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Summary. For a finite group scheme G, we continue our investigation of those finite
dimensional kG-modules which are of constant Jordan type. We introduce a Quillen
exact category structure C(kG) on these modules and investigate K0(C(kG)). We
study which Jordan types can be realized as the Jordan types of (virtual) modules
of constant Jordan type. We also briefly consider thickenings of C(kG) inside the
triangulated category stmod(kG).

1 Introduction

Together with Julia Pevtsova, the authors introduced in [6] an intriguing
class of modules for a finite group G (or, more generally, for an arbitrary
finite group scheme), the kG-modules of constant Jordan type. This class
includes projective modules and endotrivial modules. It is closed under taking
direct sums, direct summands, k-linear duals, and tensor products. We have
several methods for constructing modules of constant Jordan type, typically
using cohomological techniques. In addition, Andrei Suslin has introduced
several interesting constructions which associate modules of constant Jordan
type to an arbitrary finite dimensional kG-module in the special case that
G = Z/pZ× Z/pZ.

What strikes us as remarkable is how challenging is the problem of classi-
fying modules of constant Jordan type even for relatively simple finite group
schemes. In this paper we address two other aspects of the theory that also
present formidable challenges. The first is the realization problem of deter-
mining which Jordan types can actually occur for modules of constant Jordan
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type. The second question concerns stratification of the entire module cate-
gory by modules of constant Jordan type.

To consider realization, we give the class of kG-modules of constant Jordan
type the structure of a Quillen exact category C(kG) using “locally split short
exact sequences.” This structure suggests itself naturally once kG-modules
are treated from the point of view of π-points as in [10], a point of view
necessary to even define modules of constant Jordan type. With respect to
this exact category structure, the Grothendieck group K0(C(kG)) arises as
a natural invariant. There are natural Jordan type functions JType, JType
defined on K0(C(kG)) which are useful to formulate questions of realizability
of (virtual) modules of constant Jordan type. The reader will find several
results concerning the surjectivity of these functions.

A seemingly very difficult goal is the classification of kG-modules of con-
stant Jordan type, or at least the determination of K0(C(kG)). In this paper,
we provide a calculation of K0(C(kG)) for two very simple examples: the Klein
four group and the first infinitesimal kernel of SL2.

The category C(kG) possesses many closure properties. However, the com-
plexity of this category is reflected in the observation that an extension of
modules of constant Jordan type need not be of constant Jordan type. We
conclude this paper by a brief consideration of a stratification of the stable
module category stmod(kG) by “thickenings” of C(kG).

We are very grateful to Julia Pevtsova and Andrei Suslin for many discus-
sions. This paper is part of a longer term project which will reflect their ideas
and constructions.

2 The exact category C(kG)

As shown in [6], there is a surprising array of kG-modules of constant Jordan
type. One evident way to construct new examples out of old is to use locally
split extensions (see, for example, Proposition 2.4). In order to focus on ex-
amples which seem more essential, we introduce in Definition 2.3 the Quillen
exact category C(kG) of modules of constant Jordan type whose admissible
short exact sequences are those which are locally split.

We begin by recalling the definition of a π-point of a finite group scheme
over k. This is a construction that is necessary to formulate the concept of
modules of constant Jordan type.

Definition 2.1. Let G be a finite group scheme with group algebra kG (the
linear dual of the coordinate algebra k[G]). A π-point of G is a map of K-
algebras αK : K[t]/tp → KGK which is left flat and which factors through
some abelian unipotent subgroup scheme UK ⊂ GK ; here K is an arbitrary
field extension of k and GK is the base extension of G along K/k.

Two π-points αK , βL of G are said to be equivalent (denoted αK ∼ βL)
provided that for every finite dimensional kG-module M the K[t]/tp-module
α∗K(MK) is projective if and only if the L[t]/tp-module β∗L(ML) is projective.
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In [10], it is shown that the set of equivalence classes of π-points of G
admits a scheme structure which is defined in terms of the representation
theory of G and which is denoted Π(G). Moreover, it is verified that this
scheme is isomorphic to the projectivization of the affine scheme of H•(G, k),

Π(G) ∼= Proj H•(G, k).

Here, H•(G, k) is the finitely generated commutative k-algebra defined to be
the cohomology algebra H∗(G, k) if p = char(k) equals 2 and to be the subal-
gebra of H∗(G, k) generated by homogeneous classes of even degree if p > 2.

We next introduce admissible monomorphisms and admissible epimor-
phisms, formulated in terms of π-points.

Definition 2.2. Let G be a finite group scheme. A short exact sequence of
kG-modules 0 → M1 → M2 → M3 → 0 is said to be locally split if its pull-
back via any π-point αK : K[t]/tp → KG is split as a short exact sequence of
K[t]/tp-modules. We shall frequently refer to such a locally split short exact
sequence as an admissible sequence.

Moreover, we say that a monomorphism f : M1 → M2 of kG-modules is an
admissible monomorphism if it can be completed to a locally split short exact
sequence. Similarly, an epimorphism g : M2 → M3 is said to be an admissible
epimorphism if it can be completed to a locally split short exact sequence.

We typically identify an admissible monomorphism with the inclusion of
the image of the injective map f : M → N .

The objects of our study are kG-modules of constant Jordan type as de-
fined below (and introduced in [6]). We recall that a finite dimensional K[t]/tp

module M of dimension N is isomorphic to

ap[p] + · · ·+ ai[i] · · ·+ a1[1],
∑

i

ai · i = N,

where [i] = K[t]/ti is the indecomposable K[t]/tp-module of dimension i. We
refer to the p-tuple (ap, . . . , a1) as the Jordan type of M and designate this
Jordan type by JType(M); the (p− 1)-tuple (ap−1, . . . , a1) will be called the
stable Jordan type of M .

Definition 2.3. A finite dimensional module M for a finite group scheme G
is said to be of constant Jordan type if the Jordan type of α∗K(MK) is
independent of the choice of the π-point αK of G.

In the following proposition, we see that the class of modules of constant
Jordan type is closed under locally split extensions.

Proposition 2.4. Let G be a finite group scheme and let E denote a short
exact sequence 0 → M1 → M2 → M3 → 0 of finite dimensional kG-modules.

1. Assume E is locally split. Then M1 and M3 are of constant Jordan type
if and only if M2 is of constant Jordan type.
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2. If M1 and M3 are modules of constant Jordan type, then E is locally split if
and only if α∗K(M2,K) ' α∗K(M1,K)⊕ α∗K(M3,K) for some representative
αK of each generic point of Π(G).

Proof. Observe that a short exact sequence of finite dimensional K[t]/tp-
modules 0 → N1 → N2 → N3 → 0 is split if and only if JType(N2) =
JType(N1) + JType(N3). Thus, if E is locally split and if M1, M3 have con-
stant Jordan type, then M2 does as well.

