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Summary. We define a universal version of the Knizhnik-Zamolodchikov-Bernard
(KZB) connection in genus 1. This is a flat connection over a principal bundle on the
moduli space of elliptic curves with marked points. It restricts to a flat connection on
configuration spaces of points on elliptic curves, which can be used for proving the
formality of the pure braid groups on genus 1 surfaces. We study the monodromy of
this connection and show that it gives rise to a relation between the KZ associator
and a generating series for iterated integrals of Eisenstein forms. We show that
the universal KZB connection realizes as the usual KZB connection for simple Lie
algebras, and that in the sl,, case this realization factors through the Cherednik
algebras. This leads us to define a functor from the category of equivariant D-
modules on sl,, to that of modules over the Cherednik algebra, and to compute the
character of irreducible equivariant D-modules over sl,, which are supported on the
nilpotent cone.

Introduction

The K7 system was introduced in [KZ84] as a system of equations satisfied by
correlation functions in conformal field theory. It was then realized that this
system has a universal version [Dri91]. The monodromy of this system leads
to representations of the braid groups, which can be used for proving the that
the pure braid groups, which are the fundamental groups of the configuration
spaces of C, are formal (i.e., their Lie algebras are isomorphic with their asso-
ciated graded Lie algebras, which is a holonomy Lie algebra and thus has an
explicit presentation). This fact was first proved in the framework of minimal
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model theory [Sul77, Koh83]. These results gave rise to Drinfeld’s theory of
associators and quasi-Hopf algebras [Dri90b, Dri91]; one of the purposes of
this work was to give an algebraic construction of the formality isomorphisms,
and indeed one of its by-products is the fact that these isomorphisms can be
defined over Q.

In the case of configuration spaces over surfaces of genus > 1, similar
Lie algebra isomorphisms were constructed by Bezrukavnikov [Bez94], using
results of Kriz [Kri94]. In this series of papers, we will show that this result can
be reproved using a suitable flat connection over configuration spaces. This
connection is a universal version of the KZB connection [Ber98a, Ber98b],
which is the higher genus analogue of the KZ connection.

In this paper, we focus on the case of genus 1. We define the universal
KZB connection (Section 1), and rederive from there the formality result
(Section 2). As in the integrable case of the KZB connection, the universal
KZB connection extends from the configuration spaces C(FE,,n)/S, to the
moduli space M ) of elliptic curves with n unordered marked points (Section
3). This means that: (a) the connection can be extended to the directions of
variation of moduli, and (b) it is modular invariant.

This connection then gives rise to a monodromy morphism v, : Iy [ —
G, ¥ S, which we analyze in Section 4. The images of most generators can be
expressed using the KZ associator, but the image © of the S-transformation
expresses using iterated integrals of Eisenstein series. The relations between
generators give rise to relations between © and the KZ associator, identities
(28). This identity may be viewed as an elliptic analogue of the pentagon
identity, as it is a “de Rham” analogue of the relation 6AS in [HLSO00] (in
[Man05], the question was asked of the existence of this kind of identity).

In Section 5, we investigate how to algebraically construct a morphism
I jy) — Gy xS, We show that a morphism Elm — exp(il_yn) X S, can be
constructed using an associator only (here By ,, is the reduced braid group of
n points on the torus). [Dri91] then implies that the formality isomorphism
can be defined over Q. In the last part of Section 5, we develop the analogue
of the theory of quasitriangular quasibialgebras (QTQBA’s), namely elliptic
structures over QTQBA’s. These structures give rise to representations of
Bi.n, and they can be modified by twist. We hope that in the case of a simple
Lie algebra, and using suitable twists, the elliptic structure given in Section
5.4 will give rise to elliptic structures over the quantum group U,(g) (where
g € C*) or over the Lusztig quantum group (when ¢ is a root of unity),
yielding back the representations of By, from conformal field theory.

In Section 6, we show that the universal KZB connection indeed specializes
to the ordinary KZB connection.

Sections 7-9 are dedicated applications of the ideas of the preceding sec-
tions (in particular, Section 6) to representation theory of Cherednik algebras.

More precisely, In Section 7, we construct a homomorphism from the Lie
algebra t; ,, x 0 to the rational Cherednik algebra H,, (k) of type A,,_;. This
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allows us to consider the elliptic KZB connection with values in representa-
tions of the rational Cherednik algebra. The monodromy of this connection
then gives representations of the true Cherednik algebra (i.e. the double affine
Hecke algebra). In particular, this gives a simple way of constructing an iso-
morphism between the rational Cherednik algebra and the double affine Hecke
algebra, with formal deformation parameters.

In Section 8, we consider the special representation Vy of the rational
Cherednik algebra H,(k), k = N/n, for which the elliptic KZB connection
is the KZB connection for (holomorphic) n-point correlation functions of the
WZW model for SLy(C) on the elliptic curve, when the marked points are
labeled by the vector representation CV. This representation is realized in the
space of equivariant polynomial functions on sly with values in (CV)®” and
we show that it is irreducible, and calculate its character.

In Section 9, we generalize the construction of Section 8, by replacing,
in the construction of Vy, the space of polynomial functions on sly with
an arbitrary D-module on sly. This gives rise to an exact functor from the
category of (equivariant) D-modules on sl to the category of representations
of H,(N/n). We study this functor in detail. In particular, we show that this
functor maps D-modules concentrated on the nilpotent cone to modules from
category O_ of highest weight modules over the Cherednik algebra, and is
closely related to the Gan-Ginzburg functor [GGO04]. Using these facts, we
show that it maps irreducible D-modules on the nilpotent cone to irreducible
representations of the Cherednik algebra, and determine their highest weights.
As an application, we compute the decomposition of cuspidal D-modules into
irreducible representations of SLx(C). Finally, we describe the generalization
of the above result to the trigonometric case (which involves D-modules on the
group and trigonometric Cherednik algebras), and point out several directions
for generalization.

1 Bundles with flat connections on (reduced)
configuration spaces

1.1 The Lie algebras t; , and t; ,

Let n > 1 be an integer and k be a field of characteristic zero. We define t]fm as
the Lie algebra with generators x;,y; (¢ =1,...,n) and t;; (i # j € {1,...,n})
and relations

tij =tj, [tij.tie +tje] =0, [ty t] =0, (1)

Jli#i

(@i, tin] = [Yistie] =0, [@i +x5,t5] = [yi +y;,ti;] = 0.
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(4,7, k, 1 are distinct). In this Lie algebra, > . x; and ), y; are central; we then
define €, := t§, /3, zi, >, i) Both ¥, and €, are positively graded,
where deg(x;) = deg(y;) = 1.

The symmetric group S, acts by automorphisms of tlf’n by o(z;) = To(i,
o(Yi) = Yoti)» 0(tij) = lo(i)o(j); this induces an action of S, by automor-
phisms of €.

We will set t; , := T, t1,, := 1§, in Sections 1 to 4.

1.2 Bundles with flat connections over C(E,n) and C(E,n)

Let E be an elliptic curve, C(E,n) be the configuration space £ —{diagonals}
(n > 1) and C(E,n) := C(E,n)/E be the reduced configuration space. We

will define a * exp(t; ,)-principal bundle with a flat (holomorphic) connec-
tion (Pg.,,Ven) — C(E,n). For this, we define a exp(t; ,)-principal bun-
dle with a flat connection (Pg,VEen) — C(E,n). Its image under the
natural morphism exp(t,) — exp(in) is a exp(ilﬁn)—bundle with connection
(]E’E,n, @En) — C(E,n), and we then prove that (pEn, @En) is the pull-back
of a pair (Pg.n, VE.,) under the canonical projection C(E,n) — C(E,n).

For this, we fix a uniformization E ~ E,, where for 7 € 9, = {7 €
C|S(r) > 0}, E; := C/A; and A, := Z + Z7. We then have C(E,,n) =
(C" — Diag,, ,)/A}, where

Diag,, , :={z = (21,.,2a) € C" |z := z; — z; € A, for some i # j}.

We define P;,, as the restriction to C(E;,n) of the bundle over C"/A” for
which a section on U C C"/A™ is a regular map f : 71 (U) — exp(t; ), such
that® f(z+6;) = f(z), f(z+76;) = e 2™ f(z) (here m : C* — C" /A" is the
canonical projection and §; is the ith vector of the canonical basis of C™).
The bundle ]57,” — C(E;,n) derived from P; ,, is the pull-back of a bundle

P, — C(E.,n) since the e"?™% € exp(t; ,) commute pairwise and their
product is 1. Here x +— Z is the map il,n — %1,,1.

A flat connection V., on P,, is then the same as an equivariant flat
connection over the trivial bundle over C" — Diag,, ., i.e., a connection of the
form

n
Ve i=d =Y Ki(z|r)dz;,
i=1
where K;(—|7): C" — t; , is holomorphic on C" — Diag,, ., such that:
(a) Ki(z +0,|7) = Ki(z|r), Ki(z + 78;|7) = e >m409) ([, (2]7)),
(b) [0/0z; — K;(z|T),0/0%; — K;(z|T)] = 0 for any i, j.

“We will denote by § or g”" the degree completion of a positively graded Lie
algebra g.
"We set i := v/—1, leaving i for indices.
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V:n then induces a flat connection @ml on ]57,n. Then @mb is the pull-
back of a (necessarily flat) connection on P, ,, iff:

(c) Ki(z|7) = Ki(z+u(},; 6;)|7) and >, K;(z|7) = 0 for z € C" —Diag,, ,,
u € C.

In order to define the K;(z|7), we first recall some facts on theta-functions.
There is a unique holomorphic function C x $ — C, (z,7) — 6(z|7), such that

o {20(z7) = 0} = A,

o 0(z+1|r) = —0(z|7) = 0(—z|7),

o O(z+7|T) = —e TTe 220 (4|7), and
o 6.0]7) =1

We have (z|T 4+ 1) = 0(z|7), while (—z/7| —1/7) = —(1/7‘)6(”i/7)229(z|7). If
n(r) = q'/** [1,51(1—¢") where ¢ = ™7, and if we set 9(2|7) := 1(7)*0(z|7),
then 9,9 = (1/4mi)929.
Let us set o( )
2+ x|T
HE D = g matal)
When 7 is fixed, k(z, z|7) belongs to Hol(C — A;)[[x]]. Substituting = = adx,,
we get a linear map t; , — (t1,, ® Hol(C— A;))", and taking the image of ¢;;,
we define

1
ot

0(z + ad(x;)|7)  ad(x;) _ .
6(z|T) 0(ad(xi)|T) D)

K (2|7) i= k(z, adx;|7) (ts) = (

it is a holomorphic function on C — A, with values in 117,1.
Now set z := (z1,...,2n), 2zij := % — z; and define

Ki(Z‘T) = =Y + Z K7](Z1J|T)
Jli#i

Let us check that the K;(z|r) satisfy condition (c). We have clearly
Ki(z+u(}_;0:)) = Ki(z). We have k(z, z|7) +k(—z, —x|7) = 0, so K;;(z|T) +
Kji(—z|T) =0, so that ), K;(z|r) = — ", yi, which implies >, K;(z|7) = 0.

Lemma 1. K;(z + §;|7) = K;(z|7) and K;(z + 76;|7) = e~ ™24 (K, (z|7)),
i.e., the K;(z|T) satisfy condition (a).

Proof. We have k(z+1,z|1) = k(z,z|r) so for any j, K;(z+ d;|7) = K;(z|r).
We have k(z & 7, 2|7) = eT2™ ¥k (2, 2|7) + (eT2™* — 1) /z, s0 if j # 1,

. 6271'iadx; -1
Ki(z+78;m) = Y Kijr(zie|7) + ™K (2] 7) + i) — v
J adx
Then
e27riadxi -1 1— e—27riade-

) — ) — _ ,—2miadx; )
b ) = g ) = (1= e ) ),
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ezﬂjadxi(K”(ZU|7_)) — —2miady (Kij(zij|7')) and for j' # 4,7, Kij’(zij’|7') —
6727riadxj( 7 (ZU | ) SO Ki(Z + 7—5].|7-) — e 2miadx; (Kz(Z|T)) Now

Ki(z + 7'57;|’7')

—Zyl— Z Kj(Z+T(5i|T)

i Jli#i
=- Zyz- — e P (N K (2]7))
Z Jli#i
,Qmadx] Z% _ Z Kj(Z|T))
2 Jli#i

6727r1adxi K’L (Z|T)

(the first and last equality follow from the proof of (c), the second equality has
just been proved, the third equality follows from the centrality of >, y;). O

Proposition 2. [0/0z; — K,(z|1),0/0z; — K;(z|T)] = 0, i.e., the K;(z|T) sat-
isfy condition (b).

Proof. For i # j, let us set K;; := K,;(2;;|7). Recall that K;; + K;; = 0,
therefore if 9; := 9/0z;

0;iKij — 0;Kj; = 0, [yi — Kij,y; — Kji] = _[Kijvyi + yj].
Moreover, if 4, j, k,1 are distinct, then [K;;, Kj] = 0. It follows that if
i # j, then [0; — K;(z|7),0; — K;(2z|T)] equals
ity Kigl+ Y (Kows K]+ (Ko K] + (Ko Kon]+ [y, K] = [93, K]
k|k£i,j
Let us assume for a while that if k ¢ {4, j}, then
—[yi> K] = (Y5, Kril — [y, Kij] + [Kji, Kyi] + Kz, Kig] + [Kig, K] = 0 (2)

(this is the universal version of the classical dynamical Yang-Baxter equation).
Then (2) implies that

[0, — K;(z|7),0; — Kj(z|7)] = [yi +y;, Kij] + Z Yk, K Zy’f’ ij] =
k|k#i,5

(as Y, Yk is central), which proves the proposition.
Let us now prove (2). It f(z) € C[[z]], then

[yka f(adxz)(tw adxi + adxj

[—tris tij)s

f(adz;) — f(—adxy)
adjacj + adzy [=tis L]
f(adz;) — f(adz; + adzx;)

Zadz; [ > Jk]7

[yi, f(adz;) (k)] =
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f(adzy) — f(—adz;)

[y, f(adzy)(ti)] = [—tjk, thi]

adzry + adx;
f(—adxi - adxj) - f(—adxz)
= ; [tk il
—adx;

The first identity is proved as follows:
-1
[yr, (adz;)" (ti;)] = = > (adz)* (adty;) (ada;)" "5 (L)
s=0

n—1

M

adx adtkz ( ada:j)”_l_s(tij)

= — z_:(adxl) (—adxj)”_1_3(adtki)(tij)
s=0

= f(adw;, —adz;)([—tki, tis]),

where f(u,v) = (u” —v™)/(u — v). The two next identities follow from this
one and from the fact that z; + z; + z, commutes with ¢;;, ¢k, ;.
Then, if we write k(z, x) instead of k(z,z|T), the L.h.s. of (2) is equal to

(k(zij, —adz;)k(zik, adz; + adx;) — k(zi;, adz;)k(zk, adz; + adx;)

k(zjk,adx;) — k(zk, adz; + adx;
+k(zlk,adxz)k(zjk,ad'r])+ (Z]k7a‘ x]) (Z]k7a T; +a :I"])

admi
k(Zik, adxi) - k‘(Zij, adx; + adxj) k‘(Zij, admz) — k’(zi]‘, —adxj)
+ — )[tij; tik).
adxj adxi —+ adxj

So (2) follows from the identity
k(z,—v)k(Z',u+v) — k(z,u)k(z' — z,u +v) + k(' u)k(z' — z,v)

k(2 —z,v) — k(2 — z,u+v) Jrk(z’, u) —k(z',u+v) k(z,u) —k(z,—v)

U v u+v
where u, v are formal variables, which is a consequence of the theta-functions
identity

+

:0’

1., 1., 1

(k(z, —v) — ;)(k(z ,u+v)+ u+v) — (k(z,u) + E)(k(z —z,u+v)+ u+v)

+(k(2',u) + %) (k(z' — z,v) + %) =0. (3)
O

We have therefore proved:

Theorem 3. (PTn,VT n) 18 a flat connection on C(E;,n), and the induced

flat connection (PT " VT n) is the pull-back of a unique flat connection (Pr ,, V)
on C(E.,n).
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1.3 Bundles with flat connections on C(E,n)/S,, and C(E,n)/S,

The group S, acts freely by automorphisms of C(E,n) by o(z1,...,2,) =
(25-1(1)s -+ Zo-1(n))- This descends to a free action of S, on C(E,n). We set
C(E,[n]) :==C(E,n)/S,, C(E,[n]) :=C(E,n)/S,.

We will show that (Pr,,V.,) induces a bundle with flat connection
(P n)s Vo)) 0n C(E-, [n]) with group exp(ty,,) xSy, and similarly (Py,,,, V,,)
induces (P[], V1)) on C(Er, [n]) with group exp(ilyn) X Sh.

We define P, p,,) — C(E.,[n]) by the condition that a section of U C
C(FE,,[n]) is a regular map 71 (U) — exp(t; n) x Sy, satisfying again f(z +
8;) = f(z), f(z+ 10;) = e~ 2™ f(z) and the additional requirement f(cz) =
of(z) (where 7 : C" — Diag, , — C(E;, [n]) is the canonical projection). It is
clear that V., is Sn—invariarit, which implies that it defines a flat connection
Vi on C(Er, [n]). B

The bundle P(E.,[n]) — C(E;,[n]) is defined by the additional require-
ment f(z +u(};6;)) = f(z) and V., then induces a flat connection V.,
on C(E., [n]).

2 Formality of pure braid groups on the torus

2.1 Reminders on Malcev Lie algebras

Let k be a field of characteristic 0 and let g be a pronilpotent k-Lie algebra. Set
gl =g, g"! = [g,g"]; then g = g' D g%... is a decreasing filtration of g. The
associated graded Lie algebra is gr(g) := ®k>19"/g""!; we also consider its
completion gr(g) := Gr>19"/gF ! (here & is the direct product). We say that
g is formal iff there exists an isomorphism of filtered Lie algebras g ~ gr(g),
whose associated graded morphism is the identity. We will use the following
fact: if g is a pronilpotent Lie algebra, t is a positively graded Lie algebra, and
there exists an isomorphism g ~ t of filtered Lie algebras, then g is formal,
and the associated graded morphism gr(g) — t is an isomorphism of graded
Lie algebras.

If I' is a finitely generated group, there exists a unique pair (I'(k),ir) of
a prounipotent algebraic group I'(k) and a group morphism iy : I' — I'(k),
which is initial in the category of all pairs (U,7), where U is prounipotent
k-algebraic group and j : I’ — U is a group morphism.

We denote by Lie(T")x the Lie algebra of I'(k). Then we have I'(k) =
exp(Lie(T")k); Lie(T")x is a pronilpotent Lie algebra. We have Lie(I')y =
Lie(T")gp ® k. We say that I' is formal iff Lie(T")¢ is formal (one can show
that this implies that Lie(I')q is formal).

When I' is presented by generators g, ..., g, and relations R;(¢1,...,9n)
(1 =1,...,p), Lie(T")q is the quotient of the topologically free Lie algebra fn
generated by 1, ..., 7, by the topological ideal generated by log(R;(e™, ..., 7))
(i=1,..,p).
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The decreasing filtration of f, is fn = (ju)' D (fu)? D ..., where (f,)F
is the part of f, of degree > k in the generators 71, ...,7,. The image of
this filtration by the projection is map is the decreasing filtration Lie(T')g =
Lie(T)g D Lie(I')3 O ... of Lie()q.

2.2 Presentation of PB, ,

For 7 € 9, let U; C C" — Diag,, , be the open subset of all z = (21, ..., 2,),
of the form z; = a; + 7b;, where 0 < a1 < ... <a, <land 0 < b < ... <
b, < 1. If zg = (29,...,20) € U,, its image Zo in E" actually belongs to the
configuration space C(E.,n).

The pure braid group of n points on the torus PB; , may be viewed as
PB; , = m(C(E;,n),Z). Denote by X;,Y; € PBy,, the classes of the projec-
tion of the paths [0,1] 5 t +— 2z — td; and [0,1] > ¢ +— 2z — t70;.

Set A; = X;..X,, B; :=Y;...Y,, for i = 1,...,n. According to [Bir69a],
A;,B; (i =1,...,n) generate PB; , and a presentation of PBy ,, is, in terms of
these generators:

(Ai, Aj) = (Bi, Bj) =1 (any 1,j), (A1,B;) = (B1,4;) =1 (any j),

(Bi AvAj") = (BkBj s Ax) = Cie (j < R);
(A;,Cji) = (B, Cj) =1 (1 < j < k),
where (g, h) = ghg~'h~%.

2.3 Alternative presentations of t; ,,

We now give two variants of the defining presentation of t; ,,. Presentation
(A) below is the original presentation in [Bez94], and presentation (B) will be
suited to the comparison with the above presentation of PBy .

Lemma 4. t; , admits the following presentations:

(A) generators are x;, y; (i = 1,...,n), relations are [x;,y;] = [x;,yi]
(i 7 3), [xis 23] = [y ys] = 0 (any i, 7), [32; 25, 4] = 325 y5, 2] = 0 (any i),
[xiv [Ija yk‘]] = [yi7 [yja mk]] =0 (Za.]7 k are dwtant);

(B) generators are a;, b; (i =1,...,n), relations are [a;,a;] = [b;,b;] =0
(any i, j), [ay,b;] = [b1,a;] = 0 (any j), [aj, bx] = lak, bs] (any i,j), [ai, cjx] =
[bi,cjk) =0 (i < j < k), where cji, = [by, ar, — a;].

The isomorphism of presentations (A) and (B) is a; = >7_ x;, b; =

Proof. Let us prove that the initial relations for x;,y;,t;; imply the relations
(A) for x;,y;. Let us assume the initial relations. If ¢ # j, since [z;, y;] = ti;
and t;; = tj;, we get [z;,y;] = [x;, ys]. The relations [x;, ;] = [y, y;] = 0 (any
i, j) are contained in the initial relations. For any 4, since [z;, y;] = — Zj‘#i tij
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and [, yi] = tji = tij (j # 1), we get [3_; j, yi] = 0. Similarly, [32; y;, z:] = 0
(for any ). If 4, j, k are distinct, since [z}, yx] = t;x and [z;,t;,] = 0, we get
(@i, [z, yx]] = 0 and similarly we prove [z;, [y;, zx]] = 0.

Let us now prove that the relations (A) for x;, y; imply the initial relations
for x;,y; and t;; = [x;,y;] (i # j). Assume the relations (A). If i # j, since
[Jﬁi,yj] = [mj,yi], we have ti]‘ = tji. The relation tij = [xi,yj] (Z ;é j) is
clear and [z;,z;] = [y;,y;] = 0 (any ¢,j) are already in relations (A). Since
for any i, [}, x;,y:] = 0, we get [z, y:] = — 32,025, ui] = fzj‘j# tji =
— Zjlj#i ti;- If 4, 5, k are distinct, the relations [x;, [, y&]] = [vs, [y;, Tx)] =0
imply [2i,t6] = [y tju] = 0. If @ # j, since [35, op, 2] = X4 2w, ys] = 0,
we get >, Tk, ti;] = 0 and [xg,t;]) = 0 for k ¢ {i,j} then implies [z; +
xj,t;;) = 0. One proves similarly [y; + y;,t;;] = 0. We have already shown
that [z, te] = [y, tke] = 0 for ¢, 7, k, I distinct, which implies [[x;, y,], txi] = 0,
ie., [tij, te] = 0. If 4,4, k are distinct, we have shown that [t;;,yx] = 0 and
[tw‘,l’i + $j] = 0, which 1mphes [tija [I7 + Zj, ka = O, i.e., [tij;tik + tjk] =0.

Let us prove that the relations (A) for z;,y; imply relations (B) for a; :

> =iy bi i= 320 ;y;. Summing up the relations (v, z5] = [yir,y;] = 0
and [zy,y;] = [xj,yi] for i’ =4,...,n and j' = j,...,n, we get [a;,a;] =
[bi,bj] = 0 and [a;,b;] = [a;,b;] (for any 4,j). Summing up [3°; z;,y] =
D2 yj,ze] = 0 for i = d,..,n, we get [a1,b;] = [a;,b1] = O (for any ).

Finally, ¢, = ZZ; Zgzk top (in terms of the initial presentation) so the
relations [z, tas] = 0 for i/ # «, f and [zq + 23, tag] = 0 imply [a;, cjk] =0
for ¢ < j < k. Similarly, one shows [b;, ¢ji] =0 for ¢ < j < k.

Let us prove that the relations (B) for a;, b; imply relations (A) for z; :=
a; — @it1, Yi = b; — biy1 (with the convention a,+1 = b,11 = 0). As before,
[ai, a;] = [bi,b;] = 0, [ai,b;] = [a;,bi] imply [z, x;] = [yi,y;] = 0, [2s,9,] =
[zj,y;] (for any 4, j). We set t;; := [x;,y,] for ¢ # j, then we have t;; = t;;.
We have for j <k, tj5 = ¢jr — ¢j k41 — Cjt1.k + Cj+1,k+1 (We set ¢; 41 :=0),
s0 [aj, ¢ = 0 implies (Y5 _, zy,tjx] = 0 for i < j < k. When i < j < k, the
difference between this relation and its analogue of (i+1, j, k) gives [z;, ;5] = 0
for i < j < k. This can be rewritten [x;, [z;,yx]] = 0 and since [z;, z;] = 0, we
get [x;, [z, yk]] = 0, so [x;,t;] = 0 and by changing indices, [z;,t;,] = 0 for
Jj < i < k. Rewriting again [z;,t;5] = 0 for i < j < k as [z, [yj,zx]] = 0 and
using [z;, xx] = 0, we get [z, [2;,y;]] = 0. i.e., [xk,t;;] = 0, which we rewrite
[zi,t;x] =0 for j < k <. Finally, [x;,t;x] =0 for j < k and i ¢ {j, k}, which
implies [z;,t;,] = 0 for ¢, j, k different. One proves similarly [y;,t;i] = 0 for
1, j, k different. O

2.4 The formality of PB; ,

The flat connection d — >"." | Kj(z|7)dz; gives rise to a monodromy represen-
tation
Pz, : PB1n = m1(C,Z0) — exp(tin),
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which factors through a morphism gy, ,(C) : PBy,(C) — exp(tin). Let
Lie(fz,,-) = Lie(PB1n)c — tin be the corresponding morphism between
pronilpotent Lie algebras.

Proposition 5. Lie(y,, ;) is an isomorphism of filtered Lie algebras, so that
PBi is formal.

Proof. As we have seen, Lie(PB;,)c (denoted Lie(PBy,) in this proof)
is the quotient of the topologically free Lie algebra generated by «;,f;
(¢ = 1,...,n) by the topological ideal generated by [c,a;], [5i, 55], (a1, 55,
(61, ], log(efk,e™<=) — log(e® =%, e™), [ai, i), [Bi, k] where ;) =
log(efk, e =),

This presentation and the above presentation (B) of t; ,, imply that there
is a morphism of graded Lie algebras p, : 1, — grLie(PB;y,) defined by
a; — [og), by — [B;], where o — [a] is the projection map Lie(PB;,) —
gr,Lie(PBy p).

pr 18 surjective because grLiel is generated in degree 1 (as the associated
graded of any quotient of a topologically free Lie algebra).

There is a unique derivation Ay € Der(t, ), such that Ag(z;) = y; and
A~0(yi) = 0. This derivation gives rise to a one-parameter group of automor-
phisms of Der(t; ), defined by exp(sAo)(xi) := x; + syi, exp(sAo)(yi) = i

Lie(pty,,~) induces a morphism grLie(p,, ) : grlie(PByn) — t1,n. We will
now prove that

. T
grLie(fiz, 7) © by = exp(—5—Ao) 0w, (4)

where w is the automorphism of t; ,, defined by w(a;) = —b;, w(b;) = 27ia;.
Hzo r 18 defined as follows. Let Fy,(z) be the solution of
(0/022) Fyy (2) = Ki(2]7) Py (2), Fiy(20) = 1

on U,; let

H.:={z=(21,..,2n)|zi=a; + 70;,0 < a1 < ... < ap < 1}
and

Vii={z2=(21,..,2n) | zi = a; + Tb;,0 < by < ... < b, <1}
let leg and FZV0 be the analytic prolongations of Fy, to H,; and V;; then

FH(z+6;) = F(2) gy (Xi), €™F) (2 +78;) = Fy (2) 4129, (Y7).

