de�ned above.
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4.5 Expression of Ψ̃ and of Ã and B̃ in terms of Φ

In this section, we compute Ã and B̃ in terms of the KZ associator Φ. We also
compute Ψ̃ .

Recall the de�nition of Ψ̃ . The elliptic KZB system for n = 1 is

2πi∂τF(τ) +
(
∆0 +

∑
k≥1

a2kE2k+2(τ)δ2k
)
F(τ) = 0.

The solution F (τ) := F (1)(z|τ) (for any z) is determined by F (τ) '
exp(− τ

2πi (∆0 +
∑

k≥1 a2kδ2k)). Then Ψ̃ is determined by F (τ + 1) = F (τ)Ψ̃ .
We have therefore:

Lemma 23. Ψ̃ = exp(− 1
2πi (∆0 +

∑
k≥1 a2kδ2k)).

Recall the de�nition of Ã and B̃. The elliptic KZB system for n = 2 is

∂zF (z|τ) = −
(θ(z + adx|τ)adx
θ(z|τ)θ(adx|τ)

)
(y) · F (z|τ), (30)

2πi∂τF(z|τ) +
(
∆0 +

∑
k≥1

a2kE2k+2(τ)δ2k − g(z, adx|τ)(t)
)
F(z|τ) = 0, (31)

where z = z21, x = x̄2 = −x̄1, y = ȳ2 = −ȳ1, t = t̄12 = −[x, y].
The solution F (z|τ) := F (2)(z1, z2|τ) is determined by its behavior

F (z|τ) ' ztexp(− τ
2πi

(
∆0 +

∑
k≥0 a2k(δ2k + (adx)2k)(t)

)
) when z → 0+, τ →

i∞. We then have FH(z + 1|τ) = FH(z|τ)Ã, e2πixFV (z + τ |τ) = FV (z|τ)B̃.

Proposition 24. We have7

Ã = (2π/i)tΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1(i/2π)t

= (2π)ti−3tΦ(−ỹ − t, t)e2πi(ỹ+t)Φ(−ỹ − t, t)−1(2πi)−t,

where ỹ = − adx
e2πiadx−1

(y).

Proof. Ã = FH(z|τ)−1FH(z + 1|τ), which we will compute in the limit τ →
i∞. For this, we will compute F (z|τ) in the limit τ → i∞. In this limit,
θ(z|τ) = (1/π)sin(πz)[1 + O(e2πiτ )] so the system becomes

∂zF (z|τ) =
(
πcotg(πz)t− πcotg(πadx)adx(y) + O(e2πiτ )

)
F(z|τ) (32)

2πi∂τF(z|τ)+
(
∆0+

∑
k≥1

a2kδ2k+(
π2

sin2(πadx)
− 1

(adx)2
)(t)+O(e2πiτ )

)
F(z|τ) = 0

where the last equation is

7By convention, if z ∈ C \ R− and x ∈ n, where n is a pronilpotent Lie algebra,
then zx is exp(x log z) ∈ exp(n), where log z is chosen with imaginary part in ]−π, π[.
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2πi∂τF(z|τ) +
(
∆0 + a0t +

∑
k≥1

a2k(δ2k + (adx)2k(t)) + O(e2πiτ )
)
F(z|τ) = 0.

We set

∆ := ∆0 +
∑
k≥1

a2kδ2k, so ∆0 + a0t +
∑
k≥1

a2k(δ2k + (adx)2k(t)) = [∆] + a0t.

The compatibility of this system implies that [∆] + a0t commutes with t and
(πadx)cotg(πadx)(y) = iπ(−t− 2ỹ), hence with t and ỹ; actually t commutes
with each [δ2k] = δ2k + (adx)2k(t).

Equation (30) can be written ∂zF (z|τ) = (t/z + O(1))F (z|τ). We then
let F0(z|τ) be the solution of (30) in V := {(z, τ)|τ ∈ H, z = a + bτ, a ∈
]0, 1[, b ∈ R} such that F0(z|τ) ' zt when z → 0+, for any τ . This means
that the left (equivalently, right) ratio of these quantities has the form 1 +∑
k>0(degree k)O(z(logz)f(k)) where f(k) ≥ 0.
We now relate F (z|τ) and F0(z|τ). Let F (τ) = F (1)(z|τ) for any z be

the solution of the KZB system for n = 1, such that F (τ) ' exp(− τ
2πi∆) as

τ → i∞ (meaning that the left, or equivalently right, ratio of these quantities
has the form 1 +

∑
k>0(degree k)O(τ f(k)e2πiτ ), where f(k) ≥ 0).

Lemma 25. We have F (z|τ) = F0(z|τ)exp(− a0
2πi (

∫ τ
i

E2 + C)t)[F(τ)], where
C is such that

∫ τ
i
E2 + C = τ +O(e2πiτ ).

Proof of Lemma. F (z|τ) = F0(z|τ)X(τ), where X : H → G2 is a map. We
have g(z, adx|τ)(t) = a0E2(τ)t +

∑
k>0 a2kE2k+2(τ)(adx)2k(t) + O(z) when

z → 0+ and for any τ , so (31) is written as

2πi∂τF(z|τ) +
(
∆0 + a0E2(τ)t +

∑
k>0

a2kE2k+2(τ)[δ2k] + O(z)
)
F(z|τ) = 0

where O(z) has degree > 0. Since ∆0, t and the [δ2k] all commute with t, the
ratio F0(z|τ)−1F (z|τ) satis�es

2πi∂τ (F−1
0 F(z|τ)) +

(
∆0 + a0E2(τ)t +

∑
k>0

a2kE2k+2(τ)[δ2k]

+
∑
k>0

(degree k)O(z(logz)h(k))
)
(F−1

0 F(z|τ)) = 0

where h(k) ≥ 0. Since F0(z|τ)−1F (z|τ) = X(τ) is in fact independent on z,
we have

2πi∂τ (X(τ)) +
(
∆0 + a0E2(τ)t +

∑
k>0

a2kE2k+2(τ)[δ2k]
)
(X(τ)) = 0,

which implies that X(τ) = exp(− a0
2πi (

∫ τ
i

E2 + C)t)[F(τ)]X0, where X0 is a
suitable element in G2. The asymptotic behavior of F (z|τ) when τ → i∞ and
z → 0+ then implies X0 = 1. ut
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End of proof of Proposition. We then have F (z|τ) = F0(z|τ)X(τ), where
X(τ) ' exp(− τ

2πi ([∆] + a0t)) as τ → i∞, where this means that the
left ratio (equivalently, the right ratio) of these quantities has the form
1 +

∑
k>0(degree k)O(τx(k)e2πiτ ), where x(k) ≥ 0.

If we set u := e2πiz, then (30) is rewritten as

∂uF̄ (u|τ) = (ỹ/u+ t/(u− 1) +O(e2πiτ ))F̄ (u|τ), (33)

where F̄ (u|τ) = F (z|τ).
Let D′ := {u||u| ≤ 1}− [0, 1] be the complement of the unit interval in the

unit disc. Then we have a bijection {(z, τ)|τ ∈ iR×+, z = a + τb, a ∈ [0, 1],b ≥
0} → D′ × iR×+, given by (z, τ) 7→ (u, τ) := (e2πiz, τ).

Let F̄a, F̄f be the solutions of (33) in D′× iR+, such that F̄a(u|τ) ' ((u−
1)/(2πi))t when u = 1+i0+, and for any τ , and F̄f (u|τ) ' eiπt((1−u)/(2πi))t

when u = 1− i0+, for any τ .
Then one checks that F0(z|τ) = F̄a(e2πiz|τ), F0(z − 1|τ) = F̄f (e2πiz|τ)

when (z, τ) ∈ {(z, τ)|τ ∈ iR×+, z = a + τb|a ∈ [0, 1],b ≥ 0}.
We then de�ne F̄b, ..., F̄e as the solutions of (33) in D

′ × iR×+, such that:
F̄b(u|τ) ' (1 − u)t as u = 1 − 0+, =(u) > 0 for any τ , F̄c(u|τ) ' uỹ as
u → 0+, =(u) > 0 for any τ , F̄d(u|τ) ' uỹ as u → 0+, =(u) < 0 for any τ ,
F̄e(u|τ) ' (1− u)t as u = 1− 0+, =(u) < 0 for any τ .

Then F̄b = F̄a(−2πi)t, F̄c(−|τ) = F̄b(−|τ)[Φ(ỹ, t) + O(e2πiτ )], F̄d(−|τ) =
F̄c(−|τ)e−2πiỹ, F̄e(−|τ) = F̄d(−|τ)[Φ(ỹ, t)−1 +O(e2πiτ )], F̄f = F̄e(i/2π)t.

So F̄f (−|τ) = F̄a(−|τ)
(
(−2πi)tΦ(ỹ, t)e−2πiỹΦ(ỹ, t)−1(i/2π)t + O(e2πiτ )

)
.

It follows that F0(z + 1|τ) = F0(z|τ)A(τ), where

A(τ) = (−2πi)tΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1(i/2π)t + O(e2πiτ ).

Now

Ã = F (z|τ)−1F (z + 1|τ) = X(τ)−1A(τ)X(τ)

=
(
1 +

∑
k>0

(degree k)O(τx(k)e2πiτ )
)−1exp(

τ

2πi
([∆] + a0t))

(
(−2πi)tΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1(i/2π)t + O(e2πiτ )

)
exp(− τ

2πi
([∆] + a0t))(

1 +
∑
k>0

(degree k)O(τx(k)e2πiτ )
)
.

As we have seen, [∆] + a0t commutes with ỹ and t; on the other hand,

exp(
τ

2πi
([∆] + a0t))O(e2πiτ )exp(− τ

2πi
([∆] + a0t))

= exp(τad(
[∆] + a0t

2πi
))(O(e2πiτ )) =

∑
k≥0

(degree k)O(τn1(k))e2πiτ )

where n1(k) ≥ 0, as [∆] + a0t is a sum of terms of positive degree and of ∆0,
which is locally ad-nilpotent.
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Then

Ã =
(
1 +

∑
k>0

(degree k)O(τx(k)e2πiτ )
)−1((−2πi)tΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1(i/2π)t

+
∑
k≥0

(degree k)O(τn1(k)e2πiτ )
)(

1 +
∑
k>0

(degree k)O(τx(k)e2πiτ )
)
.

It follows that

Ã = (−2πi)tΦ(ỹ, t)e2πiỹΦ(ỹ, t)−1(i/2π)t +
∑
k≥0

(degree k)O(τn2(k)e2πiτ ),

where n2(k) ≥ 0, which implies the �rst formula for Ã. The second formula
either follows from the �rst one by using the hexagon identity, or can be
obtained repeating the above argument using a path 1 → +∞ → 1, winding
around 1 and ∞. ut

We now prove:

Theorem 26.

B̃ = (2πi)tΦ(−ỹ − t, t)e2πixΦ(ỹ, t)−1(2π/i)−t.

Proof. We �rst de�ne F0(z|τ) as the solution in V := {a+ bτ |a ∈]0, 1[, b ∈ R}
of (30) such that F0(z|τ) ∼ zt as z → 0+. Then there exists B(τ) such that
e2πixF0(z + τ |τ) = F0(z|τ)B(τ). We compute the asymptotics of B(τ) as
τ → i∞.

We de�ne four asymptotic zones (z is assumed to remain on the segment
[0, τ ], and τ in the line iR+): (1) z � 1 � τ , (2) 1 � z � τ , (3) 1 � τ−z � τ ,
(4) τ − z � 1 � τ .

In the transition (1)-(2), the system takes the form (32), or if we set
u := e2πiz, (33).

In the transition (3)-(4), G(z′|τ) := e2πixF (τ + z′|τ) satis�es (30), so
Ḡ(u′|τ) = e2πixF (τ + z′|τ) satis�es (33), where u′ = e2πiz′ .

We now compute the form of the system in the transition (2)-(3). We �rst
prove:

Lemma 27. Set u := e2πiz, v := e2πi(τ−z). When 0 < =(z) < =(τ), we have

|u| < 1, |v| < 1. When k ≥ 0, (θ(k)/θ)(z|τ) = (−iπ)k +
∑

s,t≥0,s+t>0 a(k)
st usvt,

where the sum in the r.h.s. is convergent in the domain |u| < 1, |v| < 1.

Proof. This is clear if k = 0. Set q = uv = e2πiτ . We have θ(z|τ) =
u1/2

∏
s>0(1− qsu)

∏
s≥0(1− qsu−1) · (2πi)−1

∏
s>0(1− qs)−2, so

(θ′/θ)(z|τ) = iπ − 2πi
∑
s>0

qsu/(1− qsu) + 2πi
∑
s≥0

qsu−1/(1− qsu−1)

= −iπ − 2πi
∑
s≥0

us+1vs

1− us+1vs
+ 2πi

∑
s≥0

usvs+1

1− usvs+1
= −iπ +

∑
s+t>0

astusvt,
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where ast = 2πi if (s, t) = k(r, r + 1), k > 0, r ≥ 0, and ast = −2πi if
(s, t) = k(r + 1, r), k > 0, r ≥ 0. One checks that this series is convergent in
the domain |u| < 1, |v| < 1. This proves the lemma for k = 1.

We then prove the remaining cases by induction, using

θ(k+1)

θ
(z|τ) =

θ(k)

θ
(z|τ)θ

′

θ
(z|τ) +

∂

∂z

θ(k)

θ
(z|τ).

ut

Using the expansion

θ(z + x|τ)x
θ(z|τ)θ(x|τ)

=
x

θ(x|τ)
∑
k≥0

(θ(k)/θ)(z|τ)x
k

k!

=
πx

sin(πx)
(1 +

∑
n>0

qnPn(x))
( ∑
k≥0

((−iπ)k +
∑

s+t>0

a(k)
st usvt)

xk

k!

)
=

πx

sin(πx)
e−iπx +

∑
s+t>0

ast(x)usvt =
2iπx

e2iπx − 1
+

∑
s+t>0

ast(x)usvt,

the form of the system in the transition (2)-(3) is

∂zF (z|τ) =
(
− 2iπadx
e2iπadx − 1

(y) +
∑

s,t|s+t>0

astu
svt

)
F (z|τ)

=
(
2iπỹ +

∑
s,t|s+t>0

astusvt
)
F(z|τ), (34)

where each homogeneous part of
∑
s,t astu

svt converges for |u| < 1, |v| < 1.

Lemma 28. There exists a solution Fc(z|τ) of (34) de�ned for 0 < =(z) <
=(τ), such that

Fc(z|τ) = uỹ(1 +
∑
k>0

∑
s≤s(k)

log(u)sfks(u, v))

(logu = iπz, uỹ = e2πizỹ), where fks(u, v) is an analytic function taking its
values in the homogeneous part of the algebra of degree k, convergent for |u| <
1 and |v| < 1, and vanishing at (0, 0). This function is uniquely de�ned up to
right multiplication by an analytic function of the form 1+

∑
k>0 ak(q) (recall

that q = uv), where ak(q) is an analytic function on {q||q| < 1}, vanishing at
q = 0, with values in the degree k part of the algebra.

Proof of Lemma. We set G(z|τ) := u−ỹF (z|τ), so G(z|τ) should satisfy

∂zG(z|τ) = exp(−ad(ỹ)logu){
∑

s+t>0

astusvt}G(z|τ),
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which has the general form

∂zG(z|τ) =
( ∑
k>0

∑
s≤a(k)

log(u)saks(u, v)
)
G(z|τ),

where aks(u, v) is analytic in |u| < 1, |v| < 1 and vanishes at (0, 0). We show
that this system admits a solution of the form 1+

∑
k>0

∑
s≤s(k) log(u)sfks(u, v),

with fks(u, v) analytic in |u| < 1, |v| < 1, in the degree k part of the algebra,
vanishing at (0, 0) for s 6= 0. For this, we solve inductively (in k) the system
of equations

∂z
( ∑

s

(logu)sfks(u, v)
)

=
∑

s′,s′′,k′,k′′|k′+k′′=k

(logu)s
′+s′′ak′s′(u, v)fk′′s′′(u, v).

(35)
Let O be the ring of analytic functions on {(u, v)||u| < 1, |v| < 1} (with
values in a �nite dimensional vector space) and m ⊂ O be the subset of
functions vanishing at (0, 0). We have an injection O[X] → {analytic functions
in (u, v), |u| < 1, |v| < 1, u /∈ R−}, given by f(u, v)Xk 7→ (logu)kf(u, v). The
endomorphism ∂

∂z = 2πi(u ∂
∂u−v ∂

∂v ) then corresponds to the endomorphism of

O[X] given by 2πi( ∂
∂X +u ∂

∂u−v ∂
∂v ). It is surjective, and restricts to a surjective

endomorphism of m[X]. The latter surjectivity implies that equation (35) can
be solved.

Let us show that the solution G(z|τ) is unique up to right multiplica-
tion by functions of q like in the lemma. The ratio of two solutions is of the
form 1 +

∑
k>0

∑
s≤s(k) log(u)sfks(u, v) and is killed by ∂z. Now the kernel of

the endomorphism of m[X] given by 2πi( ∂
∂X + u ∂

∂u − v ∂
∂v ) is m∗(m1), where

m∗(m1) ⊂ m is the set of all functions of the form a(uv), where a is an ana-
lytic function on {q||q| < 1} vanishing at 0. This implies that the ratio of two
solutions is as above. ut

End of proof of Theorem. Similarly, there exists a solution Fd(z|τ) of (34)
de�ned in the same domain, such that

Fd(z|τ) = v−ỹ(1 +
∑
k>0

∑
s≤t(k)

log(v)tgks(u, v)),

where bks(u, v) is as above (and logv = iπ(τ − z), v−ỹ = exp(2πi(z − τ)ỹ)).
Fd(z|τ) is de�ned up to right multiplication by a function of q as above.

We now study the ratio Fc(z|τ)−1Fd(z|τ). This is a function of τ only, and
it has the form

q−ỹ
(
1 +

∑
k>0

∑
s≤s(k),t≤t(k)

(logu)s(logv)takst(u, v)
)

where akst(u, v) ∈ m (as v−ỹ(1+
∑
k>0

∑
s≤s(k)(logu)scks(u, v))vỹ has the form

1 +
∑
k>0

∑
s,t≤t(k) (logu)s(logv)tdks(u, v), where dks(u, v) ∈ m if cks(u, v) ∈
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m). Set logq := logu + logv = 2πiτ , then this ratio can be rewritten q−ỹ{1 +∑
k>0

∑
s≤s(k),t≤t(k)(logu)s(logq)tbkst(u, v)} where bkst(u, v) ∈ m, and since

the product of this ratio with qỹ is killed by ∂z (which identi�es with the
endomorphism 2πi( ∂

∂X + u ∂
∂u − v ∂

∂v ) of O[X]), the ratio is in fact of the form

F−1
c Fd(z|τ) = qỹ(1 +

∑
k>0

∑
s≤s(k)

(logq)saks(q)),

where aks is analytic in {q||q| < 1}, vanishing at q = 0.
It follows that

F−1
c Fd(z|τ) = e−2πiτ ỹ(1 +

∑
k>0

(degree k)O(τke−2πiτ )). (36)

In addition to Fc and Fd, which have prescribed behaviors in zones (2) and
(3), we de�ne solutions of (30) in V by prescribing behaviors in the remaining
asymptotic zones: Fa(z|τ) ' zt when z → 0+ for any τ ; Fb(z|τ) ' (2πz/i)t

when z → i0+ for any τ (in particular in zone (1)); e2πixFe(z|τ) ' (2π(τ −
z)/i)t when z = τ − i0+ for any τ ; e2πixFf (z|τ) ' (z − τ)t when z = τ + 0+

for any τ (in particular in zone (4)).
Then F0(z|τ) = Fa(z|τ), and e−2πixF0(z − τ |τ) = Ff (z|τ). We have Fb =

Fa(2π/i)t, Ff = Fe(2πi)−t.
Let us now compute the ratio between Fb and Fc. Recall that u = e2πiz,

v = e2πi(τ−z). Set F̄ (u, v) := F (z|τ). Using the expansion of θ(z|τ), one shows
that (30) has the form

∂uF̄ (u, v) = (
A(u, v)
u

+
B(u, v)
u− 1

)F̄ (u, v),

where A(u, v) is holomorphic in the region |v| < 1/2, |u| < 2, and A(u, 0) = ỹ,
B(u, 0) = t. We have F̄b(u, v) = (1− u)t(1 +

∑
k

∑
s≤s(k) log(1− u)kbks(u, v))

and F̄b(u, v) = ut̃(1+
∑
k

∑
s≤s(k) log(u)kaks(u, v)), with aks, bks analytic, and

aks(0, v) = bks(1, v) = 0. The ratio F̄−1
b F̄c is an analytic function of q only,

which coincides with Φ(ỹ, t) for q = 0, so it has the form Φ(ỹ, t)+
∑
k>0 ak(q),

where ak(q) has degree k, is analytic in the neighborhood of q = 0 and vanishes
at q = 0. Therefore

Fc(z|τ) = Fb(z|τ)
(
Φ(ỹ, t) +O(e2πiτ )

)
.

In the same way, one proves that

Fe(z|τ) = Fd
(
e−2πixΦ(−ỹ − t, t)−1 +O(e2πiτ )

)
.