If E is locally split and M2 has constant Jordan type, then the proof
that both M1 and M3 have constant Jordan type is verified using the same
argument as that of [6, 3.7] using [6, 3.5]; the point is that the Jordan type
of M1 at some representative of a generic point of Π(G) must be greater or
equal to the Jordan type of M1 at some representative of any specialization.
The same applies to M2 and M3. As shown in [11, 4.2], the Jordan type of
any finite dimensional kG-module at a generic point of Π(G) is independent
of the choice of π-point representing that generic point.

If 0 → V1 → V2 → V3 → 0 is a short exact sequence of k[t]/tp-modules,
then the Jordan type of V2 must be greater or equal to the sum of the Jordan
types of V1 and V3. Thus, the observation of the preceding paragraph verifies
the following: assume that E is a short exact sequence of kG-modules with
M1,M3 of constant Jordan type; if M3 has the minimal possible Jordan type
(namely the sum of the Jordan types of M1 and M3) at each generic π-point
of G, then M3 must have constant Jordan type. ut

As the following proposition asserts, admissible monomorphisms and ad-
missible epimorphisms as in Definition 2.2 are associated to structures of exact
categories (in the sense of Quillen [17]) on the category mod(kG) of finite di-
mensional kG-modules and the full subcategory C(kG) of modules of constant
Jordan type.

Proposition 2.5. The collection E of locally split short exact sequences of
finite dimensional kG-modules constitutes a class of admissible sequences pro-
viding mod(kG) with the structure of an exact category in the sense of Quillen
(cf. [17]).

Similarly, the class EC of locally split short exact sequences of kG-modules
of constant Jordan type also constitutes a class of admissible sequences, thereby
providing C(kG) with the structure of exact subcategory of mod(kG).

Proof. According to Quillen, to verify that E provides mod(kG) with the
structure of an exact category we must verify three properties. The first prop-
erty consists of the conditions that any short exact sequence isomorphic to
one in E is itself in E; that E contains all split short exact sequences; and that
if 0 → M ′ i→ M

j→ M ′′ → 0 is a short exact sequence in E, then i : M ′ → M
is a kernel for j : M → M ′′ and j : M → M ′′ is a cokernel for i : M ′ → M .
These conditions are essentially immediate.
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The second property consists of the conditions that the class of admissible
monomorphisms (i.e., monomorphisms occurring in an exact sequence of E)
is closed under composition and closed under push-out with respect to any
map of mod(kG); similarly that the class of admissible epimorphisms is closed
under composition and pull-back. This follows from the observation that these
properties hold for split exact sequences, thus also for those exact sequences
split at every π-point.

The third property asserts that any map f : M ′ → M of kG-modules with
the property that there exists some map g : M → Q of kG-modules such that
the composition g◦f : M ′ → M → Q is an admissible monomorphism is itself
an admissible monomorphism; and the analogous statement for admissible
epimorphisms. This is clear, for any splitting of the composition α∗K(g ◦ f) :
α∗K(M ′

K) → α∗K(MK) → α∗K(QK) gives a splitting of α∗K(f) : α∗K(M ′
K) →

α∗K(MK).
In view of Proposition 2.4, the preceding discussion for E applies equally

to the class EC of locally split short exact sequences of C(kG). ut

The following proposition makes the evident points that not every short
exact sequence of modules of constant Jordan type is locally split, that some
non-split short exact sequences are locally split, and that a non-locally split
extension of modules of constant Jordan type might not have a middle term
which is of constant Jordan type.

Proposition 2.6. Let E be an elementary abelian p-group and let I ⊂ kE
be the augmentation ideal. Then the short exact sequence of kE-modules of
constant Jordan type

0 // Ii/Ij // Ii/I` // Ij/I` // 0

is not locally split for any i < j < ` ≤ p.
If the rank of E is at least 2, then a non-trivial negative Tate cohomol-

ogy class ξ ∈ Ĥ
n
(G, k) determines a locally split (but not split) short exact

sequence of the form

0 → k → E → Ωn−1(k) → 0.

In contrast, if the rank of E is at least 2 and if 0 6= ζ ∈ H1(E, k), then the
associated short exact sequence 0 → k → M → k → 0 of kE-modules is such
that M does not have constant Jordan type.

Proof. By [6, 2.1], each Ii/I` is of constant Jordan type. The fact that the
sequence 0 → Ii/Ij → Ii/I` → Ij/I` → 0 is not locally split follows from
Proposition 2.4 and an easy computation of Jordan types. The second asser-
tion is a special case of [6, 6.3].

Finally, the extension of k by k determined by ζ ∈ H1(E, k) is split when
pulled-back via the π-point αK if and only if α∗K(ζK) = 0 ∈ H1(K[t]/tp,K).
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The subset of Π(E) consisting of those [αK ] satisfying α∗K(ζK) = 0 is a
hyperplane of Π(E) ∼= Pr−1 where r is the rank of E. Consequently, the
Jordan type of α∗K(MK) is 2[1] on a hyperplane of Π(E) and is [2] otherwise.

ut

3 The Grothendieck group K0(C(kG))

For any exact category E specified by a class E of admissible exact sequences,
we denote by K0(E) the Grothendieck group given as the quotient of the free
abelian group of isomorphism classes of objects of E modulo the relations
generated by [M1] − [M2] + [M3] whenever 0 → M1 → M2 → M3 → 0
is an admissible sequence in E. In this section, we begin a consideration of
K0(C(kG)), the Grothendieck group of modules of constant Jordan type (with
respect to locally split short exact sequences).

Following Quillen [17], we could further consider Ki(C(kG)) for i > 0.
Granted the current state of our understanding, the challenge of investigat-
ing K0(C(kG)) is sufficiently daunting that we postpone any consideration of
Ki(C(kG)), i > 0.

Proposition 3.1. For any finite group scheme G, there are natural embed-
dings of exact categories

P(G) // C(kG), C(kG) // mod(kG).

The first is from the exact category P(G) of finitely generated projective kG-
modules into the category C(kG) of modules of constant Jordan type; the sec-
ond is from C(kG) into the category mod(kG) of all finitely generated kG-
modules. These embeddings induce homomorphisms

K0(kG) ≡ K0(P(G)) // K0(C(kG)) // K0(mod(kG)).

Moreover, these homomorphisms are contravariantly functorial with respect to
a closed immersion i : H → G of finite group schemes.

Proof. Since every short exact sequence of projective modules is split, we
conclude that the full embedding P(G) → C(kG) of the category of finite
dimensional projective kG-modules into the category of kG-modules of con-
stant Jordan type (with admissible short exact sequences being the locally
split short exact sequences) is an embedding of exact categories. The embed-
ding C(kG) ⊆ mod(kG) is clearly an embedding of exact categories.

If i : H → G is a closed embedding, then kG is projective as a kH-module
(cf. [15, 8.16]) so that any projective kG-module restricts to a projective kH-
module. By [6, 1.9], restriction of a kG-module of constant Jordan type to
kH is again of constant Jordan type. Since restriction is exact and preserves
locally split sequences (because every π-point of H when composed with i
becomes a π-point of G), we obtain the asserted naturality with respect to
i : H → G. ut
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Remark 3.2. If a module M ∈ C(kG) admits an admissible filtration (mean-
ing the inclusion maps are admissible monomorphisms)

M0 ⊂ M1 ⊂ · · · ⊂ Mn = M,

then [M ] =
∑n

i=1[Mi/Mi−1] ∈ K0(C(kG)).