We have logF,,(z) = — > (2 — 20)y; + terms of degree > 2, where 1, is
graded by deg(xi) = deg(yi) = 1, which implies that logu,, -(Xi) = —yi
+ terms of degree > 2, logpig, ~(Yi) = 2mix; — 7y; + terms of degree > 2.
Therefore Lie(ugz, r)(ai) = logpz, -(Ai) = —bi + terms of degree > 2,
Lie(tzy,7)(Bi) = logig, ~(Bi) = 2mia; — 7h; + terms of degree > 2. So
grlie(ptzo,7)([eu]) = —bi, grLie(pz, - )([81]) = 2mia; — 7h;.
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It follows that grLie(gz, ) © pn is the endomorphism a; — —b;, b; —
2mia; — Tb; of t 5, which is the automorphism exp(—%ﬁo) o w; this proves
(4).

Since we already proved that p,, is surjective, it follows that grLie(u,, )
and p, are both isomorphisms. As Lie(PB;,) and il,n are both complete
and separated, Lie(us, ) is bijective, and since it is a morphism, it is an
isomorphism of filtered Lie algebras. O

2.5 The formality of ﬁl,n

Let zg € U, and [zg] € C(F-,n) be its image. We set
PBy ,, == m1(C(E-,n), [20]).

Then ﬁlm is the quotient of PB; , by its central subgroup (isomorphic to
Z?) generated by A; and B;. We have p,, (A1) = e~ 2% and Hzo r(B1) =
e2m 2 xi—T Vi g0 Lie(pzy,r) (1) = —aq, Lie(pg, ~)(B1) = 2wia; — by, which
implies that Lie(y,, ) induces an isomorphism between Lie(PB1 )¢ and & ,.

In particular, PB; ,, is formal.

Remark 6. Let Diag, := {(z,7) € C" x |z € Diag, .} and let U C
(C™ x §) — Diag, be the set of all (z,7) such that z € U,. Each element
of U gives rise to a Lie algebra isomorphism pi, , : Lie(PBy ;) ~ fl’n. For an
infinitesimal (dz, d7), the composition fz1dz r+dr © ;L;} is then an infinitesi-
mal automorphism of fl’n. This defines a flat connection over U with values
in the trivial Lie algebra bundle with Lie algebra Der(t; ,). When dr = 0, the
infinitesimal automorphism has the form exp(}; Kj(z|7)dz;), so the connec-
tion has the form d — Y. ad(K;(z|7))dz — A(z|7)dr, where A : U — Der(t; )
is a meromorphic map with poles at Diag, . In the next section, we determine
amap A: (C" x §) — Diag, — Der(t; ,,) with the same flatness properties as
A(z|T).

2.6 The isomorphisms By ,(C) ~ exp(fl’n) X Sh,
El’n((C) ~ exp(fl,n) X Sn

Let zo be as above; we define By, := m(C(E,,[n]),[zo]) and By, =
71(C(E,, [n]), [Zo]), where z ~— [z] is the canonical projection C(E,,n) —
C(E.,[n]) or C(E.,n) — C(E,,[n]).

We have an exact sequence 1 — PB;, — By, — S, — 1, We then de-
fine groups B ,(C) fitting in an exact sequence 1 — PB; ,(C) — By ,(C) —
Sn — 1 as follows: the morphism B;, — Aut(PBj,) extends to By, —
Aut(PB; ,(C)); we then construct the semidirect product PB; ,(C) x By y;
then PB; ;, embeds diagonally as a normal subgroup of this semidirect prod-
uct, and By »,(C) is defined as the quotient (PBq »(C) x B1,)/PB1 u.
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The monodromy of V, [, then gives rise to a group morphism By, —
exp(flﬁn) X Sy, which factors through By »,(C) — exp(flyn) X S,. Since this
map commutes with the natural morphisms to S,, and using the isomorphism
PB1,(C) ~ exp(fl’n), we obtain that By ,(C) — exp(@lyn) X S, is an isomor-
phism.

Similarly, from the exact sequence 1 — PB;, — By, — S, — 1 one
defines a group By, (C) fitting in an exact sequence 1 — PBy,, — By ,(C) —

S, — 1 together with an isomorphism By ,,(C) — eXp(iLn) X Sy.

3 Bundles with flat connection on M, , and M, [,

We first define Lie algebras of derivations of t;, and a related group G,.
We then define a principal G,-bundle with flat connection of M, and a
principal G, x S,-bundle with flat connection on the moduli space M, |,,) of
elliptic curves with n unordered marked points.

3.1 Derivations of the Lie algebras t; , and t;, and associated
groups

Let ? be the Lie algebra with generators Ag,d, X and da,, (m > 1), and
relations:
[d’ X] = 2Xa [da AO] = —2A0, [X7 AO] = da

[62ma X] = O, [da 62m} = 2m52m7 ad(AO)Zerl(62m> = 0.
Proposition 7. We have a Lie algebra morphism ® — Der(t; ), denoted by
§ &, such that d(x;) = xi, d(yi) = —yi, d(ti;) =0, X(z;) =0, X(y;) = x4,
X(tij) =0, Ao(x;) = yi, Ao(ys) =0, Ag(tij) =0, dam(z;) =0,

Oom (tij) = [tij, (adx)®™ (ty;)],  and

G = 3 5 2 Il (), (—adx)(ey)

jli#i  ptg=2m—1
This induces a Lie algebra morphism 9 — Der(t1 ).
Proof. The fact that Ay, d, X are derivations and commute according to the

Lie bracket of sl is clear.
Let us prove that s, is a derivation. We have

ng(tij) = [tij, Z(adzi)zm(tij)}v

i<J

which implies that s, preserves the infinitesimal pure braid identities. It
clearly preserves the relations
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[z, 23] = 0, [24,y5] = tij, [wk, tiz] = 0, [z + x5, ti5] = 0.

Let us prove that ds,, preserves the relation [Yk,ti;] = 0. On the one hand

o) ] =5 ()7 [(adan)?(t), (aken) (1r0)]

p+g=2m—1
LY (1 e (ra) (ad ) )
p+g=2m—1

+[(adwy)" (tr;), (adwr)? (tri)], tij]

= Y (=) [[(adak )P (1), (adak)? (b)), ig]
p+q=2m—1

= [ty Y (=1)P(adwy)? (adz;)?([thi, rj))]-

p+g=2m—1

On the other hand

[k Oam (tig)] = [yns [tig, (ada;)*™ (£:)]) = [tij, [ye, (adas) ™ (t35)]]-

Now

[yr, (ade,) ™ ()] = — Y (adzi)*([trs, (adws)” (1))

a+pB=2m—1

== Y (adz)*[tr, (—ada;)? (t;;)]

a+pB=2m—1

= _ Z (ada;)*(—adz;)? ([tri, tiz])

a+pB=2m—1

= > ()P (adz;)? (adw;) ! ([thi, tas))-

p+q=2m—1

Hence [SQT” (yk)a tU} + [yk: SQm(tij” =0.
Let us prove that 0o, preserves the relation [y;,y;] = 0, i.e., that
(02m (¥i), y5] + [, O2m (y5)] = 0. We have

e o) = gloe 3 (1) ?(t50), (acda)?(10)]

p+qg=2m—1

by Sl Y () Mladay) ), () )]

k#i,j p+q=2m—1

Now

%[yia Y (1) (aday)P (t0), (aday)? (85:)]] = (i 5) ()
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=gt > (C1lade)P (), (ade) (1)

p+g=2m—1
= > (=D Mlyi + gy (ada)P (8)]s (ada) U (135)]-
p+g=2m—1

A computation similar to the above computation of [y, (adx;)*™(t;;)] yields

i + ), (adz:)P ()] = (=17 > [(adar)*(t), (ada)? (¢,
a+p=p—1

SO

(5) = Z [(ada;)* (i), [(adwy)? (L), (adw;)Y (1))

a+p[+y=2m—2
If now k # 4, j, then

[y% Yo (1)(aday)P (tn). (aday)? (te))]

p+q=2m—1
= > ()i, (aday)P (1)), (aday) (tn)].
ptg=2m—1

As we have seen,

[ys, (ada)P ()] = (1P Y (—ada;)(adzy) [t tir]
a+pB=p—1

= (=P Y [(—adw)® (ty), (adzy)” (tk)]-

a+pB=p—1

So we get that [yi, 5 37,4 a1 (—1)*[(adz;)? (t1), (adw;)(t;)]] equals

o [ladwy) (ty), (adar)” (tar)], (ada;) (t55,)]

a+pB+y=2m—2
and thus [yi, 5 32,4 o om_1 (—1)7[(adz;)? (t1), (adw;) 7 (t;)]] — (i < j) equals

> lladw)*(tiy), [(adwk) (tix), (ada;) ()],

a+p+y=2m—2

Therefore [y;, b2 (y;)] + [b2m (4:), y5] = 0. )
Since 825 (D, i) = 02m (D, ¥5) =0 and Y, z; and ), y; are central, day,
preserves the relations [Y, z;,y;] = 0 and [>_, zk, ti;] = Dok Yk, tij] = 0. It
follows that 2, preserves the relations [z + zj,t:;] = [yi +y;,ti;] = 0 and
[, i) = — Zj‘#i ti;. All this proves that dom is a derivation.
Let us show that ad(Ag)?t1(8y) = 0 for m > 1. We have
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ad(A¢)>™ ! (bom) (x5) = —(2m + 1) AG™ 0 dapm 0 Ag ()
= —(2m + 1) A" 0 b2 (i)

= —@m+ DAL S ()P (1), (—adx)(t:5)

2 =
Jli # i,
p+g=2m—1

the last part of this computation implies that ad(Ag)2™ ! (dgm ) (y;) = 0, there-
fore ad(Ag)? ! (62m) = 0. o i

We have clearly [X,d5,,] = 0 and [d,d2m] = 2mdasm. It follows that
we have a Lie algebra morphism d — Der(t; ). Since d, Ay, X and boyy,
all map C(3_, ;) ® C(>_, ;) to itself, this induces a Lie algebra morphism
0 — Der(ty ). 0

Let e, f, h be the standard basis of sl3. Then we have a Lie algebra mor-
phism 0 — sls, defined by do,, — 0, d — h, X — e, Ag — f. We denote by
04 C 0 its kernel.

Since the morphism 0 — sly has a section (given by e, f,h — X, Ag,d),
we have a semidirect product decomposition 0 = 94 X sls.

We then have

il’n X0 = (Il,n X D+) X 5l2.

Lemma 8. t;, x 04 is positively graded.

Proof. We define compatible Z2-gradings of ? and t; ,, by deg(Ao) = (-1, 1),
deg(d) = (0,0), deg(X) = (1,—1), deg(d2m) = (2m + 1, 1), deg(x;) = (1,0),
deg(yi) = (0,1), deg(t;;) = (1,1).

We define the support of ? (resp., t1.,) as the subset of Z? of indices for
which the corresponding component of d (resp., t; ,,) is nonzero.

Since the Z; on one hand, the g; on the other hand generate abelian Lie
subalgebras of t; ,,, the support of t; ,, is contained in N2 ;U {(1,0), (0,1)}.

On the other hand, 24 is generated by the ad(Ag)P(d2m), which all have
degrees in N2 . It follows that the support of 9 is contained in N2 .

Therefore the support of t; , x 04 is contained in N2, U {(1,0), (0,1)}, so
this Lie algebra is positively graded. O

Lemma 9. t; , X 0 is a sum of finite dimensional sly-modules; 0 is a sum
of irreducible odd dimensional sly-modules.

Proof. A generating space for t; ,, is ), (CZ; ® Cg;), which is a sum of finite
dimensional slo-modules, so t; 5, is a sum of finite dimensional sly-modules.
A generating space for 04 is the sum over m > 1 of its slp-submodules
generated by the dg,,, which are zero or irreducible odd dimensional, there-
fore 04 is a sum of odd dimensional slo-modules. (In fact, the sly-submodule
generated by do,, is nonzero, as it follows from the construction of the above
morphism 94 — Der(t; ,,) that da,, # 0.) O
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It follows that t; ,,, 04+ and t;, x 94 integrate to SLy(C)-modules (while
0. even integrates to a PSLa(C)-module).
We can form in particular the semidirect products

G, :=exp((tn @ 04)") x SLy(C)

and exp(d, ) x PSLy(C); we have morphisms G,, — exp(d;) x PSLy(C) (this
is a 2-covering if n = 1 since t; 1 = 0).

Observe that the action of S,, by automorphisms of t;, extends to an
action on an x 0, where the action on 0 is trivial. This gives rise to an action
of S,, by automorphisms of G,,.

3.2 Bundle with flat connection on M, ,
The semidirect product ((Z")? x C) x SLy(Z) acts on (C" x §) — Diag,, by

(n,m,u) * (z,7) := (n + 7m + u( 26 ) for (n,m,u) € (Z")* x C

[

and

v 0 YT +0 YT+ 0

(here Diag, := {(z,7) € C" x 9| for some i # j, z;; € A;}). The quotient then
identifies with the moduli space M ,, of elliptic curves with n marked points.

Set G, := exp((t; n x04)") X SLy(C). We will define a principal G,,-bundle
with flat connection (P,, Vp,) over My .

For v € C*, u? = <u u91> € SLy(C) € G, and for v € C, X =

<a6) (2.7) e (2 7aT+I6)fOI" <:§>GSL2(Z)

0

<(1) 11]) € SLy(C) C Gy. Since [X, Z;] = 0, we consistently set

exp(aX + Z biX;) = exp(aX)eXp(Z biX;).

Proposition 10. There exists a unique principal G, -bundle P,, over M ,,
such that a section of U C My, is a function f: 7~ (U) — G,, (where

7: (C" x §) — Diag,, — M1

is the canonical projection), such that

Sat BIr) = fla.t (2, 60lr) = £(el),
J(5 -+ 70i|7) = 7% f(al),

lafr+1) = ) ond

J(z] = 1) = rexp(2E (S, w5+ X))f(al).
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Proof. Let ¢z : C" x § — G,, be a family of holomorphic functions (where
g € ((Z")* x C) x SLy(Z)) satisfying the cocycle condition

cag (2|7) = c5(3" * (2|7))cq (2] 7).

Then there exists a unique principal G,,-bundle over M, ,, such that a section
of U C My, is a function f : #=1(U) — G, such that f(g * (z|7)) =
cg(2|7) f(2|7).

We will now prove that there is a unique cocycle such that c(, 0,0y =
c0,60,0) = 1, c0,0,6,) = €25, cg =1 and cr(z|r) = 7%exp(Z (X, 2% + X)),

11 0-1
where S = (0 1>,T <1 0 >
Such a cocycle is the same as a family of functions ¢, : C" x$) — G,, (where

g € SLy(Z)), satisfying the cocycle conditions ¢y4/ (z|7) = c4(g’ * (2|7))cy (2|T)
for g,/ € SLa(Z), and c,(z + &|1) = €™ ic,(z|7), cy(z + 78|T) =

PTG o) and (e + u(S0)l7) = cyfalr) for g = (7]

vé) ©
SLy(2).

Lemma 11. There exists a unique family of functions ¢y : C" xH — Gy, such
that cyq (2|7) = c4(g' * (2|7))cy (2|T) for g,¢" € SLa(Z), with

cs(z|r) =1, ep(alr) = 12/ 254X
Proof. SLa(Z) is the group generated by S, T and relations T* = 1, (S'T)3 =
Tg, ST? = T2S. Let (5’, T) be the free group with generators S', T; then there
is a unique family of maps ¢ : C" x 9 — G,,, g € (S,T) satisfying the cocycle
conditions (w.r.t. the action of (S,T) on C" x $ through its quotient SLy(Z))
and c¢g = cg, c; = cr. It remains to show that czu = 1, ¢g7)s = ¢ and
572 = Cf2§-

For this, we show that c.(z|7) = (—1)%. We have

¢y (2[T) = er(z/T| = 1/7)er(2|T)

= (—T)_dexp(—27ri7'(2(zj/T)S(j + X))Tdexp(%ri(z ziX; + X))

= (-1 |

since 74X r—4 = X, iz, 74 = 1%;.
Since ((—1)%)? = 1% = 1, we get ¢4 = 1. Since cg and cz. are both
constant and commute, we also get cgje2 = Cjag.

We finally have cg7(2|7) = cr(z|7) while ST = (i 01>, (ST)? = ((1) _1)

d

SO
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Z 1 z T—1
Iy )er(Cl=——)er(zl7)

(%)dexppmzzjxj +2mi(1 — )X

cg7)(2]7) = er(

T—1

)d

2mi _ T 2mi _
exp(— 1 szxj + 271'1T — 1X)Tdexp(?(z z;%; + X))

T (S + Xexp( s (3% + )

J J

= (~1)%exp(

1—71

exp(“2 (Y 7%+ X)) = (-1)%

J
SO C(S‘TV = Cfo- O

End of proof of Proposition 10. We now check that the maps c, satisfy
the remaining conditions, i.e., c(z + u(}_, 0;)|7) = c4(2|7), c4(z + 0i|7) =
e ¥%ic (z|7), cy(z + T8;|T) = e 2m%ic (z|7)e?™ i, The cocycle identity
Cqq'(2|T) = ¢4(9'*(2|T))cy (2|7) implies that it suffices to prove these identities
for g = S and g = T. They are trivially satisfied if ¢ = .S. When g = T, the
first identity follows from ) . Z; = 0, the third identity follows from the fact
that (X, Z1, ..., Z,) is a commutative family, the second identity follows from

the same fact together with 79z;7~ = 12;. a
Set
0(z+z|T) 0 0’ 1
= — 7 (— - — — =k,
g(ZVCC‘T) 9(Z|T>9($|T) ( 9 (Z + I|T) 0 (IlT)) + fL'2 .’L(Z7x‘7—)7

(we set f'(z|1) := (0/02) f(z|T)).
We have g(z,2|7) € Hol((C x $) — Diag;)[[x]], therefore g(z,ad%;|7) is

a linear map t;,, — (Hol((C x $) — Diag;) ® t1,,)", so g(z,adx;|7)(t;j) €
(Hol((C x $) — Diag;) ® t; »)". Therefore

9(2|7) = g(zij, adss|7) (8)

i<j

is a meromorphic function C" x § — H” with only poles at Diag,.
We set

B 1 1 1
A = —7A - — nE n 5 n a . 1)
(z|7) 5740 Qwi;@ on+2(7)02n + 27“9(2\7)

where ag, = —(2n + 1)Bay,12(2i7)?"+2/(2n + 2)! and B,, are the Bernoulli
numbers given by z/(e®* —1) = > (B, /r!)2". This is a meromorphic func-
tion C" x § — (t1,, ¥ 04)" x ny C Lie(Gq ) (where ny = CAg C slp) with
only poles at Diag,.
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For ¢(z) = > o b2,x®", we set 8y = > oy bondon, Ay = Ag +
ZnZl bgnégn. If we Sejﬂ B
p(xlr) = —a=2 = (0'/0) (x|7) + (@2 +(0'/8) (x|7))j2=0 = 9(0,0[7) — g(0,z|7),
then p(z|7) =3_,5, a2n Bany2(T)2?", so that
A(alr) = ~ g Agtuir) + 520(alr)
T) = —— A 1) + =—9(z|7).
omi —eUIT) T oY
Theorem 12. There is a unique flat connection Vp, on Py, whose pull-back

to (C™ x $)) — Diag,, is the connection

— A(z|T)dr — Z K;(z|7)dz;

on the trivial G, -bundle.

Proof. We should check that the connection d — A(z|r)dr — Y, Ki(z|7)dz; is
equivariant and flat, which is expressed as follows (taking into account that
we already checked the equivariance and flatness of d — ), Ki(z|7)dz; for any

T):
(equivariance) for g = (a 6) € SLo(Z)

v 4
1 - Z at + 3, = _ .
sk 7T+6\W+6) = Ad(cg(z|7))(Ki(z|T)) + [(0/ 0z )cg (2] T)]cg (z]7) " (6)
Alz+8|1) = A z+uz5 |7) = A(z|T)
and Az +78|7) = e_zmadx( (z|7) — Ki(z|7)), (7
1 - Z ar+ 3, -
A 1) = Adle(alm) (B(al) ®)
#3g 3o AdCEl)Re) + (5 + 52 (a7l (elr)

(flatness) [0/01 — A(z|7),0/0z — K,(z|7)] = 0.

Let us now check the equivariance identity (6) for K;(z|7). The cocycle
identity ¢4/ (2|7) = ¢4(g'*(2|T))cq (z|7) implies that it suffices to check it when
g=Sand g =T. When g = S, this is the identity K;(z|T + 1) = K;(z|7),
which follows from the identity 6(z|7 + 1) = 0(z|7). When g = T, we have to
check the identity

1 - 1 =i =
K2 - 2) = Ad(rleF Cimsi X)) (K, (1)) + 2nik;. (9)
T T T
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We have
2mix; — Ad(e%i(zi Zi;“*'x))(yi/r)
= —Ad(m X)) (g/7)  (as Ad(€*MTX)(5i/7) = §i/7 + 27ixi)

271'1dd(zk ZkXk) _ 1

gi _ yz
=—— - 2T ,—
a (Zk Zka zj: 7

T

6271'iad(zk ZxXk) _ 1

__¥% _ Zjig
BREREE >R RO D)

Jli#i
— 27riad(zk ZkXk) _ 1 o 7. QWiad(Zij)?i) —1 Lo
=% Z ‘ (>, 7exe) (@tij) =¥ Z edﬁ(@tij)
T a ZxX T T ad\zijXi T
gl k Tk Jli#i !
= 27riad(z;j5q) —1 E
__Y% e =l
AP PR
Jli#i
therefore
1 627Tizijad)7(i _ 1 B
—Q g () — ) = —Ad( )(F:) + 27i%;. (10)
j 1

We have 0(z/7| — 1/7) = (1/7)e(™/™% 0(z|r), therefore

1 2 1 . eQTrizx -1

Zk(Z [ G 27rlzxk - - 11

Th(Z 0l - 1) = kG, ) + S (1)
Substituting (z,2) = (zi;,ad%;) (j # ), applying to ¢;;, summing over j and
adding up identity (10), we get

ZU 3| — 1 )Y w) — 27iz;i;adX; B = T
Z B(ZE adsi| = —)(Ey) —31) = D W k(2 adss|7) ()
J\]#l jli#i

—Ad(rde T (2 mm X)) () 4 orix;.

Since e?™#iad%i (2,0 Tads;|7) (t;) = Ad(rde@™/ M 7%+ X)) (K(z45, ads) (855))
this implies (9). This ends the proof of (6 ) -

Let us now check the shift identities (7) in A(z|7). The first part is imme-
diate; let us check the last identity. We have k(z + 7, z|7) = e 2™*g(z, z|7) +
(e=2mix - 1)/z, therefore g(z + 7, z|7) = e 2™ Xg(z, z|7) — 2mie~ 2" *k(z, x|7) +
1(% — 2mie”?™X). Substituting (z,2) = (zi;,adx;) (j # i), applying
to ;;, summing up and adding up >, ;. ;5 9(2k, ad%x|7)(tx), we get that

g(z + 79;|7) equals

1 _ e—21r1ad5ci

e—27riad;‘ci (g(z|7_)) _ Zﬂle—leadx ( ( |7_) + Y1 + Z _ QWie—Qwiadii)(Eij)

adx1 adx;
jli#i

—2miadX; —2miadx. 1- ~2mladxy . —2miadx;
= &2 (g(g] 7)) — 2mie > (Ki(2]7) + 55) — (— o — 2mie ™) ()
adxi
1— 6727riad>'ci

= €7 (g g]r)) — 2ie 2N (R ) — (5:);

adx;
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on the other hand, we have e~2™ad%i (Ay) = Aﬁ%(gi) (as [Ag, T;] =
i), therefore g(z + &;|7) — Ag = e 2™ (g(z|7) — Ay — 27iK;(z|7)). Since
the 82, commute with 7;, we get A(z + 76;|7) = e~ 2™2% (A(z|7) — K;(z|7)),
as wanted.

Let us now check the equivariance identities (8) for A(z|7). As above, the
cocycle identities imply that it suffices to check (8) for g = S, 7. When g = S,
this identity follows from ", K;(z|7) = 0. When g = T, it is written

) = Ad(cr(z \T))(A(zh') + %Zzif(i(zh)) + % —omiX. (12)

1

ﬂ\*—*

The modularity identity (11) for k(z, z|7) implies that

1 1— eQﬂ’izx 2mwizx

2miz e
590G a1 =

2mizx
€ 2

2miz o
627”ZX]€(

g(z,7alr)+ Bl T

This implies

z 1, - e ad _ _
= Z = —adxi] = —)(ty) = > ePmadNig(ny, rads| ) (B)
i<y T i<
Qﬂiz;_iadii

27TiZij eQ‘n’izij adx; B

) (t5)-

2mi 27'riz;iad5q - T 1—e
’ ; E TadXim(tij)Jr;( 72(adx;)? 2 adx

We compute as above

D etz radss|7) () = Ad(T%

i<j

2mi

P 50 g g ),

2mi

. _ _ 2
2T T e radsilr) (By) = 3 (3 2T (g, rads ) ()
1<J i T jliF#l

(using k(z, x|7) + k(—z, —z|7) = 0) and

> ermindSig (2 rads|7) (Ey) = Ad(r9e™ S E) (K (a)r) + 7).

i<j
Therefore

1 2ri 7 2
921 = 2) = Ader(alr) (stelr) + 22 > Ki(air) + = Zy)
27rlz]]adx, 27Tizij e?rrizijad)’(i B
ti’ )
+Z 2 (adx;) + 72 adx; )(tis)

i<j

which implies
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1 z 1
2

SACI - 2) = Ad(er(an) (Blain) + — 3 Kifalr) + Ad(ex (i) (- 3 )

1 1
= + T
27i Kj( 72(adx;)? 72 adx; )(t:5)

_ 627rizij adX; 27TiZij 627Tiij adX;

1 1
+5= (Ad(er(z[7)(Agem) = 5 Bl -1/7))-

To prove (12), it then suffices to prove
1— e2wizijad>?i 27TiZij e27rizijadfq

Ad(er(alr)(; Y5 + 3= (g + g ) ()

1

1

1 d :
+7<Ad(CT(Z‘T))(A¢(*|T)) - ﬁAﬁP(H*l/T)) = o 27iX. (13)

2mi
We compute

Qﬂizijadii -1

Ad(CT(Z|T))(%Z IYI = QZ Ziyi+ 27TIZZX1+Z ZlJT)_{i(Eij)-

i i<j

We also have Ad(cr(z|7))(E2nt2(7)02n) = Z5Bonta(—1)dan since [02,, 7] =
[62n,X} =0 and [d, 5271} = 2n52n, and since E2n+2(—1/7') = T2n+2E2n+2(7').
This implies

Ad(cr(2|7)) (g (x)7)) = O (x|-1/7)-

We now compute Ad(cr(z|7))(Ag) — (1/72)A¢. We have
Ad(cr(z|7))(Ag) = Ad(e2™ 2i%%) o Ad(r9e™/X)(A),
and
Ad(79eCm/DXY(AG) = (1/72) A + (27i/7)d — (271)%X.
Now Ad(e?™2i%%)(X) = X, Ad(e?™ Xi%%)(d) = d — 271 Y, zi%. We now
compute
e27‘riZ:i ziadX; 1

A 2mi Yy, ziXg An) = A —
d(e )( 0) o+ 27riad(zizi}_(i)

([2m1) 7%, Ag))
i
6271'12 ziadX; __ 21 35 5.1 Ziiad%y 1

e
o 2iYi) = ——(2i%:)
ad(3; ziXi) Z Zl: ad(Zj\j;éi 2jiX;)

1 e27r1 Zm#i zjiadX; 1

:AO—

- 27ri)([z zjiXj, Zi}_’i])>

jliA

—40-Y (27rizi}71 T

i

il Zii%i) - ad (354 %5i%;)
eQ‘n’iZﬁad)?j -1

. 1 o
= Ay — zi:?mzi}’i — Z (ad(ij)( ad(z:%;) - 2771)(21%'));

i#j
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the last sum decomposes as

1 eQﬂiZjiadicj -1 B 1 eQﬂiZjiadftj -1 _
( — — 2mi)(zity;) + — ( — — 27i) (zity;)
; ad(%;) " ad(z;X;) ! ; ad(xj) " ad(z;i%;) !
1 eQﬂ'iZjiadij -1 B 1 e?‘n’izijadfq -1 B
— 27i)(ziti; — — — 27 it
; ad(x;) " ad(z;i%;) mts) + ) ad(z;%;) i) eiti)
1 eQﬂiz;jadii -1 B
= —— — 2mi)(z;ity;),
i<y ad( i ad(Zini)
SO
21 Y, 7% 2ﬂiz;_iadii -1 ] B
Ad(e*™ 2 75) (Ag) = Ag— 2mzz Fi— ;ad (o) —2mi) (25it35),
and finally
1 2mi _
Ad(CT(Z|T))(A<p(*|T)) - ﬁAtp(*‘—l/T) = _? Ziyi —

i
627TiZij adx; _ 1

1 1
2 Zj: ad(ii) ( ad(zijii)

2
— i) (zity) + ﬂ(d 2mi Y %) — (2m0)%X,

i

which implies (13). This proves (12) and therefore (8).
We prove the flatness identity [0/0T — A(z|r),d/dz; — K;(z|7)] = 0. For
this, we prove that (0/07)K;(z|7) = (0/07)A(z|7), and [A(z|7), K;(z|T)] = 0.
Let us first prove

(0/07)K;(z|T) = (0/02;) A(z|T). (14)

We have B B
(0/07)Ki(a|r) = ) (9-k) (215, adsi| ) (&)
Jli#i
and (0/0z;)A(z|T) = (2mi)~! Zj\j#i (0.9)(zij,adx;)(ty;) (where 0, := 9/0T,
0, = 0/0z) so it suffices to prove the identity

(0rk) (2, al) = (271) 7 (D,8) (2, x|7),

Le., (0:k)(z,x|T) = (271)~*(8,0k)(z x|7). In this identity, k(z,z|T) may be
replaced by k(z, z|7) := k(z,2|7) + 1/x = 0(2 + x|7)/(0(2|7)0(x|T)). Dividing
by k(z,z|T), the wanted identity is rewritten as

27ri(%(z +x|7) — %(zh) — %(Xh’))

!/ / / /
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(recall that f'(z|r) = 0.f(z|7)), or taking into account the heat equation
47i(0,0/0)(z|T) = (0" /0)(z|T) — 127i(0rn/n)(T), as follows

2($ NG @ln) - Gl (= +alr) - NG +aln)  (15)

8 (2l7) + G (2l7) + & (2 + 2fr) — 120120 (r) = 0

Let us prove (15). Denote its L.h.s. by F(z,x|7). Since (z|7) is odd w.r.t. z,
F(z,x|7) is invariant under the permutation of z,x, —z — z. The identities

(6"/0)(z + 7I7) = (8'/6)(2|7) — 27i

and
(0" /6)(= + 7Ir) = (8" /0) (2I7) — 4mi(0' /6) (alr) + (2ri)?

imply that F(z,z|7) is elliptic in z, 2 (w.r.t. the lattice A,). The possible poles
of F(z,z|r) as a function of z are simple at z = 0 and z = —z (mod A,),
but one checks that F(z,z|7) is regular at these points, so it is constant in z.
By the &3-symmetry, it is also constant in x, hence it is a function of 7 only:
F(z,z|T) = F(71).