Indeed, let us set Ḡd(u′, v′) := e2πixFd(τ + z′|τ), Ḡe(u′, v′) := e2πixFe(τ +
z′|τ), where u′ = e2πi(τ+z′), v′ = e−2πiz′ , then Ḡd(u′, v′) ' (v′)−ỹ−te2πix as
(u′, v′) → (0+, 0+) and Ḡe(u′, v′) ' (1− v′)t as v′ → 1− for any u′, and both
Ḡd and Ḡe are solutions of ∂v′Ḡ(u′, v′) = [−(ỹ+t)/v′+t/(v′−1)+O(u′)]Ḡ(v′).
Therefore Ḡd = Ḡe[Φ(−ỹ − t, t)e2πix +O(u′)].

Combining these results, we get:
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Lemma 29.

B(τ) ' (2πi)tΦ(−ỹ − t, t)e2πixe2iπτ ỹΦ(ỹ, t)−1(2π/i)−t,

in the sense that the left (equivalently, right) ratio of these quantities has the
form 1 +

∑
k>0(degree k)O(τn(k)e2πiτ ) for n(k) ≥ 0.

Recall that we have proved:

F (z|τ) = F0(z|τ) exp(− a0

2πi
(
∫ τ

i

E2 + C)t)[F (τ)],

where C is such that
∫ τ
i
E2 + C = τ +O(e2πiτ ).

Set X(τ) := exp(− a0
2πi (

∫ τ
i
E2 + C)t)[F (τ)]. When τ → i∞, X(τ) =

exp(− τ
2πi ([∆] + a0t))(1 +

∑
k>0(degree k)O(τ f(k)e2πiτ )). Then

B̃ = F (z|τ)−1e2πixF (z + τ |τ) = X(τ)−1B(τ)X(τ)

= Ad
(
(1 +

∑
k>0

(degree k)O(τ f(k)e2πiτ ))−1exp(
τ

2πi
([∆] + a0t))

)
((

(2πi)tΦ(−ỹ − t, t)e2πixe2πiτ ỹΦ(ỹ, t)−1(2π/i)−t
)(

1 +
∑
k>0

(degree k)O(τn(k)e2πiτ )
))
,

where Ad(u)(x) = uxu−1.
[∆] + a0t commutes with ỹ and t; assume for a moment that

Ad(exp(
τ

2πi
([∆] + a0t)))(e2πixe2πiτ ỹ) = e2πix

(Lemma 30 below), then

Ad(exp(
τ

2πi
([∆] + a0t)))

(
(2πi)tΦ(−ỹ − t, t)e2πixe2πiτ ỹΦ(ỹ, t)−1(2π/i)−t

)
= (2πi)tΦ(−ỹ − t, t)e2πixΦ(ỹ, t)−1(2π/i)−t.

On the other hand, Ad(exp( τ
2πi ([∆]+a0t)))(1+

∑
k>0(degree k)O(τn(k)e2πiτ ))

has the form 1 +
∑
k>0(degree k)O(τn′(k)e2πiτ ), where n′(k) ≥ 0. It follows

that

B̃ = Ad
(
1 +

∑
k>0

(degree k)O(τ f(k)e2πiτ )
)

((
(2πi)tΦ(−ỹ − t, t)e2πixΦ(ỹ, t)−1(2π/i)−t

)(
1 +

∑
k>0

(degree k)O(τn′(k)e2πiτ )
))

;

now

Ad
(
(2πi)tΦ(−ỹ − t, t)e2πixΦ(ỹ, t)−1(2π/i)−t

)−1

(1 +
∑
k>0

(degree k)O(τ f(k)e2πiτ ))

= 1 +
∑
k>0

(degree k)O(τ f(k)e2πiτ ),
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so

B̃ =
(
(2πi)tΦ(−ỹ − t, t)e2πixΦ(ỹ, t)−1(2π/i)−t

)
(1 +

∑
k>0

(degree k)O(τ f(k)e2πiτ ))

(1 +
∑
k>0

(degree k)O(τn′(k)e2πiτ ))

=
(
(2πi)tΦ(−ỹ − t, t)e2πixΦ(ỹ, t)−1(2π/i)−t

)
(1 +

∑
k>0

(degree k)O(τn′′(k)e2πiτ ))

for n′′(k) ≥ 0. Since B̃ is constant w.r.t. τ , this implies

B̃ = (2πi)tΦ(−ỹ − t, t)e2πixΦ(ỹ, t)−1(2π/i)−t,

as claimed.
We now prove the conjugation used above.

Lemma 30. For any τ ∈ C, we have

e
τ

2πi ([∆]+a0t)e2πixe−
τ

2πi ([∆]+a0t)e2iπτ ỹ = e2πix.

Proof. We have [∆] + a0t = ∆0 +
∑
k≥0 a2k(δ2k + (adx)2k(t)) (where δ0 = 0),

so [[∆] + a0t, x] = y −
∑
k≥0 a2k(adx)2k+1(t). Recall that∑
k≥0

a2ku
2k =

π2

sin2(πu)
− 1
u2
,

then [[∆] + a0t, x] = y − (adx)( π2

sin2(πadx)
− 1

(adx)2 )(t). So

e−2πix(
1

2πi
([∆] + a0t))e2πix

=
1

2πi
([∆] + a0t) +

e−2πiadx − 1
adx

([x,
1

2πi
([∆] + a0t)])

=
1

2πi
([∆] + a0t)−

1
2πi

e−2πiadx − 1
adx

(
y − (adx)(

π2

sin2(πadx)
− 1

(adx)2
)(t)

)
.

We have

− 1
2πi

e−2πiadx − 1
adx

(
y − (adx)(

π2

sin2(πadx)
− 1

(adx)2
)(t)

)
= −2πiỹ,

therefore we get

e−2πix(
1

2πi
([∆] + a0t))e2πix =

1
2πi

([∆] + a0t)− 2πiỹ.

Multiplying by τ , taking the exponential, and using the fact that [∆] + a0t
commutes with ỹ, we get

e−2πixe
τ

2πi ([∆]+a0t)e2πix = e
τ

2πi ([∆]+a0t)e−2πiτ ỹ,

which proves the lemma. ut
This ends the proof of Theorem 26.
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5 Construction of morphisms Γ1,[n] → Gn o Sn

In this section, we �x a �eld k of characteristic zero. We denote the algebras
t̄k1,n, tkn simply by t̄1,n, tn. The above group Gn is the set of C-points of a
group scheme de�ned over Q, and we now again denote by Gn the set of its
k-points.

5.1 Construction of morphisms Γ1,[n] → Gn o Sn from a 5-uple
(Φλ, Ã, B̃, Θ̃, Ψ̃)

Let Φλ be a λ-associator de�ned over k. This means that Φλ ∈ exp(̂t3) (the
Lie algebras are now over k),

Φ3,2,1
λ = Φ−1

λ , Φ2,3,4
λ Φ1,23,4

λ Φ1,2,3
λ = Φ1,2,34

λ Φ12,3,4
λ , (37)

eλt31/2Φ2,3,1
λ eλt23/2Φλe

λt12/2Φ3,1,2
λ = eλ(t12+t23+t13)/2. (38)

E.g., the KZ associator is a 2πi-associator over C.

Proposition 31. If Θ̃, Ψ̃ ∈ G1 and Ã, B̃ ∈ exp(̂̄t1,2) satisfy: the �Γ1,1 iden-
tities� (27), the �Γ1,2 identities� (28), (29), and the �Γ1,[3] identities� (23),

(22), (26) (with 2πi replaced by λ), as well as Ã∅,1 = Ã1,∅ = B̃∅,1 = B̃1,∅ = 1,
then one de�nes a morphism Γ1,[n] → Gn o Sn by

Θ 7→ [Θ̃]ei
π
2

P
i<j t̄ij , Ψ 7→ [Ψ̃ ]ei

π
6

P
i<j t̄ij ,

σi 7→ {Φ1...i−1,i,i+1
λ }−1eλt̄i,i+1/2(i, i+ 1){Φ1...i−1,i,i+1

λ },

Cjk 7→ {Φ−1
λ,jΦ

j,j+1,...n
λ ...Φj...,k−1,...n

λ (eλt12)j...k−1,k...n(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ )−1Φλ,j},

Ai 7→ {Φλ,i}−1Ã1...i−1,i...n{Φλ,i}, Bi 7→ {Φλ,i}−1B̃1...i−1,i...n{Φλ,i},

where Φλ,i = Φ1...i−1,i,i+1...n
λ ...Φ1...n−2,n−1,n

λ .

According to Section 4.4, the representations γn are obtained by the pro-
cedure described in this proposition from the KZ associator, Θ̃, Ψ̃ arising from
γ1, and Ã, B̃ arising from γ2.

Note also that the analogue of (22) is equivalent to the pair of equations

eλt̄12/2Ã2,1eλt̄12/2Ã = 1,

(eλt̄12/2Ã)3,12Φ3,1,2
λ (eλt̄12/2Ã)2,31Φ2,3,1

λ (eλt̄12/2Ã)1,23Φ1,2,3
λ = 1,

and similarly (23) is equivalent to the same equations, with Ã, λ replaced by
B̃,−λ.
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Remark 32. One can prove that it Φλ satis�es only the pentagon equation
and Θ̃, Ψ̃ , Ã, B̃ satisfy the the �Γ1,1 identities� (27), the �Γ1,2 identities� (28),
(29), and the �Γ1,3 identities� (24), (26), then the above formulas (removing
σi) de�ne a morphism Γ1,n → Gn. In the same way, if Φλ satis�es all the

associator conditions and Ã, B̃ satisfy the Γ1,[3] identities (22), (23), (26), then

the above formulas (removing Θ,Ψ) de�ne a morphism B1,n → exp(̂̄t1,n)oSn.

Proof. Let us prove that the identity (Ai, Aj) = 1 (i < j) is preserved. Ap-
plying x 7→ x1...i−1,i...j−1,j...n to the �rst identity of (24), we get

(Ã1...i−1,i...n, Φ1...,i...j−1,...n
λ Ã1...j−1,j...n(Φ−1

λ )1...,i...j−1,...n) = 1.

The pentagon identity implies

Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ (39)

= (Φi,i+1,...n
λ ...Φi...,j−1,..,n

λ )Φ1...,i...j−1,...n
λ (Φ1...,i,...j−1

λ ...Φ1...,j−2,j−1
λ ),

so the above identity is rewritten(
Φi,i+1,...n
λ ...Φi...,j−1,..,n

λ Ã1...i−1,i...n(Φi,i+1,...n
λ ...Φi...,j−1,..,n

λ )−1,

Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ (Φ1...,i,...j−1
λ ...Φ1...,j−2,...j−1

λ )−1Ã1...j−1,j...n

Φ1...,i,...j−1
λ ...Φ1...,j−2,...j−1

λ (Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ )−1
)

= 1.

Now Φi,i+1,...n
λ , . . . , Φi...,j−1,..,n

λ commute with Ã1...i−1,i...n, and Φ1...,i,...j−1
λ ,

. . . , Φ1...,j−2,...j−1
λ commute with Φ1...,i,...j−1

λ ...Φ1...,j−2,...j−1
λ , which implies

(Ã1...i−1,i...n, Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ Ã1...j−1,j...n(Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ )−1) = 1,

so that (Ai, Aj) = 1 is preserved. In the same way, one shows that (Bi, Bj) = 1
is preserved.

Let us show that (Bk, AkA−1
j ) = Cjk is preserved (if j ≤ k).

(Φ−1
λ,kB̃1...k−1,k...nΦλ,k, Φ−1

λ,kÃ1...k−1,k...nΦλ,kΦ−1
λ,j(Ã

1...j−1,j...n)−1Φλ,j)

= Φ−1
λ,j

`
(Φ1...,j,...n

λ ...Φ1...,k−1,...n
λ )B̃1...k−1,k...n(Φ1...,j,...n

λ ...Φ1...,k−1,...n
λ )−1,

(Φ1...,j,...n
λ ...Φ1...,k−1,...n

λ )Ã1...k−1,k...n(Φ1...,j,...n
λ ...Φ1...,k−1,...n

λ )−1(Ã1...j−1,j...n)−1´
Φλ,j

= Φ−1
λ,j

`
Φj,j+1,...n

λ ...Φj...,k−1,...n
λ Φ1...,j...k−1,...n

λ B̃1...k−1,k...n

(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ Φ1...,j...k−1,...n
λ )−1, Φj,j+1,...n

λ ...Φj...,k−1,...n
λ Φ1...,j...k−1,...n

λ

Ã1...k−1,k...n(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ Φ1...,j...k−1,...n
λ )−1(Ã1...j−1,j...n)−1´

Φλ,j

= Φ−1
λ,jΦ

j,j+1,...n
λ ...Φj...,k−1,...n

λ

`
Φ1...,j...k−1,...n

λ B̃1...k−1,k...n(Φ1...,j...k−1,...n
λ )−1,

Φ1...,j...k−1,...n
λ Ã1...k−1,k...n(Φ1...,j...k−1,...n

λ )−1(Ã1...j−1,j...n)−1´
(Φj,j+1,...n

λ ...Φj...,k−1,...n
λ )−1Φλ,j

= Φ−1
λ,jΦ

j,j+1,...n
λ ...Φj...,k−1,...n

λ {Φ(B̃12,3, Ã12,3Φ−1
λ (Ã1,23)−1Φλ)Φ−1

λ }1...,j...k−1,...n

(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ )−1Φλ,j

= Φ−1
λ,jΦ

j,j+1,...n
λ ...Φj...,k−1,...n

λ (e2πīt12)j...k−1,k...n(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ )−1Φλ,j ,
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where the second identity uses (39) and the invariance of Φλ, the third identity

uses the fact that Φj,j+1,...n
λ , ..., Φj...,k−1,...n

λ commute with Ã1...j−1,j..n (again
by the invariance of Φλ), and the last identity uses (26). So (Bk, AkA−1

j ) = Cjk
is preserved. One shows similarly that(
Φ−1
λ,kB̃

1...k−1,k...nΦλ,kΦ
−1
λ,j(B̃

1...j−1,j...n)−1Φλ,j , Φ
−1
λ,kÃ

1...k−1,k...nΦλ,k
)

= Φ−1
j Φj,j+1,...n...Φj...,k−1,...n(e2πīt12)j...k−1,k...n(Φj,j+1,...n

λ ...Φj...,k−1,...n
λ )−1Φλ,j ,

so that (BkB−1
j , Ak) = Cjk is preserved.

Let us show that (Ai, Cjk) = 1 (i ≤ j ≤ k) is preserved. We have`
Φ−1

λ,iÃ
1...i−1,i...nΦλ,i, Φ

−1
λ,jΦ

j,j+1,...n
λ ...Φj...,k−1,...n

λ (e2πīt12)j...k−1,k...n

(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ )−1Φλ,j

´
= Φ−1

λ,i

`
Ã1...i−1,i...n, Φ1...,i,...n

λ ...Φ1...,j−1,...n
λ Φj,j+1,...n

λ ...Φj...,k−1,...n
λ (e2πīt12)j...k−1,k...n

(Φ1...,i,...n
λ ...Φ1...,j−1,...n

λ Φj,j+1,...n
λ ...Φj...,k−1,...n

λ )−1´
Φλ,i

= Φ−1
λ,i

`
Ã1...i−1,i...n, Φi,i+1,...n

λ ...Φi...,j−1,...n
λ Φ1...,i...j−1,...n

λ Φ1...,i,...j−1
λ ...Φ1...,j−2,j−1

λ

Φj,j+1,...n
λ ...Φj...,k−1,...n

λ (e2πīt12)j...k−1,k...n

(Φi,i+1,...n
λ ...Φi...,j−1,...n

λ Φ1...,i...j−1,...n
λ Φ1...,i,...j−1

λ ...Φ1...,j−2,j−1
λ Φj,j+1,...n

λ ...Φj...,k−1,...n
λ )−1´

Φλ,i

= Φ−1
λ,i

`
Ã1...i−1,i...n, Φi,i+1,...n

λ ...Φi...,j−1,...n
λ Φ1...,i...j−1,...n

λ Φj,j+1,...n
λ ...Φj...,k−1,...n

λ

(e2πīt12)j...k−1,k...n(Φi,i+1,...n
λ ...Φi...,j−1,...n

λ Φ1...,i...j−1,...n
λ Φj,j+1,...n

λ ...Φj...,k−1,...n
λ )−1´

Φλ,i

= Φ−1
λ,iΦ

i,i+1,...n
λ ...Φi...,j−1,...n

λ

`
Ã1...i−1,i...n, Φ1...,i...j−1,...n

λ Φj,j+1,...n
λ ...Φj...,k−1,...n

λ

(e2πīt12)j...k−1,k...n(Φ1...,i...j−1,...n
λ Φj,j+1,...n

λ ...Φj...,k−1,...n
λ )−1´

(Φi,i+1,...n
λ ...Φi...,j−1,...n

λ )−1Φλ,i

= Φ−1
λ,iΦ

i,i+1,...n
λ ...Φi...,j−1,...n

λ (Ã1...i−1,i...n, Φj,j+1,...n
λ ...Φj...,k−1,...n

λ Φ1...,i...j−1,...n
λ

(e2πīt12)j...k−1,k...n(Φj,j+1,...n
λ ...Φj...,k−1,...n

λ Φ1...,i...j−1,...n
λ )−1)(Φi,i+1,...n

λ ...Φi...,j−1,...n
λ )−1Φλ,i

= 1,

where the second equality follows from the generalized pentagon identity (39),
the third equality follows from the fact that Φ1...,i,...j−1

λ , ..., Φ1...,j−2,j−1
λ com-

mute with (e2πīt12)j...k−1,k...n, Φj,j+1,...n
λ , ..., Φj...,k−1,...n

λ , the fourth equality

follows from the fact that Φi,i+1,...n
λ , ..., Φi...,j−1,...n

λ commute with Ã1...i−1,i...n

(as Φλ is invariant), the last equality follows from the fact that Φ1...,i...j−1,j...n
λ

commutes with Φj,j+1,...n
λ , ..., Φj...,k−1,...n

λ (again as Φλ is invariant) and with
(e2πīt12)j...k−1,k...n (as t34 commutes with the image of t3 → t4, x 7→ x1,2,34).
Therefore (Ai, Cjk) = 1 is preserved. One shows similarly that (Bi, Cjk) = 1
(i ≤ j ≤ k), Xi+1 = σiXiσi and Yi+1 = σ−1

i Yiσ
−1
i are preserved.

The fact that the relations ΘAiΘ
−1 = B−1

i , ΘBiΘ
−1 = BiAiB

−1
i ,

ΨAiΨ
−1 = Ai, ΨBiΨ

−1 = BiAi, are preserved follows from the identities
(28), (29) and that if we denote by x 7→ [x]n the morphism d → d o t̄1,n
de�ned above, then: (a) Φi commutes with

∑
i,j|i<j t̄ij and with the image of

d → d o t̄1,n, x 7→ [x]n; (b) for x ∈ d, y ∈ t̄1,2, we have [[x]n, y1...i−1,i...n] =
[[x]2, y]1...i−1,i...n. Let us prove (a): the �rst part follows from the fact that
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Φ commutes with t12 + t13 + t23; the second part follows from the fact that
X, d,∆0 and δ2n +

∑
k<l(adx̄k)2n(t̄kl) commute with t̄ij for any i < j. Let us

prove (b): the identity holds for [x, x′] whenever it holds for x and for x′, so it
su�ces to check it for x a generator of d; x being such a generator, both sides
are (as functions of y) derivations t̄1,2 → t̄1,n w.r.t. the morphism t̄1,2 → t̄1,n,
y 7→ y1...i−1,i...n, so it su�ces to check the identity for y a generator of t̄1,2.
The identity is obvious if x ∈ {∆0, d,X} and y ∈ {x̄1, ȳ1, x̄2, ȳ2}. If x = δ2s
and y = x̄1, then the identity holds because we have

[δ2s + (adx̄1)2s(t̄12), x̄1]1...i−1,i...n = −
(
(adx̄1)2s+1(t̄12)

)1...i−1,i...n

= −(ad(
i−1∑
u′=1

x̄u′))2s+1(
∑

1≤u<i≤v≤n

t̄uv)

= −
∑

1≤u<i≤v≤n

(adx̄u)2s+1(t̄uv),

while

[δ2s +
∑

1≤u<v≤n

(adx̄u)2s(t̄uv),
i−1∑
u′=1

x̄u′ ] = [
∑

1≤u<i≤v≤n

(adx̄u)2s(t̄uv),
i−1∑
u′=1

x̄u′ ]

= −
∑

1≤u<i≤v≤n

(adx̄u)2s+1(t̄uv)

where the �rst equality follows from the fact that (adx̄u)2s(t̄uv) commutes

with
∑i−1
u′=1 x̄u′ whenever u < v < i or i ≤ u < v. If x = δ2s and y =

x̄2, then the identity follows because [δ2s + (adx̄1)2s(t̄12), x̄1 + x̄2] = 0 and
[δ2s +

∑
1≤u<v≤n(adx̄u)2s(t̄uv),

∑n
u′=1 x̄u′ ] = 0.