As an immediate corollary of Proposition 3.1, we have the following.

Corollary 3.3. If G is a finite group, then K0(P(G)) → K0(C(kG)) is in-
jective. More generally, if the Cartan matrix for the finite group scheme G is
non-degenerate, then K0(P(G)) → K0(C(kG)) is injective.

Proof. A basis for K0(P(G)) is given by the classes of the indecomposable
projective modules, while a basis K0(mod(kG)) is given by the classes of the
irreducible modules. The Cartan matrix for kG represents the natural map
K0(P(G)) to K0(mod(kG)) with respect to these bases. By Proposition 3.1,
this map factors through K0(C(kG)). This proves the second statement. A
theorem of Brauer (cf. [3, I.5.7.2]) says that if G is a finite group then the
Cartan matrix for kG is non-singular. ut

We consider a few elementary examples.

Example 3.4. Let G be the cyclic group Z/p. Then

K0(C(kZ/p)) ' Zp.

The map K0(P(G)) → K0(C(kZ/p)) is identified with the map Z → Zp, a 7→
(a, 0, . . . , 0). The map K0(C(kZ/p)) → K0(mod(kZ/p)) is identified with the
map Zp → Z, (ap, . . . , a1) 7→

∑
i iai.

Proposition 2.4 and the universal property of the Grothendieck group
K0(C(kG)) immediately imply the following proposition.

Proposition 3.5. Sending a kG-module M of constant Jordan type to the
Jordan type of α∗K(MK) and to the stable Jordan type of α∗K(MK) for any
π-point αK of G determines homomorphisms

JType : K0(C(kG)) // Zp, JType : K0(C(kG)) // Zp−1.

(1)

We view an element of K0(C(kG)) as the class of a virtual kG-module
of constant Jordan type. In the next section, we shall investigate to what
extent the homomorphisms JType, JType are surjective; in other words, the
realizability of Jordan types by virtual kG-modules of constant Jordan type.

The function JType is not injective: for example, a module of constant
Jordan type and its k-linear dual have the same Jordan type. The example
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of Z/2 × Z/2 given in Proposition 3.6 provides a more explicit example of
non-injectivity of JType.

We can achieve the next example because we know exactly what are the
indecomposable kE-modules for the Klein-four group E = Z/2×Z/2 (cf. [2],
[13]).

Proposition 3.6. For any field k of characteristic 2, the group algebra kE of
the Klein four group E = Z/2× Z/2 satisfies

K0(C(kE)) ' Z3.

Proof. We recall from [6, 6.2] that any kE-module of constant Jordan type is
of the form kEe

⊕
(⊕iΩ

ni(k)). One easily checks there is an admissible (i.e.,
locally split, short) exact sequence of kE-modules of the following form:

0 // Ω2(k) // Ω1(k)⊕Ω1(k) // k // 0 (2)

Hence, [Ω2(k)] = 2[Ω1(k)]− [k] in K0(C(kE)). Consecutive applications of the
Heller shift to the sequence (2) thus imply that K0(C(kE)) is generated by
the classes of the three kE-modules: kE, k, Ω1(k).

We define a function σ on the class of modules of constant Jordan type by
sending M ' kEe

⊕
(⊕iΩ

ni(k)) to σ(M) =
∑

i ni. We proceed to show that
σ is additive on admissible sequences, and, hence, induces a homomorphism
σ : K0(C(kE)) → Z.

Let ξ : 0 → M → L → N → 0 be an admissible sequence of kE-modules
of constant Jordan type, and assume N = N1 ⊕ N2. Since Ext1E(N,M) =
Ext1E(N1,M) ⊕ Ext1E(N2,M), we have ξ = ξ1 + ξ2 where ξi ∈ Ext1E(Ni,M).
Moreover, both ξ1, ξ2 are admissible, and the additivity of σ on ξ1, ξ2 implies
additivity of σ on ξ. Hence, we may assume that N is an indecomposable non-
projective module of constant Jordan type, that is, N ' Ωn(k). Similarly, we
may assume M ' Ωm(k).

Thus, we may assume that ξ has the form

0 // Ωm(k) // kEe
⊕

(⊕iΩ
ni(k)) // Ωn(k) // 0

By [6, 6.9], dim Ω2a(k) = 4a+1; hence, dim Ω2a+1(k) = 4(a+1)+1 (using
the short exact sequence 0 → Ω2a+1(k) → P2a → Ω2a(k) → 0). Comparing
dimensions, we conclude that σ is additive on an admissible sequence ξ if and
only if σ is additive on Ω1(ξ). (We are implicitly using [6, 1.8] asserting that
M has constant Jordan type if and only if Ω1(M) has constant Jordan type.)
Thus, we may further assume that n = 0. Hence, ξ has the form

0 // Ωm(k) // kEe
⊕

(⊕iΩ
ai(k)) // k // 0

Since ξ is split on restriction to any π-point, there exists i such that the
restriction Ωai(k) → k is not the zero map. Hence, the map Ωai(k) → k is
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surjective. Since the left end of the sequence ξ is projective free, we conclude
that e = 0. Because the Jordan type of the middle term is the sum of the
Jordan type of the ends, the middle term must have exactly two summands.
Hence, the sequence has the form

0 // Ωm(k) // Ωa(k)⊕Ωb(k) // k // 0

Because ξ represents an element in H1(G, Ωm(k)) ' Ĥ
1−m

(G, k) that van-
ishes on restriction along any π-point, 1 −m < 0 by [6, 6.3]; in other words,
m is positive. Likewise, a and b are not negative. That is, the map Ωa(k) → k

represents an element in Ĥ
a
(G, k) which does not vanish on restriction to some

π-point. This can only happen if a ≥ 0. The same argument shows that b ≥ 0.
Comparing dimensions (see [6, 6.9]), we get 2m + 1 + 1 = dim Ωm(k) +

dim k = dim Ωa(k) + dim Ωb(k) = 2a + 1 + 2b + 1. Hence, m + 0 = a + b, and
we conclude that σ is additive.

We consider the map

Ψ = (JType, σ) : K0(C(kE)) −→ Z2 ⊕ Z.

This is well defined by Proposition 3.5 and the observation that σ is additive
as shown above. To prove the proposition, it suffices to show that Ψ has image
a subgroup of finite index inside Z2 ⊕ Z. This follows from the observation
that the vectors Ψ(k) = (0, 1, 0), Ψ(Ω1(k)) = (1, 1, 1), and Ψ(kE) = (2, 0, 0)
are linearly independent over Q. ut

The preceding proof shows that the admissible sequences for the Klein
four group have a generating set consisting of sequences of the form

0 // Ωm+n+a(k) // Ωm+a(k)⊕Ωn+a(k)⊕ kEe // Ωa(k) // 0,

(3)
where m,n > 0. Here,

2e = |m + n + a|+ |a| − |m + a| − |n + a|;

hence, e = 0 unless a is negative and m + n + a is positive. This fact is of use
in the discussion to follow.