To compute this function, we compute

F(z,007) = [=2(0'/0) = 2(0' /6)* + 260" /6] (z|7) + (6" /) (0] ) — 127i(9,n /0) (7),

hence
F(r) = (0"/0)(07) — 127i(d-n/n)(7).

The above heat equation then implies that F(r) = 47i(9,60/60)(0|7). Now
¢’(0]7) =1 implies that 6(z|7) has the expansion §(z|7) = 2+ >, 5 an(7)2"
as z — 0, which implies (9,60/0)(0|7) = 0. So F(r) = 0, which implies (15)
and therefore (14).
We now prove
[A(alr), Ki(alr)] = 0. (16)

Since T is constant in what follows, we will write k(z, x), g(z, x), ¢ instead of

k(z,z|T), g(z,2|T), @(*|T). For i # j, let us set g;; := g(z;j, ad%;)(t;;). Since

g(z,z|7) = g(—2, —x|7), we have g;; = gj;. Recall that K;; = k(z;;, ad%;)(t;)-
We have

2mi[A(z|7), Kilz|7)] = [-Ap + Y g —¥i + Y Ky (17)
1,ji<j jli#i
= [A, ui] + Z <— [Ay, Kij) + [, 9i5] + [gij7kij]>
Jli#i

+ > (10> gix) + [gir + g Kig) + (955 + gix, Kir])-
Jiklii k#4,5<k

One computes
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[Ag,5i] =) [faladss) (), ga(—adx:) (ty)] (18)

where 37, fa(u)ga(v) = L 220 If f(z) € C|[z]], then

[Ao, f(ads;) ()] = [73, ' (adsi) (5)] = Y [ha(ads;) (§), ka (ads;) (5)]

[e%

f(adx;) — f(—adx;) — f'(—adx;) (adx; + adx;) _
* . Z _ (ads; + adx;)? (I35 tan]),
|k#i,j
where
S hawka(®) = 5 (5 (Fluto) =)0 f () = = (F(wt0)=F (o) ~uf () ).

Since g(z,x) = kyx(z, ), we get

—[ A0, Kj] + [, 9is) = — D12 (adss) (), 8 (adsi) (8]

(19)
a
Zl]’ adxl — k(Zij, —adij) — (adfci + acb?j)kx(zij, —adf(j)
+ Z (adx; + adx;)?
k|k#4,j

([tij» Eik]),
where >° fi9(u)g¥ (v) equals

;(Ui?(k(zij,u—kv)—k(z”, ) —vk, (sz7 ))_%(k(ziﬁu“_v)_k(zwv ) —uky (ZU’ )))

For f(x) € C][z]], we have

[66, f(ads) (E)] = Y [La(ads) (B), ma (adss) ()],

(e

where Y lo(u)mqa(v) = f(u+ v)p(v); therefore

—[0p, Kij) = = >[I (adsy) (), m3 (ads) (85)), (20)
where > 1% (u)m¥ (v) = k(z5, u + v)p(v).
For j,k # i and j < k, we have

[Wi» 9ik] + lgix + gj, f_(ij] + [9i5 + gj, K]

= (Ui, 9] — l9ri, Kji] — (95, Kiil + (95, Kiz) + (98, Kir),

and since for any f(z) € C[[z]], [#:, f(adx:) (bjx)] =

f(adx;) —f(—adXi)
we get

adx;+adxx ([tIJ’ th])
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g(ij, adij) — g(ij, —adxy)
adx; + adxy
7!](2’]“‘, ad)_(k)k(zji, ad)_(j) + g(Zji, adij)k(zki, adik) (21)

—g(zkj, adxy ) k(zi, adx;) + g(zjx, adX; ) k(zik, adii)) ([t bix])-

Wi, 9jk] + [gik + Gk, Kij] + (95 + Gk, Kir]) = ( —

Summing up (18), (19), (20) and (21), (17) gives
2mi[A(z|7), Ki(zlr)] = Y D [F (adx;) (ty), Gl (adsi) (8]
jli#i a
+ Y H(zy, 2, —adsy, —adsa) ([t t1))s
3okl ki

where > Fi9(u)G¥ (v) = L(zij,u,v),

Lzu0) = 3 D20 4 Lk o) o) — (o)

15 (92 wk(z,0) — k(= u)g(2,0))
—% (vi? (k(z,u+v) — k(z,u) — vks(2,u))

(w4 ) = K(z,0) — wka(2,0)) )

and
H(z,2' ,u,v) = % (k(z,u+v) — k(z,u) — vkz (2, u))
—u%(k(zl, u+v)—k(z',v) — ukc,;(z'm))

—&—uj_v (9(z' = z,—u) — g(z' — 2,v))
—g(=2', —v)k(—2z, —u) + g(—2, —u)k(=2", —v)
—g(z — 2", —0)k(z,u +v) + g(z' — z, —u)k(z',u +v).

Explicit computation shows that H(z,z',u,v) = 0, which implies that
L(z,u,v) = 0 since L(z,u,v) = f%H(z, z,u,v). This proves (16). O

Remark 13. Define A(z|7) by the same formula as A(z|7), replacing Z;, ¥;
by @;,y;. Then d — A(z|7)dr — >, Ki(z|7)dz; is flat. This can be interpreted
as follows.

Let Ny C SLy(C) be the connected subgroup with Lie algebra CAg. Set
Nn = eXp((tl,n A D+)/\) el N+7 N, = eXp((El,n A 0+)/\) el N+ and Gn =
exp((ty n x 04)") x SLy(C). Then we have a diagram of groups

Nn—>Nn
JR
G, — G,

The trivial N,-bundle on (§ x C") —Diag,, with flat connection d—A(z|r)d7 —
> Ki(z|7)dz; admits a reduction to N,,, where the bundle is again trivial and
the connection is d — A(z|r)dr — 3, Ki(z|7)dz;.
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((Z?)? x C) x SLy(Z) contains the subgroups (Z")?2, (Z")? x C, (Z")? %
SLa(Z). We denote the corresponding quotients of (C" x ) — Diag,, by C(n),
C(n), M1. These fit in the diagram

C(n) — C(n)
1 !
Ml,n - Ml,n

The pair (P, Vp,) can be pulled back to G,-bundles over these covers of
M . These pull-backs admit G-structures, where G is the corresponding
group in the above diagram of groups.

We have natural projections C(n) — $, C(n) — $. The fibers of 7 € §
are respectively C(E,,n) and C(FE,,n). The pair (P,, V,) can be pulled back
to C(E,,n) and C(E,,n); these pull-backs admit G-structures, where G =

exp(t1 ) and exp(t; ), which coincide with (P, ., V, ) and (P, Vy.r).

3.3 Bundle with flat connection over M

The semidirect product ((Z")? x C) x (SL2(Z) x S,) acts on (C" x ) — Diag,,
as follows: the action of ((Z")? x C) x SLy(C) is as above and the action of
Spis 0 % (21, ..y 20, T) = (Z6-1(1), -+ Zo—1(n), T)- The quotient then identifies

We will define a principal G, X S,,-bundle with a flat connection (P, Vp,,,)
over My [,

Proposition 14. There exists a unique principal Gy, X Sy-bundle P, over
My [n], such that a section of U C My 1, is a function f : 7 HU) — Gy xSy,
satisfying the conditions of Proposition 10 as well as f(oz|T) = of(z|T) for
o €8y (here w: (C" x §) — Diag, — My ) is the canonical projection,).

Proof. One checks that ocz(z|7)0™! = ¢,5,-1(0'2), where § € ((Z")? x C) x
SL2(Z), o € Sp. Tt follows that there is a unique cocycle CG,o) t C" X H —
G, x Sy, such that c(5 1) = ¢ and c(1 ) (2|T) = 0. O

Theorem 15. There is a unique flat connection Vp,, on P, whose pull-
back to (C" x §) — Diag,, is the connection d — A(z|7)dr — Y, Ki(z|7)dz on
the trivial G,, x S, -bundle.

Proof. Taking into account Theorem 12, it remains to show that this con-
nection is S,-equivariant. We have already mentioned that ), K;(z|7)dz; is
equivariant; A(z|7) is also checked to be equivariant. O
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4 The monodromy morphisms I ) — G, X S,

Let I' [,) be the mapping class group of genus 1 surfaces with n unordered
marked points. It can be viewed as the fundamental group 7 (M [, *), where
* is a base point at infinity which will be specified later. The flat connection
on My [, introduced above gives rise to morphisms v, : I [, — Gy X Sy,
which we now study. This study in divided in two parts: in the first, analytic
part, we show that -, can be obtained from ~; and 5, and show that the
restriction of v, to By, can be expressed in terms of the KZ associator only.

In the second part, we show that morphisms B;, — exp(iLn) X S, can be
constructed algebraically using an arbitrary associator. Finally, we introduce
the notion of an elliptic structure over a quasi-bialgebra.

4.1 The solution F(™) (z|T)
The elliptic KZB system is now
(0/0z)F(2|1) = K;(2|r)F(z|r), (9/07)F(z|r) = A(a|r)F(z|r),

where F'(z|7) is a function (C™ x $)) — Diag,, D U — G,, x S, invariant under
translation by C(>_,0;). Let D,, := {(z,7) € C" x 9|2z, = a; + b;7,a,,b; €
Ryay <ag < ..<ap,<ar+1,by <by <..<b,<b+1}. Then D, C (C™ x
$)—Diag,, is simply connected and invariant under C(}_, ¢;). A solution of the
elliptic KZB system on this domain is then unique, up to right multiplication
by a constant. We now determine a particular solution F( (z|r).

Let us study the elliptic KZB system in the region z;; < 1, 7 — ico. Then
Ri(alr) = ¥y, 65/ (21 — 23) + O(1).

We now compute the expansion of A(z|7). The heat equation for ¢ implies
the expansion J(z|7) = n(7)3(z + 2710, logn(7)x> + O(x%)), so (z|7) = = +
2mid,logn(7)x* + O(x®), hence

/

9(0,2lr) = (5)/(wlr) + — = 4mid,logn(r) + O(x) = ~(x*/3)Ex(r) + O(x)

_ 24

since Ey(7) = 50;logn(7). We have g(0, z|T) = ¢(0,0|7) — (x|7), so

9(0,z[7) = — Zazk$2kE2k+2(T),

k>0
where ag = 72/3. Then
_ 1 B _
A(Z|T) = —% (Ao + kZManEQkJrQ(T) (62k =+ 2; ‘(adxi)2k<t1j))) + 0(1)
=z ,711<J

for z;;; < 1 and any 7 € §. Since we have an expansion Foy,(7) =
1+ Zl>0 ape®™ 7 as 7 — ico, and using Proposition 85 with u, = 2,1,
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Up—1 = Zn—1,1/2n1y, U2 = 221/ 231, U1 = ¢ = €2™7, there is a unique solution
F™)(z|7) with the expansion

FO (a]7) ~ 2zt -~-Zilfl+m+{n_1'"exp<—i (A0+Z aok (52k+2(adii)2k(fij))))

2mi —
k>0 i<j
in the region 291 < 231 € ... € zp1 € 1, 7 — oo, (z,7) € D, (here
zij = z; — %;); here the sign ~ means that any of the ratios of both sides
has the form 1+37, 0>, . rp® % (uy, ..., u,), where the second sum
is finite with a; > 0,4 € {1,...,n}, r};’al""’a" (uq,...,un) has degree k, and is
O(u;(loguy)®...(loguy, )?).

4.2 Presentation of I [,

—_~— —_~—

According to [Bir69b], I' ) = {Bin % SL2(Z)}/Z, where SLy(Z) is a
central extension 1 — Z — SLo(Z) — SLa(Z) — 1; the action «a :
SLy(Z) — Aut(B; ) is such that for Z the central element 1 € Z C SLy(Z),
az(z) = Z'x(Z')~!, where Z' is the image of a generator of the center of
PB,, (the pure braid group of n points on the plane) under the natural mor-
phism PB,, — B ; Bi, % SLa(Z) is then By, x SLo(Z) with the product
(p, A)(p', A”) = (paa(p’), AA"); this semidirect product is then factored by its
central subgroup (isomorphic to Z) generated by ((Z')71, Z).

I'y [) is presented explicitly as follows. Generators are o; (i = 1,...,n — 1),
Ai,B; i=1,..,n), Cjr (1 <j<k<n), O and ¥, and relations are:

0i0i410; = 0410041 (1 =1,..,n—2), o0 =0,0; (1 <i<j<n),
O’,L-_lXiO',L-_l =X,11, 0Yio, =Y 1 (i=1,...,n—1),
(0i, X;) = (04,Y;) =1 (i € {1,...n—1},5 € {1,...,n},j #i,i+1),
07 = Ciix1Cip1442C, ) (i=1,..,n = 1),
(A;, A;) = (Bi, Bj) = 1(any i,j), A; =B; =1,

(Bi, ARA; ") = (BrB; ', Ay) = Cj (1< j <k <n),

(A;,Cjr) = (Bi,Cj) =1 (1<i<j<k<n),
0A4,67' =B', 6B,67'=BAB; ",
WAV = A;, UBW'=DBA;, (0,00) = W,0) =1,
(7,0%) =1, (O¥)®=0"*=C13...00 1.

Here X; = AZ-A;ll, Y, = BiB;rll for i = 1,...,n (with the convention A, =

By +1 = Cjny1 = 1). The relations imply

Cik = 0 j+1.. k- Ojtn—k jan—k+1..n0jj+1...n—k+j+1---Ok—1,k...n»
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where 0;;11..; = 0j-1...0;. Observe that Ci»,...,C,_1,, commute with each
other. o
The group SLo(Z) is presented by generators ©,¥ and Z, and relations: Z

is central, ©* = (O¥)3 = Z and (¥, ©?) = 1. The morphism SLs(Z) — SLa(Z)
is © — ((01 (1)> ), U — (((1) 1) ), and the morphism I [, — SLo(Z) is
given by the same formulas and A;, B;,0; — 1.

The elliptic braid group By, is the kernel of I [,,; — SLy(Z); it has the
same presentation as I [,), except for the omission of the generators ©,¥
and the relations involving them. The “pure” mapping class group I ,, is the
kernel of Iy ) — Sn, Ai, Bi, Cjr — 1, 0; — 0y; it has the same presentation
as I [n), except for the omission of the ;. Finally, recall that PB; , is the
kernel of I' [,) — SLa(Z) x S,.

Remark 16. The extended mapping class group flm of classes of non neces-
sarily orientation-preserving self-homeomorphisms of a surface of type (1,n)
fits in a split exact sequence 1 — I, — I, — Z/2Z — 1; it may be

viewed as {PB1 ,, x GL2(Z)}/Z; it has the same presentation as I , with the
additional generator X' subject to

X?=1, yYoxr‘t=o0t xurlt=vwl
TAETT =AY, EB Y= AB AT

4.3 The monodromy morphisms vy, : I [n] — G X Sy

Let F(z|7) be a solution of the elliptic KZB system defined on D,,.

Recall that D, := {(z,7) € C" x 9|z; = a; + b;7,a;,b; € Rya1 < a2 <

< ap < ap +1L,bp < by < ... < by, < by + 1}. The domains H,, :=

{(Z,T) e C" x .6|ZZ = a; +bi7',ai,bi S ]R,al <a < ... <ap <ap+ ].} and
D, = {(Z,T) € CanﬂZl =a;+b;T,a;,b; ER, by <by < ...<b, < b1+1} are
also simply connected and invariant, and we denote by F*(z|r) and FV (z|7)
the prolongations of F(z|7) to these domains.

Then (z,7) — FH(z + >i;dilt) and (z,7) Mt ) BV (7
7'(22?27 0;)|7) are solutions of the elliptic KZB system on H, and D, re-
spectively. We define Af, BZF € G, by

z+z(s|7 = F(z|r)Af, STt V(g7 (Y " 6)|7) = FV(2|7) B

j=i

The action of T7! = ((_01 (1)>) is (z,7) — (—z/7,—1/7); this trans-
formation takes H,, to V. Then (z,7) — cp-1(z|7) " 'FV(~2z/7| — 1/7) is
a solution of the elliptic KZB system on H, (recall that cp-1(z|7)"! =
eQﬂi(—Ziziii+TX)(_T)d —_ (_T)de(QTri/'r)(ZiZ;fq—&-X)). We define @F by
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cr—1(z|7) Y FY (—z/7| — 1/7) = FH(2|7)OF.

11
01
takes H,, to itself. Since cs(z|7) = 1, the function (z,7) — FH(z,7+ 1) is a
solution of the elliptic KZB system on H,,. We define ¥¥" by

The action of S = ( < )) is (z,7) — (z,7 + 1). This transformation

FH(z|r +1) = FH (z|r)oF.

Finally, define o by
O'iF(O'Z-_1Z|T) = F(ZIT)O’ZF,

where on the Lh.s. F is extended to the universal cover of (C™ x $)) — Diag,
(0; exchanges z; and z;41, 2,11 passing to the right of z;).

Lemma 17. There is a unique morphism I [,) — Gi1,n X Sy, taking X to
X¥, where X = A;, B;, 0 or V.

Proof. This follows from the geometric description of generators of Iy [): if
(zo,70) € D,, then A; is the class of the projection of the path [0,1] >
t — (20 +t>;_;0j,70), Bi is the class of the projection of [0,1] > ¢
(zo + t7 Z?:l d;,70), © is the class of the projection of any path connecting
(2o, 70) to (—zo /70, —1/70) contained in H,,, and ¥ is the class of the projection
of any path connecting (zg, 79) to (2o, 70 + 1) contained in H,,. O

We will denote by v, : I — Gy xSy, the morphism induced by the
solution F(")(z|7).

4.4 Expression of v, : I'y [ — G, X S, using 71 and 72

Lemma 18. There exists a unique Lie algebra morphismd — t; , %0, x — [z],
such that [5271] = 0oy, + Zi<j (ad}_(i)Qn(tij)} [X] = X7 [AO] = AO; [d] =d.

It induces a group morphism G1 — G,,, also denoted g — [g].
Lemma 19. For each map ¢ : {1,....,m} — {1,...,n}, there exists a Lie al-
gebra morphism 1, — tim, * — x°, defined by (7;)? = Zi,e¢_1(i) T,
@:)? = Xies100 Ts (13)* = Lirep1(0).50e6-1) it

It induces a group morphism exp(t; ) — exp(ti.m), also denoted g — g®.

The proofs are immediate. We now recall the definition and properties of
the KZ associator [Dri91].

If k is a field with char(k) = 0, we let tX be the k-Lie algebra generated
by t;;, where i # j € {1,...,n}, with relations

tii = tij,  [tij +ti,tje) =0, [tij,ti] =0

for i, 4, k,1 distinct (in this section, we set t, := tC). For each partially de-

fined map {1,...,m} D Dy 2, {1,...,n}, we have a Lie algebra morphism
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th = tp, T x¢, defined by6 (t’ij)¢ = Zi'e¢_1(i),j’€¢‘1(j) tirj- We also have
morphisms t, — t1 5, t;; — t;;, compatible with the maps = — z? on both
sides.

The KZ associator @ = ®(t12,t93) € exp(t3) is defined by Go(2) = G1(2)®,
where G; :]0, 1[— exp(t3) are the solutions of G’(2)G(2) ™' = t12/2+ta3/(2—1)
with Go(z) ~ 212 as 2 — 0 and G1(z) ~ (1—2)"2* as z — 1. The KZ associator
satisfies the duality, hexagon and pentagon equation (37), (38) below (where
A = 27i).

Lemma 20. v2(A3) and v2(Bs) belong to exp(iLg) C Go.

Proof. If F(z|t) : H» — Ga is a solution of the KZB equation for n = 2,
then A) = F(z+0,|7)F" (z|7) " is expressed as the iterated integral, from
7o € D, to 2o + 62, of Ky(z|7) € 4 2, hence Al e exp(t1 2). Since vo(As) is
a conjugate of AL it belongs to exp(’q 2) as exp(’q 2) C Ga X So is normal.
One proves similarly that ~v2(Bg) € exp(tlyg) O

Set o
@Z_ = 451...171,1,1+1‘..n'“451“.7172,n71,n c exp(tn).

We denote by z +— {2} the morphism exp(t,) — exp(iLn) induced by t;; —
Eij-

Proposition 21. If n > 2, then

1 (0) = [ (O)]e'F Zisiti, A, (W) = [y (P)]e'E i<,
and if n > 3, then
V(A7) = {Pi} 2 (A2) T H DY, (0= 1,.,m),
Yo(Bi) = {@:} 1y (Bao) Y, (i =1,...,n),
() = { @1 LIy L imbn (@loi=Liitly (G 1 1),
Proof. In the region z91 < 231 € ... € 21 € 1, (2,7) € D,,, we have
FO) (glr) ~ 202 Zilanrerf"*lv”eXp(—%( / "Byt C) (> ) [F(r)
1 i<j

where F(1) = F(U(z|7) for any 2. Here C is the constant such that fiT Es +
C=7+0(1) as T — ioo.

We have F(r 4+ 1) = F(r)y1(¥), F(=1/7) = F(7)71(0). Since >
commutes with the image of z — [z], we get

FO) (gl 4 1) = F™(zlr)exp(— 5= (3 )b (W),

z<j

5We will also use the notation z’+In for z%, where I; = ¢~ (¢).
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SO

(@) = explic 3 F)n (¥

In the same region,

- 1 2mi ey 2 3 z
CT—l(Z|7') lF(n)V(_gl _ ;) ~ (—T)dez"' (21 z‘x1+X)(—Z21/T)t12.._(_an/T)t1"+“'+tn*1wn

—1/T
exp(—%(/ E; +C) ZtlJ (—=1/7)].

i<j

Now Eq(—1/7) = 72E5(7) + (6i/m)T, so

/i_l/T By — /iT By = (61/m)[log(—1/7) — logi]

(where log(rei?) = logr +i6 for 6 €] — 7, 7).
It follows that

_ 1 i L zi%) _t1e tintAtn_1n
cr-1(z|T) 1F(n)V(—E| - o) P ')Zt112~~~zrtzl1 Tt
T T
ag d 2wi/T)X
eXP(—%/i E2 + C)( E< tij)) exp_fi (logi)( §< tij)) e/ F(=1/7)]
i<j 1<)

Fint A En_1n a T _
~ fip it exp(fz—;i(/ By +C) () t)[F(m)71(0)]exp(= Ztu

i<j i<j
~ FmH( (z|7)[71(O)]exp(—= Zt”
i<j

(the second =~ follows from »_, 2z;%; = >, 2:1%; and z;; — 0), so

(€)= b (@)lexpliz Y ).

i<j
Let G,(z|7) be the solution of the elliptic KZB system, such that

) ~ 12 tigt+..At1i—1 _tint-Atn_in th—1i,n
(z|7) >~ 257 Zi—1,1 Zni Znn—1

eXp( — 5= (Ao + Z agn (2n + Z(adii)%(fij))))
n>0 i<j

when 297 € ... < zic11 K 1, Znn-1 K o0 K Znyg K 1, 7 — ioco and
(z,7) € D,. Then G;(z + Z?:z 8:|7) = Gi(z|T)y2(A2) 71" because in
the domain considered K;(z|7) is close to Ka(21, 2, |7) 1" (where Kyf...)
corresponds to the 2-point system); on the other hand, F(z|7) = G;(z|7){®;},
which implies the formula for ~,,(A;). The formula for v, (B;) is proved in the
same way. Finally, the behavior of F(”)(Z\T) for z91 € ... € 2z € 1 1is
similar to that of a solution of the KZ equations, which implies the formula
for v, (o). O
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Remark 22. One checks that the composition SLy(Z) ~ I'i; — G1 —
SL2(C) is a conjugation of the canonical inclusion. It follows that the com-

position SLo(Z) C Iy, — Gy — SLg(C) is a conjugation of the canonical
projection for any n > 1.