If x = δ2s and y = ȳ1, then

[δ2s + (adx̄1)2s(t̄12), ȳ1]1...i−1,i...n

= {1
2

∑
p+q=2s−1

[(adx̄1)p(t̄12), (−adx̄1)q(t̄12)] + [(adx̄1)2s(t̄12), ȳ1]}1...i−1,i...n

=
1
2

∑
p+q=2s−1

[
∑

1≤u<i≤v≤n

(adx̄u)p(t̄uv),
∑

1≤u′<i≤v′≤n

(adx̄u′)q(t̄u′v′)]

+[
∑

1≤u<i≤v≤n

(adx̄u)2s(t̄uv), ȳ1 + ...+ ȳi−1];

on the other hand,
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[δ2s +
∑

1≤u<v≤n

(adx̄u)2s(t̄uv), ȳ1 + ...+ ȳi−1]

=
∑

1≤u<v≤n

[(adx̄u)2s(t̄uv), ȳ1 + ...+ ȳi−1]

+
i−1∑
u=1

∑
v|v 6=u

∑
p+q=2s−1

1
2
[(adx̄u)p(t̄uv), (−adx̄u)q(t̄uv)]

=
∑

1≤u<v≤n

[(adx̄u)2s(t̄uv), ȳ1 + ...+ ȳi−1]

+
∑

1≤u<i≤v≤n

∑
p+q=2s−1

1
2
[(adx̄u)p(t̄uv), (−adx̄u)q(t̄uv)],

where the second equality follows from the fact that [(adx̄u)p(t̄uv), (−x̄u)q(t̄uv)]+
[(adx̄v)p(t̄uv), (−adx̄v)q(t̄uv)] = 0 as p+ q is odd.

Then

[δ2s + (adx̄1)2s(t̄12), ȳ1]1...i−1,i...n − [δ2s +
∑

1≤u<v≤n

(adx̄u)2s(t̄uv), ȳ1 + ...+ ȳi−1]

= −
∑

1≤u<v<i

[(adx̄u)2s(t̄uv), ȳ1 + ...+ ȳi−1]−
∑

i≤u<v≤n

[(adx̄u)2s(t̄uv), ȳ1 + ...+ ȳi−1]

+
1
2

∑
p+q=2s−1

∑
1≤u<i≤v≤n

1≤u′<i≤v′≤n,(u,v) 6=(u′,v′)

[(adx̄u)p(t̄uv), (−adx̄u′)q(t̄u′v′)]

=
∑

1≤u<v<i

[(adx̄u)2s(t̄uv), ȳi + ...+ ȳn]−
∑

i≤u<v≤n

[(adx̄u)2s(t̄uv), ȳ1 + ...+ ȳi−1]

+
1
2

∑
p+q=2s−1

∑
1≤u<i≤v≤n

1≤u<i≤v′≤n,v 6=v′

[(adx̄u)p(t̄uv), (−adx̄u)q(t̄uv′)]

+
1
2

∑
p+q=2s−1

∑
1≤u<i≤v≤n

1≤u′<i≤v≤n,u 6=u′

[(adx̄u)p(t̄uv), (−adx̄u′)q(t̄u′v)]

where the second equality follows from the centrality of ȳ1 + ...+ ȳn, the last
equality follows for the fact that (adx̄u)p(t̄uv) and (−adx̄u′)q(t̄u′v′) commute
for u, v, u′, v′ all distinct. Since p+ q is odd, it follows that
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[δ2s + (adx̄1)2s(t̄12), ȳ1]1...i−1,i...n − [δ2s +
∑

1≤u<v≤n

(adx̄u)2s(t̄uv), ȳ1 + ...+ ȳi−1]

=
∑

1≤u<v<i

[(adx̄u)2s(t̄uv), ȳi + ...+ ȳn]−
∑

i≤u<v≤n

[(adx̄u)2s(t̄uv), ȳ1 + ...+ ȳi−1]

+
∑

p+q=2s−1

∑
1≤u<i≤v<v′≤n

[(adx̄u)p(t̄uv), (−adx̄u)q(t̄uv′)]

+
∑

p+q=2s−1

∑
1≤u<u′<i≤v≤n

[(adx̄u)p(t̄uv), (−adx̄u′)q(t̄u′v)].

Now if 1 ≤ u < v < i, we have

[(adx̄u)2s(t̄uv), ȳi + ...+ ȳn] =
∑

p+q=2s−1

(adx̄u)pad(t̄ui + ...+ t̄un)(adx̄u)q(t̄uv)

=
n∑
w=i

∑
p+q=2s−1

(adx̄u)p [̄tuw, (−adx̄v)q(t̄uv)]

=
n∑
w=i

∑
p+q=2s−1

(adx̄u)p(−adx̄v)q([̄tuw, t̄uv])

= −
n∑
w=i

∑
p+q=2s−1

(adx̄u)p(−adx̄v)q([̄tuw, t̄vw])

= −
n∑
w=i

∑
p+q=2s−1

[(adx̄u)p(t̄uw), (−adx̄v)q(t̄vw)];

one shows in the same way that if i ≤ u < v ≤ n, then [(adx̄u)2s(t̄uv), ȳ1 +
... + ȳi−1] =

∑i−1
w=1

∑
p+q=2s−1[(adx̄u)p(t̄uw), (−adx̄v)q(t̄vw)]; all this implies

that

[δ2s + (adx̄1)2s(t̄12), ȳ1]1...i−1,i...n − [δ2s +
∑

1≤u<v≤n

(adx̄u)2s(t̄uv), (ȳ1)1...i−1].

Since [δ2s+(adx̄1)2s(t̄12), ȳ1+ȳ2] = 0 and [δ2s+
∑

1≤u<v≤n(adx̄u)2s(t̄uv), ȳ1+
...+ ȳn] = 0, this equality implies

[δ2s + (adx̄1)2s(t̄12), ȳ2]1...i−1,i...n − [δ2s +
∑

1≤u<v≤n

(adx̄u)2s(t̄uv), (ȳ2)1...i−1],

which ends the proof of (b) above, and therefore of the fact that the identities
ΘAiΘ

−1 = B−1
i , ..., ΨBiΨ

−1 = BiAi are preserved.
The relation (Θ,Ψ2) = 1 is preserved because

([Θ̃]ei
π
2

P
i<j t̄ij , ([Ψ̃ ]ei

π
6

P
i<j t̄ij)2) = ([Θ̃]ei

π
2

P
i<j t̄ij , [Ψ̃ ]2ei

π
3

P
i<j t̄ij)

= ([Θ̃], [Ψ̃ ]2) = [(Θ̃, Ψ̃2)] = 1,
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where the two �rst identities follow from the fact that
∑
i<j t̄ij commutes with

the image of d → d o t̄1,n, x 7→ [x], the third identity follows from the fact
that G1 → Gn, g 7→ [g] is a group morphism, and the last identity follows
from (27).

The image of Ci,i+1 is Φ
−1
λ,i(e

2πīt12)i,i+1...nΦλ,i, to the product of the images
of C12, ..., Cn−1,n is

Φ−1
λ,1(e

2πīt12)1,2...n(Φλ,1Φ−1
λ,2)(e

2πīt12)2,3...n(Φλ,2Φ−1
λ,3)(e

2πīt12)3,4...n...(Φλ,n−1Φ
−1
λ,n)

e2πītn−1,nΦλ,n

= Φ−1
λ,1(e

2πīt12)1,2...n(e2πīt12)2,3...nΦ1,2,3...n
λ (e2πīt12)3,4...n...Φ1...,i−1,...n

λ

(e2πīt12)i,i+1...n...Φ1...,n−2,n−1 n
λ e2πītn−1,n

= Φ−1
λ,1(e

2πīt12)1,2...n(e2πīt12)2,3...n(e2πīt12)3,4...n...(e2πīt12)i,i+1...n...e2πītn−1,n

Φ1,2,3...n
λ ...Φ1...,i−1,...n

λ ...Φ1...,n−2,n−1 n
λ

= Φ−1
λ,1e

2πi
P

i<j t̄ijΦλ,1 = e2πi
P

i<j t̄ij ,

where the second equality follows from the fact that Φ1...,i,...n commutes with
(e2πīt12)j,j+1...n whenever j > i, and the last equality follows from the fact
that

∑
i<j tij is central is tn.

So the product of the images of C12...Cn−1,n is e2πi
P

i<j t̄ij .
The relation (ΘΨ)3 = C12...Cn−1,n is then preserved because

([Θ̃]ei
π
2

P
i<j t̄ij [Ψ̃ ]ei

π
6

P
i<j t̄ij)3 = ([Θ̃][Ψ̃ ])3e2πi

P
i<j t̄ij = [(Θ̃Ψ̃)3]e2πi

P
i<j t̄ij

= e2πi
P

i<j t̄ij ,

where the �rst equality follows from the fact that
∑
i<j t̄ij commutes with the

image of G1 → Gn, g 7→ [g], the second equality follows from the fact that
g 7→ [g] is a group morphism and the last equality follows from (27). In the
same way, one proves that Θ4 = C12...Cn−1,n, σ

2
i = Ci,i+1Ci+1,i+2C

−1
i,i+1 and

(Θ, σi) = (Ψ, σi) = 1 are preserved. ut

5.2 Construction of morphisms B1,n → exp(̂̄tk1,n) o Sn using an

associator Φλ

Let us keep the notation of the previous section. Set

a2n(λ) := −(2n+ 1)B2n+2λ
2n+2/(2n+ 2)!, ỹλ := − adx

eλadx − 1
(y),

Ãλ := Φλ(ỹλ, t)eλỹλΦλ(ỹλ, t)−1

= e−λt/2Φλ(−ỹλ − t, t)eλ(ỹλ+t)Φλ(−ỹλ − t, t)−1e−λt/2,

B̃λ := eλt/2Φλ(−ỹλ − t, t)eλxΦλ(ỹλ, t)−1

(the identity in the de�nition of Aλ follows from the hexagon relation).
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Proposition 33. We have

Ã12,3
λ = eλt̄12/2{Φλ}3,1,2Ã2,13

λ {Φλ}2,1,3eλt̄12/2 · {Φλ}3,2,1Ã1,23
λ {Φλ}1,2,3,

B̃12,3
λ = e−λt̄12/2{Φλ}3,1,2B̃2,13

λ {Φλ}2,1,3e−λt̄12/2 · {Φλ}3,2,1B̃1,23
λ {Φλ}1,2,3,

(B̃12,3
λ , eλt̄12/2{Φλ}3,1,2Ã2,13

λ {Φλ}2,1,3eλt̄12/2)
= (e−λt̄12/2{Φλ}3,1,2B̃2,13

λ {Φλ}2,1,3e−λt̄12/2, Ã12,3
λ )

= {Φλ}3,2,1eλt̄23{Φλ}1,2,3,

so the formulas of Proposition 31 (restricted to the generators Ai, Bi, σi, Cjk)

induce a morphism B1,n → exp(̂̄tk1,n) o Sn (here ̂̄tk1,n is the degree completion

of t̄k1,n).

Proof. In this proof, we shift the indices of the generators of tn+1 by 1, so these
generators are now tij , i 6= j ∈ {0, ..., n} (recall that tn+1 = tkn+1, t̄1,n = t̄k1,n).

We have a morphism αn : tn+1 → t̄1,n, de�ned by tij 7→ t̄ij if 1 ≤ i < j ≤ n
and t0i 7→ ỹi := − adx̄i

eλadx̄i−1
(ȳi) if 1 ≤ i ≤ n (it takes the central element∑

0≤i<j≤n tij to 0).
Let φ : {1, ...,m} → {1, ..., n} be a map and φ′ : {0, ...,m} → {0, ..., n} be

given by φ′(1) = 1, φ′(i) = φ(i) for i = 1, ...,m. The diagram

tn+1
x7→xφ′

→ tm+1

αn ↓ ↓αm

t̄1,n
x7→xφ

→ t̄1,m

is not commutative, we have instead the identity

αm(xφ
′
) = αn(x)φ −

n∑
i=1

ξi(x)(
∑

i′,j′∈φ−1(i)|i′<j′
t̄i′j′),

where ξi : t̄1,n → k is the linear form de�ned by ξi(t0i) = 1, ξi(any other
homogeneous Lie polynomial in the tkl) = 0.

Since the various
∑
i′,j′∈φ−1(i)|i′<j′ t̄i′j′ commute with each other and with

the image of x 7→ xφ, this implies

αm(gφ
′
) = αn(g)φ

n∏
i=1

e−ξi(logg)(
P

i′,j′∈φ−1(i),i′<j′ t̄i′j′ )

for g ∈ exp(̂tn+1).
Set Āλ := Φ0,1,2

λ eλt01(Φ0,1,2
λ )−1 ∈ exp(̂t3). One proves that

Ā0,12,3
λ eλt12 = eλt12/2Φ3,1,2

λ Ā0,2,13
λ Φ2,1,3

λ eλt12/2 · Φ3,2,1
λ Ā0,1,23

λ Φ1,2,3
λ
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(relation in exp(̂t4)). We then have α2(Āλ) = Ãλ, α3(Φ
1,2,3
λ ) = Φ1,2,3

λ , and

the relation between the αi and coproducts implies α3(Ā
0,1,23
λ ) = Ã1,23

λ and

α3(Ā
0,12,3
λ eλt12) = Ã12,3

λ . Taking the image by α3, we get the �rst identity. As

we have already mentioned, this identity implies (Φ−1
λ Ã1,23

λ Φλ, Ã
12,3
λ ) = 1.

Let exp(̂tn+1) ∗ Zn/In be the quotient of the free product of exp(̂tn+1)
with Zn = ⊕ni=1ZXi by the normal subgroup generated by the rations of the
exponentials of the sides of each of the equations

Xit0iX
−1
i =

∑
0≤α≤n,α 6=i

tαi, Xi(t0j + tij)X−1
i = t0j ,

XitjkX
−1
i = tjk, XjXktjk(XjXk)−1 = tjk

where i, j, k are distinct in {1, ..., n}. Then the morphism αn : tn+1 → t̄1,n

extends to α̃n : exp(̂tn+1) ∗ Zn/In → exp(̂̄t1,n) by Xi 7→ eλxi .
If φ : {1, ...,m} → {1, ..., n} is a map, then the Lie algebra morphism

tn+1 → tm+1, x 7→ xφ
′
extends to a group morphism exp(̂tn) ∗ Zn/In →

exp(̂tm) ∗ Zm/Im by Xi 7→
∏
i′∈φ−1(i)Xi′ .

Let
B̄λ := eλt12/2Φ0,2,1

λ X1Φ
2,1,0
λ ∈ exp(̂t3) ∗ Z2/I2,

then α2(B̄λ) = B̃λ.
We will prove that

B̄0,12,3
λ = e−λt12/2Φ3,1,2

λ B̄0,2,13
λ Φ2,1,3

λ e−λt12/2 · Φ3,2,1B̄0,1,23
λ Φ1,2,3

λ . (40)

The l.h.s. is
B̄0,12,3
λ = eλt3,12/2Φ0,3,12

λ X1X2Φ
3,21,0
λ

and the r.h.s. is

e−λt12/2Φ3,1,2
λ eλt31,2/2Φ0,13,2

λ X2Φ
13,2,0
λ Φ2,1,3

λ e−λt12/2Φ3,2,1
λ eλt23,1/2Φ0,23,1

λ X1Φ
32,1,0
λ Φ1,2,3

λ .

The equality between these terms is rewritten as

X1X2 = Φ03,1,2
λ Φ1,3,0

λ e−λt13/2X2Φ
13,2,0
λ eλt13/2Φ2,3,1

λ Φ0,23,1
λ X1Φ

01,2,3
λ Φ2,1,0

λ ,

or, using the fact that Xi commutes with tjk (i, j, k distinct), as

X1X2 = Φ03,1,2
λ Φ1,3,0

λ X2Φ
02,3,1
λ Φ3,2,0

λ X1Φ
01,2,3
λ Φ2,1,0

λ .

NowX2Φ
02,3,1
λ = Φ0,3,1

λ X2,X1Φ
01,2,3
λ = Φ0,2,3

λ X1 andX1X2Φ
2,1,0
λ = Φ2,1,03

λ X1X2,

so the r.h.s. is rewritten as Φ03,1,2
λ Φ1,3,0

λ Φ0,3,1
λ X2Φ

3,2,0
λ Φ0,2,3

λ X1Φ
2,1,0
λ = X1X2.

This ends the proof of (40). Taking the image by α4, we then get the second
identity of the Proposition.

Let us prove the next identity. We have
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(B̄0,12,3
λ , eλt̄12/2Φ3,1,2

λ Ā0,2,13
λ Φ2,1,3

λ eλt̄12/2)

= eλt12,3/2Φ0,3,12
λ X1X2Φ

3,12,0
λ eλt̄12/2Φ3,1,2

λ Φ0,2,13
λ eλt0,2Φ13,2,0

λ Φ2,1,3
λ eλt̄12/2Φ0,12,3

λ

(X1X2)−1Φ12,3,0
λ e−λt12,3/2e−λt̄12/2Φ3,1,2

λ Φ0,2,13
λ e−λt0,2Φ13,2,0

λ Φ2,1,3
λ e−λt̄12/2.

Now

X1X2Φ
3,12,0
λ eλt̄12/2Φ3,1,2

λ Φ0,2,13
λ eλt0,2Φ13,2,0

λ Φ2,1,3
λ eλt̄12/2Φ0,12,3

λ (X1X2)−1

= eλt̄12/2X1X2Φ
3,12,0
λ Φ3,1,2

λ Φ0,2,13
λ eλt0,2Φ13,2,0

λ Φ2,1,3
λ Φ0,12,3

λ (X1X2)−1eλt̄12/2

= eλt̄12/2X1X2Φ
0,2,1
λ Φ3,1,02

λ eλt0,2Φ02,1,3
λ Φ0,2,1

λ (X1X2)−1eλt̄12/2

= eλt̄12/2X1X2Φ
0,2,1
λ eλt0,2Φ0,2,1

λ (X1X2)−1eλt̄12/2

= eλt̄12/2Φ03,2,1
λ X1X2e

λt0,2(X1X2)−1Φ03,2,1
λ eλt̄12/2

= eλt̄12/2Φ03,2,1
λ eλt03,2Φ03,2,1

λ eλt̄12/2.

Plugging this in the above expression for (B̄0,12,3
λ , eλt̄12/2Φ3,1,2

λ Ā0,2,13
λ Φ2,1,3

λ eλt12/2),
one then �nds (B̄0,12,3

λ , eλt̄12/2Φ3,1,2
λ Ā0,2,13

λ Φ2,1,3
λ eλt̄12/2) == Φ3,2,1

λ eλt23Φ1,2,3
λ .

Taking the image by α4, we then obtain (B̃12,3
λ , eλt̄12/2Φ3,1,2

λ Ã2,13
λ Φ2,1,3

λ eλt̄12/2) =
Φ3,2,1
λ eλt̄23Φ1,2,3

λ .
Let us prove that last identity. For this, we will show

(e−λt12/2Φ3,1,2
λ B̄0,2,13

λ Φ2,1,3
λ e−λt12/2, Ā0,12,3

λ eλt12) = Φ3,2,1
λ eλt23Φ1,2,3

λ

and take the image by α4.
We have

(e−λt12/2Φ3,1,2
λ B̄0,2,13

λ Φ2,1,3
λ e−λt12/2, Ā0,12,3

λ eλt12)

= e−λt12/2Φ3,1,2
λ eλt2,13/2Φ0,13,2

λ X2Φ
13,2,0
λ Φ2,1,3

λ e−λt12/2Φ0,12,3
λ eλt0,12Φ3,12,0

λ eλt12eλt12/2

Φ3,1,2
λ Φ0,2,13

λ X−1
2 Φ2,13,0

λ e−λt2,13/2Φ2,1,3
λ eλt12/2Φ0,12,3

λ e−λt0,12Φ3,12,0
λ e−λt12

= e−λt12/2Φ3,1,2
λ eλt2,13/2Φ0,13,2

λ X2Φ
13,2,0
λ Φ2,1,3

λ Φ0,12,3
λ eλt0,12+λt12Φ3,12,0

λ Φ3,1,2
λ Φ0,2,13

λ

Φ2,13,0
λ e−λt2,13/2X−1

2 Φ2,1,3
λ e−λt12/2Φ0,12,3

λ e−λt0,12Φ3,12,0
λ .

Now

X2Φ
13,2,0
λ Φ2,1,3

λ Φ0,12,3
λ eλt0,12+λt12Φ3,12,0

λ Φ3,1,2
λ Φ0,2,13

λ X−1
2

= X2Φ
02,1,3
λ Φ1,2,0

λ eλt0,12+λt12Φ0,2,1
λ Φ3,1,02

λ X−1
2

= Φ0,1,3
λ X2Φ

1,2,0
λ eλt0,12+λt12Φ0,2,1

λ X−1
2 Φ3,1,0

λ

= Φ0,1,3
λ X2e

λ(t01+t02+t12)X−1
2 Φ3,1,0

λ

= Φ0,1,3
λ eλ(t01+t02+t12+t23)Φ3,1,0

λ .

So

(e−λt12/2Φ3,1,2
λ B̄0,2,13

λ Φ2,1,3
λ e−λt12/2, Ā0,12,3

λ eλt12)

= e−λt12/2Φ3,1,2
λ eλt2,13/2Φ0,13,2

λ Φ0,1,3
λ eλ(t01+t02+t12+t23)

Φ3,1,0
λ Φ2,13,0

λ e−λt2,13/2Φ2,1,3
λ e−λt12/2Φ0,12,3

λ e−λt0,12Φ3,12,0
λ ;
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after some computation, we �nd that this equals Φ3,2,1
λ eλt23Φ1,2,3

λ . ut

In particular, (Φλ, Ãλ, B̃λ) give rise to a morphism B1,n → exp(̂̄tk1,n) oSn;
one proves as in Section 2 that it induces an isomorphism of �ltered Lie

algebras Lie(PB1,n)k ' ̂̄tk1,n. Taking Φλ to be a rational associator [Dri91], we
then obtain:

Corollary 34. We have a �ltered isomorphism Lie(PB1,n)Q ' ̂̄
tQ1,n, which can

be extended to an isomorphism B1,n(Q) ' exp(̂̄tQ1,n) o Sn.