There are examples of group schemes for which the Cartan matrix is sin-
gular so that we can not apply Corollary 3.3 in these examples. Perhaps the
simplest is the first Frobenius kernel G = G1 of the algebraic group G = SL2

with p > 2. In this case, kG is isomorphic to the restricted enveloping alge-
bra of the restricted p-Lie algebra sl2 . It is known (cf. [12, 2.4]) that kG has
(p + 1)/2 blocks one of which has only a single projective irreducible module.
Each of the other (p − 1)/2 blocks has two non-isomorphic irreducible mod-
ules. Now suppose that B is one of these blocks. It has irreducible modules S
and T . The projective covers QS of S and QT of T have the forms
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In particular, for any module M in B, Rad3(M) = 0, and moreover, if
Rad2(M) 6= {0}, then M contains a projective direct summand. That is,
if M is an indecomposable non-projective B-module then Rad2(M) = {0}.

We see from the above that the Cartan matrix of kG is a p × p matrix
consisting of (p+1)/2 block matrices along the diagonal, (p−1)/2 of which are
the Cartan matrices of blocks B of the group algebra as above. The Cartan
matrix of such a block is a 2 × 2 matrices with 2 in every entry. The other
block matrix of the Cartan matrix of kG is a 1 × 1 identity matrix. Hence
the natural map from K0(P(G)) to K0(mod(kG)) is not injective. However,
as we see below, K0(P(G)) still injects into K0(C(kG)).

Proposition 3.7. Let G = G1 where G = SL2 and assume that p ≥ 3. Then

K0(C(kG)) ' Z3p−2.

Moreover, the map K0(P(G)) → K0(C(kG)) is injective.

Proof. We begin by recalling that rational SL2-modules are kG-modules of
constant Jordan type by [6, 2.5]; in particular, every simple kG-module is a
module of constant Jordan type.

As stated above, there are (p − 1)/2 blocks B1, . . . , B(p−1)/2 as above. In
addition there is another block B′ containing only a single indecomposable
module which is projective. Therefore,

K0(C(kG)) ' K0(C(B′))⊕
(p−1)/2∑

i=1

K0(C(Bi)).

We know that K0(C(kB′)) ' Z. Consequently, it suffices to prove that
K0(C(Bi)) ' Z6 for each i.

We consider B = Bi with simple modules S and T . We may assume that
S and T have stable constant Jordan types 1[i] and 1[p− i] respectively. The
indecomposable B-modules can be classified using standard methods similar
to those of [18] or the diagrammatic methods of [5]. Every non-simple, non-
projective indecomposable B-module M has the property that Soc(M) =
Rad(M) is a direct sum of t copies of one of the simple modules S or T . The
quotient M/Rad(M) is a direct sum of r copies of the other simple T or S.
Moreover, we must have that r is one of t−1, t, or t+1, that is, |t−r| ≤ 1. In
the case that r = t, it is evident that the module M has periodic cohomology.



Exact Category of Modules of Constant Jordan type 269

Or, at least, it is clear that the dimensions of Ωn(M) are bounded for all n.
This means that the module M must have proper non-trivial support variety in
Π(G), as the annihilator of its cohomology must be non-trivial. Consequently,
such a module M can not have constant Jordan type. Thus, we conclude that
|t− r| = 1, and that every indecomposable module of constant Jordan type is
a syzygy of an irreducible module (cf. (7), (8) and (9), below). This last fact
can also be deduced from recent results of Benson [4] on algebras with radical
cube zero.

Using the diagrammatic methods, sketched below (as can also be done in
the situation of Proposition 3.6), we first verify that the non-trivial admissible
sequences are generated by sequences of the form

0 → Ω2(m+n)+a(X) → Ω2m+a(X)⊕Ω2n+a(X)⊕ P → Ωa(X) → 0 (4)

and

0 → Ω2(m+n−1)+a(X) → Ω2m−1+a(Y)⊕Ω2n−1+a(Y)⊕Q → Ωa(X) → 0 (5)

and

0 → Ω2(m+n)−1+a(Y) → Ω2m+a(X)⊕Ω2n−1+a(Y)⊕R → Ωa(X) → 0 (6)

where X and Y are either S or T and Y is not the same as X. Here a can be
any integer and m,n > 0. The modules P , Q and R are projective modules
which are required for the exactness. In any of these sequences, the projective
module P , Q or R is a eumber of copies of the projective cover of a simple
module in the socle of the left-most term of the sequence, or in the top of the
right-most term of the sequence. In what follows it might be helpful to note
that, for dimension reasons, the projective module P in sequence (4) is zero
except in the cases that 2(m + n) + a is positive and a is negative. Likewise,
Q in sequence (5) is zero except when 2(m + n − 1) + a is positive and a is
negative. And a similar thing happens for sequence (6). To be very specific,
P in (4) is a sum of copies of QT if X = S and a is even or if X = T and a
is odd. Otherwise, it is a sum of copies of QS . The module Q in (5) and R in
(6) are sum of copies of QT in the cases that X = S, Y = T and a is even and
X = T , Y = S and a is odd. Otherwise, they are sum of copies of QS . The
verification that these sequences, (4), (5) and (6), generate the collection of
admissible sequences prodeeds as follows.

As in the proof of Proposition 3.6, we are looking for sequences represent-
ing elements of Ext1kG(−,−) which vanish on restriction along any π-point.
Because Ext1kG distributes over direct sums, and any such distribution still sat-
isfies the vanishing condition, we can restrict our consideration to sequences
which have indecomposable end terms. Consequently, the right end term can
be considered to be Ωa(X) for X either S or T . Suppose that X is S. We
can translate the sequence by Ω−a so that the right term is isomorphic to
S. Note also that because the two end terms each have only one single non-
projective Jordan block on restriction to any Π-point, there are at exactly
two nonprojective direct summands in the middle term of the sequence.
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Now we consider the diagrams for the syzygies of S amd T . For example,

Ω−1(S) = S

����
�� ��?

??
? Ω−1(T ) = T

����
��

��<
<<

<

T T , S S

(7)

Ω(S) = T

��=
===

T ,

~~}}}
}

Ω(T ) = S

��?
???

S

�����
�

S T.

(8)

Ω2(S) = S

��=
==

= S

�����
�

��=
==

= S ,

~~}}}
}

Ω2(T ) = T

��=
==

= T

�����
�

��>
>>

> T

�����
�

T T S S.
(9)

The diagram for an arbitrary syzygy of either S or T is merely an elongation
of these diagrams.

If we have a locally split sequence whose right hand term is S (or T ) and
if Ωm(X) occurs in the middle term (with X either S or T ), then m must be
nonnegative. The reason is that otherwise (m < 0) the Jordan type of the
kernel of such a map has too many non projective blocks at any Π-point. In
addition, such a map could not be right split at any π-point, because the socle
of the kernel would have more irreducible constituents than the head.