Let us set A := v2(Asg), B:= ~v2(Bz2). The image of AQA3 =0, 1A ! 71
by s yields

A12:3 — otz (13,12 213 (1213 it | (5)3:21 1128 (511,23 (22)
and the image of By B3 1= 0185 Loy yields
B123 = omimha (@)312 213 (1213 —inta | (G321 BLIBIHIL23  (23)
Since (73(A2),73(A43)) = (v3(B2),73(Bs)) = 1, we get
({1321 ALB L), A123) = ({#1321 123 (g} B123) = | (24)

(this equation can also be directly derived from (22) and (23) by noting that

the Lh.s. is invariant # — 2> and commutes with e*"12). We have for

n =2, Cia = (B3, A2), so (4, B) 72(C12) 7t Also 71(0)* = 1, 50 42(Ch2) =
=ec

1(B) = (™[ (O)])! = e[ (B)1] = 27, 5o
(A, B) = e~ ?mitaz, (25)
For n = 3, we have y3(0)* = e2mi(liztlisttas) — ~o((C5043); since

13(Ch2) = (13(Ba),73(42)) = {@}1(B, A)123{0} = {@}~temilhatin) {¢},
we get v3(Caz) = {®)} le?®28{@}. The image by 73 of (Bs, A3A;') =
(Bngl, As) = Cy3 then gives

(BIQ,B7 A1273{¢}71(A1,23)71{@}) _ (B1273{@}71(BL23)71{Q§}7 AlZ,S)
= {9} 1M {0} (26)

(applying vam’m, this identity implies (25)).
Let us set © := v1(0), ¥ := v1(O). Since 71,72 are group morphisms, we
have

6t = (V)3 = (0%,¥) =1, (27)
[Olei3tzA([B]e'3h2) "t = BT, [O)e'Eh2B([B]e'Fh2) " = BABT!, (28)
[Wleishz A([@]eishz)~t = A, [Ple'sh2 B([F]elTh12)~! = BA. (29)

(27) (resp., (28), (29)) are identities in Gy (resp., Go); in (28), (29), z — [z]
is induced by the map ? — 9 x t; 5 defined above.
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4.5 Expression of ¥ and of A and B in terms of &

In this section, we compute A and B in terms of the KZ associator . We also
compute V. 3
Recall the definition of ¥. The elliptic KZB system for n =1 is

2mi0, F(7) + (Ao + Z agkEoiy2(7)d21 ) F (1) = 0.
k>1

The solution F(7) := F®M(z|7) (for any z) is determined by F(7) =~

exp(— 5= (Ao + D >q a2d2x)). Then ¥ is determined by F(1 + 1) = F(r)W.
We have therefore:

2mi

Lemma 23. ¥ = exp(— 5= (Ag + ZkZI agklok))-

Recall the definition of A and B. The elliptic KZB system for n = 2 is

0(z + adx|7)adx
F _ (ArrmadXiT)adx,
az (Z|T) ( H(Z\T)Q(adxh) )(y) (Z‘T)? (30)
270, F(z|T) + (Ao + Z agkEokt2(7)d2k — (3, adX|T)(t))F(Z\T) =0, (31)
k>1

where 2 = 201, T=To = —T1, Yy = Yo = —Y1, t = 12 = —[a:,y].
The solution F(z|t) := F®)(zy,2|7) is determined by its behavior
F(z]7) ~ ztexp(— 55 (Ao + > k>0 a2k (2k + (adx)?*)(t))) when z — 0%, 7 —

ico. We then have F (2 4 1|7) = FH(2|7)A, e*™*FV (2 4 7|7) = FV(2|7)B.
Proposition 24. We have’
A= @2n/i) e, )™ (3, 1)~ (i/21)"
= 2m)5i % 0(—F — 1, ) T HVD (=g — ¢, 1) (2mi) T,

where y = —ezﬂifiidi,l(y)-

Proof. A= FH(z|7)"'FH(z+ 1|r), which we will compute in the limit 7 —
ico. For this, we will compute F(z|7) in the limit 7 — ico. In this limit,
0(z|7) = (1/7)sin(7z)[1 + O(e®*™17)] so the system becomes

9.F (z|r) = (mcotg(mz)t — meotg(radx)adx(y) + O(e*™7))F(z|T) (32)

277i8.,-F(Z|T)+<A0+Z a2k52k+(sin2 (T;'adX) - (adlx)z )(t)+0(e27‘i‘r))F(z‘7) =0
>1

where the last equation is

"By convention, if z € C \ R_ and x € n, where n is a pronilpotent Lie algebra,
then 2% is exp(z log z) € exp(n), where log z is chosen with imaginary part in | —7, 7.
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20, F(z|7) + (Ao + aot + Z ask (02ic + (adx)?(t)) + O(e®™7))F(z|r) = 0.
K>1

We set

A= AO -+ Z agkégk, SO AO +apgt + Z a2k<52k + (adx)Qk(t)) = [A] + agt.
E>1 Kk>1

The compatibility of this system implies that [A] + agt commutes with ¢ and
(radx)cotg(madx)(y) = im(—t — 2¥), hence with ¢ and ¢; actually ¢ commutes
with each [0ox] = dor + (adx)?X(t).

Equation (30) can be written 0,F(z|T) = (¢/z + O(1))F(z|T). We then
let Fy(z|7) be the solution of (30) in V := {(z,7)|7 € 9,2 = a + br,a €
10,1[,b € R} such that Fy(z|7) ~ z* when z — 07, for any 7. This means
that the left (equivalently, right) ratio of these quantities has the form 1 +
> koo(degree k)O(z(logz)'™) where f(k) > 0.

We now relate F(z|7) and Fy(z|7). Let F(r) = F()(z|r) for any z be
the solution of the KZB system for n = 1, such that F(7) ~ exp(—5=A) as
T — ico (meaning that the left, or equivalently right, ratio of these quantities
has the form 1+, _(degree k)O(r'®e™™) where f(k) > 0).

Lemma 25. We have F(z|r) = Fo(z|7)exp(=3% (" B2 + C))[F(r)], where
C is such that [[ E» + C =714 O(e*™'7).

Proof of Lemma. F(z|7) = Fy(2|7)X (1), where X : § — G is a map. We
have g(z,adx|7)(t) = agE2(T)t + >\ o azkBaks2(7) (adx)?*(t) + O(z) when
z — 0% and for any 7, so (31) is written as

2710, F(z|T) + (AO + agEa(T)t + Z aokEokq2(T)[02k] + O(Z))F(Z|T) =0
k>0

where O(z) has degree > 0. Since Ay, ¢ and the [d2x] all commute with ¢, the
ratio Fy(z|7)"1F(z|7) satisfies

2mi0, (Fy 'F(z|7)) + (Ao + aoBa ()t + > aocBaicya(7) [0
k>0

+ Z(degree k)O(z(logz)h(k))) (Fy'F(z|1)) =0
E>0
where h(k) > 0. Since Fy(z|7) 1 F(z|r) = X(7) is in fact independent on z,
we have

2mi0- (X(7)) 4+ (Ao + agEa(T)t + Z agkBEoki2(7)[02k]) (X (7)) = 0,
k>0
which implies that X(7) = exp(—2%([." E2 + C)t)[F(7)]Xo, where X is a
suitable element in Gy. The asymptotic behavior of F(z|7) when 7 — ico and
z — 0% then implies X = 1. O
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End of proof of Proposition. We then have F(z|1) = Fy(z|7)X (1), where
X(1) ~ exp(—5=([A] + apt)) as 7 — ico, where this means that the
left ratio (equivalently, the right ratio) of these quantities has the form
1+, o(degree k)O(r*Me™i™) where z(k) > 0.

If we set u := e¢>™%, then (30) is rewritten as

OuF (ul7) = (§/u+1t/(u—1) + O™ 7)) F(ul7), (33)

where F(u|7) = F(z|7).

Let D' := {ul|u] < 1} —[0,1] be the complement of the unit interval in the
unit disc. Then we have a bijection {(z,7)|T € iRY,z =a+ 7b,a € [0,1],b >
0} — D’ x iR}, given by (z,7) — (u,7) := (e>™%, 7).

Let F,, Fy be the solutions of (33) in D’ x iR, such that F,(u|r) ~ ((u—
1)/(27i))* when u = 1+i0T, and for any 7, and Fy(u|r) ~ ™ ((1—u)/(2ni))*
when u = 1 —i0%, for any 7.

Then one checks that Fy(z|7) = F,(e*™%|7), Fo(z — 1|7) = Fy(e*™%|7)
when (z,7) € {(2,7)|7 € iRY,z =a+ 7bla € [0,1],b > 0}.

We then define Fy, ..., F. as the solutions of (33) in D’ x iR}, such that:
Fy(ult) = (1 —uw)t as u = 1 — 0%, S(u) > 0 for any 7, F.(ulr) ~ u? as
u — 0%, S(u) > 0 for any 7, Fy(u|r) ~ u? as u — 0%, (u) < 0 for any 7,
Fo(ult) ~ (1 —u) asu=1-0%, (u) <0 for any .

" Then Fy = Fa(=2mi)', E(-|7) = Fu(-|nI#(3,0) + 0(e*™)], Fal-|r) =
P, Eifr) = Fi et £ 0l Iy :

So Fy(—Ir) = Fu(-[r)((~2 1>t<1><y7 te 2T B3, 6)- 1 (i/2m)" + O(7)).

It follows that Fy(z + 1|7) = Fy(z|7)A(T), where

A7) = (=271)'®(F, t)e™ ¥ & (5, t) ' (i/27)" + O(e>™7).
Now
A=F(r)'Fz+1|7) = X(1) LA(1) X (1)

= (1+ ) (degree k)O(TX(k)eQWiT))_1exp(%([A] + agt))
k>0

((—271)'@(7, )™ @ (3, 6) 7 (i/27)" + O(e>™) )exp(— 5 ([A] + aot))

2mi
(1 + Z(degree k)O(Tx(k)ezﬂ'iT)).
k>0

As we have seen, [A] + agt commutes with § and ¢; on the other hand,

exp( 51 (1A] + 201))0(e*™ exp(— 5 (4] + agt)
= eXp(Tad(%))(o(e%rir)) _ Z(degree k)O(Tnl(k))e%rir)

k>0

where ny(k) > 0, as [A] + agt is a sum of terms of positive degree and of Ay,
which is locally ad-nilpotent.
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Then
A= (]_ + Z(degree k)O(Tx(k)e27TiT)) -1 ((7271_1)‘5(1)(5]’ t)eQ’Tig’CI)(y, t)fl (i/?ﬂ)t
k>0
+ Z(degree k)O (721 () g2mir) (1+ Z degree k)O(r (k)e%”)).
k>0 k>0

It follows that

A= (—2m1)' (7, )™ B(§, 1) ' (i/27m)" + Y _(degree k)O(r"2()e?™iT),
k>0

where ny(k) > 0, which implies the first formula for A. The second formula
either follows from the first one by using the hexagon identity, or can be
obtained repeating the above argument using a path 1 — +00 — 1, winding
around 1 and oo. O

We now prove:
Theorem 26.
B = (27i)'®(—§ — t, t)e?™ (3, t) "1 (2n /i)

Proof. We first define Fy(z|7) as the solution in V := {a + br|a €]0,1[,b € R}
of (30) such that Fy(z|7) ~ 2t as 2 — 07. Then there exists B(r) such that
"Xy (z + 7|17) = Fy(2|7)B(7). We compute the asymptotics of B(7) as
T — ioco.

We define four asymptotic zones (z is assumed to remain on the segment
[0,7],and TinthelineiR;): (1) 2 <1< 7, (2) 1K 2 7,3) 1 K T—2 <K T,
Hr-—z<xlxrT.

In the transition (1)-(2), the system takes the form (32), or if we set
u = 2™ (33).

In the transition (3)-(4), G(2'|7) = e*™*F(r + 2/|r) satisfies (30), so
G(u|1) = e2™*F (1 + 2'|1) satisfies (33), where v’ = e2™* .

We now compute the form of the system in the transition (2)-(3). We first
prove:

Lemma 27. Set u := >, v := e2™(7=2) When 0 < 3(2) < I(7), we have
[ul < 1, Jol < 1. When k>0, (0%/0)(]7) = (1) + F, i5,04150 21 WV
where the sum in the r.h.s. is convergent in the domain |u| < 1, |v| < 1.
Proof. This is clear if k = 0. Set ¢ = uwv = €*™7. We have 0(z|r) =

u! [Teso( = @) 501 = ¢*u™") - (2m1) 7 150 (1 — @)%, 50

0'/0)(z|7) = im — 27Tiquu/(1 —q*u) + 27TiZqSu*1/(1 —q*uh)
s>0 s>0
s+1 s us s+1

_ _ _ st
= —im 2mzl—u3+1vg+2mz Tt = T+ Zastuv,

s>0 s+t>0
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where ag; = 2mi if (s,t) = k(r,r + 1), k > 0, r > 0, and ay = —2mi if
(s,t) = k(r +1,7), k > 0, r > 0. One checks that this series is convergent in
the domain |u| < 1, |v| < 1. This proves the lemma for k = 1.

We then prove the remaining cases by induction, using

g(k+1) g(k) o’ 9 %)
0 (2]7) = T(zmg('z\ﬂ + 57(47)-

Using the expansion

0(z+ z|m)x x

(ﬂk
0(z|1)0(z|T) — 0(z|r) Z(Q(k)/(’)(zmﬁ

k>0

™ Xk
g U B (L (im o+ 3 aluvir)

n>0 k>0 s+t>0

T 2imx
= me fmx Z ast(x)us,ut — g + E ast(x)usvt’
s+t>0 s+1>0

the form of the system in the transition (2)-(3) is
2iradx

S W) T DL awu’v')F(zr)

s,t|s+t>0

O.F(z|r) = (-

= (2177'57 + Z astusvt)F(Z|T)7 (34)

s,t[s+t>0
where each homogeneous part of > _ , agu®v’ converges for |u| < 1, |v| < 1.

Lemma 28. There exists a solution F.(z|T) of (34) defined for 0 < (z) <
(1), such that

Fu(z|7) = uY(1 + Z Z log(u)*fxs(u, v))

k>0 s<s(k)

(logu = irz, u¥ = e*™% ) where frs(u,v) is an analytic function taking its
values in the homogeneous part of the algebra of degree k, convergent for |u| <
1 and |v| < 1, and vanishing at (0,0). This function is uniquely defined up to
right multiplication by an analytic function of the form 143, ar(q) (recall
that ¢ = wv), where ar(q) is an analytic function on {q||q| < 1}, vanishing at
q = 0, with values in the degree k part of the algebra.

Proof of Lemma. We set G(z|7) := u=YF(z|7), so G(z|r) should satisfy

0.G(z|7) = exp(—ad(7)logn){ > auuv'}G(z|7),

s+t>0
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which has the general form

0.GIr) = (D0 D tog(w)ans(u,v) ) Glalr),

k>0 s<a(k)

where ays(u,v) is analytic in |u| < 1, |[v| < 1 and vanishes at (0,0). We show
that this system admits a solution of the form 1+3 5, - > 1) log(u)*fis (u, v),
with fis(u,v) analytic in |u| < 1, |v| < 1, in the degree k part of the algebra,
vanishing at (0,0) for s # 0. For this, we solve inductively (in k) the system
of equations

0.(Yloguffie(wv) = S0 (log) ™ a (V)i (1, v).
s S8 KK k! =k
(35)
Let O be the ring of analytic functions on {(u,v)||u] < 1,|v] < 1} (with
values in a finite dimensional vector space) and m C O be the subset of
functions vanishing at (0,0). We have an injection O[X] — {analytic functions
n (u,v), [u| <1, |v| <1, u ¢ R_}, given by f(u,v)X* — (logu)*f(u, v). The
endomorphism % = 27ri(ua@ —v%) then corresponds to the endomorphism of
O[X] given by 2771(0%4'“% —v%). It is surjective, and restricts to a surjective
endomorphism of m[X]. The latter surjectivity implies that equation (35) can
be solved.
Let us show that the solution G(z|7) is unique up to right multiplica-
tion by functions of ¢ like in the lemma. The ratio of two solutions is of the

form 1+ 400> <5 108(1)*fks(u, v) and is killed by .. Now the kernel of

the endomorphism of m[X] given by 27i(% + ud — v2) is m*(m;), where

m*(my) C m is the set of all functions of the form a(uv), where a is an ana-
lytic function on {¢||q| < 1} vanishing at 0. This implies that the ratio of two
solutions is as above. O

End of proof of Theorem. Similarly, there exists a solution Fy(z|T) of (34)
defined in the same domain, such that

Fa(zlm) =071+ Y log(v)'gs(u, v)),

k>0 s<t(k)

where by, (u,v) is as above (and logv = im(7 — z), v=¥ = exp(27i(z — 7)7)).
Fy(z|7) is defined up to right multiplication by a function of ¢ as above.

We now study the ratio F.(z|7) "' Fy(z|r). This is a function of 7 only, and
it has the form

(143 > (logw)*(logv) ae (u,v))

k>0 s<s(k),t<t(k)

where aggs (u,v) € m (as v (1430, 0o < x) (logu) cis (1, v))v¥ has the form
L4 ka0 2os<t(h) (logu)®(logv)tdys(u, v), where dis(u,v) € m if cps(u,v) €
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m). Set logq := logu + logv = 27T, then this ratio can be rewritten ¢=¥{1 +
> k>0 ngs(k),tgt(k) (logu)®(logq)tbist (1, v)} where bygt(u,v) € m, and since
the product of this ratio with ¢Y is killed by 0, (which identifies with the
endomorphism 27i(Z +ui — v2) of O[X]), the ratio is in fact of the form

Fo'Fa(zlm) = q"(1+ ) > (logq) as(a)).

k>0 s<s(k)

where ags is analytic in {¢||¢| < 1}, vanishing at ¢ = 0.
It follows that

F' Fa(z]m) = 279 (1 4 ) (degree k)O(T*e ™). (36)
k>0

In addition to F. and F, which have prescribed behaviors in zones (2) and
(3), we define solutions of (30) in V' by prescribing behaviors in the remaining
asymptotic zones: F,(z|7) ~ 2' when z — 07 for any 7; F,(2|7) ~ (2rz/i)
when z — i0% for any 7 (in particular in zone (1)); e*™*F,(2|7) ~ (27 (7 —
2)/i)* when z = 7 —i0% for any 7; e*™*F}(z|7) ~ (2 — 7)" when z = 7+ 07
for any 7 (in particular in zone (4)).

Then Fy(z|7) = Fu(z|7), and e >™*Fy(z — 7|7) = Ff(z|r). We have F}, =
F,(2n /i)', Ff = F.(2ri) "

Let us now compute the ratio between Fj and F.. Recall that u = e
v = e2™(7=2)_SQet F(u,v) := F(z|7). Using the expansion of §(z|7), one shows
that (30) has the form

27iz
)

A(u,v) n B(u,v)

U u—1

OuF (u,v) = ( VE (u,v),

where A(u,v) is holomorphic in the region [v] < 1/2, |u| < 2, and A(u,O) =7,
B(u,0) = t. We have Fy,(u,v) = (1—u) (1+ ), D s<s(k log(l —u)*bys(u, v))
and Fy(u,v) = uf(l—l—z,c ZS<S(k) log(u)*as (1, v)), with aks,bks analytic, and
ars(0,v) = bys(1,v) = 0. The ratio F, 'F, is an analytic function of ¢ only,
which coincides with &(g,t) for ¢ = 0, so it has the form &(g,t)+ >, . ax(q),
where ag(q) has degree k, is analytic in the neighborhood of ¢ = 0 and vanishes
at ¢ = 0. Therefore

Fe(2|r) = Fy(2|7)(2(3, 1) + O(*™7)).
In the same way, one proves that
F.(z|7) = Fy(e TG — )+ O(BZWiT)).

Indeed, let us set Ga(u',v') 1= 2™ Fy(1 + 2/|1), Ge(u/,v') 1= ¥™*Fo (1 +

2'|7), where o/ = e2mi(TH7) 4/ = =277 then Gy(u',v') ~ (v/) "I e2™X as
(u/,v") — (0F,0%) and G.(u/,v") ~ (1 —v')! as v' — 1~ for any v/, and both
G4 and G, are solutions of 31,/G(u V') = [—(g+t) v +t/(v' =1)+O(u")]G (V).

Therefore G g = G [®(—7 — t,t)e*™™ + O(u')).
Combining these results, we get:
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Lemma 29.
B(7) ~ (2mi)'®(—§ — t,t)e*™ 2™V (3, t) "L (27 /1) 7",

in the sense that the left (equivalently, right) ratio of these quantities has the
form 143", . o(degree k)O(r"e?™7) for n(k) > 0.

Recall that we have proved:
a T
F(:|r) = Falelr) exp(~3%( | Ea + ON[F(7),

where C is such that fT E2 +C =71+ 0(e*™7).
Set X(7) = exp(—2 ([ Eo + C)t)[F(7)]. When 7 — ico, X(r) =
exp(— 5= ([A] + agt)) (1 + Y- y. o (degree k)O(ri0e2™7)) Then

B = F(z|r) '™ F(z +7|r) = X (1) "' B(7)X (1)

- Ad((l v 1Z;)(degree k)O(Tf(k)e%iT))_leXp(i([A] n aot)))

((@r) @ (=5 — t,)e>™ e (7, )} (2m/i) ™) (1 + D (degree K)O(r"Me27)) ),
k>0

where Ad(u)(x) = uxu~ 1.
[A] + agt commutes with § and ¢; assume for a moment that

T (JA] + agt)))(e2mxe2miTT) = o2mix

Ad(exp( 5

(Lemma 30 below), then

Ad(exp(—— ([A] + agt))) ((m)t@(—y —t, t)e2™ X2 @ (3, t)_1(27r/i)_t)

2mi
= (27)' @ (—F — t,t)e?™>D(§,t) ' (2n /i) "

On the other hand, Ad(exp (5% ([A]+aot))) (143, o (degree k)O (77 e2miT))

has the form 1+ Y, (degree k)O(r™ ®e?™7) where n’(k) > 0. It follows
that

d(1+ Z degree k)O(Tf(k)ezmT))
k>0

B=
( ((2mi) ' @(—F — t, t)e*™ ™ & (§,t) " (2m /1) ") (1 +Z(degree k)O(T“,(k)eQ””)));
k>0

Ad((%i)t@(_y —t,£)e” TPy, t)_l(QW/i)_t)il(l + ) _(degree k)O(r®e’™i7))
>0

=1+ Z(degree k)O (i) 2Ty
k>0
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S0
B= ((Qm)tq)(,g, _ t’t)ezﬂiXQ(ﬁt)*l(gﬁ/i)ft) (1+ " (degree K)O(r®e27i7))
k>0
1+ Z(degree K)O(r™ (e2miT))
k>0
- ((%i)t‘p(_y — £, )’ 0, t)fl(%/i)ft) (1+ ) (degree k)O (7™ (9 e2mi))
k>0

for n” (k) > 0. Since B is constant w.r.t. 7, this implies
B = (2mi)'®(—§ — t,t)e®™*®(y,t) "1 (27 /i),
as claimed.
We now prove the conjugation used above.
Lemma 30. For any 7 € C, we have

e#([A]-&-aot)e%rixe—ﬁ([A]-ﬁ-aot) 62171'7'}7 _ eQTrix.

Proof. We have [A] + agt = Ao + Y5 a2k (02x + (adx)?(t)) (where 6y = 0),
so [[A] +aot, 2] =y — D245 asr(adx)?*t1(t). Recall that
2

E ARU" = —5 ——~ 2( ) T2
k>0 sin“(7mu

then [[A] + agt, ] = y — (adx)(siagy — magz) (£)- S0

—2mix L 2mwix
e (5 ([A] + aot))e
= L([A} + aot) + i 1([ —([A] + aot)])
i %o adx T, om aop
1 1 e—27riadx -1 71_2 1
=—([A e S _ .
27Ti([ et 2mi adx (v (adX)(sin2(7radX) (adx)? )®)
We have
1 e—27riadx -1 2 1 -
_%T(y - (adx)(sinz(ﬂ'adx)  (adx)? () = —2miy,

therefore we get

1
e—2mx(

1 e
% 7([A] + a0t> — 27le.

2mi

Multiplying by 7, taking the exponential, and using the fact that [A] + agt
commutes with gy, we get

(1] + agt))e>™™ =

6727rixeﬁ([A]+aot) e27rix _ eﬁ([A]+aot)ef27ri‘r§’

which proves the lemma. a

This ends the proof of Theorem 26.
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5 Construction of morphisms I ) — G, X S,

In this section, we fix a field k of characteristic zero. We denote the algebras
tk ) t& simply by t.,, t,. The above group G,, is the set of C-points of a

1,n> 'n
group scheme defined over Q, and we now again denote by G,, the set of its

k-points.

5.1 Construction of morphisms I [, — G, % S, from a 5-uple
(45)\7 Aa Ba @7 JI)

Let @, be a M-associator defined over k. This means that @, € exp(t3) (the
Lie algebras are now over k),

3,21 _ 51 2,3,4 51,234 £1,2,3 _ £1,2,34 £12,3,4
Py =0y, BYTONTTRNTT = 0T\ (37)
e%tgl/2@?3,1e)\t23/2¢>\e)\t12/2¢i7172 — AMtrzttasttis) /2 (38)

E.g., the KZ associator is a 2wi-associator over C.

Proposition 31. If O,¥ € G, and A, B ¢ exp(il,g) satisfy: the “I'1 1 iden-
tities” (27), the “I'\ o identities” (28), (29), and the “I'y |3 identities” (23),
(22), (26) (with 27i replaced by \), as well as A»' = AV = B0l = B1.0 — 1
then one defines a morphism Iy — G, xS, by

O [B)e'F Liciti W [F]elT Lici b
o; {@i\..‘ifl,i,zﬂrl}—16)\51,“1/2(%Z~ + 1){45;..1‘71,1‘,#1}’
Cjk — {@;ﬁ;@]}l\’j—%l""n.,.@g\'"’k_l""TL(6>\t12)j"'k_l’k"'n(@g\’j-i_l’mn...@{\'“’k_l""”)_lé)\,j},
Ai — {@)\ﬂ_}711[11‘..1‘7171'...71{@)\71_}’ 31 — {(p/\’i}7131.‘.1'71,1'...71{@)\71_}7

Loi—1d+1... l.n—2n-1
where @y ,; = O, ot Ty T

According to Section 4.4, the representations ~, are obtained by the pro-
cedure described in this proposition from the KZ associator, ©, ¥ arising from
v, and A, B arising from ~s.

Note also that the analogue of (22) is equivalent to the pair of equations

6)\{12/2142,16)\512/2A~ — 17

(e’\t_12/2f~1)3’12@§’1’2(e)‘{”/QA)Z’Bl@i’B’l(e)‘t_”/QA)l’QBSP}\’Q’B -1

)

and similarly (23) is equivalent to the same equations, with A, X replaced by
B, —A\.
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Remark 32. One can prove that it @, satisfies only the pentagon equation
and ©,¥, A, B satisfy the the “I't 1 identities” (27), the “I7 o identities” (28),
(29), and the “I7 3 identities” (24), (26), then the above formulas (removing
0;) define a morphism I , — G,,. In the same way, if &, satisfies all the
associator conditions and A, B satisfy the I'y [3) identities (22), (23), (26), then

the above formulas (removing O, ¥) define a morphism By ,, — exp(ilm) X Sy.