5.3 Construction of morphisms Γ1,[n] → G1,n o Sn using a pair

(Φλ, Θ̃λ)

Keep the notation of the previous section and set

Ψ̃λ := exp(− 1
λ

(∆0 +
∑
k≥1

a2k(λ)δ2k)).

Proposition 35. We have

[Ψ̃λ]eλt̄12/12Ãλ([Ψ̃λ]eλt̄12/12)−1 = Ãλ, [Ψ̃λ]eλt̄12/12B̃λ([Ψ̃λ]eλt̄12/12)−1 = B̃λÃλ.

Proof. The �rst identity follows from the fact that ∆0 +
∑
k≥1 a2k(λ)[δ2k] −

λ2t/12 commutes with t and ỹλ; the second identity follows from these facts
and the analogue of Lemma 30, where 2πi is replaced by λ. ut

Assume that Θ̃λ ∈ G1 satis�es

Θ̃4
λ = (Θ̃λΨ̃λ)3 = (Θ̃2

λ, Ψ̃λ) = 1,

[Θ̃λ]eλt̄12/4Ãλ([Θ̃λ]eλt̄12/4)−1 = B̃−1
λ , [Θ̃λ]eλt̄12/4B̃λ([Θ̃λ]eλt̄12/4)−1 = B̃λÃλB̃

−1
λ

(one can show that the two last equations are equivalent), then Θ 7→
[Θ̃λ]eλ(

P
i<j t̄ij)/4, Ψ 7→ [Ψ̃λ]eλ(

P
i<j t̄ij)/12 extends the morphism de�ned in

Proposition 33 to a morphism Γ1,[n] → Gn o Sn.

We do not know whether for each Φλ de�ned over k, there exists a Θ̃λ
de�ned over k, satisfying the above conditions.

5.4 Elliptic structures over QTQBA's

Let (H,∆H , RH , ΦH) be a quasitriangular quasibialgebra (QTQBA). Recall
that this means that [Dri90b]: (H,mH) is an algebra, ∆H : H → H⊗2 is an
algebra morphism, RH ∈ H⊗2 and ΦH ∈ H⊗3 are invertible, and

∆H(x)2,1 = RH∆H(x)R−1
H , (id⊗∆H) ◦∆H(x) = ΦH(∆H⊗ id) ◦∆H(x)Φ−1

H ,
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R12,3
H = Φ3,1,2

H R1,3
H (Φ1,3,2

H )−1R2,3
H Φ1,2,3

H , R1,23
H = (Φ2,3,1

H )−1R1,3
H Φ2,1,3

H R1,2
H (Φ1,2,3

H )−1,

Φ1,2,34
H Φ12,3,4

H = Φ2,3,4
H Φ1,23,4

H Φ1,2,3
H .

One also assumes the existence of a unit 1H and a counit εH .
If A is an algebra and J1, J2 ⊂ A are left ideals, de�ne the Hecke bimodule

H(A|J1, J2) or H(J1, J2) as HomA(A/J1,A/J2) = (A/J2)J1 where J1 acts on
the quotient from the left; we have thus H(J1, J2) = {x ∈ A|J1x ⊂ J2}/J2.
The product of A induces a product H(J1, J2)⊗H(J2, J3) → H(J1, J3). When
J1 = J2 = J , H(J) := H(J, J) is the usual Hecke algebra, and H(J1, J2)
is a (H(J1),H(J2))-bimodule. Recall that we have a functor A−mod →
H(J)−mod, V 7→ V J := {v ∈ V |Jv = 0}.

If H is an algebra with unit equipped with a morphism ∆H : H → H⊗2

and a : H → D is a morphism of algebras with unit, we de�ne for each
n ≥ 1 and each pair of words w,w′ in the free magma generated by 1, ..., n
containing 1, ..., n exactly once (recall that a magma is a set with a non-
necessarily associative binary operation) the Hecke bimodule

Hw,w′(D,H) := H(D ⊗H⊗n|Jw, Jw′),

(or simply Hw,w′) where Jw ⊂ D ⊗ H⊗n is the left ideal generated by the

image of (a ⊗ ∆w
H) ◦ ∆H : H+ → D ⊗ H⊗n. Here H+ = Ker(H εH→ k)

and for example ∆
(21)3
H = (213) ◦ (∆H ⊗ idH) ◦ ∆H, etc. We have prod-

ucts Hw,w′ ⊗ Hw′,w′′ → Hw,w′′ . We denote the Hecke algebra Hw,w by
Hw(D,H) or Hw; we denote by 1w its unit. We denote by (Hw,w′)× the
set of invertible elements of Hw,w′ , i.e., the set of elements X such that
for some X ′ ∈ Hw′,w, X ′X = 1w′ , XX ′ = 1w. The symmetric group Sn
acts on the system of bimodules Hw,w′ by permuting the factors, so we get
maps Ad(σ) : Hw,w′ → Hσ(w),σ(w′) (where σ(w) is the word w, where i
is replaced by σ(i)). If w0 = ((12)...)n, we de�ne an algebra structure on
⊕σ∈SnHw0,σ(w0)σ by (

∑
σ∈Sn

hσσ)(
∑
τ∈Sn

h′ττ) :=
∑
σ,τ∈Sn

hσAd(σ)(h′τ )στ .
Then tσ∈Sn

(Hw0,σ(w0))×σ ⊂ ⊕σ∈Sn
Hw0,σ(w0)σ is a group with unit 1w0 . We

have an exact sequence 1 → (Hw0)× → tσ∈Sn(Hw0,σ(w0))×σ → Sn, but the
last map is not necessarily surjective (and if it is, does not necessarily split).

IfH is a quasibialgebra, then ΦH gives rise to an element ofH1(23),(12)3(D,H),
which we also denote ΦH ; similarly Φ−1

H gives rise to the inverse (w.r.t. compo-
sition of Hecke bimodules) element Φ−1

H ∈ H(12)3,1(23)(D,H). We have algebra
morphisms H12(D,H) → H(12)3(D,H) induced by X 7→ X0,12,3 := (idD ⊗
∆H ⊗ idH)(X) (0 is the index of D) and similarly morphisms H12(D,H) →
H2(13)(D,H), X 7→ X0,2,13, H12(D,H) → H1(D,H), X 7→ X0,1,∅ and
X0,∅,1, etc. If moreover H is quasitriangular, then RH ∈ H21,12(D,H),
R−1
H ∈ H12,21(D,H), so in that case tσ∈SnHw0,σ(w0)σ → Sn is surjective,

and we have a morphism Bn → tσ∈SnHw0,σ(w0)σ such that the composition
Bn → tσ∈SnHw0,σ(w0)σ → Sn is the canonical projection.

De�nition 36. If H is a QTQBA, an elliptic structure on H is a triple
(D,A,B), where D is an algebra with unit, equipped with an algebra mor-
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phism a : H → D, and A,B ∈ H12(D,H) are invertible such that A0,1,∅ =
A0,∅,1 = B0,1,∅ = B0,∅,1 = 1D ⊗ 1H ,

A0,12,3 = R2,1
H (Φ2,1,3

H )−1A0,2,13Φ2,1,3
H R1,2

H (Φ1,2,3
H )−1A0,1,23Φ1,2,3

H , (41)

B0,12,3 = (R1,2
H )−1(Φ2,1,3

H )−1B0,2,13Φ2,1,3
H (R2,1

H )−1(Φ1,2,3
H )−1B0,1,23Φ1,2,3

H (42)

and

(B0,12,3, R2,1
H (Φ2,1,3

H )−1A0,2,13Φ2,1,3
H R1,2

H )

= ((R1,2
H )−1(Φ2,1,3

H )−1B0,2,13Φ2,1,3
H (R2,1

H )−1, A0,12,3) = (Φ1,2,3
H )−1R3,2

H R2,3
H Φ1,2,3

H

(identities in H(12)3(D,H)).

The pair of identities (41), (42) is equivalent to{
R2,1
H A0,2,1R1,2

H A0,1,2 = 1
R3,12
H A0,3,12Φ3,1,2

H R2,31
H A0,2,31Φ2,3,1

H R1,23
H A0,1,23Φ1,2,3

H = 1,

and{
(R1,2

H )−1B0,2,1(R2,1
H )−1B0,1,2 = 1

(R−1
H )12,3B0,3,12Φ3,1,2

H (R−1
H )31,2B0,2,31Φ2,3,1

H (R−1
H )23,1B0,1,23Φ1,2,3

H = 1,

so the invertibility conditions on A,B follow from (41), (42).
If F ∈ H⊗2 is invertible with (εH ⊗ idH)(F) = (idH ⊗ εH)(F) = 1H,

then the twist of H by F is the quasi-Hopf algebra FH with product
mH , coproduct ∆̃H(x) = F∆H(x)F−1, R-matrix R̃H = F 2,1RHF

−1 and
associator Φ̃H = F 2,3F 1,23ΦH(F 1,2F 12,3)−1. If a : H → D is an alge-
bra morphism, it can be viewed as a morphism FH → D, and we have
an algebra isomorphism H(12)3(D,H) → H(12)3(D, FH), induced by X 7→
F 1,2F 0,12X(F 1,2F 0,12)−1 (more generally, we have an isomorphism of the sys-
tems of bimodules Hw,w′(D,H) → Hw,w′(D, FH) induced by X 7→ FwXF

−1
w′

for suitable Fw).
If (D,A,B) is an elliptic structure on H, then an elliptic structure FH is

(D, Ã, B̃), where Ã = F 1,2F 0,12A(F 1,2F 0,12)−1 and B̃ = F 1,2F 0,12B(F 1,2F 0,12)−1.
An elliptic structure (D,A,B) over H gives rise to a unique group mor-

phism
B1,n → tσ∈SnHw0,σ(w0)(D,H)×σ,

such that

σi 7→
(
Φ

(((12)3)...i−1),i,i+1
H

)−1

Ri,i+1
H (i, i+ 1)Φ(((12)3)...i−1),i,i+1

H ,

Ai 7→ Φ−1
H,iA

0,(((12)3)...i−1),(i...(n−1,n))ΦH,i,

Bi 7→ Φ−1
H,iB

0,(((12)3)...i−1),(i...(n−1,n))ΦH,i,
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where
ΦH,i = Φ

((12)...i−1),i,(i+1(...(n−1,n)))
H ...Φ

((12)...n−2),n−1,n
H ;

here we have for example x((12)3) = (∆H ⊗ idH) ◦∆H(x) for x ∈ H.
If g is a Lie algebra and tg ∈ S2(g)g is nondegenerate, thenH = U(g)[[~]] is

a QTQBA, with mH ,∆H are the undeformed product and coproduct, RH =
e~tg/2 and ΦH = Φ(~t1,2g , ~t2,3g ), where Φ is an 1-associator. The results of
next Section then imply that (D,A,B) is an elliptic structure over H, where
D = D(g)[[~]] (D(g) is the algebra of algebraic di�erential operators on g) and
A,B are given by the formulas for Ãλ, B̃λ with t replaced by ~t1,2g , x replaced
by ~

∑
α xα ⊗ (e1

α + e2
α), y replaced by ~

∑
α ∂α ⊗ (e1α + e2α).

Remark 37. If H is a Hopf algebra, we have an isomorphism

Hw0(D,H) ' (D ⊗H⊗n−1)H ,

where the right side is the commutant of the diagonal map H → D⊗H⊗n−1,

h 7→ (a ⊗ id⊗n−1
H ) ◦∆(n)

H (h). This map takes the class of d ⊗ h1 ⊗ ... ⊗ hn to

da(SH(h(n)
n ))⊗h1SH(h(n−1)

n )⊗ ...⊗hn−1SH(h(1)
n ) (SH is the antipode of H).

So A,B identify with elements A,B ∈ (D ⊗H)H ; the conditions are then

A0,12 = R2,1
H A0,2R1,2

H A0,1, B0,12 = (R1,2
H )−1B0,2(R2,1

H )−1B0,1,

(B0,12, R2,1
H A0,2R1,2

H ) = ((R1,2
H )−1B0,2(R2,1

H )−1,A0,12)

= (R3,2
H R1,2

H R0,2
H R2,0

H R2,1
H R2,3

H )0̃,1̃,2·3̃

(conditions in (D⊗H⊗2)H), where the superscript B′n oZn−1 → Bn−1 oZn−1

is the map x0 ⊗ ...⊗ x3 7→ SH(x0)⊗ SH(x1)⊗ x2SH(x3).
Moreover, the morphism PBn → (Hw0)× ' (D⊗H⊗n−1)H factors through

PBn → PBn−1 × Zn−1 → (D ⊗ H⊗n−1)H, where: (a) the �rst morphism is
induced by Zn−1 o B′n → Zn−1 o Bn−1 (where B′n = Bn×Sn Sn−1 is the group
of braids leaving the last strand �xed), constructed as follows: we have a
composition B′n+1 → π1((P1)n+1− diagonals/Sn) → π1(Cn− diagonals/Sn) =
Bn, where the �rst map is induced by C ⊂ P1, and the middle map comes
from the �bration Cn − diagonals → (P1)n+1 − diagonals → P1, (z1, ..., zn) →
(z1, ..., zn,∞) and (z1, ..., zn+1) → zn+1 [the second projection has a section so
the map between π1's is an isomorphism]; viewing Zn−1 oB′n, Zn−1 oBn−1 as
fundamental groups of con�guration spaces of points equipped with a nonzero
tangent vector, we then get the morphism Zn−1 o B′n → Zn−1 o Bn−1 (which
does not restrict to a morphism B′n → Bn−1); (b) the second map is induced by
the standard map PBn−1 × Zn−1 → (H⊗n−1)× induced by RH =

∑
α r

′
α ⊗ r′′α

and the map taking the ith generator of Zn−1 to 1 ⊗ ... ⊗ uSH(u) ⊗ ... ⊗ 1,
where u =

∑
i SH(r′′α)r′α (see [Dri90a]). The morphism Bn → Aut((Hw0)×) =

Aut((D⊗H⊗n−1)H) extends the inner action of PBn by

σn−1 ·X := {Rn−1,n...2n−1
H X0,1,...,n−2,n...2n−1Rn...2n−1,n−1

H }0·2̃n−1,...,n−1·ñ
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(where the superscript means that x0 ⊗ ... ⊗ x2n−1 maps to x0SH(x2n−1) ⊗
...⊗ xn−1SH(xn)).

We have then tσ∈Sn(Hw0,σ(w0))×σ ' ((D ⊗ H⊗n−1)×)H oPBn Bn (the
index means that PBn ⊂ Bn is identi�ed with its image in ((D⊗H⊗n−1)×)H).

Then if (A,B) is an elliptic structure over a : H → D, the morphism
Bn → ((D⊗H⊗n−1)×)H oPBn Bn extends to a morphism

B1,n → ((D ⊗H⊗n−1)×)H oPBn Bn

via Ai 7→ A0,1...i−1, Bi 7→ B0,1...i−1.
This interpretation of Hw0 and of the relations between A,B can be ex-

tended to the case when H is a quasi-Hopf algebra.

Remark 38. Let C be a rigid braided monoidal category. We de�ne an elliptic
structure on C as a quadruple (E , A,B, F ), where E is a category, F : E → C
is a functor, and A,B are functorial automorphisms of F (?)⊗?, which reduce
to the identity if the second factor is the neutral object 1, and such that the
following equalities of automorphisms of F (M)⊗(X⊗Y ) hold (we write them
omitting associativity maps, as they can be put in automatically):

AM,X⊗Y = βY,XAM,Y βX,YAM,X ,

BM,X⊗Y = β−1
X,YBM,Y β

−1
Y,XBM,X ,

(BM,X⊗Y , βY,XAM,Y βX,Y ) = (β−1
Y,XBM,Y β

−1
X,Y , AM,X⊗Y )

= β(M⊗X⊗Y )∗,Y βY,(M⊗X⊗Y )∗ ◦ canM⊗X⊗Y,

where canX ∈ HomC(1,X⊗X∗) is the canonical map and the r.h.s. of the last
identity is viewed as an element of EndC(M⊗X⊗Y) using its identi�cation with
HomC(1, (M⊗X⊗Y)⊗(M⊗X⊗Y)∗). An elliptic structure on a quasitriangular
quasi-Hopf algebra H gives rise to an elliptic structure on H-mod. An elliptic
structure over a rigid braided monoidal category C gives rise to representations
of B1,n by C-automorphisms of F (M)⊗X⊗n−1.

6 The KZB connection as a realization of the universal
KZB connection

6.1 Realizations of t̄1,n

Let g be a Lie algebra and tg ∈ S2(g)g be nondegenerate. We denote by
(a, b) 7→ 〈a, b〉 the corresponding invariant pairing.

Let D(g) be the algebra of algebraic di�erential operators on g. It has
generators xa, ∂a, a ∈ g, and relations: a 7→ xa, a 7→ ∂a are linear, [xa, xb] =
[∂a, ∂b] = 0, [∂a, xb] = 〈a, b〉.
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There is a unique Lie algebra morphism g → D(g), a 7→ Xa, where Xa :=∑
α x[a,eα]∂eα , and tg =

∑
α eα ⊗ eα (it is the in�nitesimal of the adjoint

action). We also have a Lie algebra morphism g → An := D(g) ⊗ U(g)⊗n,
a 7→ Ya := Xa ⊗ 1 + 1 ⊗ (

∑n
i=1 a

(i)). We denote by gdiag the image of this
morphism. We denote by Hn(g) the Hecke algebra of (An, gdiag). It is de�ned
as the quotient {x ∈ An|∀a ∈ g, Yax ∈ Ang

diag}/Angdiag. We have a natural
action of Sn on An, which induces an action of Sn on Hn(g).

If (Vi)i=1,...,n are g-modules, then (S(g) ⊗ (⊗ni=1Vi))
g is a module over

Hn(g). If moreover V1 = ... = Vn, this is a module over Hn(g) o Sn.

Proposition 39. There is a unique Lie algebra morphism ρg : t̄1,n → Hn(g),
x̄i 7→

∑
α xα ⊗ e

(i)
α , ȳi 7→ −

∑
α ∂α ⊗ e

(i)
α , t̄ij 7→ 1 ⊗ t

(ij)
g (we set xα := xeα ,

∂α := ∂eα).

Proof. The images of all the generators of t̄1,n are contained in the commutant
of gdiag in An, therefore also in its normalizer. According to Lemma 4, we will
use the following presentation of t̄1,n. Generators are x̄i, ȳi, t̄ij , relations are
[x̄i, x̄j ] = [ȳi, ȳj ] = 0, [x̄i, ȳj ] = t̄ij (i 6= j), t̄ij = t̄ji,

∑
i x̄i =

∑
i ȳi = 0,

[x̄i, t̄jk] = [ȳi, t̄jk] = 0 (i, j, k distinct).
The relations [x̄i, x̄j ] = [ȳi, ȳj ] = 0, [x̄i, ȳj ] = t̄ij (i 6= j), t̄ij = t̄ji and

[x̄i, t̄jk] = [ȳi, t̄jk] = 0 are obviously preserved. Let us check that
∑
i x̄i =∑

i ȳi = 0 are preserved.
We have∑

i

ρg(x̄i) =
∑
α

xα ⊗ (
∑

i

e(i)
α ) =

∑
α

(xα ⊗ 1)(Yα −Xα ⊗ 1)

≡ −
∑
α

xαXα ⊗ 1 =
∑
α,β

xeαx[eα,eβ ]∂eβ
⊗ 1 = 0

since xα commutes with x[eα,eβ ] and
∑
β eβ ⊗ eβ = tg is invariant. We also

have ∑
i

ρg(ȳi) = −
∑
α

∂α ⊗ (
∑
i

e(i)α ) = −
∑
α

(∂α ⊗ 1)(Yα −Xα ⊗ 1)

≡
∑
α

∂αXα ⊗ 1 = −
∑
α,β

∂eαx[eα,eβ ]∂eβ

= −
∑
α,β

〈eα, [eα, eβ ]〉∂eβ
−

∑
α,β

x[eα,eβ ]∂eα∂eβ
;

since tg is invariant and 〈−,−〉 is symmetric, we have
∑
α〈eα, [eα, eβ ]〉 = 0 for

any β, and since [∂eα , ∂eβ
] = 0, we have

∑
α,β x[eα,eβ ]∂eα∂eβ

, so
∑
i ρg(ȳi) = 0.

ut

6.2 Realizations of t̄1,n o d

Let (g, tg) be as in Subsection 6.1. We keep the same notations.
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Proposition 40. The Lie algebra morphism ρg : t̄1,n → Hn(g) of Proposition
39 extends to a Lie algebra morphism t̄1,n o d → Hn(g), de�ned by ∆0 7→
− 1

2 (
∑
α ∂

2
α)⊗ 1, X 7→ 1

2 (
∑
α x

2
α)⊗ 1, d 7→ 1

2 (
∑
α xα∂α + ∂αxα)⊗ 1, and

δ2m → 1
2

∑
α1,...,α2m,α

xα1 · · · xα2m ⊗ (
n∑
i=1

(ad(eα1) · · · ad(eα2m)(eα) · eα)(i))

for m ≥ 1. This morphism further extends to a morphism U (̄t1,n o d) oSn →
Hn(g) o Sn by σ 7→ σ.