To finish the verification that the non-trivial admissible sequences are gen-
erated by sequences of the form (4), (5), or (6), we suppose that there is a
locally split sequence whose right hand term is S. The middle term must con-
sist of two terms of the form Ωm(X) and Ωn(Y), with m,n > 0 (if either m
or n is 0, then the sequence splits). Because both of these terms must map
surjectively to S, we must have that X ' S if m is even, and X ' T if m
is odd. The same happens for Y and n. Finally, we notice that the left term
of the sequence is determined entirely by its composition factors. A complete
analysis, which we leave to the reader, reveals that the sequence must look
like one of (4), (5), or (6).

Consider the following two collections of indecomposable B-modules:

U1 = {Ωm(S), m even} ∪ {Ωn(T ), n odd} ∪ {QT }

and
U2 = {Ωm(S), m odd} ∪ {Ωn(T ), n even} ∪ {QS}.

Observe that each of the sequences (4), (5) or (6) for any values of a,m, n, in-
volves either modules all of which are isomorphic to elements of U1 or modules
isomorphic to elements of U2.
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Let E(B) be the exact category of all B-modules of constant Jordan type
with the admissible sequences being the split exact sequences. Thus, K0(E(B))
is the Green ring Z[B] of B and is a free Z-module on the classes of elements in
the union of U1 and U2. Moreover factoring out the relators coming from the
sequences (4) and (5) defines K0(C(B)) as a quotient of Z[B]. As in the proof
of Proposition 3.6, we conclude that the images of classes in U1 (respectively,
U2) in K0(C(B)) are generated by the images of the classes [S], [Ω1(T )] and
[QT ] (resp., [T ], [Ω1(S)] and [QS ]).

Now let M1 be the subgroup of K0(E(B)) generated by the classes of
modules in U1, and letM2 be the subgroup generated by the classes of modules
in U2. Then K0(E(B)) 'M1 ⊕M2. Let K be the subgroup generated by the
relators determined by sequences (4) (5) and (6). That is, K is the kernel of
the homomorphism of K0(E(B)) onto K0(C(B)). Notice that K = K1 ⊕ K2

where each Ki = Mi ∩ K is generated by the relators determined by those
sequences of the form (4) (5) and (6) which only involve modules from Ui.
Consequently, we have that

K0(C(B)) ' K0(E(B))/K 'M1/K1 ⊕M2/K2

Therefore, to complete the proof of the proposition, it suffices to exhibit
homomorphisms M1/K1 → Z3 and M2/K2 → Z3 whose images are cofinite.
We do this by showing that there are isomorphism θi : Mi/Ki ' K0(C(k′E))
for i = 1, 2 and appealing to Proposition 3.6; here, E = Z/2×Z/2 is the Klein
four group and k′ is a field of characteristic 2.

For this purpose we define maps γ1 : M1 → K0(E(k′E)) and γ2 : M2 →
K0(E(k′E)) as follows:

γ1([Ωn(S)]) = [Ωn(k′)] (for n even), γ2([Ωn(S)]) = [Ωn(k′)] (for n odd),

γ1([Ωn(T )]) = [Ωn(k′)] (for n odd), γ2([Ωn(T )]) = [Ωn(k′)] (for n even),

γ1([QT ]) = [k′E], γ2([QS ]) = [k′E].

The reader should remember that γi is only defined on the classes of modules
in Ui. Moreover, each γi is clearly surjective.

The important thing to note is that γ1 takes the relators coming from those
sequences (4), (5) and (6) involving only the modules of U1 bijectively to the
relators coming from the sequences (3), which are then zero in K0(E(k′E)).
To see this we need only replace the module X, Y in sequences (4), (5) and (6)
by k′ and the projective modules P and Q by the appropriate sum of copies
of k′E.

Moreover, relators coming from the sequences (3) generate the kernel of
the natural quotient map from K0(E(k′E)) to K0(C(k′E)). Consequently, γ1

induces an isomorphism θ1 from M1/K1 to K0(C(k′E)). Likewise γ2 induces
in isomorphism θ2 : M2/K2 ' K0(C(k′E)). ut
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4 Realization of Jordan types

In this section, we initiate the investigation of the images of the Jordan type
functions, JType, JType, introduced in Proposition 3.5. Our first proposition
establishes the surjectivity of JType for an elementary abelian p-group of
arbitrary rank. The reader is cautioned that this establishes realizability of
Jordan types by virtual modules of constant Jordan type. Even for the rank
2 elementary abelian p-group E = Z/p × Z/p with p > 3, we do not know
whether there is a kE-module M of constant Jordan type with JType(M) =
[2], whereas Proposition 4.1 shows that we can realize the Jordan type [2] in
a virtual module.

Proposition 4.1. The map

JType : K0(C(kE)) // Zp

of Proposition 3.5 is surjective provided that E is an elementary abelian p-
group.

Proof. It suffices to verify that M = kE/Ii has constant Jordan type of
the form 1[i] + ai−1[i − 1] · · · + a1[1] for each i, 1 ≤ i ≤ p, where I is the
augmentation ideal of kE. The fact that M has constant Jordan type is verified
in [6, 2.1]. The fact that aj = 0 for j > i follows from the fact that Ii ·M = 0.
The fact that ai = 1 follows from the observation that the generator of M is
not annihilated by (g− 1)i ∈ I for any generator g of E whereas any element
of I/Ii is annihilated by (g − 1)i for every generator g of E. ut

The Jordan type of a direct sum of k[t]/tp-modules is the sum of the
Jordan types. The stable Jordan type of the Heller shift of the k[t]/tp-module∑p−1

i=1 ai[i] equals
∑p−1

i=1 ap−i[i]. The Jordan type of a tensor product is given
by the following proposition.

Proposition 4.2. (cf. [6, 10.2]) Let [i] be an indecomposable k[t]/tp-module
of dimension i for 1 ≤ i ≤ p. Then if j ≥ i, we have that

[i]⊗[j] =


[j − i + 1] + [j − i + 3] + . . . + [j + i− 3] + [j + i− 1] if j + i ≤ p

[j − i + 1] + . . . + [2p− 1− i− j] + (j + i− p)[p] if j + i > p.

The following proposition strongly restricts the possible images of the sta-
ble Jordan type function JType : K0(C(kG)) → Zp−1 of Proposition 3.5. We
say that a subset S ⊂ Zp−1 is closed under Heller shifts if {a1, . . . , ap−1} is
in S whenever σ = {ap−1, . . . a1} ∈ S. Similarly, we say that S ⊂ Zp−1 is
closed under direct sums (respectively, tensor products) if σ + τ ∈ S (resp.
σ ⊗ τ ∈ S) whenever σ, τ ∈ S. Here, σ ⊗ τ is defined by the formula of
Proposition 4.2 if both σ, τ have a single non-zero entry and is defined more
generally by imposing biadditivity.
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Proposition 4.3. Let S ⊂ Zp−1 be a set of stable Jordan types. Moreover,

1. If S has the form JType(C(kG)) for some finite group scheme G, then S
is closed under Heller shifts, direct sums, and tensor products.