Proof. Let us prove that the identity (A4;, A;) =1 (i < j) is preserved. Ap-
plying 2 + gb-i=bi-J=Li-n 4 the first identity of (24), we get

(Almi—l,i...n7@iu,lﬁ~‘jflnunAl...j—l,j...n(@;\1)1...71’4..,7'—1,...71) —1
The pentagon identity implies
Losiye.. Toj—1,..
@\ Ly " (39)

_ (qv)i,H-l,...n.'.Qf\...,j—1,...,n)@}\...,i...j—l,...n(Q}\...,i,...j—lmqv)i...,j—Q,j—l)

so the above identity is rewritten

itl,.n  pieoi—1on Tl i—1i..n(giitln  gieai—1,..,ny—1
(@)\ Dy A (25 Dy )7,

Loiyeen  gloj—liongglogi.j—1  gl.,j—2,..5—1\—1 j1..5—1,j..n
D, Dy (@ Dy )T A

q-si\...,z}...jflm@i...,jfz...jfl(@;...,i,.‘.nm@i..,jfl,...n)—l) -1

REST 0 I SR A Loyiyg—1
Now @y b @y " commute with Al i=hi-n and @yt T
Toj=2,5—1 . Loiyi—1  gloi—2,..5—1 A
coe s, @ 7T commute with @yt T ! T 5 )T which implies

Al..i—1,4..n gl...\i,...m 1..j—-1,..m 31...5—1,5..n/ 5l .,1,...n 1o.,j—1,..n\—1\ __
(A ,PL D A (! DL ) =1,

so that (A;, A;) = 11is preserved. In the same way, one shows that (B;, B;) =1

is preserved.
Let us show that (Bk,AkAj_l) = Cjy, is preserved (if j < k).
(@;iél...k—l,kmn@)\’k7@;}CAl..‘k—l,k..‘n@xk@;\é(Al...j—l,j.‘.n)—lé)\’j)

_ 45;5' ((451\...,j,...n..‘Qi...,k—l,...n)Bl...k—l,k...n(dsi...,j,...n.“45;...,k—1,...n)—17
(@i.A,j,A.An“.@i\.u,k—1,mn)A~1.uk—1,k.un(@i\uA,j,“.n“.@;“,k—l,mn)—1(A1“.j—1,jmn)—1)¢>\,j

_ QS;;. (¢§j+l,.Hn..-qv)i..,k:—1,...n¢§\.“,j“.k—l,“.n 51 k—1,k..n
(@j}'\,]#—l,‘..n.“qsg\.‘.,k—l,m'n.@i“.,jmk—l,mn)—l7@j{j#—l,.‘.n“.¢g’\m,k—1,‘..nqsi...,j.‘.k—l,.“n
A1.“k—1,k.“n(@i,j+1,mn“.QSJ)'\,A.,k—1,A.Angbi.“,]’mk—Lmn)—1(141“.3'—1,;‘%)—1)@)\&

a1 gl gdenk—l,en (gl g k=1, n Bl k—1,ken gl fe k—1,..n\—1
=Py ;Px Py (P B (€2 )

Qsi.4,j...k—1,...nAL.4k—1,kz.4n(dsi...,j.“k—l,mn)—l(Al.“j—l,j...n)—l)

(@J)tj#—l,‘..n.“@g\.“,k—l,‘.‘n)—ldsk’j

—1 z4,5+1,... jook—1,... 512,3 712,83 x—1, 71,23\—1 —1y1..yjk—1,...
= &L B BB, AR AN T e )e "

(@i,j+1,...n“@i“,k—l,mn)—1¢w

_ —1 £7,7+1,...n j..k—1,...n/ 27it12\j...k—1,k...n 7,7+1,..n Jo.ok—1,..n\—1 .
=Dy ;Px Py (e ) (23 Dy )" P
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where the second identity uses (39) and the invariance of @y, the third identity
uses the fact that @7+ ", ...,@i‘"’kil""" commute with A'7=17-" (again
by the invariance of @), and the last identity uses (26). So (B, AkAjl) = Cji
is preserved. One shows similarly that

—1 Bl .k—1,k... —1/pl.j—1,5..n\—1 —1 f1l..k—1k...
(di&kB ”45,\,,643/\7].(B JT I @,\yj,si)/\’k,A "@A,k)

—157,7+1,... . k—1,... 27it j...k—1,k... j,j+1,..n jook—1,..n\—1
= @ @I @k L (2T g n (@It gl )1y,

so that (BkB;l,Ak) = Cy, is preserved.
Let us show that (A;,Cji) =1 (¢ < j < k) is preserved. We have

—1 7l...i—1,i...n . -1 x5,0+1,...n j..ook—1,..n/ 2mit12\j...k—1,k...n
(@AﬂiA Pxi, Py Py Dy (e )

(@J)tj#—l,‘..n“.@g\.‘.,k—l,‘.‘n)—l@%j)

el Fl.i—lj.n gl..gi..m  gl..j—1,..mxji+1,..n  gj..k—1,.n, 2mitio\j...k—1,k...n
=d,; (A , Py Dy 2% Py (e )

,
a1 Fli—ly..n giitl,.mn  gie.i—1,..n gl i i—1,..m gl 0, =1 1..,5-2,j—1
=d,; (A Py Dy by 2N Dy

@j’j+1’“‘n Qsjm,k—l,mn(627ri512)j.4.k—1,k...n
5\ Py

1...,4,...n 1...,j—1,..n x7,j+1,...n Jo.,k—1,..n\—1 .
(D D b D )" )P

i,i4+1,...n to..j—1,..n gl i i—1,..n gl...,0,...5—1 1...,7—2,7—1 54,7+1,...n J.o.k—1,..n\—1
(& D o} oL B o D ) )P

a1 Fl.i—ly..n giitl,..n ieg—1yem gl i g—1,.m 55,54+1,..n  zj..k—1,..n
_(15)71-(14 2N Dy b, by Dy

27itigNjok—1,k..my xiitl,..m  zio.j—1,..n gl i..j—1,..n x5 5+1,..n  gj..k—1,..ny—1
(e ) (P5 Dy D, by Dy ) )

a1 giitl,n  gieoj—l..n( flodi—li..n gl.i..g—1,.n55,0+1,.n  gj..k—1,..n
=&, Py Py (A Dy Py Py

(627ri€12)jA,Ak'—l,kA,An(451\.“,iA“j—I,AA,'IL@J)'\,J'-Q»l,A.An.“dsi“,k’—lpun)—l)(dsi,i-ﬁ»l““n“.@i“,j—l,“An)—lds)\ ;

w1 iit+l,..n iei—1,.my Fl.i—1lyi..n xjj+1,..n Geonk—1,..m x1...i...j—1,..n
= @/\ﬂ-ék Dy (A , Dy Dy L3N

(627ri512)j...kfl,k...n(@];]'Jrl,mn...@])'\4..,k*l,...néi...,i...j71,4..n)71)(¢§i+1,...n.”¢§4.4,j71,...n)71¢)\ .

=1,

where the second equality follows from the generalized pentagon identity (39),
the third equality follows from the fact that 915}\""’”""7_1, s @i'“’]_g’]_l com-
mute with (¢27%12)7 k=bLkon @hithn @i’"’k_l""", the fourth equality
follows from the fact that &5 """ .. &y 771" commute with Ali=1i-n
(as @) is invariant), the last equality follows from the fact that @}\""i"'jfl’j”'"
commutes with ¢7Fh " @R (again as @y is invariant) and with
(e2mitiz)Jk—LEn (aq t3, commutes with the image of t3 — t4, x — x1:2:34).
Therefore (A;,Cji) = 1 is preserved. One shows similarly that (B;,Cjx) =1
(1 <j<k), Xiy1 =0;X;0; and Y11 = ori_lY,;oi_l are preserved.

The fact that the relations ©4;,0~! = B!, ©B,07' = B;A;B; ",
VAW~ = A;, WB;W~! = B;A;, are preserved follows from the identities
(28), (29) and that if we denote by = +— [z], the morphism 0 — 0 % t;,,

defined alE)ove, then: (a) ¢; commutes with Zi,j\i<j t;; and with thg image of
0 = 0 Xty o [z]n; (b) for x €0, y € t 2, we have [[z],,y' 1" 1"] =
[[x]2, y]*~ 14" Let us prove (a): the first part follows from the fact that

Dy

)



212 D. Calaque, B. Enriquez and P. Etingof

@ commutes with t15 + t13 + t23; the second part follows from the fact that
X,d, Ay and o), + Zk<l(ad§k)2“(fk1) commute with ¢;; for any i < j. Let us
prove (b): the identity holds for [z, 2] whenever it holds for = and for 2/, so it
suffices to check it for = a generator of 0; x being such a generator, both sides
are (as functions of y) derivations t; o — t;, w.r.t. the morphism t; o — 1 ,,,
y — yl T g0 it suffices to check the identity for y a generator of & ».
The identity is obvious if x € {Ap,d, X} and y € {Z1,71, T2, P2} If © = dos
and y = Z1, then the identity holds because we have

[525 + (adil)Qs(Em)’il}l...ifl,i...n _ _((adil)Qerl(Eu))1...i—1,i...n
i—1

= (X =) Y )

u’=1 1<u<i<v<n

= — Z (adiu)QS—‘rl (Euv),
1<u<i<v<n
while

i—1 i—1

[523 + Z (ad}_(u)Qs (Euv>7 Z }_(u’} = [ Z (ad}_(u)Qs(Euv)a Z )_(u/]

1<u<v<n u’=1 1<u<i<v<n u'=1

= Z (adx,) ™ (tuy)

1<u<i<v<n

where the first equality follows from the fact that (adx,)”(t.,) commutes
with Z:;il Ty whenever u < v < iori < u <wv. If x = 095 and y =
To, then the identity follows because [Jas + (ad%;)?(t12),%1 + %X2] = 0 and

[025 + D1 crcnan (3d%u) P (Fuy), Don—y Zw] = 0.
If x = 25 and y = g1, then

[025 + (ad%1 )2 (T12), 1] i bl
- {% > [(adg))P(r2), (—adsi)9(b12)] + [(adsy)* (F12), ya]} A0

p+qg=2s—1
1 —_ T _ —
= 5 Z [ Z (adxu)p(tuv)a Z (aqu/)q(tu/v/)]
p+g=2s—1 1<u<i<v<n 1<u/<i<v’/<n
HDD (ad=)® (), T+ -+ Fical;
1<u<i<v<n

on the other hand,
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[525 + Z (adiu)zs(fuv)7 }71 + ...+ }71—1]

1<u<v<n

= Z [(adxu)%(fuv)a y1+...+ }7171]

1<u<v<n

XYY bads) ), (~ads) ()]

u=1v|vF#u p+g=2s—1

= > [(ad%y)®(Eue), 51 + -+ Fic1]

1<u<v<n
1 _ _ N _
+ Z Z 5[(adxu)p(tuv), (—adxy)(tuv)],
1<u<i<v<n p+qg=2s5s—1

where the second equality follows from the fact that [(adxy)P (tuy), (—%u)d(buy )]+
[(ad%y )P (fuv), (—adXy)9(tuy)] =0 as p + ¢ is odd.
Then

[62s + (ad%1)* (E12), 327" =[G+ Y (adRu)® (uv), F1 + - + Fica

1<u<v<n
== Y [(ad%)®(tw) 71+ +Ficl = Y [(ad%e)* (Buv), 1+ - + Fici]
1<u<v<i i<u<v<n
1 — - _ —
5 D > [(ad%)P (Fuv), (—ad%y ) (Furv)]

prg=2s—1 1<u<i<v<n

1<’ <i<o' <, (u,0)#(u' 0')

= > [(ad®)®(tw) Fi+ -+ Fal = D [(adR)*(Fuy), 71 + o + Fio1]

1<u<v<i i<u<v<n

1 o o
+§ Z Z [(aqu)p(tUV)v (7adxu)q(tuv/)]
pra=2s—1 4y cicv<n

1<u<i<v’ <n,v#v’

% Z Z [(ad%y)P (tuy), (—ad%y )9 (tury )]

pra=2s—1  cicu<n

1<u/ <i<v<n,uu’

where the second equality follows from the centrality of ¢, + ... + ¥, the last
equality follows for the fact that (adxy)P(tuy) and (—adxy )4 (tyy) commute
for u,v,u’,v" all distinct. Since p + ¢ is odd, it follows that
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[625 + (ad%1) ™ (F12), 71 )75 = [Bos + Y (ad%u)® (fuv), ¥1 + - + Fii]

1<u<v<n

= Z [(adiu)2s(fuv)»yi + ...+ yn] - Z [(aqu) (tuv)a yi+.. .+ Y1 1]

1<u<v<i i<u<v<n

+ > > [(ad%y)P (b)), (—adgy) (fuv)]

p+q=2s—1 1<u<i<v<v’<n

+ 0y > [(ad%y )P (Fuy ), (—ad%u )4 (Tury ).

p+q=2s5—11<u<u/<i<v<n

Now if 1 <u < v < i, we have

[(ad%)™ (fuv) Fi b o Tal = D (adS)Pad(fus + .+ Fun) (ad5)? (Fu)
p+q=2s—1
= Z Z (adi{u)p[fuw, (—adiv)q(fuv)]
p+qg=2s—1

( diu)p(_ ds{v)q([fuwa fuvD

=i p+q=2s5— 1

Z 3 [(ad%a)P (fuw), (—ad%y) 4 (Eew )]

w=1 p+qg=25—1

one shows in the same way that if i < u < v < n, then [(ad%y)*(tu), V1 +

i) = prq=2s—1[(2d%0)P (fuw ), (—adxy )4 (tvw)]; all this implies
that

[62s + (ad%1)® (F12), 31 )" = [+ Y (ad%u)® (fuy), (7)1

1<u<v<n

Since [525 + (adi1)2s (E12)7 yl +y2] =0 and [625 + Zl§u<v§n(adiu>28(fuv)a }71 +
..+ ¥n] = 0, this equality implies

[02s + (ad%1)* (t12), 2] 7" — [0gs + Z (ad%u) 2 (Fuv ), (F2) 171,

1<u<v<n

which ends the proof of (b) above, and therefore of the fact that the identities
©4,071 = B; , WB;W~! = B; A; are preserved.

The relatlon (@7 w?) =1 is preserved because
([é]ei% 2icj Eii, ([@]ei% 2is Eii) ) = ([é]e 3 2igs b [Lf/] 15 24 Ei')

(1], [#1%) = [(8,9%)] =
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where the two first identities follow from the fact that 3, . #;; commutes with
the image of © — 9 X 4, © — [z], the third identity follows from the fact
that G1 — G, g — [g] is a group morphism, and the last identity follows
from (27). )

The image of C; ;41 is 5 ;(e2™t12)biH1-np, . to the product of the images
of 012,...,0»”_17” is ’

(1);711 (627rif12)1,2...71(@)\,1@;\,12)(62711512 )2,3..477, (@)\12@;\}5) (627ri512)3,4...71...(@A’n71@;\7h)

627"igx\71.n¢A’n

— @;11 (eQWiEu)1,2...n,(627ri512 )2,3...n¢}\,273...7z(6271-1{12 )3,4...nm@}\...,i—l,...n

(ezwi€12)z‘,i+1...nm@i.u,n—ln—l n627riEn_1,,,
_ @;11 (eQWiflg)l,Q...n(e%riElg )273--<n(627"ﬁ12)3,4---71'.'(6271'1{12)i7i+1--4"”.627Tifn—1,n
1,2,3..n 1...,i—1,...n l....n—2n—1n
PL23n gl O

— @;’11627Tizi<j Eij@)\’l — 627Ti Zi<j Eij7
where the second equality follows from the fact that ¢! commutes with
(e2miti2)ii+Llm whenever j > 4, and the last equality follows from the fact
that ZKj t;; is central is t,,. . )

So the product of the images of Cis...Cp—1 p, is 2™ g b

The relation (6%)3 = Cis...Cy,—1,,, is then preserved because

(616 T ] Zics )3 = ([B][F])7e Xies ™ = ()] Zic
=e

27rizi<j fij’

where the first equality follows from the fact that ), _ j t;; commutes with the
image of G; — G,,, g — [g], the second equality follows from the fact that

g — [g] is a group morphism and the last equality follows from (27). In the
same way, one proves that ©% = C15...C, 1.4, 07 = Cii11Cit1.i42 le+1 and

(©,0;) = (¥,0;) = 1 are preserved. O

5.2 Construction of morphisms By, — exp(fll"n) X S, using an
associator &)

Let us keep the notation of the previous section. Set

adx

agn(A) = —(2n + 1) Bany2A*"2 /(20 4+ 2)!, g = *m(y),

Ay = Oy (G, )PPy (G, )
— 67}\15/2@)\(75)\ o t, t)e)\(gkﬁ%)@k(i,g)\ o t, t)flef)\t/Z’
B,\ = eAt/QQP,\(—:le —t, t)e’\zsﬁ,\(gj,\, t)_l

(the identity in the definition of A, follows from the hexagon relation).
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Proposition 33. We have

flf\z’?’ _ e,\t’u/Q{@/\}3,1,2A§,13{¢>\}2,1,3e,\t’12/2 ) {@/\}3,2,114;,23{@/\}1,2,3’
B}\Z’s _ 67At12/2{@)\}371,2B§,13{@)\}2,1,367/\t12/2 ) {@,\}3’2’13;23{@&1’2’3’

(3)1\2,37 6Af12/2{@)\}371)2Ai’13{@)\}271736)\£12/2)
— (67)\{12/2{@A}3’1723/2\113{@)\}271’367)\512/27 A}\Q,Z’))

— {@,\}3’2’16)\{23 {@)\}1,2,3)

so the formulas of Proposition 31 (restricted to the generators A;, B;,0;,Cji)

—

induce a morphism Bi, — exp(tf,) x S, (here &5, is the degree completion

_ 1,n
of &,,).

Proof. In this proof, we shift the indices of the generators of t,,11 by 1, so these
generators are now t;;, i # j € {0,...,n} (recall that t,y1 = 5, ,, 1, = £f,,).
We have a morphism ay, : t,41 — t1,n, defined by t;; — ¢;;if 1 <i<j<n

and to; — 7 = —@3?7271(@) if 1 <4 < n (it takes the central element

20§i<j§n lij to 0).
Let ¢ : {1,....,m} — {1,...,n} be amap and ¢ : {0,....,m} — {0,...,n} be
given by ¢'(1) =1, ¢'(¢) = ¢(i) for i = 1,...,m. The diagram

’
I}—)Id)

tn—i—l g tm-ﬁ—l

an | Lom

- T—z® 7
tl,n - tl,rn

is not commutative, we have instead the identity

am(z?) = ay(z)? — Zfi(l‘)( > tij),

if, 5 €P 1 (D)]i <g’

where & : t1,, — k is the linear form defined by &;(to;) = 1, &(any other
homogeneous Lie polynomial in the t;) = 0.

Since the various =,/ . c4-1(;y|i7 < tirj» commute with each other and with
the image of  — x?, this implies

n
am(9?) = anlg)? [[ e ¢ 008 v srea iy bsr)
i=1

for g € e}p(irl+1). A
Set Ay = @g’l’QeM‘“ (§Z>(/)\’1’2)’1 € exp(tz). One proves that

70,123 At1o _ _At12/253:1,2 70,213 52,13 At12/2  53,2,1 70,1,23 51,2,3
Ay e =e DyTTAYTTD e PYTTATTT D,
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(relation in exp(fy)). We then have az(Ay) = Ay, az(@y>?) = #1%%, and
the relation between the a; and coproducts implies as(AY"*) = A;** and
043(/1(;\"12’36’\“2) = 121}\2’3. Taking the image by a3, we get the first identity. As
we have already mentioned, this identity implies (43;121}\’234&, A}\Q’?’) =1

Let exp(tyt1) * Z"/1, be the quotient of the free product of exp(tn11)
with Z™ = &} ,ZX,; by the normal subgroup generated by the rations of the
exponentials of the sides of each of the equations

Xito X[V = " D tai, Xilto; +1) X, = tog,
0<a<n,a#i

Xitiji_l = tjk, Xijtjk(Xij)71 =tk

where i, j,k are distinct in {1,...,n}. Then the morphism «, : t,41 — ti,
extends to &, : exp(tyy1) * Z*/1, — exp(tin) by X; — e
It ¢ : {1,....,m} — {1,....,n} is a map, then the Lie algebra morphism

thyr — tme1, © — % extends to a group morphism exp(t,) * Z* /1, —
exp(tm) * Z" /I by Xi = [[iieg1) Xir-
Let -
By = ?22¢021 X, 6010 € expl(ts) * 22 /1,

then OQ(B)\) = B)\.
We will prove that

50,12,3 _ —At15/2531,2 50,2,13 52,1,3_—At12/2  53,2,1 50,1,23 51,2,3
B =e¢ V"B, Py e (0] By &7 (40)

l]le l.ll.S. .lS
~0,12.3 t312/2 0,3 2): ): F 21,0
B/\7 = eA ’ / @)\/ ' 1 2 ?/{7 '

and the r.h.s. is

e—,\t12/2¢§,1,2€At31,2/245(;,13,2)(245?,2,0@?1,36_,\:&12/2@?:\,2,1ext%,l/2¢§,23,1X1¢§2,1,0¢}\,2,3.
The equality between these terms is rewritten as
XXy = 45(;3,1.,2@}\,3,067,\tlg/QXQQS}\g,z,oeMB/z@i,g,1@(;,23,1)(1@&1,2,3@%1,0,
or, using the fact that X; commutes with ¢;, (7, j, k distinct), as
X, X, = 4533’1’2215}\’3’0X2¢§2’3’1¢§’2’0X1¢?\1’2’3¢i’1’0.

Now Xo@05" = 0031 Xy, X, 800%% = 6027 X and X, Xo07"0 = 071 X, X,
so the r.h.s. is rewritten as @2\3’1’245;3’0(152\’3’1X2@§’2’0@§’2’3X1@§’1’0 = X1 Xo.
This ends the proof of (40). Taking the image by a4, we then get the second
identity of the Proposition.

Let us prove the next identity. We have



218 D. Calaque, B. Enriquez and P. Etingof
50,12,3  Af12/2.53,1,2 70,2,13 52,13 Af15/2
(BY'3 e Py AYE g e )
0,3,12 3,12,0 )\t 3,1,2 £0,2,13 13,2,0 £2,1,3 X\t 0,12,3
_ )\t12,3/2(p>\7 ) X1X2¢>\7 ) e/\t12/2¢)\7 ) @)\7 ) e)\to,2¢>\7 ) 45)\7 ) 6)\t12/2¢)\’ )
(X X )71¢12’3’067At12’3/2€7A512/2@371’2@0’271367)\“)’2@13’2’()@2’1’367)\{12/2
142 A A A A A '
Now
12 t- 1,2 2,1 13,2 2,1 t 12 —
Xledji’ ,06)\1512/2@i7 ) 45(;\7 ) 36/\t0’2@>\3’ 70@)\7 ’36)‘t12/2¢§’ ’3(X1X2) 1
» 3,12,0 #3,1,2 £0,2,13 13,2,0 £2,1,3 50,12,3 _1 M
= AM12/2X) X3 P0G 2 g B P02 3205 130123 (X X)) TeMe/2
t 0,2,1 £3,1,02 02,1,3 £0,2,1 — t
— 6)‘t12/2X1X2¢>\’ ) 45)\; , e’\t°*2¢)\7 ) ¢A7 ) (X1X2) le)\tlg/Q
t- 0,2,1 ,2,1 — t
_ e/\tlg/ZXlXQQA, ) eAto,g@g, s (X1X2) 1€>\t12/2

t 2,1 — 2,1 t
= AM2/2g03 21 X XpeMoz (X Xy) TIp> 0  eAMie/2
_ At12/2503,2,1 Atos 2 503,2,1 At12/2
=e D e D e .

: . . 50,12,3 AL 3,1,2 70,2,13 £2,1,3

Plugging this in the above expression for (By %%, eMi2/2¢g312 AD2 B ghlSeAtiz/2)
50,1 £ 1,2 70,2,13x2,1,3 AF 1 1

one then finds (BY123, Mia/2g312 J0213g2 180 n/2) L @321 N g2,

: : : R12,3 At12/253:1,2 12,13 52,1,3 At12/2) _
Tgl;lilgt_helir;aggebya4,wethenobta1n (B,™",e 12/ DPYTAVTDY e 12/2) =
@)\7 ; e)\tg;;@)\v B

Let us prove that last identity. For this, we will show

CAt12/253:1,2 50,2,13 52,13 At12/2 710,12,3 A1\ _ 53:2,1 Atas g51,2,3
(e DyIBYTTDY e JAY T e2) = 9T e gy
and take the image by ay.

We have

“At12/2531,2 50,2,13 52,1,3 _—At15/2 70,12,3 At1o

(e DPyIBYTTOY e JAY T e2)

- 1,2 13,2 13,2,0 52,1,3 12 12
—e )\t12/2©1/3\, , e/\t2,13/24f)9\» 3, XQ@/\& 70¢>\7 ’36 )\t12/2¢)())\, »36)\t0,12€p§7 706/\t126/\t12/2

1,2 50,2,13 y-—1 £2,13,0 2,1 12,3 _ 12,0 —

451;\7 ) @())\’ ) 3X2 1@)\7 3706 At2,13/24’))\» ’36)\7:12/2@2’ ’36 )\t0,12¢§\1 706 At12

- 1,2 . 13,2 13,2,0 52,1 12 12 1,2 50,2,1
—e >\t12/2¢§7 ) e>\t2,13/2q§9\» 3, Xg'ib/\g’ 7043>\, 7343(;\7 736)\t0,12+>\t12@§7 7043:;)\7 ) 45(/)\7 13

2.1 — — 2.1 — 12 — .12
45)\7 3’06 >\t2,13/2X2 145)\7 ’36 )\t12/2¢())\1 ’36 Ato,lzq’)i, 70'

Now
13,2,0 £2,1,3 £0,12,3 Ao 104+ 12 53:12,0 £3,1,2 £0,2,13 v —1
XQQSA @A Qﬁ)\ e 45)\ ¢A ¢A X5
- 02,1,3 51,2,0 Ao 12+ 12 50,21 31,02 v —1
—XQ@A Q))\ e @/\ @)\ X5
_ 5013 1,2,0 JAto,12+At12 59,2,1 v —153,1,0
*@A X2@>\ e @)\ X5 @/\
_ @271,3)(26)\(1501+t02+t12)X2—14‘)§71’0
_ 5913 A(tor+toz+tiz+tas) 53:1,0
=P % 2
So

— 1,2 0,2,1 2,1 — 10,12
(e At12/2¢§7 5 Bg\y s 3@)\, ,36 )\2512/2’ A())\, 736)\7512)
— 6_Mlz/2¢§’1’26At2’13/2@9\’13’2¢8\’1’36>\(t01+t02+t12+t23)

1 2,1 — - 2,1 — 12 — 12
@iy »045)\, 3’06 )\t2,13/245/\7 ’36 >\t12/2¢g» ’36 Mo‘mdsiv ,0.
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after some computation, we find that this equals @?\’2"1@”2345}\’2’3. a

In particular, (@, Ay, By) give rise to a morphism Bi, — exp(ilfm,) X Sp;
one proves as in Section 2 that it induces an isomorphism of filtered Lie

algebras Lie(PBy )k ~ t¥ . Taking @) to be a rational associator [Dri91], we
then obtain:

Corollary 34. We have a filtered isomorphism Lie(ﬁlm)(@ ~ E?in, which can
be extended to an isomorphism Bi ,(Q) ~ exp(i(%n) X Sp.

5.3 Construction of morphisms I' [, — G1,, X Sy, using a pair

(P, O3)

Keep the notation of the previous section and set

~ 1
7y = eXP(*X(Ao + 2321{()‘)521())-
k>1
Proposition 35. We have
[@)\]e)‘{”/ufb\([@A]e’\ﬁ?/m)_l _ [1)\, [¢A]6A512/12B>\([@/\]em’m/lz)—l _ BAA)\.

Proof. The first identity follows from the fact that Ao + >~ az2k(A)[02x] —
A?t/12 commutes with ¢ and 7y; the second identity follows from these facts
and the analogue of Lemma 30, where 271 is replaced by A. O

Assume that O, € G satisfies
01 = (Ox)° = (63, ¥) = 1,
[ A]6A512/4A/\([é/\]ekﬁzﬂ)—l _ B;l’ [é)\]ez\flz/4é)\([é)\]eAﬁzM)—l _ B,\A,\B)TI

(one can show that the two last equations are equivalent), then ©
(05N i< )4 [y]eMEi<s 3)/12 extends the morphism defined in
Proposition 33 to a morphism I [,; — Gy, X Sy.

We do not know whether for each @, defined over k, there exists a éA
defined over k, satisfying the above conditions.

5.4 Elliptic structures over QTQBA’s

Let (H,An,Ry,Pn) be a quasitriangular quasibialgebra (QTQBA). Recall
that this means that [Dri90b]: (H,my) is an algebra, Ay : H — H®? is an
algebra morphism, Ry € H®? and &5 € H®? are invertible, and

Ag(z)*' = RyAy(2)Ry',  (id®Ag)oAn(x) = Px(Ag ®id) o Ag(x)dy’,
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12,3 23,12 p1,3/+1,3,2y—1 p2,3 £1,2,3 1,23 1 £2,3,1\—1 pl,3 £2,1,3 p1,2,51,2,3
Ry” =@y "Ry (P ") Ry @y, Ry = (@) Ry @y "Ry (Pg

1,2,34 12,34 2234 1,234 1,2,3
DDy =Py OO

One also assumes the existence of a unit 1z and a counit eg.

If A is an algebra and Jy, Jo C A are left ideals, define the Hecke bimodule
H(A|Jy, J2) or H(J1, o) as Homa (A/J1, A/J2) = (A/J2)"t where J; acts on
the quotient from the left; we have thus H(J1, o) = {x € A|J1z C Jo}/Jo.
The product of A induces a product H(J1, Jo) @H(Jz, J3) — H(J1, J3). When
Ji = Jo = J, H(J) := H(J,J) is the usual Hecke algebra, and H(Jy, J2)
is a (H(J1),H(Jz2))-bimodule. Recall that we have a functor A—mod —
H(J)—mod, V + V7 := {v € V|Jv = 0}.