Proof. First of all [ρg(δ2m), ρg(x̄i)] equals

1
2

∑
α1,...,α2m,α,β

xα1 · · · xα2mxβ ⊗ [eβ , ad(eα1) · · · ad(eα2m)(eα)eα](i)

=
1
2

∑
α1,...,α2m,α,β

xα1 · · · xα2m
xβ ⊗

2m∑
`=1

(
ad(eα1) · · · ad([eβ , eα`

]) · · · ad(eα2m)(eα)eα
)(i)

(the equality follows from the invariance of tg) which equals zero since the �rst
factor is symmetric in (β, α`) while the second is antisymmetric in (β, αl).

ρg preserves the relation [δ2m, t̄ij ] = [t̄ij , ad(x̄i)2m(t̄ij)], because ρg(δ2m +∑
i<j ad(x̄i)2m(t̄ij)) belongs to D(g) ⊗ Im(∆(n) : U(g) → U(g)⊗n), where

∆(n) is the n-fold coproduct and U(g) is equipped with its standard bialgebra
structure.

Now [ρg(δ2m), ρg(ȳi)] yields

1
2

∑
α1,...,α2m,α,β

( ∑
j

[∂β , xα1 · · · xα2m
]⊗ e

(i)
β ad(eα1) · · · ad(eα2m)(eα)(j)e(j)α

+xα1 · · · xα2m∂β ⊗ [eβ , ad(eα1) · · · ad(eα2m)(eα) · eα](i)
)

=
1
2

2m∑
l=1

∑
α1,...,α2m,α

( ∑
j

xα1 · · · x̌αl
· · · xα2m

⊗ e(i)αl
ad(eα1) · · · ad(eα2m)(eα)(j)e(j)α

+xα1 · · · xα2m∂β ⊗ ad(eα1) · · · ad([eβ , eαl
]) · · · ad(eα2m)(eα)(i)e(i)α

)
≡ 1

2

2m∑
l=1

∑
α1,...,α2m,α

∑
j

(
xα1 · · · x̌αl

· · · xα2m ⊗ e(i)αl
ad(eα1) · · · ad(eα2m)(eα)(j)e(j)α

−xα1 · · · x̌αl
· · · xα2m ⊗ ad(eα1) · · · ad(eα2m)(eα)(i)e(i)α e(j)αl

)
.

The term corresponding to j = i is

1
2

2m∑
l=1

∑
α1,...,α2m,α

xα1 · · · x̌αl
· · · xα2m

⊗ [eαl
, ad(eα1) · · · ad(eα2m

)(eα) · eα](i)



226 D. Calaque, B. Enriquez and P. Etingof

It corresponds to the linear map S2m−1(g) → U(g), such that for x ∈ g,

x2m−1 7→ 1
2

∑
p+q=2m−1

∑
α,β

[eβ , ad(x)pad(eβ)ad(x)q(eα) · eα]

=
1
2

∑
α,β

∑
p+q+r=2m−2

ad(x)pad([eβ , x])ad(x)qad(eβ)ad(x)r(eα) · eα

+ad(x)pad(eβ)ad(x)qad([eβ , x])ad(x)r(eα) · eα

since µ(tg) = 0 (µ : g⊗2 → g is the Lie bracket) and tg is g-invariant. Now
this is zero since tg =

∑
β eβ ⊗ eβ is invariant.

The term corresponding to j 6= i corresponds to the map S2m−1(g) →
U(g)⊗n, such that for x ∈ g

x2m−1 7→ −1
2

2m∑
l=1

∑
α,β

(
(adx)l−1(adeβ)(adx)2m−l(eα) · eα

)(i)
e
(j)
β − (i↔ j)

=
1
2

2m∑
l=1

(−1)l+1
∑
α,β

(
(adx)l−1([eβ , eα]) · (adx)2m−l(eα)

)(i)
e
(j)
β − (i↔ j)

=
1
2

2m∑
l=1

(−1)l−1
∑
α,β

(
(adx)l−1(eβ) · (adx)2m−l(eα)

)(i)[eα, eβ ](j) − (i↔ j)

=
1
2

2m∑
l=1

(−1)l
[∑
α

(
(adx)l−1(eα)

)(i)
e(j)α ,

∑
β

(
(adx)2m−l(eβ)

)(i)
e
(j)
β

]
,

which coincides with the image of 1
2

∑
p+q=2m−1(−1)q[(adx̄i)p(t̄ij), (adx̄i)q(t̄ij)].

It is then clear that ρg preserves the commutation relations of ∆0, X and
d with δ2m. ut

6.3 Reductions

Assume that g is �nite dimensional and we have a reductive decomposition
g = h ⊕ n, i.e., h ⊂ g is a Lie subalgebra and n ⊂ g is a vector subspace
such that [h, n] ⊂ n; assume also that tg = th + tn, where th ∈ S2(h)h and
tn ∈ S2(n)h.

We assume that for a generic h ∈ h, ad(h)|n ∈ End(n) is invertible.
This condition is equivalent to the nonvanishing of P (λ) := det(ad(λ∨)|n) ∈
Sdimn(h), where λ 7→ λ∨ is the map h∗ → h, with λ∨ := (λ⊗ id)(th). If G is a
Lie group with Lie algebra g, an equivalent condition is that a generic element
of g∗ is conjugate to some element in h∗ (see [EE05]).

Let us set, for λ ∈ h∗,

r(λ) := (id⊗ (adλ∨)−1
|n )(tn),
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Then r : h∗reg → ∧2(n) is an h-equivariant map (here h∗reg = {λ ∈ h∗|P (λ) 6=
0}), satisfying the classical dynamical Yang-Baxter (CDYB) equation

CYB(r)−Alt(dr) = 0

(see [EE05]). Here for r =
∑
α aα ⊗ bα ⊗ `α ∈ (n⊗2 ⊗ S(h)[1/P ])h, we set

CYB(r) =
∑
α,α′([aα, aα′ ] ⊗ bα ⊗ bα′ + aα ⊗ [bα, aα′ ] ⊗ bα′ + aα ⊗ aα′ ⊗

[bα,bα′ ])⊗ `α`α′ , dr :=
∑
α aα⊗ bα⊗ d`α, where d extends S(h) → h⊗S(h),

xk 7→ kx⊗ xk−1 and Alt(X⊗ `) = (X + X2,3,1 + X3,1,2)⊗ `.
We also set

ψ(λ) := (id⊗ (adλ∨)−2
|n )(tn).

We write ψ(λ) =
∑
αAα ⊗Bα ⊗ Lα.

Let D(h)[1/P ] be the localization at P of the algebra D(h) of di�erential
operators on h; the latter algebra is generated by x̄h, ∂̄h, h ∈ h, with relations
h 7→ x̄h, h 7→ ∂̄h linear, [x̄h, x̄h′ ] = [∂̄h, ∂̄h′ ] = 0, and [∂̄h, x̄h′ ] = 〈h, h′〉.

Set Bn := D(h)[1/P ]⊗U(g)⊗n. For h ∈ h, we de�ne X̄h :=
∑
ν x̄[h,hν ]∂̄hν ∈

D(h), where th =
∑
ν hν ⊗ hν . We then set Ȳh := X̄h +

∑n
i=1 h

(i). The map
h → Bn is a Lie algebra morphism; we denote by hdiag its image.

We denote byHn(g, h) the Hecke algebra of Bn relative to hdiag. Explicitly,
Hn(g, h) = {x ∈ Bn|∀h ∈ h, Ȳhx ∈ Bnhdiag}/Bnhdiag.

Proposition 41. There is a unique Lie algebra morphism

ρg,h : t̄1,n → Hn(g, h),

such that x̄i 7→
∑
ν x̄ν ⊗ h

(i)
ν , ȳi 7→ −

∑
ν ∂̄ν ⊗ h

(i)
ν +

∑
j

∑
α `α ⊗ a

(i)
α b

(j)
α ,

t̄ij 7→ t
(ij)
g . Here r(λ) =

∑
α `α(λ)(aα ⊗ bα).

If V1, ..., Vn are g-modules, then S(h)[1/P ] ⊗ (⊗iVi) is a module over
D(h)[1/P ]⊗ U(g)⊗n, and (S(h)[1/P ]⊗ (⊗iVi))h is a module over Hn(g, h).

Moreover, we have a restriction morphism (S(g)⊗(⊗iVi))g → (S(h)[1/P ]⊗
(⊗Vi))h. Note that (S(g)⊗(⊗iVi))g is a t̄1,n-module using the morphism t̄1,n →
Hn(g), while (S(h)[1/P ]⊗(⊗Vi))h is a t̄1,n-module using the morphism t̄1,n →
Hn(g, h). Then one checks that the restriction morphism (S(g)⊗ (⊗iVi))g →
(S(h)[1/P ]⊗ (⊗Vi))h is a t̄1,n-modules morphism.

Proof. The images of the above elements are all h-invariant. To lighten the
notation, we will imply summation over repeated indices and denote elements
of Bn as follows: ∂̄ν⊗1 by ∂̄ν , x̄ν⊗1 by 〈λ, hν〉, 1⊗x(i) by xi. Then ρg,h(x̄i) =
(λ∨)i, ρg,h(ȳi) = −hiν ∂̄ν+

∑n
j=1 r(λ)ij (here for x⊗y ∈ g⊗2, (x⊗y)ii := xiyi).

We will use the same presentation of t̄1,n as in Proposition 39. The relations
[x̄i, x̄j ] = 0 and t̄ij = t̄ji are obviously preserved.

Let us check that [x̄i, ȳj ] = t̄ij is preserved (i 6= j):
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[ρg,h(x̄i), ρg,h(ȳj)] = [x̄νhiν ,−hjν ∂̄ν +
∑
k

r(λ)jk] = tijh + [λi, r(λ)ji]

= tijh + tijn = tijg = ρg,h(t̄ij).

Let us check that
∑
i x̄i =

∑
i ȳi = 0 are preserved. We have

∑
i ρg,h(x̄i) =

0 by the same argument as above and
∑
i ρg,h(ȳi) =

∑
i(λ

∨)i (by the anti-
symmetry of r(λ)), which vanishes by the same argument as above.

Let us check that [ȳi, ȳj ] = 0 is preserved, for i 6= j. We have

[ρg,h(ȳi), ρg,h(ȳj)] =
∑

k|k 6=i,j

(
− hiν(∂νr(λ))jk + hjν(∂νr(λ))ik + [r(λ)ij , r(λ)jk]

+[r(λ)ik, r(λ)jk] + [r(λ)ik, r(λ)ji]
)

+ [(hiν + hjν)∂̄ν , r(λ)ij ]

−[hiν ∂̄ν , r(λ)jj ] + [hjν ∂̄ν , r(λ)ii] + [r(λ)ij , r(λ)ii + r(λ)jj ]

=
∑

k|k 6=i,j

hkν(∂νr(λ))ij + [(hiν + hjν)∂̄ν , r(λ)ij ]− [hiν ∂̄ν , r(λ)jj ]

+[hjν ∂̄ν , r(λ)ii] + [r(λ)ij , r(λ)ii + r(λ)jj ]
≡ (∂νr(λ))ij(−hiν − hjν − X̄ν) + [(hiν + hjν)∂̄ν , r(λ)ij ]
−hiν(∂νr(λ))jj + hjν(∂νr(λ))ii + [r(λ)ij , r(λ)ii + r(λ)jj ]

= [hiν + hjν , r(λ)ij ]∂̄ν − (∂νrij(λ))X̄ν + [hiν + hjν , ∂νr(λ)ij ]
−hiν(∂νr(λ))jj + hjν(∂νr(λ))ii + [r(λ)ij , r(λ)ii + r(λ)jj ].

The second equality follows from the CDYBE and the antisymmetry on r(λ).
Then

[hiν+h
j
ν , r(λ)ij ]∂̄ν−(∂νrij(λ))X̄ν =

(
[hiν′+h

j
ν′ , r(λ)ij ]−∂νrij(λ)〈λ, [hν , hν′ ]〉

)
∂̄ν′

is zero thanks to the h-invariance of r(λ). Applying xiyjzk 7→ xi(yz)i to the
CDYB identity

[r(λ)ij , r(λ)ik]+[r(λ)ij , r(λ)jk]+[r(λ)ik, r(λ)jk]−hiν∂νr(λ)jk+hjν∂νr(λ)ik−hjν∂νr(λ)ij = 0,

we get

(1/2)
∑
α,β

`α`
′
β(λ)[aα, aβ ]i[bα, bβ ]j+[r(λ)ij , r(λ)ii]−hiν(∂νr(λ))jj+[hjν , ∂νr(λ)ij ] = 0.

Since r(λ) is antisymmetric, the sum (1/2)
∑
α,β ... is symmetric in (i, j);

antisymmetrizing in (i, j), we get

[hiν +hjν , ∂νr(λ)ij ]−hiν(∂νr(λ))jj +hjν(∂νr(λ))ii+[r(λ)ij , r(λ)ii+ r(λ)jj ] = 0.

All this implies that [ρg,h(ȳi), ρg,h(ȳj)] = 0.
Let us check that [x̄i, t̄jk] = 0 is preserved (i, j, k distinct). We have

[ρg,h(x̄i), ρg,h(t̄jk)] = [(λ∨)i, tjkg ] = 0.
Let us prove that [ȳi, t̄jk] = 0 is preserved (i, j, k distinct). We have

[ρg,h(ȳi), ρg,h(t̄jk)] = [−hiν ∂̄ν +
∑
l r(λ)il, tjkg ] = [r(λ)ij + r(λ)ik, tjkg ] = 0 be-

cause tg is g-invariant. ut
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Proposition 42. If V1, ..., Vn are g-modules, then (S(h)[1/P ]⊗ (⊗iVi))h is a
t̄1,n o d-module. The t̄1,n-module structure is induced by the morphism t̄1,n →
Hn(g, h) of Proposition 41, so

ρ(Vi)(x̄i)(f(λ)⊗ (⊗ivi)) = (λ∨)i(f(λ)⊗ (⊗ivi)),

ρ(Vi)(ȳi)(f(λ)⊗ (⊗ivi)) = (−hiν∂ν +
∑
j

r(λ)ij)(f(λ)⊗ (⊗ivi)),

ρ(Vi)(t̄ij)(f(λ)⊗ (⊗ivi)) = tijg (f(λ)⊗ (⊗ivi)),

and the d-module structure is given by

ρ(Vi)(δ2m)(f(λ)⊗ (⊗ivi)) =
1
2
(
∑
i

{(adλ∨)2m(eα) · eα}i)(f(λ)⊗ (⊗ivi)),

ρ(Vi)(∆0)(f(λ)⊗ (⊗ivi)) =
(
− 1

2
∂2
ν +

1
2
〈µ(r(λ)), hν〉∂ν

+{1
2
ψ(λ)11 − 1

2
(adλ∨)−1

|n (µ(r(λ))n)}12...n
)
(f(λ)⊗ (⊗ivi)),

ρ(Vi)(d)(f(λ)⊗(⊗ivi)) =
1
2
(〈λ, hν〉∂ν+∂ν〈λ, hν〉+〈µ(r(λ)), λ∨〉)(f(λ)⊗(⊗ivi)),

ρ(Vi)(X)(f(λ)⊗ (⊗ivi)) = (1/2)〈λ∨, λ∨〉(f(λ)⊗ (⊗ivi)).

Here xn is the projection of x ∈ g on n along h.

To summarize, we have a diagram

t̄1,n → Hn(g, h) → End((S(h)[1/P]⊗ (⊗iVi))h)
⊂↘ (1)↑ ↗

t̄1,n o d

As before, the restriction morphism (S(g)⊗(⊗iVi))g → (S(h)[1/P ]⊗(⊗iVi))h

extends to a t̄1,n o d-modules morphism.
The action of t̄1,nod factors through a morphism ρ̃g,h : t̄1,nod → Hn(g, h)

extending ρg,h : t̄1,n → Hn(g, h) (denoted by (1) in the diagram).

Proof. Let λ ∈ h∗reg. Then if V is a g-module, we have (Ôg∗,λ⊗V )g = (Ôh∗,λ⊗
V )h (where ÔX,x is the completed local ring of a variety X at the point x).

We then have a morphism t̄1,nod → Hn(g) → End((Ôg∗,λ⊗(⊗iVi))g) for any
λ ∈ g∗, so when λ ∈ h∗reg we get a morphism t̄1,nod → End((Ôh∗,λ⊗(⊗iVi))h).

Let show that the images of the generators of t̄1,nod under this morphism
are given by the above formulas.

Since the actions of x̄i, t̄ij and X on (Ôg∗,λ⊗ (⊗iVi))g are given by multi-

plication by elements of (Ôg∗,λ⊗U(g)⊗n)g, their actions on (Ôh∗,λ⊗ (⊗iVi))h

are given by multiplication by restrictions of these elements to h∗.
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Let us compute the action of ȳi. Let f̃(λ) ∈ (Ôh∗,λ⊗ (⊗iVi))h and F̃ (λ) ∈
(Ôg∗,λ ⊗ (⊗iVi))g be its equivariant extension to a formal map g∗ → ⊗iVi.
Then for x ∈ n, we have (∂x∧ +

∑
i(adλ∨)−1(x)i)(F̃(λ))|h∗ = 0 (the map

x 7→ x∧ is the inverse of g∗ → g, λ 7→ λ∨). Then ρ(Vi)(ȳi)(f̃(λ)) =
(
− hiν∂ν +∑

j e
i
β

(
(adλ∨)−1(eβ)

)j
)
f̃(λ) = (−hi

ν∂ν +
∑

j r(λ)ij)(̃f(λ)).
Let us now compute the action of ∆0. Let λ0 ∈ h∗ be such that λ∨0 ∈ U and

λ ∈ g∗ be close to λ0. We set δλ := λ− λ0. We then have λ = eadx(λ0 + h∧),
where x ∈ n and h ∈ h are close to 0. We have the expansions

h = (δλ)∨h +
1
2
[(adλ∨0 )−1

|n ((δλ)∨n ), (δλ)∨n ]h,

x = −(adλ∨0 )−1
|n

(
(δλ)∨n +[(adλ∨0 )−1

|n ((δλ)∨n ), (δλ)∨h ]+
1
2
[(adλ∨0 )−1

|n ((δλ)∨n ), (δλ)∨n ]n
)

up to terms of order > 2; here the indices un and uh mean the projections of

u ∈ g to n and h. If now f̃(λ) : h∗ ⊃ V (λ0, h
∗) → ⊗iVi is an h-equivariant

function de�ned at the vicinity of λ0 and F̃ (λ) : g∗ ⊃ V (λ0, g
∗) → ⊗iVi

it its g-equivariant extension to a neighborhood of λ0 in g∗, then F̃ (λ) =
(ex)1...nf̃(λ0 + h), which implies the expansion

F̃ (λ) = f̃(λ0) +
(
(δλ)ν +

1
2
〈[(adλ∨0 )−1

|n (eβ), eβ′ ],hν〉(δλ)β(δλ)β′
)
∂ν f̃(λ0)

+
1
2
(δλ)ν(δλ)ν′∂2

νν′ f̃(λ0) +
(
− (adλ∨0 )−1

|n (eβ)(δλ)β

−(adλ∨0 )−1([(adλ∨0 )−1
|n (eβ),hν ])(δλ)ν(δλ)β

−1
2
(adλ∨0 )−1

|n ([(adλ∨0 )−1
|n (eβ), eβ′ ]n)(δλ)β(δλ)β′

+
1
2
(adλ∨0 )−1

|n (eβ)(adλ∨0 )−1
|n (eβ′)(δλ)β(δλ)β′

)1...n

f̃(λ0)

−(adλ∨0 )−1
|n (eβ)1...n(δλ)β(δλ)ν∂ν f̃(λ0)

up to terms of order > 2.
Then

(∂2
αF )(λ0) = (∂2

ν f̃)(λ0) + 〈[(adλ∨0 )−1
|n (eβ), eβ ],hν〉∂ν f̃(λ0)

+
(
− (adλ∨0 )−1

|n ([(adλ∨0 )−1
|n (eβ), eβ ]n) + ((adλ∨0 )−1

|n (eβ))2
)1...n

f̃(λ0),

which implies the formula for the action of ∆0.
Then (S(h)[1/P ] ⊗ (⊗iVi))h ⊂

∏
λ∈h∗reg

(Ôh∗,λ ⊗ (⊗iVi))h is preserved by

the action of the generators of t̄1,n o d-module, hence it is a sub-(̄t1,n o d)-
module, with action given by the above formulas. ut
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6.4 Realization of the universal KZB system

The realization of the �at connection d−
∑

i K̄i(z|τ)dzi − ∆̄(z|τ)dτ on (H×
Cn) − Diagn is a �at connection on the trivial bundle with �ber (Oh∗reg ⊗
(⊗iVi))h.