2. If S = {m[1] + n[p − 1];m,n ∈ Z}, then S is closed under Heller shifts,
direct sums, and tensor products.

3. If [1], [2] ∈ S and S is closed under Heller shifts, direct sums, and tensor
products, then S = Zp−1.

4. Similarly, if [1], [3] ∈ S with p > 2 and S is closed under Heller shifts,
direct sums, and tensor products, then S = Zp−1.

5. On the other hand, the assumption that [1], [4] ∈ S and S is closed under
Heller shifts, direct sums,and tensor products does not imply that S =
Zp−1 for p = 11.

Proof. Statement (1) is a consequence of [6, 1.8].
Statement (2) easily follows from the fact that [p− 1]⊗ [p− 1] = [1]+ (p−

2)[p].
To prove (3), we observe that [i] ⊗ [2] = [i + 1] + [i − 1] for i, 2 ≤ i < p.

Thus, [1], [2] ⊗ [2] ∈ S implies that [3] ∈ S. Proceeding by induction, we see
that [i], [i− 1], [i]⊗ [2] ∈ S implies that [i + 1] ∈ S.

For (4), we may assume that p > 5. Then we obtain [3]⊗ [3] = [1]+[3]+[5]
which implies that [5] ∈ S; [5]⊗ [3] = [3]+[5]+[7], so that [7] ∈ S. Continuing,
we conclude that [2i− 1] ∈ S, 1 ≤ [2i− 1] ≤ p− 2. Applying Heller shifts to
[2i− 1], we conclude the stable type [p− 2i + 1] ∈ S for 1 ≤ [2i− 1] ≤ p− 2,
so that [j] ∈ S for all j, 1 ≤ j ≤ [p− 1].

Finally, let p = 11 so that [4] ⊗ [4] = [1] + [3] + [5] + [7] and p − 4 = 7.
Moreover, [7] ⊗ [4] = [7] + [9] + [11]. We conclude that S contains the span
of {[1], [4], [7], [10], [3] + [5], [8] + [6], [7] + [9]}. On the other hand, further
tensor products with these classes never yield a Jordan type

∑
ai[i] with

a3 6= a5, a6 6= a8 or a7 6= a9. ut

The applicability of Proposition 4.3 to the question of realizability of stable
Jordan types is reflected in the following proposition and its corollary.

Proposition 4.4. Suppose that G is a finite group which has a normal abelian
Sylow p-subgroup. There exists a kG-module with constant stable Jordan type
[2] + n[1] for some n. Moreover, the stable Jordan type function

JType : K0(C(kG)) // Zp−1

is surjective.

Proof. Let E ⊆ G be the subgroup consisting of all elements of order dividing
p. This is the unique maximal elementary abelian subgroup of G. Let M = k↑GE

be the induced module from the trivial module on E. Notice that because E
is normal in G, E acts trivially on M and hence M is a module of constant
Jordan type s[1] where s is the index of E in G.
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For any t > 0 we have that

Extt
kG(k, M) ∼= Ht(G, k↑GE ) ∼= Ht(E, k).

by the Eckmann-Shapiro Lemma. In particular, Ext1kG(k, M) ∼= H1(E, k) has
a k-basis consisting of elements γ1, . . . , γr, where r is the rank of E. The
elements have the property that for any π-point αK : K[t]/(tp) → KG the
restriction of some α∗K(γi) is not zero for some i. It follows that the tuple
ζ = (γ1, . . . , γr) is an element of Ext1kG((k↑GE )r, k) which does not vanish
when restricted along any π-point. Then ζ represents a sequence

ζ : 0 // (k↑GE )r // B // k // 0

which is not split on restriction along any π-point. As the first term in the
sequence has constant Jordan type rs[1], the middle term of the sequence
must have constant Jordan type [2] + (rs− 1)[1].

The surjectivity of JType now follows from Proposition 4.3(2). ut

Corollary 4.5. Let G be a finite unipotent abelian group scheme. Then the
stable Jordan type function

JType : K0(C(kG)) // Zp−1

is surjective.

Proof. Because G is a unipotent abelian group scheme, its group algebra kG is
isomorphic as an algebra (though not as a Hopf algebra) to the group algebra
of a finite abelian p-group. Hence, the previous proposition applies, since kG
has a module of constant Jordan type [2]+n[1] as constructed in the proof. ut

We next briefly consider the question of realizability of stable Jordan types
by indecomposable kG-modules by utilizing the Auslander-Reiten theory of
almost split sequences (cf. [1]). In the following proposition, τ : stmod(kG) →
stmod(kG) denotes the Auslander-Reiten translation. This is a functor on the
stable category and if G is a finite group or if kG is a symmetric algebra, then
τ(M) = Ω2(M) for any finite dimensional kG-module M .

Proposition 4.6. Let Θ be a connected component of the Auslander-Reiten
quiver which has tree class A∞. Let K̂ be the subgroup of K0(C(kG)) generated
by the classes of the modules in Θ. Let X0 denote a kG-module in Θ that
becomes an initial node of the tree of Θ once projectives are deleted. Then, K̂
is generated by the classes {[τn(X0)] |n ∈ Z} and, if Θ contains a projective
module P , by the class [P ] of that projective module.

Proof. It suffices to show that the class [M ] of any indecomposable module
M in Θ can be written as a linear combination of the classes of elements on
the bottom row of the stable part of Θ (see diagram that follows). This is
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obvious if M lies on the bottom row of Θ. So assume that M is not on the
bottom row. Moreover, to prove this for M it suffices to do so for τn(M) for
some n ∈ Z. This is because the functor τ is additive.

The stable part of the component Θ has the form

. . .

. . .

&&NNNNNNNNNN X2

77nnnnnnnnn

&&MMMMMMMM τ−1(X2)

. . .

%%KKKKKKKKK X1

99rrrrrrrr

%%LLLLLLL τ−1(X1)

88qqqqqqq

&&MMMMMMM
. . .

X0

88ppppppppp
τ−1(X0)

88qqqqqqq
τ−2(X0)

99sssssssss

Without loss of generality, we can assume that M = Xn+1 for some n. In the
case that n = 0, the almost split sequence for M has the form

0 // X0
// X1 ⊕ ε // τ−1(X0) // 0

where ε is either the zero module or the projective module P . This is an admis-
sible sequence by [6]. Hence we have that [M ] = [X1] = [X0] + [τ−1(X0)]− [ε]
in K0(C(kG)).

If n > 0, then there is an almost split sequence having the form

0 // Xn
// Xn+1 ⊕ τ−1(Xn−1) // τ−1(Xn) // 0.

Again this sequence is admissible, and we have that [Xn] + [τ−1(Xn)] =
[Xn+1] + [τ−1(Xn−1)]. The proposition now follows by induction. ut

As an example of the applicability of the following corollary, recall that a
finite p-group G has a single block and this block has wild representation type
provided Π(G) has dimension at least 1 and G is not a dihedral, quaternion
or semi-dihedral 2-group. The proof of this corollary is essentially a verbatim
repetition of the proof of [6, 8.8] granted Proposition 4.6.