If H is an algebra with unit equipped with a morphism Ay : H — H®?
and a : H — D is a morphism of algebras with unit, we define for each
n > 1 and each pair of words w,w’ in the free magma generated by 1,...,n
containing 1,...,n exactly once (recall that a magma is a set with a non-
necessarily associative binary operation) the Hecke bimodule

H (D, H) == H(D @ H®"|Jy, Jur),

(or simply Hw’w') where J, C D ® H®" is the left ideal generated by the
image of (a ® AY) o Ay : H, — D ® H®". Here H, = Ker(H & k)
and for example Agl)g = (213) o (Ay ® idy) o Ay, etc. We have prod-
ucts HYv @ HY " — Hww" We denote the Hecke algebra H“" by
H*(D,H) or H”; we denote by 1, its unit. We denote by (H®**')* the
set of invertible elements of ’H“”“’/, i.e., the set of elements X such that
for some X’ € HY"*, X'X = 1,,, XX’ = 1,. The symmetric group S,
acts on the system of bimodules Hww' by permuting the factors, so we get
maps Ad(o) : HYY — HOOD)oO) (where o(w) is the word w, where i
is replaced by o(4)). If wp = ((12)...)n, we define an algebra structure on
Does, HP07 (W) g by (Xoes, hoo)Dres, WrT) =2, 1cs, hoAd(o)(h})oT.
Then U, eg, (HY07(W0)) X o C @,es, HY0 (W) g is a group with unit 1,,,. We
have an exact sequence 1 — (H™°)* — Uyeg, (HY07(Wo))Xg — S, but the
last map is not necessarily surjective (and if it is, does not necessarily split).

),

If H is a quasibialgebra, then @ gives rise to an element of H!(?*).(12)3(D_ H),

which we also denote @ y;; similarly @El gives rise to the inverse (w.r.t. compo-
sition of Hecke bimodules) element &' € H(1231(23) (D, H). We have algebra
morphisms H'?(D, H) — H?3(D, H) induced by X + X%123 .= (idp ®
Ap ® idg)(X) (0 is the index of D) and similarly morphisms H'?(D, H) —
H2(B3)(D,H), X — X213 H'2(D,H) — HYD,H), X — X% and
X001 etc. If moreover H is quasitriangular, then Ry € H*“'%(D,H),
Ryt € H'??Y(D, H), so in that case L,cg, H07(W0)g — S, is surjective,
and we have a morphism B, — U,es, HV°?(W0)g such that the composition
B, — UUGSHHWO’U(WO)J — S, is the canonical projection.

Definition 36. If H is a QTQBA, an elliptic structure on H is a triple
(D, A, B), where D is an algebra with unit, equipped with an algebra mor-
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phism a : H — D, and A,B € H'*(D, H) are invertible such that A%%? =
AO,(]J,l _ BO,l,(B _ BO,V),l _ 1D ® lH;

A R A R @ AN B0 )

BO,12,3 — (R}_}Q)71(@2&1’3)7130’2’13@21’3(R§1)71(@;}2’3)7130’1’23@}_}2’3 (42)

and

(B0’12’3, R?{J(@él,-?))flAO,Q,IS@?{JQR}{Q)

= ((Ry") "1 (@) T BO?BeR P (R ™1 AM129) = (047°) T R Ry 0™
(identities in H'?)3(D, H)).

The pair of identities (41), (42) is equivalent to

3,12 410,3,1253:1,2 2,31 40,2,3152,3,1 p1,23 40,1,2351,2,3 _
Ry 2 A0S 12 " Ryt AD23LpTo B2 AO 123 150 =

)

{Ri’[lAO*Q’lREzAO’LQ -1
and

H
(R;I1)12’3BO’3’12¢2’[1’2 (RE1)31’230’2’31¢%}3’1(RE1)23’1BO’1’23¢}L}2’3 -1

)

{(Rl’z)1BO72’1(R§1’,1)1B0’1’2 -1

so the invertibility conditions on A, B follow from (41), (42).

If Fe H®2 is invertible with (EH ® ldH)(F) = (ldH & EH)(F) = 1H,
then the twist of H by F is the quasi-Hopf algebra H with product
my, coproduct Ag(z) = FAy(z)F~!, R-matrix Ry = F>'RyF~' and
associator @y = F23FL2B¢, (F12F123)~1 If ¢ : H — D is an alge-
bra morphism, it can be viewed as a morphism “H — D, and we have
an algebra isomorphism H123(D, H) — H(23(D, H), induced by X +
FL2R012 X (FL2F012)=1 (more generally, we have an isomorphism of the sys-
tems of bimodules H** (D, H) — H"“* (D, H) induced by X + F,XF,'
for suitable F,).

If (D, A, B) is an elliptic structure on H, then an elliptic structure “H is
(D, A, B), where A = F1.2F012 A(F12F012)~1 and B = FL2F012 (1.2 F012)-1

An elliptic structure (D, A, B) over H gives rise to a unique group mor-
phism

Bin — Uges, H*7)(D, H)* o,

such that

o5 — ((I)g(w)i%)...i—l),i,i—&-l)_1R?Ii+1(i7Z.+ 1)@g§(12)3)...i—1),i,i+1’

Ai N QSITLli140.,(((12)3)...ifl).,(i..,(nf1,7L))§15I_Li7
B; — (p;{l.BO’(((12)3)'“i_1)’(i"'(n_1’n))¢[{ i
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where

)

by 7.:gp((12)...i—1),1‘,(i—i—l(...(n—l,n))) 'qv)gIQ).“n—Q),n—l,n_

here we have for example z((?3) = (A ® idy) o Ag(x) for z € H.

If g is a Lie algebra and t, € S?(g)? is nondegenerate, then H = U(g)|[[A]] is
a QTQBA, with my, Ay are the undeformed product and coproduct, Ry =
eMe/2 and &y = D(hty? ht2®), where @ is an l-associator. The results of
next Section then imply that (D, A, B) is an elliptic structure over H, where
D = D(g)[[h]] (D(g) is the algebra of algebraic differential operators on g) and
A, B are given by the formulas for Ay, By with ¢ replaced by htg ,  replaced
by h)", Xa ® (el +€2), y replaced by h)" 9, ® (el +€2).

Remark 37. If H is a Hopf algebra, we have an isomorphism
H (D, H) = (D & B~

where the right side is the commutant of the diagonal map H — D® H®" 1,
h— (a ® id®”_1) o A(n)( h). This map takes the classof d® by ® ... ® hy, tO

da(SH( ))®h15H(h(n 1))® @ hp_ 1SH( ) (Sg is the antipode of H).
So A, B identify with elements A, B € (D ® H)H, the conditions are then

A012 _ R%‘ilAO’QR}fAO’l, BO12 — (R ) 1130, Q(R ) 1501,

(80’12,R§_}1A0’2R}{’2) _ ((R}}Q)leO,Q(Riil)fl’A0,12)
_ (R?I)—}2R}{,2R?{,2R?—}0Ri}1Ri}3)0,1,2-3

(conditions in (D® H®?)H), where the superscript B, xZ"~1 — B,_; xZ"~!
is the map 29 ® ... ® 3 — Sy (x0) ® Sy (z1) ® x2Sy (x3).

Moreover, the morphism PB,, — (H"°)* ~ (D®@H®~1)H factors through
PB, — PB,_; x Z" ! — (D ® H®* 1)1 where: (a) the first morphism is
induced by Z" ! x B!, — Z*~! x B,,_; (where B/, = B, xg_ S,_1 is the group
of braids leaving the last strand fixed), constructed as follows: we have a
composition B, ; — 1 ((P')"*! — diagonals/S,,) — m (C* — diagonals/S,,) =
B, where the first map is induced by C C P!, and the middle map comes
from the fibration C" — diagonals — (P!)"*! — diagonals — P!, (21, ..., 2,) —
(21, ey 2n,00) and (21, ..., Zny1) — Zn41 [the second projection has a section so
the map between 71’s is an isomorphism]|; viewing Z" ! x B!, Z" 1 x B, _; as
fundamental groups of configuration spaces of points equipped with a nonzero
tangent vector, we then get the morphism Z" =1 x B! — Z»~! x B,,_; (which
does not restrict to a morphism B!, — By_1); (b) the second map is induced by
the standard map PB,_; x Z*~' — (H®*~1)* induced by Ry = Y., 7/, @1
and the map taking the ith generator of Z" ! to 1 ® ... ® uSy(u) ® ... ® 1,
where u = ), Sy (r()r,, (see [Dri90al). The morphism B, — Aut((H"°)*) =
Aut((D @ H®*~ 1)) extends the inner action of PB,, by

Op1- _{er 1,n..2n— 1X01 ..... n—2mn..2n— 1Rn 2n—1,n— 1}02n 1,....,n—1-n
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(where the superscript means that xg ® ... ® x9,—1 maps to oSy (zran—1) ®
e @ Tp_1SH(x4)).
We have then Li,cg, (H*07(w0))*g ~ (D @ H®" 1)) xpp B, (the
index means that PB,, C B,, is identified with its image in ((D®@ H®"~1)*)H).
Then if (A, B) is an elliptic structure over a : H — D, the morphism
B, — (D@ H®~1))H xpp B, extends to a morphism

El,n s ((D ® H@n—l)X)H XpB, Bn

via A; > A%l B O Lis L
This interpretation of H™° and of the relations between A, B can be ex-
tended to the case when H is a quasi-Hopf algebra.

Remark 38. Let C be arigid braided monoidal category. We define an elliptic
structure on C as a quadruple (£, 4, B, F'), where £ is a category, F': £ — C
is a functor, and A, B are functorial automorphisms of F(?)®?, which reduce
to the identity if the second factor is the neutral object 1, and such that the
following equalities of automorphisms of F/(M)® (X ®Y') hold (we write them
omitting associativity maps, as they can be put in automatically):

Anxovy = By, x Am,y Bx, vy Am,x

—1 1
By, xey = Bx yBum,y By xBu x,

(Bu,xey, By x AmyBxy) = (By xBuy By, A xov)

= 5(M®X®Y)*,Y5Y,(M®X®Y)* O CAllM®RX®Y

where canx € Home (1, X ® X*) is the canonical map and the r.h.s. of the last
identity is viewed as an element of Ende (M®X®Y) using its identification with
Home (1, M@X®Y)®(MeX®Y)*). An elliptic structure on a quasitriangular
quasi-Hopf algebra H gives rise to an elliptic structure on H-mod. An elliptic
structure over a rigid braided monoidal category C gives rise to representations
of By, by C-automorphisms of F(M)® X®7~1,

6 The KZB connection as a realization of the universal
KZB connection

6.1 Realizations of t; ,

Let g be a Lie algebra and tg; € S2(g)? be nondegenerate. We denote by
(a,b) — (a,b) the corresponding invariant pairing.

Let D(g) be the algebra of algebraic differential operators on g. It has
generators X, 0,4, a € g, and relations: a — X,, @ — 0, are linear, [x,,Xp] =

[aavab] =0, [aﬂrvxb] = <av b>
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There is a unique Lie algebra morphism g — D(g), a — X,, where X, :=
Yo Xaea]Ocas and tg = > eq @ e, (it is the infinitesimal of the adjoint
action). We also have a Lie algebra morphism g — A, := D(g) ® U(g)®"
a—Y, =X, ®1+1® (3", a?). We denote by g*¢ the image of this
morphism. We denote by H,,(g) the Hecke algebra of (4,,, g#8). It is defined
as the quotient {z € A, |Va € g,Y,z € A,g¥2e} /A, g4%. We have a natural
action of Sn on A,, which induces an action of S,, on H,(g).

If (Vi)iz1,...n are g-modules, then (S(g) ® (®"_,V;))? is a module over
H.,.(g). If moreover V) = ... =V,,, this is a module over H,,(g) x Sp,-

Proposition 39. There is a unique Lie algebra morphz‘sm Pyt tin — Hn(g),

Ty — Yy, $a®e£¥), Ui = — 2 0 0a ®ea), Zj»—>1®t (we set Tp = T, ,
O := 0O, ).

Proof. The images of all the generators of t; ,, are contained in the commutant
of gdi2¢ in A,,, therefore also in its normalizer. According to Lemma 4, we will
use the following presentation of t; ,. Generators are T;,¥;, t;;, relations are
[fiv?j] = [gﬂgj] = 07 [fivgj] = {ij (Z 7£ .])a {ij = 2?jia Zyﬁ = Zz Yi = Oa
[fiatjk] = [g“t]k} = 0 (i,j, k distinct). ~

The relations [Z;,Z;] = [4:,9;] = 0, [Zi,y;] = tij (i # ), tij = t;; and

[Zi,tjr] = [Ui,t;x] = O are obviously preserved. Let us check that ., z; =
>, Yi = 0 are preserved.
We have

Zpg(gz Zx ® Ze() =) (%a®1)(Yo—Xa®1)

= —ZXaXa ®1= erax[emeﬁ]ae@ ®1=0
[eY a,3

since x, commutes with x[_ ., and Zg eg ® eg = tg is invariant. We also

have

Zpg(gi):_za ® Z @) Za ©1)(Ya — Xo ®1)
Z 804Xo¢ ®1=- Z aeaX[cmog]aeﬁ
_Z €a, ecweﬁ 63 Zx[c c,g]aeaaeﬁa

a,p

since tg is invariant and (—, —) is symmetric, we have ) _(eq, [ea,eg]) = 0 for
any 3, and since [0, , Oc,] = 0, we have Z x[emeﬁ]ﬁea&eg, s0 >, pa(yi) = 0.
O
6.2 Realizations of t; , x

Let (g,tg) be as in Subsection 6.1. We keep the same notations.
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Proposition 40. The Lie algebra morphism pg : t1 ,, — H,(g) of Proposition
39 extends to a Lie algebra morphism t;, x 0 — H,(g), defined by Ay —
-1, 2)01, X 33X, 2)®1, d— (X, 2a0s + 0ata) ® 1, and

n

O2m — % Z Toy " Tagy @ (Z(ad(eal) - ad(€ay,, ) (€a) - ea)(i))

ALy, Q2 O i=1

for m > 1. This morphism further extends to a morphism U (1, X)X S,, —
H,.(g) XS, byo —o.

Proof. First of all [pg(dam ), pg(Z:)] equals

1 i
5 Z Xay ' Xaz, X @ [eg,ad(€q,) - ad(eazm)(ea)ea]( )

A1,y 02m, L3

2m
1 @)
D) E Xay KXoz, X @ § (ad(eal) --ad([eg, eq,]) - ad(eazm)(ea)ea) L
A1 yeney Qom0 =1

(the equality follows from the invariance of ¢4) which equals zero since the first
factor is symmetric in (3, ay) while the second is antisymmetric in (3, ay).
pg preserves the relation [0a,,, ;] = [£:5,ad(Z;)*™ (£;;)], because pg(d2m +
dici ad(z;)?™(;;)) belongs to D(g) ® Im(A®™ : U(g) — U(g)®"), where
A™) is the n-fold coproduct and U(g) is equipped with its standard bialgebra
structure.
Now [pg (52m)a Pg (gz)} yields

1 ) N
5 2 (D0xe - xan, ) @ ead(ea,) - ad(eas, )(ea) Vel

at,..,0em,a,B

ey Xy 03 © e, ) -+ 3l ) (€a) - 0] )

2m
1 3 ; o
— 52 3 (me...Xal...XO%®egl>ad(eal)...ad(eazm)(ea)o)eg)
i

=1 ai,...,02m,x

o Kz, O @ ad(ea,) - ad([eg, €a]) - ad(Cas,, ) (ea) Vel

2m

1 . L
B Z Z Z (Xal Xyt Xag,, © e((jl)ad(eal) e ad(eam)(ea)(”e((j)

=1 a1,...,02m, j

—Xay * Xay Xy, ®ad(eq,) - -ad(eazm)(ea)(i)e(gj)eg))~

The term corresponding to j =i is

2m
1 .
5 Z Z Xay * Koy Xag,, @ [eawad(eoél) T ad(eOQm)(ea) : 604](1)

=1 a1,...,02m,x
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It corresponds to the linear map S?™1(g) — U(g), such that for = € g,

221 H% S Y fes ad(x) ad(eg)ad(z) (eq) - ca]

p+qg=2m—1 a,3

= % Z Z ad(z)Pad([eg, z])ad(x)?ad(eg)ad(z)" (eq) - €q

a,B pt+g+r=2m—2
+ad(z)Pad(eg)ad(z)ad([eg, z])ad(x)" (eq) - €n

since p(ty) = 0 (u: g®% — g is the Lie bracket) and ¢4 is g-invariant. Now
this is zero since t; = )53 @ eg is invariant.

The term corresponding to j # 4 corresponds to the map S?™~!(g) —
U(g)®", such that for z € g

2m
m— 1 — m— 4 j . .
=l -5 E E ((adz)' "' (adeg) (adz)*™(eq) ~ea)( )eg) — (i < J)

=1 a,8

=3 Z DY ((ada) (e, eal) - (ada)? () Ve = (i j)
l 1 B

2m ‘
= }Z l 1 Z adz) - 1 (e5) (adx)Qm_l(ea))(l)[emeg](j) (i o)
=1
= 5 2D ((ade) " ea)) e 3 ((acde)?e) Vel
=1 a 3

which coincides with the image of 3 > pra=2m—1 (=) [(adz;)P (ti5), (adz;)?(Lij)]-
It is then clear that py preserves the commutation relations of Ag, X and
d with 52m~ O

6.3 Reductions

Assume that g is finite dimensional and we have a reductive decomposition
g=bh@dn, ie, h C gis a Lie subalgebra and n C g is a vector subspace
such that [h,n] C n; assume also that t; = ty + ta, where t; € S%(h)" and
ta € S2(n)Y.

We assume that for a generic h € b, ad(h),, € End(n) is invertible.
This condition is equivalent to the nonvanishing of P()) := det(ad(AY)},) €
Sdimn (), where A — AV is the map h* — b, with A := (A®id)(ty). If G is a
Lie group with Lie algebra g, an equivalent condition is that a generic element
of g* is conjugate to some element in h* (see [EE05]).

Let us set, for A € bh*,

r(A) = ([d ® (adX”) D) (t),
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Then 7 : h’,, — A%(n) is an h-equivariant map (here b*,, = {\ € h*|P()\) #

reg reg

0}), satisfying the classical dynamical Yang-Baxter (CDYB) equation
CYB(r) — Alt(dr) =0

(see [EE05]). Here for 1 = > an ® by ® £y € (n®? @ S(h)[1/P])", we set
CYB(r) = Za?a,([awaa/] ® by ® by + g ® [ba,aq’] ® by + 84 ® ag @
[basbar]) @ lolyr, dr:i=3"  aq @b ® dly, where d extends S(h) — h® S(h),
2P = kr @ 281 and AKX @ 4) = (X + X231 1 X312) @ /.
We also set
Y(N) = (id @ (ad\Y); ) (tn).

In
We write Y(A) =), Aq ® By ® L.

Let D()[1/P] be the localization at P of the algebra D(h) of differential
operators on h; the latter algebra is generated by Xy, Op, h € b, with relations
h— Zp, h — Oy linear, [Xp, Xp/] = [0, O] = 0, and [Oh,Xp/] = (h, 1').

Set By, := D(b)[1/P]®U(g)®". For h € h, we define X}, := 3", X(.,10n, €
D(h), where ty = >, h, ® h,. We then set Y}, := Xj, + 31", h(). The map
h — B, is a Lie algebra morphism; we denote by h41#¢ its image.

We denote by H,(g,h) the Hecke algebra of B, relative to h42&, Explicitly,
Hn(g,h) = {x € B,|Vh € b, Yy,x € B,hd2e} /B, hdias,

Proposition 41. There is a unique Lie algebra morphism
Payy  tin — Hulg,h),

such that T; — Y, %, @ Y, gi — —= 3,8, @ B + 3, la @ al0Y,
Fij >t Here r(\) = 30, la(N) (0o ® ba).

It vi,...,V, are g-modules, then S(h)[1/P] ® (®;V;) is a module over
D(h)[1/P] @ U(g)®™, and (S(h)[1/P] ® (®,;V;))" is a module over H,(g,bh).

Moreover, we have a restriction morphism (S(g)®(®,V;))? — (S(h)[1/P]®
(®V;))Y. Note that (S(g)®(®;V;))® is a t; ,-module using the morphism t; ,, —
Hn(g), while (S(h)[1/P]®(®V;))" is a t; ,-module using the morphism t; ,, —
H,(g,b). Then one checks that the restriction morphism (S(g) ® (®;V;))® —
(S(h)[1/P) @ (®V;))Y is a t; ,-modules morphism.

Proof. The images of the above elements are all h-invariant. To lighten the
notation, we will imply summation over repeated indices and denote elements
of B, as follows: 9, ®1 by 9, %, ®1 by (\, h,), 1@z by x*. Then pg 4 (7;) =
)Y, P (5) = —h8,+ 5, r(N)Y (here for 2@y € g°2, (x@y)" = a'y).
We will use the same presentation of t; ,, as in Proposition 39. The relations
[Z;,Z,;] = 0 and t;; = t;; are obviously preserved.
Let us check that [z;,y;] = t;; is preserved (i # j):
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[0a.0(Z:), pa.n (U;)] = [Bhiy, —B0, + ) r(\)*] =t + [N, r(\)77]
k

=1+t =t = pgy(tiy).

Let us check that ), Z; = >, 7; = 0 are preserved. We have ) . pg 1 (Z;) =
0 by the same argument as above and >, pgp(7;) = >_,(AY)" (by the anti-
symmetry of r())), which vanishes by the same argument as above.

Let us check that [y;,7;] = 0 is preserved, for i # j. We have

Pas (@) e @)1 = 3 (= HO N + B O )™ + [P, r(AV*]
k|k#i,j
Hr N )]+ e () + (R + B8, r(A)]
~[1, 00, 7 (V)] + (B0, 1 (M) ] + ()7, (V)" +T(>\) d
= > hE@ur(N)Y + (B, + 1)Dy, r(N)Y] = [hL,D,, ()]
klki.j
R0, TN+ PN, (N + r(N)]
(M) (=h, = b, = X)) + (R, + 1) D, m(N) 7]
~hy, (D r (M) + 1, (D, r (V) + [r(N)7, () +1r(N)7]
[y, + k(N 710, = (@ur (\) X + [, + b)), 0r(N)”]
~h, (D (M) + B, (D, (V)" + [r(N) (A + r(A)].
The second equality follows from the CDYBE and the antisymmetry on r(\).
Then
b ()10, =@ V)X, = (B4 TN ]=0,1 () (A, s ) B
is zero thanks to the h-invariance of r(\). Applying z'y? 2% — 2% (y2)? to the
CDYB identity

[ )R (), )P, ()] 0, () #+-hd 0, (A — ki 2, (X = 0,

we get

(1/2) ) atly(Nlaa, ag] [ba, bl +r(\) 7, (N1 =hi,(@,r(\) P + [k}, 8,r(A) 7] = 0.

Since 7()) is antisymmetric, the sum (1/2)3%°, ;... is symmetric in (i, j);
antisymmetrizing in (¢, ), we get
[y, + 1), 8yr(N) ] = hi, (8, (N)? + R, (D, (A) " + (W), (A +7(X)7] = 0.
All this implies that [pg (7). pg,5(7;)] = 0.

Let us check that [Z;,¢;x] = 0 is preserved (i,7,k distinct). We have

_ T i ik

[pa,0(Zi) pg,p (Eix)] = [(A\Y)', t5"] = 0.

Let us prove that [gl,tjk] = 0 is preserved (i,7,k distinct). We have

(06,6 (): pay (E3)] = (=030 + 30 r N85 = [r(V)Y + r(A)*, ] = 0 be-
cause 14 is g-invariant. O
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Proposition 42. If V1, ..., V,, are g-modules, then (S(h)[1/P]® (®ivi)2h is a

Ilyn X 0-module. The Elm-module structure is induced by the morphism t; ,, —
H.(g,b) of Proposition 41, so

P () (F(X) @ (@50:) = (A)(f(A) @ (®ivy)),

peviy T (FN) @ (®i07)) = (—hL0, + erj)(f(x) ® (®iv;)),

pvoy Ei) (FN) @ (®5vi)) =t (F(N) ® (@iv7)),

and the 0-module structure is given by

) @) (T ) (©10) = (SN (e0) - ea})(EN) @ (3v0),

1 1

P (A)(FN) @ (@101)) = (= 502+ S (n(r(V), ),

HREO)" = @A) EE) ) EX) © (@),

P () (f(N@(®ivi)) = %(</\7hu><9u+0y<>\7hu>+<ﬂ(r(>\))a ANEN@(@v:),

Py (X)(FN) ® (@04)) = (1/2)(A, M) (F(A) @ (®303)).-

Here x, is the projection of x € g on n along b.
To summarize, we have a diagram

tin = Ha(g,h) — End((S(h)[1/P] ® (&:V5))")
o ot S
tl,n X0

As before, the restriction morphism (S(g) ® (2;V;))® — (S(h)[1/P]®(®;V;))"
extends to a t; ,, x 9-modules morphism.

The action of t; , 9 factors through a morphism pg p : t1., X0 — H, (g, h)
extending pgp : t1,, — Hn(g,h) (denoted by (1) in the diagram).

Proof. Let A € bh},,. Then if V' is a g-module, we have (@g*)\@V)g = (@h*J\@

reg*

V)Y (where Ox , is the completed local ring of a variety X at the point z).

We then have a morphism t; ,, X0 — H,,(g) — End((Og- » ®(®;V;))?) for any
A € g%, s0o when A € b, we get a morphism t; , x0 — End((Op- »®(®;Vi))9).
Let show that the images of the generators of t; ,, xd under this morphism
are given by the above formulas.
Since the actions of Z;, #;; and X on (Og- \ ® (®;V;))® are given by multi-
plication by elements of ((’A)g*),\ @ U(g)®™)?, their actions on (O » @ (2;V;))"
are given by multiplication by restrictions of these elements to h*.
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Let us compute the action of ;. Let f(\) € (Op« » @ (V)" and F()) €
(Og=2 ® (®;V;))? be its equivariant extension to a formal map g* — ®;V;.
Then for € n, we have (9;n + Y, (ad\) " (x)")(F(A))jp« = O (the map
x +— x’ is the inverse of g* — g, A — AY). Then p(m(gji)(f()\)) = (— 0, +
55 € ((adA) " en)) ) = (=8, + 55 1)) E)).

Let us now compute the action of Ag. Let Ao € h* be such that \j € U and

A € g* be close to A\g. We set 6\ := A — \g. We then have A\ = e ()\g + h""),
where = € n and h € h are close to 0. We have the expansions

h=(3A)y + [(adx\v) 0N, (6M)aT

1

2 = —(@d\)},t (O HAN) TN, 0N+ (AN (GNY), (53] )

up to terms of order > 2; here the indices u, and uy mean the projections of
u € gtonand b If now f(\): h* D V(Xo,h*) — ®;V; is an h-equivariant
function defined at the vicinity of Ao and F(\) : g* D V(\o,g*) — @iV;
it its g-equivariant extension to a neighborhood of )¢ in g*, then F'(\) =
(e®)1-m f(Ag + h), which implies the expansion
N 1 -
FO) = FO0) + (00 + 5 (@dN)], (e0), €97 1) (5N 5(0X) 5 ) uE (o)
1
50N (0N 22,0 F(20) + (= (adA))f; (e5) (90)
—(adA) " ([(adAg) [ (e5), 1 ]) (9X), (6A) 5
1 _ _
5 (@A), ([(adAg);, (es), ea]n) (A) 5(6X)
1...n_
+5 (0N (o) (AN ) es) (N3N ) M)
—(adAg) " (es) " (9A)5(5A), D E(No)

up to terms of order > 2.
Then

(B2F)(No) = (021)(No) + (I(adAY) 3 (e5). €], 1), E(0)
(= AN AN e o) + (XA es)?) M),

which implies the formula for the action of Ay.

Then (S(0)[1/P]® (2:V:))" € [leps,, (Op-2 @ (2iV3)" is preserved by
the action of the generators of Em x 0-module, hence it is a sub—(il’n X 0)-
module, with action given by the above formulas. O
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6.4 Realization of the universal KZB system

The realization of the flat connection d — >_. Kj(z|7)dz; — A(z|7)dr on () x
C") — Diag,, is a flat connection on the trivial bundle with fiber (O, ®
(®:Vi))".

We now compute this realization, under the assumption that h C g is a
maximal abelian subalgebra. In this case, two simplifications occur:

(a) (ad\Y)(h,) = 0 since b is abelian,

(b) [(ad)\v)ln (eg),epln = 0O since [(ad)\v)l;l(eg),eﬁ] commutes with any
element in b, so that it belongs to b.