We now compute this realization, under the assumption that h ⊂ g is a
maximal abelian subalgebra. In this case, two simpli�cations occur:

(a) (adλ∨)(hν) = 0 since h is abelian,
(b) [(adλ∨)−1

|n (eβ), eβ ]n = 0 since [(adλ∨)−1
|n (eβ), eβ ] commutes with any

element in h, so that it belongs to h.
The image of K̄i(z|τ) is then the operator

K
(Vi)
i (z|τ) = hiν∂ν −

∑
j

r(λ)ij +
∑
j|j 6=i

k(zij , (adλ∨)i|τ)(tijn + tijh)

= hiν∂ν − r(λ)ii +
∑
j|j 6=i

θ(zij + (adλ∨)i|τ)
θ(zij |τ)θ((adλ∨)i|τ)

(tijn ) +
∑
j|j 6=i

θ′

θ
(zij |τ)tijh

The image of 2πi∆̄(z|τ) is the operator

2πi∆(Vi)(z|τ) =
1
2
∂2
ν +

1
2
〈[(adλ∨)−1(eβ), eβ ],hν〉∂ν − g(0, 0|τ)

∑
i

1
2
tiig

+
∑
i,j

1
2
(
[g(zij , adλ∨|τ)− (adλ∨)−2](eβ)

)iej
β +

∑
i,j

1
2
g(zij, 0|τ)hi

νh
j
ν

and the connection is now

∇(Vi) = d−
∑

i

K(Vi)
i (z|τ)dzi −∆(Vi)(z|τ)dτ.

Recall that P (λ) = det((adλ∨)|n). We compute the conjugation P 1/2∇(Vi)P−1/2,

where P±1/2 is the operator of multiplication by (inverse branches of) P±1/2

on Oh∗reg ⊗ (⊗iVi)h.

Lemma 43. ∂ν logP(λ) = −〈hν , µ(r(λ))〉, P 1/2[hiν∂ν − r(λ)ii]P−1/2 = hiν∂ν ,
P 1/2[∂2

ν+〈[(adλ∨)−1
|n (eβ), eβ ],hν〉∂ν ]P−1/2 = ∂2

ν+∂ν
(
〈hν , 1

2µ(r(λ))〉
)
−〈hν , 1

2µ(r(λ))〉2.

Proof. ∂ν logP(λ) = (d/dt)|t=0det[(ad(λ∨ + thν)|n)(adλ∨)−1
|n ] = tr[(adhν)|n ◦

(adλ∨)−1
|n ] = 〈eβ , (adhν)◦(adλ∨)−1

|n (eβ)〉 = 〈[(adλ∨)−1
|n (eβ), eβ ],hν〉 = −〈hν , µ(r(λ))〉.

The next equality follows from µ(r(λ))i = 2r(λ)ii. The last equality is a direct
consequence. ut

We then get:
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Proposition 44. P 1/2∇(Vi)P−1/2 = d−
∑

i K̃i(z|τ)dzi − ∆̃(z|τ)dτ , where

K̃i(z|τ) = hiν∂ν +
∑
j|j 6=i

θ(zij + (adλ∨)i|τ)
θ(zij |τ)θ((adλ∨)i|τ)

(tijn ) +
∑
j|j 6=i

θ′

θ
(zij |τ)tijh

2πi∆̃(z|τ) =
1
2
∂2
ν + ∂ν

(
〈hν ,

1
2
µ(r(λ))〉

)
− 〈hν ,

1
2
µ(r(λ))〉2 − g(0, 0|τ)

∑
i

1
2
tiig

+
∑
i,j

1
2

((
g(zij , adλ∨|τ)− (adλ∨)−2

)
(eβ)

)i

ej
β +

∑
i,j

1
2
g(zij, 0|τ)hi

νh
j
ν ,

where

g(z, 0|τ) =
1
2
θ′′

θ
(z|τ)− 2πi

∂τη

η
(τ)

and

g(z, α|τ)− α−2 =
1
2
θ(z + α|τ)
θ(x|τ)θ(α|τ)

(
θ′

θ
(z + α|τ)− θ′

θ
(α|τ))

The term in
∑
i(1/2)tiig is central and can be absorbed by a suitable further

conjugation. Rescaling tg into κ−1tg, where κ ∈ C×, K̃i(z|τ) and ∆̃(z|τ) get
multiplied by κ. Moreover, we have:

Lemma 45. When g is simple and h ⊂ g is the Cartan subalgebra,

∂ν{〈hν ,
1
2
µ(r(λ))〉} = 〈hν ,

1
2
µ(r(λ))〉2.

Proof. Let D(λ) :=
∏
α∈∆+(α, λ), where ∆+ is the set of positive roots of g.

Then D(λ) isW -antiinvariant, whereW is the Weyl group. Therefore ∂2
νD(λ)

is also W -antiinvariant, so it is divisible (as a polynomial on h∗) by all the
(α, λ), where α ∈ ∆+, so it is divisible by D(λ); since ∂2

νD(λ) has degree
strictly lower than D(λ), we get ∂2

νD(λ) = 0.
Now if (eα, fα, hα) is a basis of the sl2-triple associated with α, we have

r(λ) =
∑
α∈∆+ −(eα⊗fα−fα⊗eα)/(α, λ), so 1

2µ(r(λ)) = −
∑
α∈∆+ hα/(α, λ).

Therefore 1
2µ(r(λ)) = −∂ν logD(λ)hν . Then ∂2

νD(λ) = 0 implies that ∂2
ν logD+

(∂ν logD)2 = 0, which implies the lemma. ut

The resulting �at connection then coincides with that of [Ber98a, FW96].

7 The universal KZB connection and representations of
Cherednik algebras

7.1 The rational Cherednik algebra of type An−1

Let k be a complex number, and n ≥ 1 an integer. The rational Chered-
nik algebra Hn(k) of type An−1 is the quotient of the algebra C[Sn] n
C[x1, ..., xn, y1, ..., yn] by the relations
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i

xi = 0,
∑
i

yi = 0, [xi, xj ] = 0 = [yi, yj ],

[xi, yj ] =
1
n
− ksij , i 6= j,

where sij ∈ Sn is the permutation of i and j (see e.g. [EG02]). 8

Let e := 1
n!

∑
σ∈Sn

σ ∈ C[Sn] be the Young symmetrizer. The spherical
subalgebra Bn(k) (often called the spherical Cherednik algebra) is de�ned to
be the algebra eHn(k)e.

We de�ne an important element

h :=
1
2

∑
i

(xiyi + yixi).

We recall that category O is the category of Hn(k)-modules which are locally
nilpotent under the action of the operators yi and decompose into a direct
sum of �nite dimensional generalized eigenspaces of h. Similarly, one de�nes
category O over Bn(k) to be the category of Bn(k)-modules which are locally
nilpotent under the action of C[y1, ..., yn]Sn and decompose into a direct sum
of �nite dimensional generalized eigenspaces of h.

7.2 The homorphism from t̄1,n to the rational Cherednik algebra

Proposition 46. For each k, a, b ∈ C, we have a homomorphism of Lie alge-
bras ξa,b : t̄1,n → Hn(k), de�ned by the formula

x̄i 7→ axi, ȳi 7→ byi, t̄ij 7→ ab

(
1
n
− ksij

)
.

Proof. Straightforward. ut

Remark 47. Obviously, a, b can be rescaled independently, by rescaling the
generators x̄i and ȳi of the source algebra t̄1,n. On the other hand, if we are
only allowed to apply automorphisms of the target algebra Hn(k), then a, b
can only be rescaled in such a way that the product ab is preserved.

This shows that any representation V of the rational Cherednik algebra
Hn(k) yields a family of realizations for t̄1,n parametrized by a, b ∈ C, and
gives rise to a family of �at connections ∇a,b over the con�guration space
C̄(Eτ , n).

8The generators xα, ∂α of Section 6.1 will be henceforth renamed qα, pα.



234 D. Calaque, B. Enriquez and P. Etingof

7.3 Monodromy representations of double a�ne Hecke algebras

Let Hn(q, t) be Cherednik's double a�ne Hecke algebra of type An−1. By
de�nition, Hn(q, t) is the quotient of the group algebra of the orbifold funda-
mental group B1,n of C̄(Eτ , n)/Sn by the additional relations

(T − q−1t)(T + q−1t−1) = 0,

where T is any element of B1,n homotopic (as a free loop) to a small loop
around the divisor of diagonals in the counterclockwise direction.

Let V be a representation of Hn(k), and let ∇a,b(V ) be the universal
connection∇a,b evaluated in V . In some cases, for example if a, b are formal, or
if V is �nite dimensional, we can consider the monodromy of this connection,
which obviously gives a representation of Hn(q, t) on V , with

q = e−2πiab/n, t = e−2πikab.

In particular, taking a = b, V = Hn(k), this monodromy representation de-
�nes an homomorphism θa : Hn(q, t) → Hn(k)[[a]], where

q = e−2πia2/n, t = e−2πika2
.

It is easy to check that this homomorphism becomes an isomorphism upon
inverting a. The existence of such an isomorphism was pointed out by Chered-
nik (see [Che03], end of Section 6, and the end of [Che97]), but his proof is
di�erent.

Example 48. Let k = r/n, where r is an integer relatively prime to n. In
this case, it is known (see e.g. [BEG03a]) that the algebra Hn(k) admits
an irreducible �nite dimensional representation Y (r, n) of dimension rn−1. By
virtue of the above construction, the space Y (r, n) carries an action of Hn(q, t)
with any nonzero q, t such that qr = t. This �nite dimensional representation
of Hn(q, t) is irreducible for generic q, and is called a perfect representation;
it was �rst constructed in [Eti94], p. 500, and later in [Che03], Theorem 6.5,
in a greater generality.

7.4 The modular extension of ξa,b.

Assume that a, b 6= 0.

Proposition 49. The homomorphism ξa,b can be extended to the algebra
U (̄t1,n o d) o Sn by the formulas

ξa,b(sij) = sij ,

ξa,b(d) = h =
1
2

∑
i

(xiyi + yixi), ξa,b(X) = −1
2
ab−1

∑
i

x2
i ,

ξa,b(∆0) =
1
2
ba−1

∑
i

y2
i , ξa,b(δ2m) = −1

2
a2m−1b−1

∑
i<j

(xi − xj)2m.
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Proof. Direct computation. ut

Thus, the �at connections ∇a,b extend to �at connections on M1,[n].
This shows that the monodromy representation of the connection ∇a,b(V ),

when it can be de�ned, is a representation of the double a�ne Hecke algebra

Hn(q, t) with a compatible action of the extended modular group S̃L2(Z). In

particular, this is the case if V = Y (r, n). Such representations of S̃L2(Z) were

considered by Cherednik, [Che03]. The element T of S̃L2(Z) acts in this rep-
resentation by �the Gaussian�, and the element S by the �Fourier-Cherednik

transform�. They are generalizations of the S̃L2(Z)-action on Verlinde alge-
bras.

8 Explicit realizations of certain highest weight
representations of the rational Cherednik algebra of type
An−1

8.1 The representation VN .

Let N be a divisor of n, and g = slN (C), G = SLN (C). Let VN = (C[g] ⊗
(CN )⊗n)g (the divisor condition is needed for this space to be nonzero). It
turns out that VN has a natural structure of a representation of Hn(k) for
k = N/n.

Proposition 50. We have a homomorphism ζN : Hn(N/n) → End(VN ), de-
�ned by the formulas

ζN (sij) = sij , ζN (xi) = Xi, ζN (yi) = Yi, (i = 1, ..., n)

where for f ∈ VN , A ∈ g we have

(Xif)(A) = Aif(A),

(Yif)(A) =
N

n

∑
p

(bp)i
∂f

∂bp
(A),

where {bp} is an orthonormal basis of g with respect to the trace form.

Proof. Straightforward veri�cation. ut

The relationship of the representation VN to other results in this paper is
described by the following proposition.

Proposition 51. The connection ∇a,1(VN ) corresponding to the representa-
tion VN is the usual KZB connection for the n-point correlation functions on
the elliptic curve for the Lie algebra slN and n copies of the vector represen-
tation CN , at level K = − n

aN −N .
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Proof. We have a sequence of maps

U (̄t1,n o d) o Sn → Hn(N/n) → Hn(g) o Sn → End(VN ),

where the �rst map is ξa,b, the second map sends sij to sij , xi to the class of∑
α qα⊗eiα, and yi to the class of

∑
α pα⊗eiα (recall that the xa, ∂a of Section

6.1 have been renamed qa, pa), and the last map is explained in Section 6.1.
The composition of the two �rst maps is then that of Proposition 40, and
the composition of the two last maps is the map ζN of Proposition 50. This
implies the statement. ut

Remark 52. Suppose that K is a nonnegative integer, i.e. a = − n
N(K+N) ,

where K ∈ Z+. Then the connection ∇a,1 on the in�nite dimensional vector
bundle with �ber VN preserves a �nite dimensional subbundle of conformal
blocks for the WZW model at level K. Th subbundle gives rise to a �nite
dimensional monodromy representation V KN of the Cherednik algebra Hn(q, t)
with

q = e
2πi

N(K+N) , t = qN ,

(so both parameters are roots of unity). The dimension of V KN is given by the

Verlinde formula, and it carries a compatible action of S̃L2(Z) to the action of
the Cherednik algebra. Representations of this type were studied by Cherednik
in [Che03].

8.2 The spherical part of VN .

Note that

((
n∑
i=1

Xp
i )f)(A) =

n

N
(trAp)f(A), (43)

((
n∑
i=1

Y pi )f)(A) =
(
N

n

)p−1

(tr ∂pA)f(A) (44)

Consider the space UN = eVN = (C[g] ⊗ SnCN )g as a module over the
spherical subalgebra Bn(k). It is known (see e.g. [BEG03b]) that the spherical
subalgebra is generated by the elements (

∑
xpi )e and (

∑
ypi )e. Thus formulas

(43,44) determine the action of Bn(k) on UN .
We note that by restriction to the set h of diagonal matrices diag(λ1, ..., λN ),

and dividing by ∆n/N , where ∆ =
∏
i<j(λi − λj), one identi�es UN with

C[h]SN . Moreover, it follows from [EG02] that formulas (43,44) can be viewed
as de�ning an action of another spherical Cherednik algebra, namely BN (1/k),
on C[h]SN . Moreover, this representation is the symmetric partW of the stan-
dard polynomial representation of HN (1/k), which is faithful and irreducible
since 1/k = n/N is an integer ([GGOR03]). In other words, we have the
following proposition.



Universal KZB equations 237

Proposition 53. There exists a surjective homomorphism φ : Bn(N/n) →
BN (n/N), such that φ∗W = UN . In particular, UN is an irreducible repre-
sentation of Bn(N/n).

Proposition 53 can be generalized as follows. Let 0 ≤ p ≤ n/N be an
integer. Consider the partition µ(p) = (n− p(N − 1), p, ..., p) of n. The repre-
sentation of g attached to µ(p) is Sn−pNCN .

Let e(p) be a primitive idempotent of the representation of Sn attached to
µ(p). Let UpN = e(p)VN = (C[g]⊗Sn−pNCN )g. Then the algebra e(p)Hn(N/n)e(p)
acts on UpN , and the above situation of UN is the special case p = 0.

Proposition 54. There exists a surjective momorphism φp : e(p)Hn(N/n)e(p) →
BN (n/N − p), such that φ∗pW = UpN . In particular, UpN is an irreducible rep-
resentation of Bn(N/n− p).

Proof. Similar to the proof of Proposition 53. ut

Example 55. p = 1, n = N . In this case e(p) = e− = 1
n!

∑
σ∈Sn

ε(σ)σ, the
antisymmetrizer, and the map φp is the shift isomorphism e−HN (1)e− →
eHN (0)e.

8.3 Coincidence of the two sl2 actions

As before, let {bp} be an orthonormal basis of g (under some invariant inner
product). Consider the sl2-triple

H =
∑

bp
∂

∂bp
+

dim g

2
(45)

(the shifted Euler �eld),

F =
1
2

∑
p

b2p, E =
1
2
∆g, (46)

where ∆g is the Laplace operator on g. Recall also (see e.g. [BEG03b]) that
the rational Cherednik algebra contains the sl2-triple h = 1

2

∑
i(xiyi + yixi),

e = 1
2

∑
i y

2
i , f = 1

2

∑
i x

2
i .

The following proposition shows that the actions of these two sl2 algebras
on VN essentially coincide.

Proposition 56. On VN , one has

h = H, e =
N

n
E, f =

n

N
F.

Proof. The last two equations follow from formulas (43,44), and the �rst one
follows from the last two by taking commutators. ut
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8.4 The irreducibility of VN .

Let ∆(n,N) be the representation of the symmetric group Sn corresponding
to the rectangular Young diagram with N rows (and correspondingly n/N
columns), i.e. to the partition ( nN , ...,

n
N ); e.g., ∆(n, 1) is the trivial represen-

tation.
For a representation π of Sn, let L(π) denote the irreducible lowest weight

representation of Hn(k) with lowest weight π.

Theorem 57. The representation VN is isomorphic to L(∆(n,N)).

Proof. The representation VN is graded by the degree of polynomials, and in
degree zero we have VN [0] = ((CN )⊗n)g = ∆(n,N) by the Weyl duality.

Let us show that the module VN is semisimple. It is su�cient to show that
VN is a unitary representation, i.e. admits a positive de�nite contravariant
Hermitian form. Such a form can be de�ned by the formula

(f, g) = 〈f(∂A), g(A)〉|A=0,

where 〈−,−〉 is the Hermitian form on (CN )⊗n obtained by tensoring the
standard forms on the factors. This form is obviously positive de�nite, and
satis�es the contravariance properties:

(Yif, g) =
N

n
(f,Xig), (f, Yig) =

N

n
(Xif, g).

The existence of the form (−,−) implies the semisimplicity of VN . In partic-
ular, we have a natural inclusion L(∆(n,N)) ⊂ VN .

Next, formula (43) implies that VN is a torsion-free module over R :=
C[x1, ..., xN ]SN = C[

∑N
i=1 xpi , 2 ≤ p ≤ N ]. Since VN is semisimple, this implies

that VN/L(∆(n,N)) is torsion-free as well.
On the other hand, we will now show that the quotient VN/L(∆(n,N)) is

a torsion module over R. This will imply that the quotient is zero, as desired.
Let v1, ..., vN be the standard basis of CN , and for each sequence J =

(j1, ..., jn), ji ∈ {1, ..., N}, let vJ := vj1 ⊗ ... ⊗ vjn . Let us say that a se-
quence J is balanced if it contains each of its members exactly n/N times.
Let B be the set of balanced sequences. The set B has commuting left and
right actions SN and Sn, σ ∗ (j1, ..., jn) ∗ τ = (σ(jτ(1)), ..., σ(jτ(n))). Let
J0 = (1...1, 2...2, ..., N...N), then any J ∈ B has the form J = J0 ∗ τ for
some τ ∈ Sn.

Let f ∈ VN . Then f is a function h → ((CN )⊗n)h, equivariant under the ac-
tion of SN (here h ⊂ g is the Cartan subalgebra, so h = {(λ1, ..., λN )|

∑
i λi =

0}), so
f(λ) =

∑
J∈B

fJ(λ)vJ , (47)

where λ = (λ1, ..., λN ), and fJ are scalar functions (the summation is
over B since f(λ) must have zero weight). By the SN -invariance, we have
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fσ∗J(σ(λ)) = fJ(λ). We then decompose f(λ) =
∑
o∈SN\B fo(λ), where

fo(λ) =
∑
J∈o fJ(λ)vJ .

For each o ∈ SN \ B, we construct a nonzero φo ∈ C[x1, ...., xn] such that
φo · fo(λ) ∈ L(∆(n,N)). Then φ :=

∏
o∈SN\B

∏
σ∈SN

σ(φo) ∈ R is nonzero

and such that φ · f(λ) ∈ L(∆(n,N)).
We �rst construct φo when o = o0, the class of J0. By SN -invariance,

fo0(λ) has the form

fo0(λ) =
∑
σ∈SN

g(λσ(1), ..., λσ(N))v
⊗n/N
σ(1) ⊗ ...⊗ v

⊗n/N
σ(N)

where g(λ, ..., λN ) ∈ C[λ1, ..., λN ]. For φo0 ∈ C[x1, ..., xN ], we have

φo0 · fo0(λ) =
∑
σ∈SN

(φo0g)(λσ(1), ..., λσ(N))v
⊗n/N
σ(1) ⊗ ...⊗ v

⊗n/N
σ(N) . (48)

On the other hand, let v ∈ ∆(n,N); expand v =
∑
J∈B cJvJ . One checks that

v can be chosen such that cJ0 6= 0 (one starts with a nonzero vector v′ and
J ′ ∈ B such that the coordinate of v′ along J ′ is nonzero, and then acts on
v′ by an element of Sn bringing J ′ to J0). Then since v is g-invariant (and
therefore SN -invariant), we have

cσ(1)...σ(1)...σ(N)...σ(N) = cJ0 (49)

for any σ ∈ SN .
If Q ∈ C[x1, ..., xn], then

(Q ·v)(λ) =
∑

(j1,...,jn)∈B

cj1...jnQ(λj1 , ..., λjn)vj1⊗ ...⊗vjn ∈ L(∆(n,N)). (50)

Set Q0(λ1, ..., λn) :=
∏

1≤a<b≤n,j0a 6=j0b
(λa − λb), where (j01 , ..., j

0
n) = J0,

q0(λ1, ..., λN ) := Q0(λ1...λ1, ..., λN ...λN ), so q0(λ1, ..., λN ) =
( ∏

1≤i<j≤N (λi−

λj)
)(n/N)2

.
Set φo0(λ1, ..., λN ) := q0(λ1, ...., λN ) and

Q(λ1, ..., λn) := Q0(λ1, ..., λn)q(λ1, λ(n/N)+1, ..., λ(N−1) n
N +1).