Corollary 4.7. Let G be a finite group and assume that k is algebraically
closed. Assume that there exists an indecomposable kG-module of constant
Jordan type with stable Jordan type a =

∑p−1
i=1 ai[i] which lies in a block of

wild representation type. Then there exists an indecomposable kG-module of
constant Jordan type with stable Jordan type na for any n > 0.

Proof. By Erdmann’s Theorem [7], the connected component of the Auslander-
Reiten quiver of such a module has tree class A∞. In the notation of the proof
of Proposition 4.6, if X0 has stable constant Jordan type a, then because τ
commutes with restrictions along π-points, so also does τn(X0). Thus, by the
relations developed in the proof, X1 has stable constant Jordan type 2a, and
inductively, Xn has stable constant Jordan type (n + 1)a. ut
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For an arbitrary finite group scheme, Corollary 4.7 would appear to remain
valid in view of work of R. Farnsteiner [8], [9].

We next give a cohomological criterion for the realizability of all stable
Jordan types by virtual modules of constant Jordan type.

Theorem 4.8. Let G be a finite group scheme with the property that there ex-
ist odd dimensional classes ζ1 ∈ H2d1−1(G, k), . . . , ζm ∈ H2dm−1(G, k) such
that ∩m

i=1V (β(ζi)) = 0, where β : Hodd(G, k) → Hev(G, k) is the Bockstein
cohomological operation of degree +1. Let

Lζ1,...,ζm = ker{
∑

ζ̃i :
∑m

i=1 Ω2di−1(k) // k }.

If p > 2, then Lζ1,...,ζm
is a module of constant Jordan type whose stable

Jordan type has the form (m− 1)[p− 1] + 1[p− 2]. Consequently, for such G,

JType : K0(C(kG)) // Zp−1

is surjective.

Proof. Because ∩m
i=1V (β(ζi)) = 0, there does not exist an equivalence class

of π-points [αK ] ∈ Π(G) with α∗K(β(ζi,K)) = 0 ∈ H2di(K[t]/tp,K) for all
i, 1 ≤ i ≤ m. Hence, for each αK of G there exists some i such that α∗K(ζi,K) 6=
0 ∈ H2di−1(K[t]/tp,K). Hence, Proposition [6, 6.7] implies that Lζ1,...,ζm

is of
constant Jordan type with stable Jordan type (m− 1)[p− 1] + 1[p− 2].

The second assertion follows from the first by Proposition 4.3(2). ut

We proceed to verify (in Proposition 4.11) below that the condition of
Theorem 4.8 is satisfied by many finite groups. To do so, we use the following
theorem of D. Quillen which asserts that H∗(GL(n, F`), k) maps isomorphi-
cally onto the invariants of the cohomology of a direct product of cyclic groups.
Specifically, we have the following.

Theorem 4.9. (D. Quillen [16, §8]) Assume p > 2, let F` be a finite field
with (`, p) = 1 and let r be the least integer such that p divides the order of
the units F∗`r of F`r . Let π = Gal(F`r/F`). Then the restriction map

H∗(GL(n, F`), k) → H∗((F∗`r )×m, k)π×moΣm

is an isomorphism, where n = mr+e, 0 ≤ e < r. In particular, H∗(GL(n, F`), k)red

is a polynomial algebra on generators xi ∈ H2ri(GL(n, F`), k)), 1 ≤ i ≤ m.

The following is an easy consequence of Quillen’s theorem.

Proposition 4.10. We retain the hypotheses and notation of Theorem 4.9.
Assume furthermore that p2 does not divide the order of the units of F`r .
Then the cohomology H∗((F∗`r )×m, k)π×m

is an exterior algebra on generators
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t1, . . . , tm in degrees 2r − 1 tensor a symmetric algebra on the Bocksteins of
the ti’s, u1 = β(t1), . . . , um = β(tm) in degrees 2r.

Set ωs
i to be the class∑

j1<...<ji

tjs · uj1 · · ·ujs−1 · ujs+1 · · ·uji ∈ H2ri−1((F∗`r )×m, k)π×m

for any s, 1 ≤ s ≤ i, and set ζi to be the class∑
1≤s≤i

ωs
i ∈ (H2ri−1((F∗`r )×m, k)π×m

)Σm ∼= H2ri(GL(n, F`), k).

Then the Bockstein applied to ζi equals i times xi,

β(ζi) = i · xi ∈ H2ri(GL(n, F`), k).

Proof. The Bockstein of each ωs
i equals

∑
j1<...<ji

uj1 · · ·ujr ∈ H2ri(T (n, F`), k),
for any s, where T (n, F`) is the torus which we can take to consist of
the diagonal matrices. This element is equal to the restriction of xi ∈
H2ri(GL(n, F`), k). Thus, i · xi and β(ζi) ∈ H2ri(GL(n, F`), k) both re-
strict to i ·

∑
j1<...ji

uj1 · · ·uji ∈ H2ri(T (n, F`), k). Since the restriction map
H2ri(GL(n, F`), k) → H2ri(T (n, F`), k) is injective, the proposition follows.

ut

Proposition 4.11. Assume p > 2, let F` be a finite field with (`, p) = 1 and
let r be the least integer such that p divides the order of the units F∗`r of F`r .
Let π = Gal(F`r/F`). Assume further that p2 does not divide the order of the
units F∗`r of F`r . If n = mr + e, 0 ≤ e < r and if m < p, then any finite
group G admitting an embedding G ⊂ GL(n, F`) satisfies the hypothesis of
Theorem 4.8.

In particular, for any such finite group G,

JType : K0(C(kG)) // Zp−1

is surjective.

Proof. By Theorem 4.8, we may construct a kGL(n, F`)-module Lζ1,...,ζm (see
4.8) of constant Jordan type with stable Jordan type m[p − 1] + 1[p − 2].
The restriction of Lζ1,...,ζm

to kG remains a module of constant Jordan type
with the same stable Jordan type. Thus, the corollary follows by applying
Proposition 4.3(2). ut

5 Stratification by C(kG)

The modules of constant Jordan type do not form a triangulated subcategory
of the stable module category stmod(kG). On the other hand, C(kG) enjoys
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many good properties: as recalled earlier (from [6]), C(kG) is closed under
direct sums, tensor products, k-linear duals, retracts, and Heller shifts. In
stmod(kG), M 7→ Ω−1(M) is the translation functor on the triangulated
category stmod(kG). Hence, C(kG) is a full subcategory of stmod(kG) closed
under translations.

In this section, we briefly consider “thickenings” of C(kG) ⊂ stmod(kG),
adopting terminology of [14]. The question here is what modules can be as-
sembled by successive extensions of modules of constant Jordan type. This is
motivated partly by the observation that if a kG-module M is an extension
of two modules of constant Jordan type then there is lower bound on the
Jordan type (and perhaps even a minimal Jordan type) that can occur at any
π-point, namely, the sum of Jordan types of the two extending modules. A
well known class of examples are the modules Lζ for ζ ∈ H2m(G, k) for some
m > 0. Such a module is defined by a sequence

0 // Lζ // Ω2m(k)
ζ̃ // k // 0

where the map ζ̃ represents the cohomology class ζ. For any π-point αK of
G, α∗K(Lζ,K) has Jordan type s[p] for some s > 0 if α∗K(ζK) 6= 0 and Jordan
type s[p] + [p− 1] + [1] if α∗K(ζK) = 0.