The image of K;(z|7) is then the operator

K (alr) = 0y = 3 r N7+ 37 K, (adX) ) (6] + )

j jlii
i i 0(zi; + (adAY)'|7) . 0’ i
=hid, —r(\)" + % a(zij\v)a((ad/w)ih)( Wy 4 2; L
J1I7F J1I7F

The image of 2miA(z|7) is the operator

. ) 1 1 B 1
2miA™) (alr) = 502 + Z{[(adA) " (ep) 5] b,)O, — (0,01) D 515

i

1 1
+Z§([g(zij,ad)\v\7)f(adAv) (e5) eﬂ+z g(zj, 07)hihd,

and the connection is now

vV =q-— ZKi(Vi)(zh')dzi - A(v‘)(z\T)dT.

Recall that P(\) = det((ad\"),). We compute the conjugation P/2v (V) p=1/2,
where P*1/2 is the operator of multiplication by (inverse branches of) P*!/2
on Op: @ (@;Vi)".

Lemma 43. 9,logP()\) = —(h,, u(r(\))), P2[h%0, — r(N)¥|P~Y2 = hid,,
PYRI5+([(ad\Y) [ (ep), el 1) ]PT 12 = 9548, ((hu, 5u(x (V) —(hu, 50(x(N)))*.
Proof. 0,logP(A\) = (d/dt);—odet[(ad(AY 4 th,) )(ad/\v) ' = tr(adhy )}, 0

(adAY) ] = (egs (adhy)o(adAY) (ep)) = ([(adAY) M (ep), el hu) = — (b, u(x(N))).-
The next equality follows from p(r(\))? = 2r(X\)%. The last equality is a direct
consequence. O

We then get:
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Proposition 44. P12V p=1/2 = 4 — " K;(z|r)dz — A(z|7)dr, where

0(zi; + (adAY)'|7) . o’ i
Ki(alr) = 0,0, + Z 0(zi5]7)0( ad/\3)| ))(t Hj%:ia(z“mth
omiA (z|r) = %aﬁ+8y(<h,,éu(r(k))>) —<hué (x(\)))?* - g(0,07) Z 5t

JFZ%((Q(Zij,ad)\vh’) — (adAY)™2) (e ) ol + Z gz, 0|7)hi b

where
/!

160
9(270\7') = §§(Z|T) —2mi——

and | ) o
g2 L Oztaln) 0 _Z
ol - a7? = 3 ET (et alr) - Gtaln)
The term in ), (1/2)tZ is central and can be absorbed by a suitable further
conjugation. Rescaling t, into k= 't,, where x € C*, K;(z|r) and A(z|r) get
multiplied by . Moreover, we have:

Lemma 45. When g is simple and i C g is the Cartan subalgebra,

Ou{ (I () = (b, Spu(r ).

Proof. Let D(A) :=[],ca+ (o, A), where A¥ is the set of positive roots of g.
Then D()) is W-antiinvariant, where W is the Weyl group. Therefore 92D ()
is also W-antiinvariant, so it is divisible (as a polynomial on h*) by all the
(a,\), where o € AT, so it is divisible by D()); since 92D(\) has degree
strictly lower than D()\), we get 02D()\) = 0.

Now if (eq, fa,ha) is a basis of the slo-triple associated with «, we have
’I“()\) = ZaeA+ _(ea®fa_fa®ea)/(a7 A), 80 %/,L(T()\)) == Za€A+ ha/(aa )‘)'
Therefore 54(r(X)) = —0,logD(A)h,. Then 97D (X) = 0 implies that 92logD+
(0,10ogD)? = 0, which implies the lemma. 0

The resulting flat connection then coincides with that of [Ber98a, FW96].

7 The universal KZB connection and representations of
Cherednik algebras

7.1 The rational Cherednik algebra of type A, _1

Let k be a complex number, and n > 1 an integer. The rational Chered-
nik algebra H,(k) of type A,_; is the quotient of the algebra C[S,] x
ClX1y .-y Xn, Y1, ---» ¥n) by the relations
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ZXi :O, sz :Ov [Xiaxj] =0= [yi’yj]’

[ [

[xi,y5] = % — ksij, i # J,
where s;; € S, is the permutation of i and j (see e.g. [EG02]). 8
Let e := & Y ves, @ € C[S,] be the Young symmetrizer. The spherical
subalgebra By, (k) (often called the spherical Cherednik algebra) is defined to
be the algebra eH,,(k)e.
We define an important element

1
h:= 5 Z(XiYi + yixi).

K2

We recall that category O is the category of H,, (k)-modules which are locally
nilpotent under the action of the operators y; and decompose into a direct
sum of finite dimensional generalized eigenspaces of h. Similarly, one defines
category O over B, (k) to be the category of B,,(k)-modules which are locally
nilpotent under the action of C[yy, ..., y,]" and decompose into a direct sum
of finite dimensional generalized eigenspaces of h.

7.2 The homorphism from t; ,, to the rational Cherednik algebra

Proposition 46. For each k,a,b € C, we have a homomorphism of Lie alge-
bras ap 41 — Hy(k), defined by the formula

_ 1
T aXq, Y byi, tij — ab ( — ]{/‘Si7‘> .
: n :

Proof. Straightforward. O

Remark 47. Obviously, a,b can be rescaled independently, by rescaling the
generators Z; and y; of the source algebra t; ,,. On the other hand, if we are
only allowed to apply automorphisms of the target algebra H, (k), then a,b
can only be rescaled in such a way that the product ab is preserved.

This shows that any representation V' of the rational Cherednik algebra
H, (k) yields a family of realizations for t; ,, parametrized by a,b € C, and
gives rise to a family of flat connections V,; over the configuration space

C(E:,n).

8The generators x,,da of Section 6.1 will be henceforth renamed qa, po.
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7.3 Monodromy representations of double affine Hecke algebras

Let H,(g,t) be Cherednik’s double affine Hecke algebra of type A,_1. By
definition, H,, (g, ) is the quotient of the group algebra of the orbifold funda-

mental group By, of C(E,,n)/S, by the additional relations
(T —q '")(T +q¢7 ') =0,

where T is any element of B;, homotopic (as a free loop) to a small loop
around the divisor of diagonals in the counterclockwise direction.

Let V' be a representation of H,(k), and let V, (V) be the universal
connection V, ; evaluated in V. In some cases, for example if a, b are formal, or
if V is finite dimensional, we can consider the monodromy of this connection,
which obviously gives a representation of H,(g,t) on V, with

q= 67271'iab/n7 t = 6727rilcab'
In particular, taking a = b, V' = H,(k), this monodromy representation de-
fines an homomorphism 6, : H,,(¢,t) — H,(k)[[a]], where

—27ria2/n t = —2mika?
, t = .

qg=ce e

It is easy to check that this homomorphism becomes an isomorphism upon
inverting a. The existence of such an isomorphism was pointed out by Chered-
nik (see [Che03], end of Section 6, and the end of [Che97]), but his proof is
different.

Ezample 48. Let k = r/n, where r is an integer relatively prime to n. In
this case, it is known (see e.g. [BEGO03a]) that the algebra H, (k) admits
an irreducible finite dimensional representation Y (r,n) of dimension 7"~ 1. By
virtue of the above construction, the space Y (r, n) carries an action of H,,(q, t)
with any nonzero ¢,t such that ¢" = ¢. This finite dimensional representation
of H,(q,t) is irreducible for generic ¢, and is called a perfect representation;
it was first constructed in [Eti94], p. 500, and later in [Che03], Theorem 6.5,
in a greater generality.

7.4 The modular extension of £, .

Asgsume that a,b # 0.

Proposition 49. The homomorphism &, can be extended to the algebra
Ui, X 0) xS, by the formulas

€a,b(3ij) = Sij»

1 Lo 2
§ap(d) =h= 5 Z(XiYi +yixi), Eap(X) = —iab in,

1 1
€a,b(Q0) = 5500_1 ZY% €a,b(02m) = —56027"_1[7_1 Z(Xi —x;)*™.
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Proof. Direct computation. O

Thus, the flat connections V, 3 extend to flat connections on My ).
This shows that the monodromy representation of the connection V, (V),
when it can be defined, is a representation of the double affine Hecke algebra

H.,(q,t) with a compatible action of the extended modular group SLy(Z). In
particular, this is the case if V' = Y (r,n). Such representations of SLa(Z) were

considered by Cherednik, [Che03|. The element T of SL(Z) acts in this rep-
resentation by “the Gaussian”, and the element S by the “Fourier-Cherednik

transform”. They are generalizations of the SLy(Z)-action on Verlinde alge-
bras.

8 Explicit realizations of certain highest weight

representations of the rational Cherednik algebra of type
An—l

8.1 The representation Vy.

Let N be a divisor of n, and g = sly(C), G = SLy(C). Let Viy = (Clg] ®
(CN)®n)8 (the divisor condition is needed for this space to be nonzero). It
turns out that Vy has a natural structure of a representation of H, (k) for
k= N/n.

Proposition 50. We have a homomorphism (n : H,(N/n) — End(Vy), de-
fined by the formulas

(n(sij) = sij, (n(x) =Xi, (n(yi) =Y, (i=1,..,n)
where for f € Vy, A € g we have

(Xif)(A) = Aif(A),
N of
(YVi)(4) = — ;wp)la—bpm),
where {b,} is an orthonormal basis of g with respect to the trace form.

Proof. Straightforward verification. O

The relationship of the representation Vi to other results in this paper is
described by the following proposition.

Proposition 51. The connection V, 1(Vy) corresponding to the representa-
tion Vi is the usual KZB connection for the n-point correlation functions on
the elliptic curve for the Lie algebra sl and n copies of the vector represen-

tation CN, at level K = -5 - N.
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Proof. We have a sequence of maps
Uty X0) xS, — Hy(N/n) — Hy(g) xS, — End(V),

where the first map is &, 5, the second map sends s;; to s;;, x; to the class of
> da @€l and y; to the class of > po ® e, (recall that the x,,d, of Section
6.1 have been renamed ¢q, p,), and the last map is explained in Section 6.1.
The composition of the two first maps is then that of Proposition 40, and
the composition of the two last maps is the map (n of Proposition 50. This
implies the statement. a

Remark 52. Suppose that K is a nonnegative integer, i.e. ¢ = — 577>
where K € Z,. Then the connection V, ; on the infinite dimensional vector
bundle with fiber Vy preserves a finite dimensional subbundle of conformal
blocks for the WZW model at level K. Th subbundle gives rise to a finite
dimensional monodromy representation V& of the Cherednik algebra H,,(q,t)
with .

g =eNEIm ¢ =gV,

(so both parameters are roots of unity). The dimension of Vi is given by the

Verlinde formula, and it carries a compatible action of SLy(Z) to the action of
the Cherednik algebra. Representations of this type were studied by Cherednik
in [Che03].

8.2 The spherical part of V.

Note that
ZX” ) = & (tr A7) f(4), (43)

<<§Y:’>f>< () (038 £(A) (44)

Consider the space Uy = eVy = (Clg] ® S"CV)? as a module over the
spherical subalgebra B,, (k). It is known (see e.g. [BEG03b]) that the spherical
subalgebra is generated by the elements (3 x%)e and (> y”)e. Thus formulas
(43,44) determine the action of B, (k) on Uy.

We note that by restriction to the set b of diagonal matrices diag(A1, ..., An),
and dividing by A™N, where A = [],_;(A\i — A;), one identifies Uy with
C[h]°~. Moreover, it follows from [EG02] that formulas (43,44) can be viewed
as defining an action of another spherical Cherednik algebra, namely By (1/k),
on C[h]°~. Moreover, this representation is the symmetric part W of the stan-
dard polynomial representation of Hy(1/k), which is faithful and irreducible
since 1/k = n/N is an integer ([GGORO03]). In other words, we have the
following proposition.
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Proposition 53. There exists a surjective homomorphism ¢ : B,(N/n) —
Bn(n/N), such that ¢*W = Uy. In particular, Uy is an irreducible repre-
sentation of B, (N/n).

Proposition 53 can be generalized as follows. Let 0 < p < n/N be an
integer. Consider the partition u(p) = (n —p(N — 1), p, ..., p) of n. The repre-
sentation of g attached to u(p) is S*~PNCH.

Let e(p) be a primitive idempotent of the representation of S,, attached to
w(p). Let UX. = e(p)Vy = (Clg]@S"~PNCY)2. Then the algebra e(p) H,, (N/n)e(p)
acts on Uk, and the above situation of Uy is the special case p = 0.

Proposition 54. There exists o surjective momorphism ¢, : e(p)H,(N/n)e(p) —
Bn(n/N —p), such that ¢5sW = Uy, In particular, UY, is an irreducible rep-
resentation of B,(N/n — p).

Proof. Similar to the proof of Proposition 53. ad

Ezample 55.p = 1, n = N. In this case e(p) = e = %Zaesn e(o)o, the
antisymmetrizer, and the map ¢, is the shift isomorphism e_Hpy(l)e- —
eHn(0)e.

8.3 Coincidence of the two sl actions

As before, let {b,} be an orthonormal basis of g (under some invariant inner
product). Consider the sly-triple

0 dim g
H=Y b,— (45)
2 ' ob, 2
(the shifted Euler field),
1 ) 1
F:§z}w E =4, (46)
p

where Ay is the Laplace operator on g. Recall also (see e.g. [BEGO3b]) that
the rational Cherednik algebra contains the sly-triple h = % Yo (Xiys + yixi),
=15 2 g 1% 2
e 2 Zz Yis 2 Zz X5
The following proposition shows that the actions of these two sly algebras
on Vi essentially coincide.

Proposition 56. On Vy, one has

e-Yp f-"p

h=H
n N

9

Proof. The last two equations follow from formulas (43,44), and the first one
follows from the last two by taking commutators. O
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8.4 The irreducibility of Vj.

Let A(n, N) be the representation of the symmetric group S, corresponding
to the rectangular Young diagram with N rows (and correspondingly n/N
columns), i.e. to the partition (%, ..., % ); e.g., A(n, 1) is the trivial represen-
tation.

For a representation m of Sy, let L(m) denote the irreducible lowest weight

representation of H, (k) with lowest weight 7.
Theorem 57. The representation Vi is isomorphic to L(A(n, N)).

Proof. The representation Vi is graded by the degree of polynomials, and in
degree zero we have Vi [0] = ((CN)®")8 = A(n, N) by the Weyl duality.

Let us show that the module Vy is semisimple. It is sufficient to show that
Vi is a unitary representation, i.e. admits a positive definite contravariant
Hermitian form. Such a form can be defined by the formula

(f,9) = (f(94),9(A)}| a=0,

where (—,—) is the Hermitian form on (C™)®" obtained by tensoring the

standard forms on the factors. This form is obviously positive definite, and
satisfies the contravariance properties:

The existence of the form (—, —) implies the semisimplicity of Viy. In partic-
ular, we have a natural inclusion L(A(n, N)) C V.

Next, formula (43) implies that Vjy is a torsion-free module over R :=
Clx1,...,xn]%~ = (C[Zil\;l x?,2 < p < NJ. Since Vy is semisimple, this implies
that Vy/L(A(n, N)) is torsion-free as well.

On the other hand, we will now show that the quotient Viv/L(A(n, N)) is
a torsion module over R. This will imply that the quotient is zero, as desired.

Let vy,...,on be the standard basis of CV, and for each sequence J =
(J1s e dn)s Ji € {1,...,N}, let vy = v;, ® ... ® vj,. Let us say that a se-
quence J is balanced if it contains each of its members exactly n/N times.
Let B be the set of balanced sequences. The set B has commuting left and
right actions Sy and Sp, 0 * (j1,...Jn) * T = (0(jr1))s -, 0(Jr(n)))- Let
Jo = (1...1,2...2,..., N...N), then any J € B has the form J = Jy x 7 for
some T € S,,.

Let f € V. Then f is a function h — ((CY)®")b equivariant under the ac-
tion of Sy (here h C g is the Cartan subalgebra, so h = {(A1, ..., An)| D_; A =
0}), so

FO) =" fi, (47)

JeB
where A = (\q,...,A\n), and f; are scalar functions (the summation is
over B since f(A) must have zero weight). By the Sy-invariance, we have
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foxa(@(X)) = f5(A). We then decompose f(A) = >, c5.\5fo(A), where
ft)(/\) = ZJeo fJ(/\)'UJ-

For each o € Sy \ B, we construct a nonzero ¢, € C[xy, ....,X,] such that

b0+ fo(A) € L(A(n,N)). Then ¢ := HoesN\B [l cs, o(¢0) € R is nonzero
and such that ¢ - f(A\) € L(A(n, N)).

We first construct ¢, when o = op, the class of Jy. By Sy-invariance,
foo (A) has the form

n/N n/N
Fo ) = 3" 901y Aen) E Y @ @ 05

gESN

where g(A,...;An) € C[Ay, ..., An]. For ¢, € C[xy,...,xn], we have

Goo fos(N) = D (@000) A1) Ao V(1) © e @UEGY . (48)

oc€ESN

On the other hand, let v € A(n, N); expand v = ) _ ;. cjv;. One checks that
v can be chosen such that cj, # 0 (one starts with a nonzero vector v’ and
J' € B such that the coordinate of v' along J' is nonzero, and then acts on
v’ by an element of S, bringing J’ to Jy). Then since v is g-invariant (and
therefore Sy-invariant), we have

Co(1)...0(1)...0(N)...a(N) = CJ (49)

for any o € Sy.
If @ € Clxy, ..., Xy], then

Q)N = D ¢, QN Xy, ®..®;, € L(A(n, N)). (50)

Set Qo(A1,.oes An) = H1§a<b§n,jg¢jg(>‘a —X), where (59,...,59) = Jo,
Go(A1s - AN) = Qo A1 Ad, oo, AN AN ), 80 Go( Aty s AN) = (T i jen(Nim
(n/N)*
A5)) .
Set Pog(A1s ooy AN) == qo(A1, ..., An) and

Q(/\l7 ceey )\n) = Qo()\l, ceey /\n)q(>\1, )\(n/N)+17 ceey )\(N?l)LI\l]Jrl).

Then (48) and (50) coincide, as: (a) for J ¢ oo, Qo(Aj;, ..., ;) = 0 so the
coefficient of v; in both expressions is zero, (b) the coefficients of v, in both
expressions coincide, (¢) for J € op, the coefficients of v; coincide because
of (b) and of (49). The functions ¢, are constructed in the same way for a
general o € Sy \ B. This ends the proof of the theorem. O

Remark 58. Theorem 57 is a special case of a much more general (but much
less elementary) Theorem 68, which is proved below.
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8.5 The character formula for V).

For each partition u of n, let V(i) be the representation of g, and m(u) the
representation of S;, corresponding to u.

Let P,(q) be the g-analogue of the weight multiplicity of the zero weight
in V(u). Namely, we have a filtration F'* on V (1)[0] such that F* is the space
of vectors in V(u)[0] killed by the i + 1-th power of the principal nilpotent
element 3 e; of g. Then P,(q) = >, dim(F//F/~")¢7. The coefficients of
P,(q) are called the generalized exponents of V(u) (see [Kos63, Hes80, Lus81]
for more details).

We have Vy = @&,7(p) @ (Clg] ® V(i))?. This together with Theorem 57
implies the following.

Corollary 59. The character of L(A(n, N)) is given by the formula

2 Z XTK’(L)(U))P (q)
h N2— u AT K
Tr|(amn(w - ") = ¢ 1)/2(11— ¢®)...(1—¢N)’

where w € Sy, and X () is the character of w(u). Here the summation is over
partitions p of n with at most N parts.

Proof. The formula follows, using Proposition 56, from Kostant’s result [Kos63]
that (Cl[g] ® V(u))? is a free module over C[g]?, and the fact that the Hilbert
polynomial of the space of generators for this module is the g-weight multi-
plicity of the zero weight, P,(q) [Kos63, Lus81, Hes80]. O

Remark 60. It would be interesting to compare this formula with the char-
acter formula of [Rou05] for the same module.

9 Equivariant D-modules and representations of the
rational Cherednik algebra

9.1 The category of equivariant D-modules on the nilpotent cone

The theory of equivariant D-modules on the nilpotent cone arose from Harish-
Chandra’s work on invariant distributions on nilpotent orbits of real groups,
and was developed further in many papers, see e.g. [HK84, LS97, Lev98,
Mir04] and references therein. Let us recall some of the basics of this theory.

Let G be a simply connected simple algebraic group over C, and g its
Lie algebra. Let N' C g be the nilpotent cone of g. We denote by D(g) the
category of finitely generated D-modules on g, by Dg(g) the subcategory of
G-equivariant D-modules, and by Dg(N) the category of G-equivariant D-
modules which are set-theoretically supported on N (here we do not make a
distinction between a D-module on an affine space and the space of its global
sections). Since G acts on A with finitely many orbits, it is well known that
any object in Dg(N) is regular and holonomic.
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Moreover, the category Dg(N) has finitely many simple objects, and every
object of this category has finite length (so this category is equivalent to the
category of modules over a finite dimensional algebra).

9.2 Simple objects in Dg(N)

Recall (see e.g. [Mir04] and references) that irreducible objects in the category
De (N) are parametrized by pairs (O, x), where O is a nilpotent orbit of G in g,
and y is an irreducible representation of the fundamental group 71 (0O), which
is clearly isomorphic to the component group A(O) of the centralizer G, of a
point z € O. Namely, x defines a local system L, on O, and the simple object
M(O,x) € Dg(N) is the direct image of the Goresky-Macpherson extension
of L, to the closure O of O, under the inclusion of O into g.

9.3 Semisimplicity of Dg(N).
The proof of the following theorem was explained to us by G. Lusztig.
Theorem 61. The category Dg(N) is semisimple.

Proof. We may replace the category D (N) by the category of G-equivariant
perverse sheaves (of complex vector spaces) on g supported on A, Pervg(N),
as these two categories are known to be equivalent. We must show that
Ext'(P,Q) = 0 for every two simple objects P, Q € Pervg(N).

Let P/, Q' be the Fourier transforms of P, Q. Then P’,Q’ are character
sheaves on g, and it suffices to show that Ext'(P’,Q’) = 0.

Recall that to each character sheaf S one can naturally attach a conjugacy
class of pairs (L, 6), where L is a Levi subgroup of G, and 6 is a cuspidal local
system on a nilpotent orbit for L. It is shown by arguments parallel to those
in [Lus85] (which treats the more difficult case of character sheaves on the
group) that if (L;, 0;) corresponds to S;, ¢ = 1,2, and (L1, 61) is not conjugate
to (Lz,02) then Ext* (S, S2) = 0. Thus it is sufficient to assume that the pair
(L, 0) attached to P’ and @' is the same.

Using standard properties of constructible sheaves (in particular, Poincaré
duality), we have

Ext'(P',Q") = H'(g,Hom(P',Q")) =

Hgdimg_l(g.,HOHI(P/,QI)*)* — ]{CQdimg—l(lg7 (Q/)* ® ]3/)*7

where * for sheaves denotes the Verdier duality functor.

Recall that to each character sheaf one can attach an irreducible represen-
tation of a certain Weyl group, via the generalized Springer correspondence.
Let R be the direct sum of all character sheaves corresponding to a given
pair (L, #) with multiplicities given by the dimensions of the corresponding
representations. Then it is sufficient to show that H24me~1(g (R')*®@R') = 0.
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This fact is essentially proved in [Lus88]. Namely, it follows from the com-
putations of [Lus88| that Hi(g, (R')* @ R’) is the cohomology with compact
support of a certain generalized Steinberg variety with twisted coefficients,
and it is shown that this cohomology is concentrated in even degrees.” The
theorem is proved. a

9.4 Monodromicity
We will need the following lemma.

Lemma 62. Let Q € Dg(N). Then for any finite dimensional representation
U of g, the action of the shifted Euler operator H defined by (45) on (QRU)?
is locally finite (so Q is a monodromic D-module), and has finite dimen-
sional generalized eigenspaces. Moreover, the eigenvalues of H on (Q ® U)®
are bounded from above. In particular, (Q @ U)? belongs to category O for the
sly-algebra spanned by H and the elements E, F given by (46).

Proof. Since @ has finite length, it is sufficient to assume that @ is irreducible.
We may further assume that @ is generated by an irreducible G-submodule
V', annihilated by multiplication by any invariant polynomial on g of positive
degree. Indeed, let V5 be an irreductible G-submodule of Q, let Jy, = {f €
Clg]?|fVo = 0} and for any v € Vj, let J, := {f € Clg]?|fv = 0}. Then if
v € Vp is nonzero, J, = Jy, as Gv = V. Moreover, the support condition
implies that J, C m* for some k > 0, where m = C[g]%. So Jy, C m* and is
an ideal of C[g]®. Let f € C[g]® be such that f ¢ Jy, and fm C Jy,; we set
V.= fVO

Then Q is a quotient of the D-module Q ® V by a G-stable submodule,
where

Q == D(g)/(D(g)ad(Ann(V)) + D(g)I),

Ann(V) is the annihilator of V' in U(g), and I is the ideal in Cl[g] generated
by invariant polynomials on g of positive degree. Thus, it suffices to show that
the lemma holds for the module Q (which is only weakly G-equivariant, i.e.
the group action and the Lie algebra action coming from differential operators
do not agree, in general).

The algebra D(g) has a grading in which deg(g*) = —1, deg(g) = 1. This
grading descends to a grading on Q. We will show that for each U, this grading
on (Q ® U)? has finite dimensional pieces, and is bounded from above. This
implies the lemma, since the Euler operator preserves the grading.

Consider the associated graded module Qg of Q under the Bernstein fil-
tration. This is a bigraded module over Clg @ g] (where we identify g and g*

9More precisely, in the arguments of [Lus88] the vanishing of odd cohomology
is proved for G-equivariant cohomology with compact supports, and in the non-
equivariant case one should use parallel arguments, rather than exactly the same
arguments.
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using the trace form). We have to show that the homogeneous subspaces of
(Qo ® U)9 under the grading defined by deg(g & 0) = —1, deg(0 & g) = 1 are
finite dimensional.

The associated graded of the ideal Ann(V) C U(g) is such that Clg]% C
grAnn(V) C Clg]+ for some k > 1, therefore

where J is a (not necessarily radical) ideal whose zero set is the variety Z of
pairs (u,v) € N x g such that [u,v] = 0. Let

Q= Clg ® g]/V/J.

Because of the Hilbert basis theorem, it suffices to prove that the homogeneous
subspaces of (Q[®U)¥ are finite dimensional, and the degree is bounded above.
But Q is the algebra of regular functions on Z. By the result of [Jos97], one
has C[Z]? = CJ[g]?, the algebra of invariant polynomials of Y. But it follows
from the Hilbert’s theorem on invariants that every isotypic component of
C[Z] is a finitely generated module over C[Z]8. This implies the result. O

9.5 Characters

Lemma 62 allows one to define the character of an object M € Dg(N).
Namely, let g = (u1,..., un) be a dominant integral weight for g, and V()
the irreducible representation of g with highest weight p. Let Kps(p) = (M ®
V(w))®. Then the character of M is defined by the formula

Char(t,g) = Trjr(gt™") = ZTr|KAI(#)(t_H)XM(g)7 g€aq,
m

where X, denotes the character of p. It can be viewed as a linear functional
from C[G]¢ to F := @gect’Cl[t]], via the integration pairing.

In other words, the multiplicity spaces Kj;(u) are representations from
category O of the Lie algebra sls spanned by F, F, H, and the character of M
carries the information about the characters of these representations.

The problem of computing characters of simple objects in Dg(N) is inter-
esting and, to our knowledge, open. Below we will show how these characters
for G = SLy(C) can be expressed via characters of irreducible representations
of the rational Cherednik algebra.

Ezample 63. Recall (see e.g. [Mir04]) that an object M € Dg(N) is cuspidal
iff (M) € Dg(N), where F is the Fourier transform (Lusztig’s criterion).
If follows that in the case of cuspidal objects M, the spaces K, (u) are also
in the category O for the opposite Borel subalgebra of sls, hence are finite
dimensional representations of sly, and, in particular, their dimensions are of
interest.
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9.6 The functors F,,, F*

n

The representation Vi is a special case of representations of the rational
Cherednik algebra which can be constructed via a functor similar to the one
defined in [GG04]. Namely, the construction of Viy can be generalized as fol-
lows.

Let n and N be positive integers (we no longer assume that N is a divisor of
n), and k = N/n. We again consider the special case G = SLy(C), g = sly(C).
Then we have a functor F, : D(g) — Hp(k)-mod defined by the formula

Fp(M) = (M @ (CN)®™)s8,

where g acts on M by adjoint vector fields. The action of H,, (k) on F, (M) is
defined by the same formulas as in Proposition 50, and Proposition 56 remains
valid.