Then (48) and (50) coincide, as: (a) for J /∈ o0, Q0(λj1 , ..., λjn) = 0 so the
coe�cient of vJ in both expressions is zero, (b) the coe�cients of vJ0 in both
expressions coincide, (c) for J ∈ o0, the coe�cients of vJ coincide because
of (b) and of (49). The functions φo are constructed in the same way for a
general o ∈ SN \B. This ends the proof of the theorem. ut

Remark 58. Theorem 57 is a special case of a much more general (but much
less elementary) Theorem 68, which is proved below.
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8.5 The character formula for VN .

For each partition µ of n, let V (µ) be the representation of g, and π(µ) the
representation of Sn corresponding to µ.

Let Pµ(q) be the q-analogue of the weight multiplicity of the zero weight
in V (µ). Namely, we have a �ltration F • on V (µ)[0] such that F i is the space
of vectors in V (µ)[0] killed by the i + 1-th power of the principal nilpotent
element

∑
ei of g. Then Pµ(q) =

∑
j≥0 dim(F j/F j−1)qj . The coe�cients of

Pµ(q) are called the generalized exponents of V (µ) (see [Kos63, Hes80, Lus81]
for more details).

We have VN = ⊕µπ(µ)⊗ (C[g]⊗ V (µ))g. This together with Theorem 57
implies the following.

Corollary 59. The character of L(∆(n,N)) is given by the formula

Tr|L(∆(n,N))(w · qh) = q(N
2−1)/2

∑
µ χπ(µ)(w)Pµ(q)

(1− q2)...(1− qN )
,

where w ∈ Sn, and χπ(µ) is the character of π(µ). Here the summation is over
partitions µ of n with at most N parts.

Proof. The formula follows, using Proposition 56, from Kostant's result [Kos63]
that (C[g]⊗ V (µ))g is a free module over C[g]g, and the fact that the Hilbert
polynomial of the space of generators for this module is the q-weight multi-
plicity of the zero weight, Pµ(q) [Kos63, Lus81, Hes80]. ut

Remark 60. It would be interesting to compare this formula with the char-
acter formula of [Rou05] for the same module.

9 Equivariant D-modules and representations of the
rational Cherednik algebra

9.1 The category of equivariant D-modules on the nilpotent cone

The theory of equivariant D-modules on the nilpotent cone arose from Harish-
Chandra's work on invariant distributions on nilpotent orbits of real groups,
and was developed further in many papers, see e.g. [HK84, LS97, Lev98,
Mir04] and references therein. Let us recall some of the basics of this theory.

Let G be a simply connected simple algebraic group over C, and g its
Lie algebra. Let N ⊂ g be the nilpotent cone of g. We denote by D(g) the
category of �nitely generated D-modules on g, by DG(g) the subcategory of
G-equivariant D-modules, and by DG(N ) the category of G-equivariant D-
modules which are set-theoretically supported on N (here we do not make a
distinction between a D-module on an a�ne space and the space of its global
sections). Since G acts on N with �nitely many orbits, it is well known that
any object in DG(N ) is regular and holonomic.
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Moreover, the category DG(N ) has �nitely many simple objects, and every
object of this category has �nite length (so this category is equivalent to the
category of modules over a �nite dimensional algebra).

9.2 Simple objects in DG(N )

Recall (see e.g. [Mir04] and references) that irreducible objects in the category
DG(N ) are parametrized by pairs (O,χ), where O is a nilpotent orbit ofG in g,
and χ is an irreducible representation of the fundamental group π1(O), which
is clearly isomorphic to the component group A(O) of the centralizer Gx of a
point x ∈ O. Namely, χ de�nes a local system Lχ on O, and the simple object
M(O,χ) ∈ DG(N ) is the direct image of the Goresky-Macpherson extension
of Lχ to the closure Ō of O, under the inclusion of Ō into g.

9.3 Semisimplicity of DG(N ).

The proof of the following theorem was explained to us by G. Lusztig.

Theorem 61. The category DG(N ) is semisimple.

Proof. We may replace the category DG(N ) by the category of G-equivariant
perverse sheaves (of complex vector spaces) on g supported on N , PervG(N ),
as these two categories are known to be equivalent. We must show that
Ext1(P,Q) = 0 for every two simple objects P,Q ∈ PervG(N ).

Let P ′, Q′ be the Fourier transforms of P,Q. Then P ′, Q′ are character
sheaves on g, and it su�ces to show that Ext1(P ′, Q′) = 0.

Recall that to each character sheaf S one can naturally attach a conjugacy
class of pairs (L, θ), where L is a Levi subgroup of G, and θ is a cuspidal local
system on a nilpotent orbit for L. It is shown by arguments parallel to those
in [Lus85] (which treats the more di�cult case of character sheaves on the
group) that if (Li, θi) corresponds to Si, i = 1, 2, and (L1, θ1) is not conjugate
to (L2, θ2) then Ext∗(S1, S2) = 0. Thus it is su�cient to assume that the pair
(L, θ) attached to P ′ and Q′ is the same.

Using standard properties of constructible sheaves (in particular, Poincaré
duality), we have

Ext1(P ′, Q′) = H1(g,Hom(P ′, Q′)) =

H2 dim g−1
c (g,Hom(P ′, Q′)∗)∗ = H2 dim g−1

c (g, (Q′)∗ ⊗ P ′)∗,

where ∗ for sheaves denotes the Verdier duality functor.
Recall that to each character sheaf one can attach an irreducible represen-

tation of a certain Weyl group, via the generalized Springer correspondence.
Let R be the direct sum of all character sheaves corresponding to a given
pair (L, θ) with multiplicities given by the dimensions of the corresponding
representations. Then it is su�cient to show thatH2 dim g−1

c (g, (R′)∗⊗R′) = 0.
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This fact is essentially proved in [Lus88]. Namely, it follows from the com-
putations of [Lus88] that Hi

c(g, (R
′)∗ ⊗ R′) is the cohomology with compact

support of a certain generalized Steinberg variety with twisted coe�cients,
and it is shown that this cohomology is concentrated in even degrees.9 The
theorem is proved. ut

9.4 Monodromicity

We will need the following lemma.

Lemma 62. Let Q ∈ DG(N ). Then for any �nite dimensional representation
U of g, the action of the shifted Euler operator H de�ned by (45) on (Q⊗U)g

is locally �nite (so Q is a monodromic D-module), and has �nite dimen-
sional generalized eigenspaces. Moreover, the eigenvalues of H on (Q ⊗ U)g

are bounded from above. In particular, (Q⊗U)g belongs to category O for the
sl2-algebra spanned by H and the elements E,F given by (46).

Proof. Since Q has �nite length, it is su�cient to assume that Q is irreducible.
We may further assume that Q is generated by an irreducible G-submodule
V , annihilated by multiplication by any invariant polynomial on g of positive
degree. Indeed, let V0 be an irreductible G-submodule of Q, let JV0 := {f ∈
C[g]g|fV0 = 0} and for any v ∈ V0, let Jv := {f ∈ C[g]g|fv = 0}. Then if
v ∈ V0 is nonzero, Jv = JV0 as Gv = V0. Moreover, the support condition
implies that Jv ⊂ mk for some k ≥ 0, where m = C[g]g+. So JV0 ⊂ mk and is
an ideal of C[g]g. Let f ∈ C[g]g be such that f /∈ JV0 and fm ⊂ JV0 ; we set
V := fV0.

Then Q is a quotient of the D-module Q̃ ⊗ V by a G-stable submodule,
where

Q̃ := D(g)/(D(g)ad(Ann(V )) +D(g)I),

Ann(V ) is the annihilator of V in U(g), and I is the ideal in C[g] generated
by invariant polynomials on g of positive degree. Thus, it su�ces to show that
the lemma holds for the module Q̃ (which is only weakly G-equivariant, i.e.
the group action and the Lie algebra action coming from di�erential operators
do not agree, in general).

The algebra D(g) has a grading in which deg(g∗) = −1, deg(g) = 1. This
grading descends to a grading on Q̃. We will show that for each U , this grading
on (Q̃ ⊗ U)g has �nite dimensional pieces, and is bounded from above. This
implies the lemma, since the Euler operator preserves the grading.

Consider the associated graded module Q̃0 of Q̃ under the Bernstein �l-
tration. This is a bigraded module over C[g⊕ g] (where we identify g and g∗

9More precisely, in the arguments of [Lus88] the vanishing of odd cohomology
is proved for G-equivariant cohomology with compact supports, and in the non-
equivariant case one should use parallel arguments, rather than exactly the same
arguments.
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using the trace form). We have to show that the homogeneous subspaces of
(Q̃0 ⊗ U)g under the grading de�ned by deg(g⊕ 0) = −1, deg(0⊕ g) = 1 are
�nite dimensional.

The associated graded of the ideal Ann(V ) ⊂ U(g) is such that C[g]k+ ⊂
grAnn(V ) ⊂ C[g]+ for some k ≥ 1, therefore

Q̃0 = C[g⊕ g]/J,

where J is a (not necessarily radical) ideal whose zero set is the variety Z of
pairs (u, v) ∈ N × g such that [u, v] = 0. Let

Q′0 = C[g⊕ g]/
√
J.

Because of the Hilbert basis theorem, it su�ces to prove that the homogeneous
subspaces of (Q′0⊗U)g are �nite dimensional, and the degree is bounded above.
But Q′0 is the algebra of regular functions on Z. By the result of [Jos97], one
has C[Z]g = C[g]g, the algebra of invariant polynomials of Y . But it follows
from the Hilbert's theorem on invariants that every isotypic component of
C[Z] is a �nitely generated module over C[Z]g. This implies the result. ut

9.5 Characters

Lemma 62 allows one to de�ne the character of an object M ∈ DG(N ).
Namely, let µ = (µ1, ..., µN ) be a dominant integral weight for g, and V (µ)
the irreducible representation of g with highest weight µ. Let KM (µ) = (M ⊗
V (µ))g. Then the character of M is de�ned by the formula

ChM (t, g) = Tr|M (gt−H) =
∑
µ

Tr|KM (µ)(t−H)χµ(g), g ∈ G,

where χµ denotes the character of µ. It can be viewed as a linear functional
from C[G]G to F := ⊕β∈Ct

βC[[t]], via the integration pairing.
In other words, the multiplicity spaces KM (µ) are representations from

category O of the Lie algebra sl2 spanned by E,F,H, and the character of M
carries the information about the characters of these representations.

The problem of computing characters of simple objects in DG(N ) is inter-
esting and, to our knowledge, open. Below we will show how these characters
for G = SLN (C) can be expressed via characters of irreducible representations
of the rational Cherednik algebra.

Example 63. Recall (see e.g. [Mir04]) that an object M ∈ DG(N ) is cuspidal
i� F(M) ∈ DG(N ), where F is the Fourier transform (Lusztig's criterion).
If follows that in the case of cuspidal objects M , the spaces KM (µ) are also
in the category O for the opposite Borel subalgebra of sl2, hence are �nite
dimensional representations of sl2, and, in particular, their dimensions are of
interest.
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9.6 The functors Fn, F ∗
n

The representation VN is a special case of representations of the rational
Cherednik algebra which can be constructed via a functor similar to the one
de�ned in [GG04]. Namely, the construction of VN can be generalized as fol-
lows.

Let n andN be positive integers (we no longer assume thatN is a divisor of
n), and k = N/n. We again consider the special caseG = SLN (C), g = slN (C).
Then we have a functor Fn : D(g) → Hn(k)-mod de�ned by the formula

Fn(M) = (M ⊗ (CN )⊗n)g,

where g acts on M by adjoint vector �elds. The action of Hn(k) on Fn(M) is
de�ned by the same formulas as in Proposition 50, and Proposition 56 remains
valid.

Note that Fn(M) = Fn(Mfin), where Mfin is the set of g-�nite vectors in
M . ClearlyMfin is a G-equivariant D-module. Thus, it is su�cient to consider
the restriction of Fn to the subcategory DG(g), which we will do from now
on.

In general, Fn(M) does not belong to category O. However, we have the
following lemma.

Lemma 64. If the Fourier transform F(M) of M is set-theoretically sup-
ported on the nilpotent cone N of g, then Fn(M) belongs to the category O.

Proof. Since F(M) is supported on N , invariant polynomials on g act locally
nilpotently on F(M). Hence invariant di�erential operators on g with constant
coe�cients act locally nilpotently on M . Thus, it follows from formula (44)
that the algebra C[y1, ..., yn]Sn acts locally nilpotently on Fn(M). Also, by
Lemma 62, the operator h acts with �nite dimensional generalized eigenspaces
on Fn(M). This implies the statement. ut

Thus we obtain an exact functor F ∗n = Fn ◦ F : DG(N ) → O(Hn(k)).

9.7 The symmetric part of Fn

Consider the symmetric part eFn(M) of Fn(M). We have eFn(M) = (M ⊗
SnCN )g, and we have an action of the spherical subalgebra Bn(k) on eFn(M),
given by formulas (43,44).

This allows us to relate the functor Fn with the functor de�ned in [GG04].
Namely, recall from [GG04] that for any c ∈ Z, one may de�ne the category
Dc(g × PN−1) of coherent D-modules on g × PN−1 which are twisted by the
c-th power of the tautological line bundle on the second factor (this makes
sense for all complex c even though the c-th power is de�ned only for integer
c). Then the paper [GG04]10 de�nes a functor

10There seems to be a misprint in [GG04]: in the de�nition of H, c should be
replaced by c/N .
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H : Dc(g× PN−1) → BN (c/N)-mod,

given by H(M) = Mg.

Proposition 65. (i) If n is divisible by N then one has a functorial isomor-
phism eFn(M) ' φ∗H(M ⊗ SnCN ), where SnCN is regarded as a twisted
D-module on PN−1 (with c = n).

(ii) For any n, the actions of Bn(N/n) and BN (n/N) on the space
eFn(M) = H(M ⊗ SnCN ) have the same image in the algebra of endomor-
phisms of this space.

Proof. This follows from the de�nition of H and formulas (43,44). ut

Corollary 66. The functor eF ∗n on the category DG(N ) maps irreducible ob-
jects into irreducible ones.

Proof. This follows from Proposition 65, (ii) and Proposition 7.4.3 of [GG04],
which states that the functor H maps irreducible objects to irreducible ones.

ut

Formulas 43,44 can also be used to study the support of F ∗n(M) for M ∈
DG(N ), as a C[x1, ..., xn]-module. Namely, we have the following proposition.

Proposition 67. Let q = GCD(n,N) be the greatest common divisor of n
and N . Then the support S of F ∗n(M) is contained in the union of the Sn-
translates of the subspace Eq of Cn de�ned by the equations

∑n
i=1 xi = 0 and

xi = xj if
n
q (l − 1) + 1 ≤ i, j ≤ nl

q for some 1 ≤ l ≤ q.

Proof. It follows from equation (44) that for any (x1, ..., xn) ∈ S there exists
a point (z1, ..., zN ) ∈ CN such that one has

1
n

n∑
i=1

xpi =
1
N

N∑
j=1

zpj

for all positive integer p. In particular, writing generating functions, we �nd
that

N

n∑
i=1

1
1− txi

= n

N∑
j=1

1
1− tzj

.

In particular, every fraction occurs on both sides at least LCM(n,N) times,
and hence the numbers xi fall into n/q-tuples of equal numbers (and the
numbers zj into N/q-tuples of equal numbers). The proposition is proved. ut
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9.8 Irreducible equivariant D-modules on the nilpotent cone for

G = SLN(C)

Nilpotent orbits for SLN (C) are labelled by Young diagrams, or partitions.
Namely, if x ∈ slN (C) is a nilpotent element, then we let µi be the sizes
of its Jordan blocks enumerated in the decreasing order. The partition µ =
(µ1, ..., µm) and the corresponding Young diagram whose rows have lengths
µi are attached to x. If O is the orbit of x then we will denote µ by µ(O). For
instance, if O = {0} then µ = (1N ) and if O is the open orbit then µ = (N).

It is known (and easy to show) that the group A(O) is naturally isomorphic
to Z/dZ, where d is the greatest common divisor of the µi. Namely, let Z =
Z/NZ be the center of G (we identify Z/NZ with Z by p→ e2πip/N Id). Then
we have a natural surjective homomorphism θ : Z → A(O) induced by the
inclusion Z → Gx, x ∈ O. This homomorphism sends d to 0, and thus A(O)
gets identi�ed with Z/dZ.

Thus, any character χ : A(O) → C∗ is de�ned by the formula χ(p) =
e−2πips/d, where 0 ≤ s < d. We will denote this character by χs.

9.9 The action of F ∗
n on irreducible objects

Obviously, the center Z of G acts on F ∗n(M) by z → z−sN/d. Thus, a necessary
condition for F ∗n(M(O,χs)) to be nonzero is

n = N
(
p+

s

d

)
, (51)

where p is a nonnegative integer.
Our main result in this section is the following theorem.

Theorem 68. The functor F ∗n maps irreducible objects into irreducible ones
or zero. Speci�cally, if condition (51) holds, then we have

F ∗n(M(O,χs)) = L(π(nµ(O)/N)),

the irreducible representation of Hn(k) whose lowest weight is the representa-
tion of Sn corresponding to the partition nµ(O)/N .

Remark 69. Here if µ is a partition and c ∈ Q is a rational number, then we
denote by cµ the partition whose parts are cµi, provided that these numbers
are all integers. In our case, this integrality condition holds since all parts of
µ(O) are divisible by d.

Corollary 70. Let λ be a partition of n into at most N parts. Let M =
M(Oµ, χs), and assume that condition (51) is satis�ed. Then

(M ⊗ V (λ))g = HomSn(π(λ), L(π(nµ/N)))

as graded vector spaces.
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This corollary allows us to express the characters of the irreducible D-
modules M(O,χ) in terms of characters of certain special lowest weight ir-
reducible representations of Hn(k). We note that characters of lowest weight
irreducible representations of rational Cherednik algebras of type A have been
computed by Rouquier, [Rou05].

Remark 71. Note that Theorem 57 is the special case of Theorem 68 for
O = {0}.

9.10 Proof of Theorem 68

Our proof of Theorem 68 is based on the following result of [GS05].

Theorem 72. Let k > 0. Then the functor V 7→ eV is an equivalence of
categories between Hn(k)-modules and Bn(k)-modules.

Remark 73. We note that Theorem 72 is proved in [GS05] under the techni-
cal assumption k /∈ Z + 1/2. It was noticed by V. Ginzburg that this assump-
tion is really unnecessary. Indeed, the only place where this assumption is used
is in the proof of Lemma 3.5. Namely, it is used in the proof of this lemma that
Hom between Verma modules over Hn(k) is isomorphic to Hom between the
corresponding dual Specht modules, which is known, from [GGOR03], only
for k /∈ Z + 1/2. However, it is su�cient for the proof of Lemma 3.5 of [GS05]
to know just that the �rst Hom injects into the second one, which is known
for all positive k thanks to a lemma by Opdam and Rouquier (Lemma 2.10
of [BEG03b]).

Theorem 72 implies the �rst statement of the theorem, i.e. that if (51)
holds then F ∗n(M(Oµ, χs)) is irreducible. Indeed, it follows from Corollary 66
that eF ∗n(M(Oµ, χs)) is irreducible over Bn(k). Thus, it remains to �nd the
lowest weight of F ∗n(M(Oµ, χs)).

Let µ = (µ1, ..., µN ) be a partition of N (µi ≥ 0). Let Oµ be the nilpotent
orbit of g corresponding to the partition µ. Denote by d the greatest common
divisor of µi, and by m a divisor of d. De�ne the following function f on Oµ
with values in ⊗Ni=1S

µiCN :

f(X, ξ1, ..., ξN ) =
N∧
i=1

µi−1∧
j=0

ξiX
j ,

ξi ∈ (CN )∗ (here Xj ∈ MN (C) is the jth power of X, so ξiX
j ∈ CN ).

Lemma 74. (i) For any X ∈ Oµ, f(X, . . . )1/m is a polynomial in ξ1, ..., ξN .

Thus, f1/m is a regular function on the universal cover Õµ of Oµ with values
in ⊗Ni=1S

µi/mCN .
(ii) For any X ∈ Oµ, the function f(X, . . . )1/m generates a copy of the

representation V (µ/m) inside ⊗Ni=1S
µi/mCN .
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(iii) Speci�cally, let the standard basis u1, ..., uN of (CN )∗ be �lled into the
squares of the Young diagram of µ (�lling the �rst column top to bottom, then
the second one, etc.), and let X be the matrix J acting by the horizontal shift
to the right on this basis. Then f(J, . . . )1/m is a highest weight vector of the
representation V (µ/m).

Proof. It is su�cient to prove (iii). Let µ∗ = (µ∗1, ..., µ
∗
N ) be the conjugate

partition. Let pj be the number of times the part j occurs in this partition.
Clearly, pj is divisible by m. By looking at the matrix whose determinant is
f , we see that we have, up to sign:

f(J, ξ1, ..., ξN ) =
∏
j

∆j(ξ1, ..., ξN )pj ,

where∆j is the left upper j-by-j minor of the matrix (ξ1, ..., ξN ). Thus f1/m =∏
j ∆

pj/m
j is clearly a highest weight vector of weight

∑
j pj$j/m, where $j

are the fundamental weights. But
∑
pj$j = µ, so we are done. ut

Corollary 75. The function f gives rise to a G-equivariant regular map
f : Õµ → V (µ/d), whose image is the orbit of the highest weight vector.
In particular, we have a G-equivariant inclusion of commutative algebras

f∗ : ⊕`≥0V (`µ/d)∗ → C[Õµ].

Now let 0 ≤ s ≤ d − 1, and denote by C[Õµ]s the subspace of C[Õµ], on
which central elements z ∈ G act by z → z−s. Then we have an inclusion

f∗ : ⊕`:d−1(`−s)∈ZV (`µ/d)∗ → C[Õµ]s.