Definition 5.1. Set thick1(C) equal to C(kG). For n > 1, set thickn(C) equal
to the smallest full subcategory of stmod(kG) which is closed under retracts
and which contains all finite dimensional kG-modules M fitting in a distin-
guished triangle M ′ → M → N → Ω−1(M ′) with M ′ ∈ thickn−1(C) and N a
kG-module of constant Jordan type (i.e., M ∈ thick1(C)).

Furthermore, define

Thick(C) ≡ ∪n thickn(C) ⊂ stmod(kG),

the smallest thick subcategory of C(kG) containing C(kG).

Any finite dimensional kG-module has a finite filtration with associated
graded module a direct sum of irreducible modules (obtained by successively
considering socles of quotient modules). Since the only isomorphism class of
irreducible modules for a finite p-group is that of the trivial module and
since every irreducible k(SL2)1-module has constant Jordan type by [6], we
immediately conclude the following proposition.

Proposition 5.2. Let G be a finite group scheme with the property that every
irreducible kG-module has constant Jordan type. Then

Thick(C) = stmod(kG).

In particular, if G is either a finite p-group or the first infinitesimal kernel
(SL2)1 of SL2, then Thick(C) = stmod(kG).
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The socle filtration employed in the proof of the above filtration might not
be a good measure of the “level” of a kG-module as we shall see in Proposition
5.9.

Recall that a block B of kG is said to have defect group a given p-subgroup
P ⊂ G if P is the smallest subgroup of G such that every module in B is a
direct summand of a kG-module obtained as the induced module of a kP -
module. As shown in [11, 4.12], this implies that any kG-module in B has
support in i∗(Π(P )) ⊂ Π(G), where i : Π(P ) → Π(G) is induced by the
inclusion P ⊂ G.

Proposition 5.3. Let G be a finite group and let B be a block of kG with
defect group P 6= {1}. If i∗ : Π(P ) → Π(G) is not surjective, then no
non-projective module in B has constant Jordan type.

Moreover, if B is such a block, then no non-projective module in B is in
Thick(C).

Proof. If M is a kG-module in B, then the support variety Π(G)M is con-
tained in i∗(Π(P )) ⊂ Π(G), a proper subvariety of Π(G). Consequently, M
does not have constant Jordan type. Thus the only modules of constant Jor-
dan type in B are the projective modules. If a B-module were in Thick(C),
then it would have to be an extension of projective B-modules and hence
projective. ut

Remark 5.4. The hypothesis of Proposition 5.3 is satisfied in numerous ex-
amples. For example the alternating group A9 on nine letters and the first
Janko group J1 have such blocks in characteristic 2. The Mathieu group M12

has such a block in characteristic 3.

We conclude this investigation of modules of constant Jordan type by re-
turning to the special case G = E an elementary abelian p-group. We utilize
a class of modules of constant Jordan type discovered by Andrei Suslin, those
with the “constant image property.” The widespread prevalence of such mod-
ules reveals that C(kE) must necessarily be large and complicated.

We consider an elementary abelian p-group E of rank r, and we consis-
tently use the notation kE = k[x1, . . . , xr]/(xp

1, . . . , x
p
r). We denote by IE the

augmentation ideal of kE, and by k some choice of algebraic closure of k.
The following definition is similar to those definitions found in [11, §1]

Definition 5.5. A finite dimensional kE-module M is said to have the con-
stant image property if for any 0 6= wα = α1x1 + · · ·+ αrxr ∈ kE,

wαMk = Rad Mk.

Example 5.6. The module

M = Rad(r−1)(p−1)(kE) ≡ I
(r−1)(p−1)
E

has the constant image property.
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To verify this, first observe that Mk = Rad(r−1)(p−1)(kE), so that we
may assume that k is algebraically closed. Every non-zero monomial of degree
(r − 1)(p− 1) + 1 in k[x1, . . . , xr] has the form xa1

1 · · ·xar
r for 0 ≤ ai < p for

all i. But as a1 + · · · + ar = (r − 1)(p − 1) + 1, it must be that a1 > 0; i.e.,
I
(r−1)(p−1)+1
E = x1I

(r−1)(p−1)
E . Hence,

RadM ≡ IEM = Rad(r−1)(p−1)+1(kE) = x1M

and we have verified the condition of Definition 5.5 for wα = x1. This is
sufficient, for given any wα 6= 0 there is an automorphism of kE which takes
wα to x1 and takes In

E to In
E for all n.

Remark 5.7. As the reader can easily verify, the direct sum of modules
with the constant image property and any quotient of a module with con-
stant image property again have the constant image property. Thus, starting
with Example 5.6, we obtain many additional modules with constant im-
age property. Moreover, a simple induction argument implies that if the kE-
module M has the constant image property, then for any n > 0 and any
0 6= wα = α1x1 + · · ·+ αrxr ∈ kE,

wn
αMk = Radn Mk.

Proposition 5.8. Suppose that M is a kE-module with the constant image
property. Then M has constant Jordan type.

Proof. For any α = (α1, . . . , αr) 6= 0 ∈ k
r
, the Jordan type of wα on Mk is

equivalent to the data consisting of the sequence of dimensions

Dim Mk, Dim wαMk, Dim w2
αMk, . . . , Dim wp−1

α Mk.

Thus, Remark 5.7 implies that each of the wα have the same Jordan type
on Mk. According to the original definition of maximal Jordan type [11, 1.4],
some wα has maximal Jordan type for M . Thus, the complement of the non-
maximal variety of M contains all k-rational points of Ar, and hence the
non-maximal variety of M is empty. This is equivalent to the assertion that
M has constant Jordan type. ut

Proposition 5.9. Suppose that E is an elementary abelian p-group of rank
r. Then

thick2r(C) = stmod(kE).

Proof. We first assume that Radp(M) = Ip
EM = 0 and proceed to verify that

M is in thick2(C). Namely, let Q = kEt be the injective hull of M . Then
we have an injection ϕ : M −→ kEt. Because Ip

EM = 0, we must have that
ϕ(M) ⊆ I

(r−1)(p−1)
E kEt = (I(r−1)(p−1)

E )t. This yields the exact sequence

0 // M // (I(r−1)(p−1)
E )t // N // 0
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where N is the quotient. Hence in stmod(kG) there is a distinguished triangle

M // (I(r−1)(p−1)
E )t // N // Ω−1(M) // . . .

Consequently, applying Proposition 5.8, we conclude that M ∈ thick2(C).
In general, the modules

M/Radp(M), Radp(M)/ Rad2p(M), . . . , Rad(r−1)p(M)/ Radrp(M)

each belong to thick2(C), because they are all annihilated by Ip
E . Because

Irp
E (M) = 0, this readily implies that M is in thick2r(C) as asserted. ut
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