Note that F,, (M) = F,(Msy), where Mg, is the set of g-finite vectors in
M. Clearly Mg, is a G-equivariant D-module. Thus, it is sufficient to consider
the restriction of F), to the subcategory Dg(g), which we will do from now
on.

In general, F,,(M) does not belong to category O. However, we have the
following lemma.

Lemma 64. If the Fourier transform F(M) of M is set-theoretically sup-
ported on the nilpotent cone N of g, then F,(M) belongs to the category O.

Proof. Since F(M) is supported on A, invariant polynomials on g act locally
nilpotently on F(M). Hence invariant differential operators on g with constant
coefficients act locally nilpotently on M. Thus, it follows from formula (44)
that the algebra Clyy,...,y,]°" acts locally nilpotently on F,(M). Also, by
Lemma 62, the operator h acts with finite dimensional generalized eigenspaces
on F,,(M). This implies the statement. O

Thus we obtain an exact functor F¥ = F,, o F : Dg(N) — O(H,(k)).

9.7 The symmetric part of F,

Consider the symmetric part eF,, (M) of F,,(M). We have eF,, (M) = (M ®
SnCN)9, and we have an action of the spherical subalgebra B,,(k) on eF,, (M),
given by formulas (43,44).

This allows us to relate the functor F,, with the functor defined in [GGO0A4].
Namely, recall from [GGO04] that for any ¢ € Z, one may define the category
D.(g x PN~1) of coherent D-modules on g x PV~1 which are twisted by the
c-th power of the tautological line bundle on the second factor (this makes
sense for all complex ¢ even though the c¢-th power is defined only for integer
¢). Then the paper [GG04]!° defines a functor

9There seems to be a misprint in [GG04]: in the definition of H, ¢ should be
replaced by ¢/N.
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H: D.(g x PY~1) = By (c¢/N)-mod,
given by H(M) = M?.

Proposition 65. (i) If n is divisible by N then one has a functorial isomor-
phism eF, (M) ~ ¢*H(M ® S"CY), where ST"CN is regarded as a twisted
D-module on PV~ (with ¢ = n).

(ii) For any n, the actions of B,(N/n) and By(n/N) on the space
eF,(M) = H(M ® S"CY) have the same image in the algebra of endomor-
phisms of this space.

Proof. This follows from the definition of H and formulas (43,44). O

Corollary 66. The functor eF)* on the category Dg(N') maps irreducible 0b-
jects into irreducible ones.

Proof. This follows from Proposition 65, (ii) and Proposition 7.4.3 of [GG04],
which states that the functor H maps irreducible objects to irreducible ones.
O

Formulas 43,44 can also be used to study the support of F(M) for M €
De(N), as a C[xy, ..., X, ]-module. Namely, we have the following proposition.

Proposition 67. Let ¢ = GCD(n,N) be the greatest common divisor of n
and N. Then the support S of F(M) is contained in the union of the S,,-
translates of the subspace E, of C™ defined by the equations Y ., x; =0 and
T, =x, if%(l—l)—&-lSi,jg%lforsomelglgq.

Proof. Tt follows from equation (44) that for any (z1,...,2,) € S there exists
a point (21, ..., zy) € CV such that one has

I, 1w,
DIEES DI
i= Jj=

for all positive integer p. In particular, writing generating functions, we find
that

n

N 1 X
Zl*tl’i_n;l*tzj‘.

=1

In particular, every fraction occurs on both sides at least LCM (n, N) times,
and hence the numbers z; fall into n/g¢-tuples of equal numbers (and the
numbers z; into N/g-tuples of equal numbers). The proposition is proved. O
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9.8 Irreducible equivariant D-modules on the nilpotent cone for

G = SLyn(C)

Nilpotent orbits for SLy(C) are labelled by Young diagrams, or partitions.
Namely, if © € sly(C) is a nilpotent element, then we let p; be the sizes
of its Jordan blocks enumerated in the decreasing order. The partition p =
(i1 .y i) and the corresponding Young diagram whose rows have lengths
; are attached to x. If O is the orbit of z then we will denote p by u(O). For
instance, if O = {0} then p = (1V) and if O is the open orbit then p = ().

It is known (and easy to show) that the group A(O) is naturally isomorphic
to Z/dZ, where d is the greatest common divisor of the p;. Namely, let Z =
7/NZ be the center of G (we identify Z/NZ with Z by p — ¢*™?/N1d). Then
we have a natural surjective homomorphism 6 : Z — A(O) induced by the
inclusion Z — G, € O. This homomorphism sends d to 0, and thus A(O)
gets identified with Z/dZ.

Thus, any character x : A(O) — C* is defined by the formula x(p) =
e=2mps/d where 0 < s < d. We will denote this character by .

9.9 The action of F} on irreducible objects

Obviously, the center Z of G acts on F'(M) by z — z7sN/d_Thus, a necessary
condition for F}(M (O, xs)) to be nonzero is

n:N(p—kg), (51)

where p is a nonnegative integer.
Our main result in this section is the following theorem.

Theorem 68. The functor F; maps irreducible objects into irreducible ones
or zero. Specifically, if condition (51) holds, then we have

Fi(M(O,xs)) = L(m(nu(O)/N)),

the irreducible representation of H, (k) whose lowest weight is the representa-
tion of S, corresponding to the partition nu(O)/N.

Remark 69. Here if p is a partition and ¢ € Q is a rational number, then we
denote by cu the partition whose parts are cu;, provided that these numbers
are all integers. In our case, this integrality condition holds since all parts of
1(O) are divisible by d.

Corollary 70. Let A be a partition of n into at most N parts. Let M =
M (O, xs), and assume that condition (51) is satisfied. Then

(M @V (X))? = Homg, (m(A), L(7(nu/N)))

as graded vector spaces.
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This corollary allows us to express the characters of the irreducible D-
modules M (O, x) in terms of characters of certain special lowest weight ir-
reducible representations of H,, (k). We note that characters of lowest weight
irreducible representations of rational Cherednik algebras of type A have been
computed by Rouquier, [Rou05].

Remark 71. Note that Theorem 57 is the special case of Theorem 68 for
O = {0}.

9.10 Proof of Theorem 68
Our proof of Theorem 68 is based on the following result of [GS05].

Theorem 72. Let k > 0. Then the functor V — €V is an equivalence of
categories between H, (k)-modules and B, (k)-modules.

Remark 73. We note that Theorem 72 is proved in [GS05] under the techni-
cal assumption k ¢ Z + 1/2. It was noticed by V. Ginzburg that this assump-
tion is really unnecessary. Indeed, the only place where this assumption is used
is in the proof of Lemma 3.5. Namely, it is used in the proof of this lemma that
Hom between Verma modules over H, (k) is isomorphic to Hom between the
corresponding dual Specht modules, which is known, from [GGORO03], only
for k ¢ Z+ 1/2. However, it is sufficient for the proof of Lemma 3.5 of [GS05]
to know just that the first Hom injects into the second one, which is known
for all positive k thanks to a lemma by Opdam and Rouquier (Lemma 2.10
of [BEGO3D]).

Theorem 72 implies the first statement of the theorem, i.e. that if (51)
holds then F¥(M (O, xs)) is irreducible. Indeed, it follows from Corollary 66
that eF};(M (O, xs)) is irreducible over B, (k). Thus, it remains to find the
lowest weight of Fi(M(Oy, xs))-

Let u = (p1, ..., un) be a partition of N (p; > 0). Let O, be the nilpotent
orbit of g corresponding to the partition p. Denote by d the greatest common
divisor of y;, and by m a divisor of d. Define the following function f on O,
with values in @, S#iCN:

N pi—1

FX &)= NN &X7,

i=1 j=0
& € (CN)* (here X7 € My(C) is the jth power of X, so & X7 € CV).

Lemma 74. (i) For any X € O, f(X,. C)M™ s a polynomial in &, ..., EN.
Thus, f1/™ is a regular function on the universal cover Ou of O,, with values
in @, SHi/mCN,

(ii) For any X € O,, the function f(X,.. Y™ generates a copy of the
representation V (u/m) inside @ SHi/mCN .
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(iii) Specifically, let the standard basis uy,...,un of (CN)* be filled into the
squares of the Young diagram of u (filling the first column top to bottom, then
the second one, etc.), and let X be the malriz J acling by the horizontal shift
to the right on this basis. Then f(J,... )1/m is a highest weight vector of the
representation V (u/m).

Proof. Tt is sufficient to prove (iii). Let pu* = (p}, ..., u%) be the conjugate
partition. Let p; be the number of times the part j occurs in this partition.
Clearly, p; is divisible by m. By looking at the matrix whose determinant is
f, we see that we have, up to sign:

f(‘L gla agN) = HA](€17 "'7£N>pj7
J

where A; is the left upper j-by-j minor of the matrix (&1, ..., {n). Thus fym =
I1; A?j/m is clearly a highest weight vector of weight >, p;w;/m, where w;
are the fundamental weights. But ) p;w; = p, so we are done. O

Corollary 75. The function f gives rise to a G-equivariant regular map
f Oy — V(u/d), whose image is the orbit of the highest weight vector.
In particular, we have o G-equivariant inclusion of commutative algebras

f*: @soV (Lu/d)* — C[O,].
Now let 0 < s < d — 1, and denote by C[O,]s the subspace of C[O,], on
which central elements z € G act by z — z7°. Then we have an inclusion

" @pa——syezV (lu/d)" — C[Ou]s~

Now recall that by construction, C[O,]; sits inside M = M (O, xs) as a
C[O0,]-submodule. In particular, the operators X; act on the space (C[O,]s ®
(€)@,

Let 7(p) be the representation of S, corresponding to u, and regard V() ®
7(\), for any partition ) of n, as a subspace of (CV)®" using the Weyl duality.
Then for any u € w(nu/N), we can define the element a(u) € F,;(M) by

a(u) = f @u, where f; € C[O,]s ® V(np/N) is the homogeneous part of f*
of degree n.

Lemma 76. a(u) is annihilated by the elements y; of H, (k).

Proof. We need to show that the operators X; (or, equivalently, the elements
x; € Hy(k)) annihilate a(u) € F,(M). Since a(u) is G-invariant, it is sufficient
to prove the statement at the point X = J. This boils down to showing that for
any j not exceeding the number of parts of p (i.e. 7 < u}), the application of J
in any component annihilates the element A;(¢q,...,Ex) € AICN C (CV)®9.
This is clear, since the first y} columns of J are zero. O
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This implies that the lowest weight of F};(M (O, xs)) is m(np/N), as de-
sired. The theorem is proved.

Remark 77. Here is another, short proof of Theorem 68 for n = N. We have
e F%(M(0,1)) = F(M(0,1))°.
According to [Lev98, LS97],
F(M(0,1)) = (Clh] @ m(1(0)))*™

as amodule over D(h)"W = e_Hx(1)e_. Thus, e_ F5%(M(O,1)) = e_L(7(u(0)))
as e_ Hy(1)e_-modules. But the functor V' — e_V is an equivalence of cate-
gories Hy (1)-mod — e_ Hy(1)e_-mod (see [BEGO3b]). Thus, F¥ (M(0,1)) =
L(n(1(0))) as Hy(1)-modules, as desired.

9.11 The support of L(w(nu/N))

Corollary 78. Let u be a partition of N such that nu; /N are integers. Then
the support of the representation L(w(nu/N)) of H,(N/n) as a module over
Clx1, ..., Xp] is contained in the union of S, -translates of E;, ¢ = GCD(n, N).

Proof. This follows from Theorem 68 and Proposition 67. O

We note that in the case when p = (IV), Corollary 78 follows from Theorem
3.2 from [CEQ3].

9.12 The cuspidal case

An interesting special case of Theorem 68 is the cuspidal case. In this case NV
and n are relatively prime, d = N (i.e., O is the open orbit), and s is relatively
prime to N.

Here is a short proof of Theorem 68 in the cuspidal case.

Since the Fourier transform of M (O, x,) in the cuspidal case is supported
on the nilpotent cone, F,(M (O, xs)) belongs not only to the category O gen-
erated by lowest weight modules, but also to the “dual” category O_ gener-
ated by highest weight modules over H,, (k). Thus, by the results of [BEG03a],
EF(M(O, xs)) is a multiple of the unique finite dimensional irreducible H,, (k)-
module L(C) = Y (N,n), of dimension N"~!. But this multiple must be a
single copy by Corollary 66, so the theorem is proved.

Theorem 68 implies the following formula for the characters of the cuspidal
D-modules M (O, xs).

Let p be a dominant integral weight for g, such that the center Z of G
acts on V(u) via z — 2°® = 2™, Let p be the half-sum of positive roots of g.
Let Ks(p) = (M(O, xs) ® V(r))? be the isotypic components of M (O, xs).
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Theorem 79. We have

oy _ 4—q "
Trig, (@™ ) = WWH(Q),

where

qHr—Hp TP _ ghp—HrpT

oul@) =[]

1<p<r<N

2
e = xvw (@),

where xv () is the character of V(p). In particular,

dim K, (p) = % I1 Hr = Hp T 7P _ %dimvm).

r—
1<p<r<N p

Proof. We extend the representation V(i) to GLy(C) by setting z — 2™ for
all scalar matrices z, so that its GLy(C)-highest weight is

&= (p1 +n/N,..,un +n/N).

Note that we automatically have p; + n/N € Z. Assume that n is so big that
& is a partition of n (i.e., p; +n/N > 0).

It follows from the results of [BEGO03a] that the character of the irreducible
representation L(C) of the rational Cherednik algebra H,(k), k = N/n, is
given by the formula

— ¢~ det(g" — ¢Yg)
T 2y = 474 S 52
L) (gq ) qN — q,N det(q*l — qg) y g€ ) ( )

where the determinants are taken in C”.
Let us equip CV with the structure of an irreducible representation of sl,
with basis e, f, h. Let g € S,,. Then

Tr|H01nsn (ﬂ(ﬁ),(CN)®")(qh) = Tr|V(u) (q2p) = (pu(Q)a
by the Weyl character formula. On the other hand, it is easy to show that
det(¢N —¢"g)
hy _
Tr‘(chg)n (gq ) = m
Thus,

oh q—q! h q—q!
Tr|Homs, (=(@),L(C)(q") = WTT\HWSH(ﬂ(g),(cw)@an)(q ) = m%@-

By Theorem 68 and Weyl duality, this implies that

—1
q-q
0oV (@) = Sy —weuld).

as desired. O
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Example 80. Let N =2, s = 1. In this case Theorem 79 gives us the following
decomposition of M (O, xs):

M(O, xs) = Dj>1N; @ Vaj_1,

where V; is the irreducible representation of sly of dimension j + 1, and the
spaces IV; satisfy the equation
2 _ g2
q q
Tryy, (¢*F) = ——F—-.
|N; @ —q2

This shows that IN; = V;_; as a representation of the sly-subalgebra spanned
by E,F, H, which commutes with g.

9.13 The case of general orbits

Let W = Sy the Weyl group of G, A € h/W, and N, be the closure in g
of the adjoint orbit of a regular element of g whose semisimple part is .
Denote by Dg(N)) the category of G-equivariant D-modules on G which
are concentrated on N,. We also let O, be the category of finitely gener-
ated H, (k)-modules in which the subalgebra Cly, ..., y,|°" acts through the
character A. Then one can show, similarly to the above, that the functor £}
restricts to a functor Ff;,)\ : Dg(Ny) — Oj. The functor considered above is
Fy o- We plan to study the functor F; | for general A in a future work.

9.14 The trigonometric case

Our results about rational Cherednik algebras can be extended to the trigono-
metric case. For this purpose, D-modules on the Lie algebra g should be re-
placed with D-modules on the group G. Let us describe this generalization.

First, let us introduce some notation. As above, we let G = SLy(C). For
b € g, let L be the right invariant vector field on G equal to b at the identity
element; that is, L, generates the group of left translations by e'®. As before,
we let k = N/n.

Now let M be a D-module on G. Similarly to the above, we define F,, (M)
to be the space

Fu(M) = (M & (CV)#m)C,

where G acts on itself by conjugation.
Consider the operators X;,Y;, i = 1,...,n, on F,(M), defined by the for-
mulas similar to the rational case:

N
Xi= E Aj @ (Ei)i, Yi= o E Ly, @ (bp)i,
gl P

where Aj; is the jl-th matrix element of A € G regarded as the multiplication
operator in M by a regular function on G.



252 D. Calaque, B. Enriquez and P. Etingof

Proposition 81. The operators X,;,Y; satisfy the following relations:

HX,;ZI, ZK+I€ZSU :O7

i<j
5i; X = Xjsij, si;Yi = Yjsij, [si5, X1] = [si5, Y1) =0,
[Xi, X;] =0, [Vi,Y;] = ksi; (Y = Y5),

1
[Yi, X5 = (’sz‘j - ) Xj,
n
where 1, j,1 denote distinct indices.
Proof. Straightforward computation. O

Corollary 82. The operators Y; = Y; + kY. S35 pairwise commute.

j<i

The relations of Proposition 81 are nothing but the defining relations of
the degenerate double affine Hecke algebra of type A,_1, which we will de-
note H' (k) (where “tr” stands for trigonometric, to illustrate the fact that
this algebra is a trigonometric deformation of the rational Cherednik algebra
H,(k)). Thus we have defined an exact functor F,, : D(G) — H!*(k)-mod. As
before, it is sufficient to consider the restriction of this functor to the category
of equivariant finitely generated D-modules, D¢ (G).

This allows us to generalize much of our story for rational Cherednik alge-
bras to the trigonometric case. In particular, let ¢ be the unipotent variety on
G, and D¢ (U) be the category of finitely generated G-equivariant D-modules
on G concentrated on U. If we restrict the functor F), to this category, we
get a situation identical to that in the rational case. Indeed, one can show
that for any M in this category, F,, (M) belongs to the category O of finitely
generated modules over H{'(k) which are locally unipotent with respect to
the action of X;. The latter category is equivalent to the category O_ over
the rational Cherednik algebra H,, (k), because the completion of H (k) with
respect to the ideal generated by X; — 1 is isomorphic to the completion of
H,, (k) with respect to the ideal generated by x;. On the other hand, the expo-
nential map identifies the categories Dg(U) and Dg(N). It is clear that after
we make these two identifications, the functor F,, becomes the functor F,, in
the rational case that we considered above.

On the other hand, because of the absence of Fourier transform on the
group (as opposed to Lie algebra), the trigonometric story is richer than the
rational one. Namely, we can consider another subcategory of Dg(G), the
category of character sheaves. By definition, a character sheaf on G is an
object M in Dg(G) which is locally finite with respect to the action of the
algebra of biinvariant differential operators, U(g)“. This category is denoted
by Char(G). It is known that one has a decomposition

Char(G) = ®rerv/wChary(G),
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where TV is dual torus, and Chary(G) the category of those M € Dg(G) for
which the generalized eigenvalues of U(g)® (which we identify with U(h)" via
the Harish-Chandra homomorphism) project to A under the natural projection
h* — TV.

On the other hand, one can define the category Repy _g, (HY (k)) of mod-
ules over H' (k) on which the commuting elements Y; act in a locally finite
manner. We have a similar decomposition

Reprﬁn(Hrtzr(k)) = @)\ETV/WReprﬁn(HZr(k)))\v

where Repy-_g, (H,' (k))x is the subcategory of all objects where the general-

ized eigenvalues of Y; project to A € TV /W. Then one can show, similarly to
the rational case, that the functor F, gives rise to the functors

Fpx : Chary(G) — Repy _ 45, (H) (k)

for each A\ € TV /W. The most interesting case is A = 0 (unipotent character
sheaves). We plan to study these functors in subsequent works.

9.15 Relation with the Arakawa-Suzuki functor

Note that the elements Y; and s;; generate the degenerate affine Hecke algebra
‘H.,, of Drinfeld and Lusztig (of type A,,_1). To define the action of this algebra
on F,(M) = (M ® (CN)®™)8 by the formula of Proposition 81, we only
need the action of the operators Ly, b € g in M. So M can be taken to
be an arbitrary g-bimodule which is locally finite with respect to the diagonal
action of g (in this case, >, Y; + Z,Kj s;; is a central element which does
not necessarily act by zero, so we get a representation of a central extension
H,, of H,). In particular, we have an exact functor F, : HC(g) — H,-mod
from the category of Harish-Chandra bimodules over g to the category of
finite dimensional representations of the degenerate affine Hecke algebra H,,.
This functor was essentially considered in [AS98] (where it was applied to the
Harish-Chandra modules of the form M = Homg_gnite(M1, M2), where M;
and M are modules from category O over g). We note that the paper [AST96]
describes the extension of this construction to affine Lie algebras, which yields
representations of degenerate double affine Hecke algebras.

9.16 Directions of further study

In conclusion we would like to discuss (in a fairly speculative manner) several
directions of further study and generalizations (we note that these generaliza-
tions can be combined with each other).

1. The g-case: the group G is replaced with the corresponding quantum
group, D-modules with ¢g-D-modules, and degenerate double affine Hecke al-
gebras with the usual double affine Hecke algebras (defined by Cherednik). Tt
is especially interesting to consider this generalization if ¢ is a root of unity.
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2. The quiver case. This generalization was suggested by Ginzburg, and
will be studied in his subsequent work with the third author. In this case, one
has a finite subgroup I" C SL2(C), and one should consider equivariant D-
modules on the representation space of the affine quiver attached to I" (with
some orientation). Then there should exist an analog of the functor F;,, which
takes values in the category of representations of an appropriate symplectic
reflection algebra for the wreath product S,, x I'™, [EG02] (or, equivalently, the
Gan-Ginzburg algebra, [GG05]). This generalization should be especially nice
in the case when I is a cyclic group, when the symplectic reflection algebra
is a Cherednik algebra for a complex reflection group, and one has the notion
of category O for it.

3. The symmetric space case. This is the trigonometric version of the pre-
vious generalization for I" = Z/2. In this generalization one considers (mon-
odromic) equivariant D-modules on the symmetric space GLp44(C)/(GL, X
GL,)(C) (see |Gin89]), and one expects a functor from this category to the
category of representations of an appropriate degenerate double affine Hecke
algebra of type CV C,,. This functor should be related, similarly to the previous
subsection, to an analog of the Arakawa-Suzuki functor, which would attach
to a Harish-Chandra module for the pair (GL,44(C), GL,(C) x GL,4(C)), a fi-
nite dimensional representation of the degenerate double affine Hecke algebra
of type BC,.

A

Let O be the ring C[[uq, ..., un]][f1, ..., n]- Define commuting derivations D;
of O by D;(u;) = di;us, D;i(¢;) = d;; (we will later think of ¢; and D; as logu;
and UZ%)

We set Oy := m[ly,...,¢,], where m = Ker(C[[uy,...,uy]] — C) is the
augmentation ideal. Let A = ®;>0Ax be a graded ring with finite dimensional
homogeneous components.

Proposition 83. Let X;(u1,...,0n) € ®r>0(Ax ® O4) be such that D;(X;) =
D;(X;). Then there exists a unique F(uy,...,ly) € ®p>0(Ar ® O4) such that
D;(F)=X; fori=1,..,n.

Let us say that f € O has radius of convergence R > 0 if f =
D ke k>0 Frrookon (U1 s un VO lEn  where each fr, g, (U1, .., tn) con-
verges for |uil,...,|u,| < R. Then if Xy,..., X, have radius of convergence
R, so does F.

Proof. For each i, D; restricts to an endomorphism of O, ; one checks that
N, Ker(D; : O — O4) = 0 which implies the uniqueness. To prove the
existence, we work by induction. One proves that D,, : O, — O, is surjective,
and its kernel is m,,_1[¢1, ..., €—1], where m,,_; = Ker(C|[uy, ...,uy_1]] — C).
Let G be a solution of D,,(G) = X,,, then the system D;(F') = X;—D;(G) (i =
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1,...,n) is compatible, which implies D,,(X!) = 0, where X/ := X; — D;(G), so
X] € ®p>0(Ar @ (’)(ffn), where (95:171) is the analogue of O, at order n — 1.
Hence the system D;(F') = X; — D;(G) (i = 1,...,n — 1) is compatible and
we may apply to it the result at order n — 1 to obtain a solution F’. Then a
solution of D;(F) = X, is F' + G.

Let D : uC[[u]] — uC[[u]] be the map u(% and let I :== D=1, The map D; :
uC[[u]][(] — uC[[u]][¢] is bijective and its inverse is given by D *(F(u)(®) =
S o (—1)Fa(a — 1)..(a— k+ 1)(I1(F)) ()",

We have O, = OV &u,,Cl[u,]][¢,]em™~V&C[4,] (where O mn—1)
are the analogues of O, m at order n — 1, & is the completed tensor product).
The endomorphism D,, preserves this decomposition and a section of D,, is
given by (id ® D;'!) @ (id ® J), where J € End(C[(]) is a section of 9/d¢.

It follows from the fact that I preserves the radius of convergence of a series
that the same holds for the section of D,, defined above. One then follows the
above construction of a solution X of D;(X) = X; and uses the fact that
D; also preserves the radius of convergence to show by induction that X has
radius R if the X; do. a

Proposition 84. Let X;(u1,...,0,) € ®r>0(Ar @ O4) be such that D;(X;) —
D;(X;) = [X;, X;]. Then there exists a unique F(u1,...,0n) € 1+ Gpso(Ag ®
O;) such that D;(F) = X;F fori=1,..,n. If the X; have radius R, then so
does F.

Proof. Let us prove the uniqueness. If F, F’ are two solutions, then F~1F’
is a constant (as NI Ker(D; : O — O) = 0), and it also belongs to 1 +
Sr>0(Ar ® O4), which implies that F' = F’. To prove the existence, one sets
F=1+fi+fo+..,X;= argi) + ..., where fk.,a:,(f) € A, ® O and solves by
induction the system D;(fx) = xgi)fkq + ...+ a:,(f) using Proposition 83. O

Proposition 85. Let Ci(u1,...,un) € Gr=0Ar[[u1,..,un]] (i = 1,...,n) be
such that u;0,,(Cj) — u;0y,;(Cy) = [Cy,Cy] for any i,j. Assume that the
series C; have radius R. Then there exists a unique solution of the system
w0y, (X) = C; X, analytic in the domain {u||lu] < R,u ¢ R_}", such that
1 n .
the ratio (uf"ugo )X (ury ey uy) (we set Cf = Ci(0,...,0)) has the form
1 +Zk>9 D i TR (U, e un) (the second sum is ﬁnAite for any k),
rt " has degree k, a; > 0, i € {1,..,n}, and ri" 7 (g, up) =
O(u;(loguy ) ...(loguy, )?).
Ci\—1

1
The same is then true of the ratio X(uh...,un)(ulc“...uno) ; we write

n

cy . C
X(Ugy ey tp) > uy®tin® .

Proof. Let us show the existence of X. The compatibility condition implies
. . 1 n

that [CE, C3] = 0. If we set Y (u1, ..., up) := (uf(’...ufo )X (ug, ..., up), then

X is a solution iff Y is a solution of w;0,,(Y) = exp(— Zjn:l(loguj)CJQ)(Ci —

o) Y.
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Let us set X;(u1, ..., £n) = exp(— 25—, 4C))(Ci(uy, ..., un) — Ci(0, ..., 0)),
then X;(u1, ..., 4n) € Or>0(Ar ® O, ). We then apply Proposition 84 and find
a solution Y € 1+ @04y @ O of D;(Y) = X;Y. Let Y}, be the component
of Y of degree k. Since Y has radius R, the replacement ¢; = logu; in Y} for
u; € {ul|ul < R,u ¢ R_} gives an analytic function on {u||u| < R,u ¢ R_}".
Moreover, O = > | w;Cl[u, ..., up)][¢1, ..., £,], which gives a decomposition
Y= iaran wily . e yF, o (1., up) and leads (after substitution
£; = logu;) to the above estimates.

The ratio X (uq, ..., un)(uf‘% ...ug,g)_l is then 1+exp(}_; Cllogu;) (Y (uy, ..., uy) —
1); the term of degree k has finitely many contributions to which we apply
the above estimates.

Let us prove the uniqueness of X. Any other solution has the form
X = X(1+cx +...) where ¢; € Aj, and ¢ # 0. Then the degree k term
is transformed by the addition of ¢k, which cannot be split as a sum of terms
in the various O(u;(loguy)?'...(loguy,)?). O
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