Now recall that by construction, C[Õµ]s sits inside M = M(Oµ, χs) as a
C[Oµ]-submodule. In particular, the operators Xi act on the space (C[Õµ]s⊗
(CN )⊗n)g.

Let π(µ) be the representation of Sn corresponding to µ, and regard V (λ)⊗
π(λ), for any partition λ of n, as a subspace of (CN )⊗n using the Weyl duality.
Then for any u ∈ π(nµ/N), we can de�ne the element a(u) ∈ F ∗n(M) by
a(u) = f∗n ⊗ u, where f∗n ∈ C[Õµ]s ⊗ V (nµ/N) is the homogeneous part of f∗

of degree n.

Lemma 76. a(u) is annihilated by the elements yi of Hn(k).

Proof. We need to show that the operators Xi (or, equivalently, the elements
xi ∈ Hn(k)) annihilate a(u) ∈ Fn(M). Since a(u) is G-invariant, it is su�cient
to prove the statement at the pointX = J . This boils down to showing that for
any j not exceeding the number of parts of µ (i.e. j ≤ µ∗1), the application of J
in any component annihilates the element ∆j(ξ1, ..., ξN ) ∈ ∧jCN ⊂ (CN )⊗j .
This is clear, since the �rst µ∗1 columns of J are zero. ut
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This implies that the lowest weight of F ∗n(M(Oµ, χs)) is π(nµ/N), as de-
sired. The theorem is proved.

Remark 77. Here is another, short proof of Theorem 68 for n = N . We have

e−F
∗
N (M(O, 1)) = F(M(O, 1))G.

According to [Lev98, LS97],

F(M(O, 1))G = (C[h]⊗ π(µ(O)))SN

as a module overD(h)W = e−HN (1)e−. Thus, e−F ∗N (M(O, 1)) = e−L(π(µ(O)))
as e−HN (1)e−-modules. But the functor V → e−V is an equivalence of cate-
goriesHN (1)-mod→ e−HN (1)e−-mod (see [BEG03b]). Thus, F ∗N (M(O, 1)) =
L(π(µ(O))) as HN (1)-modules, as desired.

9.11 The support of L(π(nµ/N))

Corollary 78. Let µ be a partition of N such that nµi/N are integers. Then
the support of the representation L(π(nµ/N)) of Hn(N/n) as a module over
C[x1, ..., xn] is contained in the union of Sn-translates of Eq, q = GCD(n,N).

Proof. This follows from Theorem 68 and Proposition 67. ut

We note that in the case when µ = (N), Corollary 78 follows from Theorem
3.2 from [CE03].

9.12 The cuspidal case

An interesting special case of Theorem 68 is the cuspidal case. In this case N
and n are relatively prime, d = N (i.e., O is the open orbit), and s is relatively
prime to N .

Here is a short proof of Theorem 68 in the cuspidal case.
Since the Fourier transform of M(O,χs) in the cuspidal case is supported

on the nilpotent cone, F ∗n(M(O,χs)) belongs not only to the category O gen-
erated by lowest weight modules, but also to the �dual� category O− gener-
ated by highest weight modules over Hn(k). Thus, by the results of [BEG03a],
F ∗n(M(O,χs)) is a multiple of the unique �nite dimensional irreducible Hn(k)-
module L(C) = Y (N,n), of dimension Nn−1. But this multiple must be a
single copy by Corollary 66, so the theorem is proved.

Theorem 68 implies the following formula for the characters of the cuspidal
D-modules M(O,χs).

Let µ be a dominant integral weight for g, such that the center Z of G
acts on V (µ) via z → zs = zn. Let ρ be the half-sum of positive roots of g.
Let Ks(µ) = (M(O,χs)⊗ V (µ))g be the isotypic components of M(O,χs).
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Theorem 79. We have

Tr|Ks(µ)(q2H) =
q − q−1

qN − q−N
ϕµ(q),

where

ϕµ(q) :=
∏

1≤p<r≤N

qµr−µp+r−p − qµp−µr+p−r

qr−p − qp−r
= χV (µ)(q2ρ),

where χV (µ) is the character of V (µ). In particular,

dimKs(µ) =
1
N

∏
1≤p<r≤N

µr − µp + r − p

r − p
=

1
N

dimV (µ).

Proof. We extend the representation V (µ) to GLN (C) by setting z → zn for
all scalar matrices z, so that its GLN (C)-highest weight is

µ̃ := (µ1 + n/N, ..., µN + n/N).

Note that we automatically have µi + n/N ∈ Z. Assume that n is so big that
µ̃ is a partition of n (i.e., µi + n/N ≥ 0).

It follows from the results of [BEG03a] that the character of the irreducible
representation L(C) of the rational Cherednik algebra Hn(k), k = N/n, is
given by the formula

Tr|L(C)(gq2h) =
q − q−1

qN − q−N
det(q−N − qNg)
det(q−1 − qg)

, g ∈ Sn, (52)

where the determinants are taken in Cn.
Let us equip CN with the structure of an irreducible representation of sl2

with basis e, f, h. Let g ∈ Sn. Then

Tr|HomSn (π(µ̃),(CN )⊗n)(q
h) = Tr|V (µ)(q2ρ) = ϕµ(q),

by the Weyl character formula. On the other hand, it is easy to show that

Tr|(CN )⊗n(gqh) =
det(q−N − qNg)
det(q−1 − qg)

.

Thus,

Tr|HomSn (π(µ̃),L(C))(q2h) =
q − q−1

qN − q−N
Tr|HomSn (π(µ̃),(CN )⊗n)(q

h) =
q − q−1

qN − q−N
ϕµ(q).

By Theorem 68 and Weyl duality, this implies that

Tr|(M(O,χs)⊗V (µ))g(q2H) =
q − q−1

qN − q−N
ϕµ(q),

as desired. ut
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Example 80. Let N = 2, s = 1. In this case Theorem 79 gives us the following
decomposition of M(O,χs):

M(O,χs) = ⊕j≥1Nj ⊗ V2j−1,

where Vj is the irreducible representation of sl2 of dimension j + 1, and the
spaces Nj satisfy the equation

Tr|Nj
(q2H) =

q2j − q−2j

q2 − q−2
.

This shows that Nj = Vj−1 as a representation of the sl2-subalgebra spanned
by E,F,H, which commutes with g.

9.13 The case of general orbits

Let W = SN the Weyl group of G, λ ∈ h/W , and Nλ be the closure in g
of the adjoint orbit of a regular element of g whose semisimple part is λ.
Denote by DG(Nλ) the category of G-equivariant D-modules on G which
are concentrated on Nλ. We also let Oλ be the category of �nitely gener-
ated Hn(k)-modules in which the subalgebra C[y1, ..., yn]Sn acts through the
character λ. Then one can show, similarly to the above, that the functor F ∗n
restricts to a functor F ∗n,λ : DG(Nλ) → Oλ. The functor considered above is
F ∗n,0. We plan to study the functor F ∗n,λ for general λ in a future work.

9.14 The trigonometric case

Our results about rational Cherednik algebras can be extended to the trigono-
metric case. For this purpose, D-modules on the Lie algebra g should be re-
placed with D-modules on the group G. Let us describe this generalization.

First, let us introduce some notation. As above, we let G = SLN (C). For
b ∈ g, let Lb be the right invariant vector �eld on G equal to b at the identity
element; that is, Lb generates the group of left translations by etb. As before,
we let k = N/n.

Now let M be a D-module on G. Similarly to the above, we de�ne Fn(M)
to be the space

Fn(M) = (M ⊗ (CN )⊗n)G,

where G acts on itself by conjugation.
Consider the operators Xi, Yi, i = 1, ..., n, on Fn(M), de�ned by the for-

mulas similar to the rational case:

Xi =
∑
j,l

Ajl ⊗ (Elj)i, Yi =
N

n

∑
p

Lbp ⊗ (bp)i,

where Ajl is the jl-th matrix element of A ∈ G regarded as the multiplication
operator in M by a regular function on G.
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Proposition 81. The operators Xi, Yi satisfy the following relations:∏
i

Xi = 1,
∑
i

Yi + k
∑
i<j

sij = 0,

sijXi = Xjsij , sijYi = Yjsij , [sij , Xl] = [sij , Yl] = 0,

[Xi, Xj ] = 0, [Yi, Yj ] = ksij(Yi − Yj),

[Yi, Xj ] =
(
ksij −

1
n

)
Xj ,

where i, j, l denote distinct indices.

Proof. Straightforward computation. ut

Corollary 82. The operators Ȳi = Yi + k
∑
j<i sij pairwise commute.

The relations of Proposition 81 are nothing but the de�ning relations of
the degenerate double a�ne Hecke algebra of type An−1, which we will de-
note Htr

n (k) (where �tr� stands for trigonometric, to illustrate the fact that
this algebra is a trigonometric deformation of the rational Cherednik algebra
Hn(k)). Thus we have de�ned an exact functor Fn : D(G) → Htr

n (k)-mod. As
before, it is su�cient to consider the restriction of this functor to the category
of equivariant �nitely generated D-modules, DG(G).

This allows us to generalize much of our story for rational Cherednik alge-
bras to the trigonometric case. In particular, let U be the unipotent variety on
G, and DG(U) be the category of �nitely generated G-equivariant D-modules
on G concentrated on U . If we restrict the functor Fn to this category, we
get a situation identical to that in the rational case. Indeed, one can show
that for anyM in this category, Fn(M) belongs to the category Otr

− of �nitely
generated modules over Htr

n (k) which are locally unipotent with respect to
the action of Xi. The latter category is equivalent to the category O− over
the rational Cherednik algebra Hn(k), because the completion of Htr

n (k) with
respect to the ideal generated by Xi − 1 is isomorphic to the completion of
Hn(k) with respect to the ideal generated by xi. On the other hand, the expo-
nential map identi�es the categories DG(U) and DG(N ). It is clear that after
we make these two identi�cations, the functor Fn becomes the functor Fn in
the rational case that we considered above.

On the other hand, because of the absence of Fourier transform on the
group (as opposed to Lie algebra), the trigonometric story is richer than the
rational one. Namely, we can consider another subcategory of DG(G), the
category of character sheaves. By de�nition, a character sheaf on G is an
object M in DG(G) which is locally �nite with respect to the action of the
algebra of biinvariant di�erential operators, U(g)G. This category is denoted
by Char(G). It is known that one has a decomposition

Char(G) = ⊕λ∈T∨/WCharλ(G),
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where T∨ is dual torus, and Charλ(G) the category of those M ∈ DG(G) for
which the generalized eigenvalues of U(g)G (which we identify with U(h)W via
the Harish-Chandra homomorphism) project to λ under the natural projection
h∗ → T∨.

On the other hand, one can de�ne the category RepY−fin(Htr
n (k)) of mod-

ules over Htr
n (k) on which the commuting elements Ȳi act in a locally �nite

manner. We have a similar decomposition

RepY−fin(Htr
n (k)) = ⊕λ∈T∨/WRepY−fin(Htr

n (k))λ,

where RepY−fin(Htr
n (k))λ is the subcategory of all objects where the general-

ized eigenvalues of Ȳi project to λ ∈ T∨/W . Then one can show, similarly to
the rational case, that the functor Fn gives rise to the functors

Fn,λ : Charλ(G) → RepY−fin(H
tr
n (k))λ

for each λ ∈ T∨/W . The most interesting case is λ = 0 (unipotent character
sheaves). We plan to study these functors in subsequent works.

9.15 Relation with the Arakawa-Suzuki functor

Note that the elements Yi and sij generate the degenerate a�ne Hecke algebra
Hn of Drinfeld and Lusztig (of type An−1). To de�ne the action of this algebra
on Fn(M) = (M ⊗ (CN )⊗n)g by the formula of Proposition 81, we only
need the action of the operators Lb, b ∈ g in M . So M can be taken to
be an arbitrary g-bimodule which is locally �nite with respect to the diagonal
action of g (in this case,

∑
i Yi +

∑
i<j sij is a central element which does

not necessarily act by zero, so we get a representation of a central extension
H̃n of Hn). In particular, we have an exact functor Fn : HC(g) → H̃n-mod
from the category of Harish-Chandra bimodules over g to the category of
�nite dimensional representations of the degenerate a�ne Hecke algebra H̃n.
This functor was essentially considered in [AS98] (where it was applied to the
Harish-Chandra modules of the form M = Homg−finite(M1,M2), where M1

andM2 are modules from category O over g). We note that the paper [AST96]
describes the extension of this construction to a�ne Lie algebras, which yields
representations of degenerate double a�ne Hecke algebras.

9.16 Directions of further study

In conclusion we would like to discuss (in a fairly speculative manner) several
directions of further study and generalizations (we note that these generaliza-
tions can be combined with each other).

1. The q-case: the group G is replaced with the corresponding quantum
group, D-modules with q-D-modules, and degenerate double a�ne Hecke al-
gebras with the usual double a�ne Hecke algebras (de�ned by Cherednik). It
is especially interesting to consider this generalization if q is a root of unity.
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2. The quiver case. This generalization was suggested by Ginzburg, and
will be studied in his subsequent work with the third author. In this case, one
has a �nite subgroup Γ ⊂ SL2(C), and one should consider equivariant D-
modules on the representation space of the a�ne quiver attached to Γ (with
some orientation). Then there should exist an analog of the functor Fn, which
takes values in the category of representations of an appropriate symplectic
re�ection algebra for the wreath product SnnΓn, [EG02] (or, equivalently, the
Gan-Ginzburg algebra, [GG05]). This generalization should be especially nice
in the case when Γ is a cyclic group, when the symplectic re�ection algebra
is a Cherednik algebra for a complex re�ection group, and one has the notion
of category O for it.

3. The symmetric space case. This is the trigonometric version of the pre-
vious generalization for Γ = Z/2. In this generalization one considers (mon-
odromic) equivariant D-modules on the symmetric space GLp+q(C)/(GLp ×
GLq)(C) (see [Gin89]), and one expects a functor from this category to the
category of representations of an appropriate degenerate double a�ne Hecke
algebra of type C∨Cn. This functor should be related, similarly to the previous
subsection, to an analog of the Arakawa-Suzuki functor, which would attach
to a Harish-Chandra module for the pair (GLp+q(C),GLp(C)×GLq(C)), a �-
nite dimensional representation of the degenerate double a�ne Hecke algebra
of type BCn.

A

Let O be the ring C[[u1, ..., un]][`1, ..., `n]. De�ne commuting derivations Di

of O by Di(uj) = δijui, Di(`j) = δij (we will later think of `i and Di as logui

and ui
∂
∂ui

).
We set O+ := m[`1, ..., `n], where m = Ker(C[[u1, ...,un]] → C) is the

augmentation ideal. Let A = ⊕k≥0Ak be a graded ring with �nite dimensional
homogeneous components.

Proposition 83. Let Xi(u1, ..., `n) ∈ ⊕̂k>0(Ak ⊗O+) be such that Di(Xj) =
Dj(Xi). Then there exists a unique F (u1, ..., `n) ∈ ⊕̂k>0(Ak ⊗O+) such that
Di(F ) = Xi for i = 1, ..., n.

Let us say that f ∈ O has radius of convergence R > 0 if f =∑
k1,...,kn≥0 fk1,...,kn(u1, ..., un)`k11 ...`

kn
n , where each fk1,...,kn

(u1, ..., un) con-
verges for |u1|, ..., |un| ≤ R. Then if X1, ..., Xn have radius of convergence
R, so does F .

Proof. For each i, Di restricts to an endomorphism of O+; one checks that
∩ni=1Ker(Di : O+ → O+) = 0 which implies the uniqueness. To prove the
existence, we work by induction. One proves that Dn : O+ → O+ is surjective,
and its kernel is mn−1[`1, ..., `n−1], where mn−1 = Ker(C[[u1, ...,un−1]] → C).
LetG be a solution ofDn(G) = Xn, then the systemDi(F ′) = Xi−Di(G) (i =
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1, ..., n) is compatible, which implies Dn(X ′
i) = 0, where X ′

i := Xi−Di(G), so
X ′
i ∈ ⊕k>0(Ak ⊗O(n−1)

+ ), where O(n−1)
+ is the analogue of O+ at order n− 1.

Hence the system Di(F ′) = Xi − Di(G) (i = 1, ..., n − 1) is compatible and
we may apply to it the result at order n− 1 to obtain a solution F ′. Then a
solution of Di(F ) = Xi is F

′ +G.
Let D : uC[[u]] → uC[[u]] be the map u ∂

∂u and let I := D−1. The map D1 :
uC[[u]][`] → uC[[u]][`] is bijective and its inverse is given by D−1

1 (F (u)`a) =∑a
k=0(−1)ka(a− 1)...(a− k + 1)(Ik+1(F ))(u)`a−k.
We haveO+ = O(n−1)⊗̂unC[[un]][`n]⊕m(n−1)⊗̂C[`n] (whereO(n−1),m(n−1)

are the analogues of O,m at order n− 1, ⊗̂ is the completed tensor product).
The endomorphism Dn preserves this decomposition and a section of Dn is
given by (id⊗D−1

1 )⊕ (id⊗ J), where J ∈ End(C[`]) is a section of ∂/∂`.
It follows from the fact that I preserves the radius of convergence of a series

that the same holds for the section of Dn de�ned above. One then follows the
above construction of a solution X of Di(X) = Xi and uses the fact that
Di also preserves the radius of convergence to show by induction that X has
radius R if the Xi do. ut

Proposition 84. Let Xi(u1, ..., `n) ∈ ⊕̂k>0(Ak ⊗O+) be such that Di(Xj)−
Dj(Xi) = [Xi, Xj ]. Then there exists a unique F (u1, ..., `n) ∈ 1 + ⊕̂k>0(Ak ⊗
O+) such that Di(F ) = XiF for i = 1, ..., n. If the Xi have radius R, then so
does F .

Proof. Let us prove the uniqueness. If F, F ′ are two solutions, then F−1F ′

is a constant (as ∩ni=0Ker(Di : O → O) = 0), and it also belongs to 1 +
⊕̂k>0(Ak ⊗O+), which implies that F = F ′. To prove the existence, one sets

F = 1 + f1 + f2 + ..., Xi = x
(i)
1 + ..., where fk, x

(i)
k ∈ Ak ⊗O+ and solves by

induction the system Di(fk) = x
(i)
1 fk−1 + ...+ x

(i)
k using Proposition 83. ut

Proposition 85. Let Ci(u1, ..., un) ∈ ⊕̂k>0Ak[[u1, ..., un]] (i = 1, ..., n) be
such that ui∂ui(Cj) − uj∂uj (Ci) = [Ci, Cj ] for any i, j. Assume that the
series Ci have radius R. Then there exists a unique solution of the system
ui∂ui

(X) = CiX, analytic in the domain {u||u| ≤ R, u /∈ R−}n, such that

the ratio (uC
1
0

1 ...u
Cn

0
n )−1X(u1, ..., un) (we set Ci0 := Ci(0, ..., 0)) has the form

1+
∑
k>0

∑
a1,...,an,i

ra1,...,an,i
k (u1, ..., un) (the second sum is �nite for any k),

ra1,...,an,i
k has degree k, ai ≥ 0, i ∈ {1, ..., n}, and ra1,...,an,i

k (u1, ..., un) =
O(ui(logu1)a1 ...(logun)an).

The same is then true of the ratio X(u1, ..., un)(u
C1

0
1 ...u

Cn
0

n )−1; we write

X(u1, ..., un) ' u
C1

0
1 ...u

Cn
0

n .

Proof. Let us show the existence of X. The compatibility condition implies

that [Ci0, C
j
0 ] = 0. If we set Y (u1, ..., un) := (uC

1
0

1 ...u
Cn

0
n )−1X(u1, ..., un), then

X is a solution i� Y is a solution of ui∂ui(Y ) = exp(−
∑n

j=1(loguj)C0
j )(Ci −

C0
i ) ·Y.
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Let us set Xi(u1, ..., `n) := exp(−
∑n

j=1 `jC
0
j )(Ci(u1, ...,un) − Ci(0, ..., 0)),

then Xi(u1, ..., `n) ∈ ⊕̂k>0(Ak ⊗O+). We then apply Proposition 84 and �nd
a solution Y ∈ 1 + ⊕̂k>0Ak ⊗O+ of Di(Y ) = XiY . Let Yk be the component
of Y of degree k. Since Y has radius R, the replacement `i = logui in Yk for
ui ∈ {u||u| ≤ R, u /∈ R−} gives an analytic function on {u||u| ≤ R, u /∈ R−}n.
Moreover, O+ =

∑n
i=1 uiC[[u1, ..., un]][`1, ..., `n], which gives a decomposition

Yk =
∑
i,a1,...,an

ui`
a1
1 ...`

an
n yki,a1,...,an

(u1, ..., un) and leads (after substitution
`i = logui) to the above estimates.

The ratioX(u1, ..., un)(u
C1

0
1 ...u

Cn
0

n )−1 is then 1+exp(
∑

j C
j
0loguj)(Y(u1, ...,un)−

1); the term of degree k has �nitely many contributions to which we apply
the above estimates.

Let us prove the uniqueness of X. Any other solution has the form
X = X(1 + ck + ...) where cj ∈ Aj , and ck 6= 0. Then the degree k term
is transformed by the addition of ck, which cannot be split as a sum of terms
in the various O(ui(logu1)a1 ...(logun)an). ut
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